
Improving Traffic Locality in BitTorrent via Biased Neighbor Selection

Ruchir Bindal
Pei Cao

William Chan
Department of Computer Science

Stanford University
rbindal@cs.stanford.edu

Jan Medved
George Suwala

Tony Bates
Amy Zhang

Cisco Systems, Inc.

Abstract

Peer-to-peer (P2P) applications such as BitTorrent ig-
nore traffic costs at ISPs and generate a large amount of
cross-ISP traffic. As a result, ISPs often throttle BitTor-
rent traffic to control the cost. In this paper, we examine
a new approach to enhance BitTorrent traffic locality, bi-
ased neighbor selection, in which a peer chooses the ma-
jority, but not all, of its neighbors from peers within the
same ISP. Using simulations, we show that biased neighbor
selection maintains the nearly optimal performance of Bit-
Torrent in a variety of environments, and fundamentally re-
duces the cross-ISP traffic by eliminating the traffic’s linear
growth with the number of peers. Key to its performance
is the rarest first piece replication algorithm used by Bit-
Torrent clients. Compared with existing locality-enhancing
approaches such as bandwidth limiting, gateway peers, and
caching, biased neighbor selection requires no dedicated
servers and scales to a large number of BitTorrent networks.

1 Introduction

P2P content distribution applications such as BitTor-
rent [5] have fundamental advantages over the tradi-
tional client-server model (i.e. web sites) and the fixed-
infrastructure content distribution networks (i.e. Akamai)
as the supply of bandwidth grows linearly with the demand.
They utilize the bi-sectional bandwidth among nodes while
requiring little additional infrastructure. BitTorrent is there-
fore wildly popular and a major constituent of traffic on the
Internet [7, 2].

An ISP typically pays a tier-1 “core” ISP for connectiv-
ity to the broad Internet, and traffic between the ISP and the
outside world is costly for the ISP [18]. However, since the
current implementations of BitTorrent ignore the underly-
ing Internet topology or ISP link costs by setting up data

transfers among randomly chosen sets of peers distributed
over the Internet, it proves to be costly for ISP’s.

ISPs often control BitTorrent traffic by “throttling”, or
bandwidth limiting. Since BitTorrent traffic typically runs
over a fixed range of ports (6881 to 6889) [6] and is easily
decoded, traffic shaping devices such as [20, 13, 19, 23] are
deployed to limit the amount of bandwidth consumed by the
BitTorrent protocol. However, this mainly slows down the
content transfer and worsens the user download experience,
not addressing the fundamental concern of the ISP, which is
to improve the locality (i.e. reduce the cross-ISP traffic) of
those transfers.

Many analytical and simulation studies [16, 1, 25, 22]
have shown that the existing BitTorrent algorithm is nearly
optimal in terms of user experienced download time. How-
ever, all these studies assume that a peer’s neigbors are se-
lected randomly from the set all neighbors. However, is ran-
dom neighbor selection just a sufficient condition for perfor-
mance optimality; or is it also a necessary condition?

This paper answers the above question with extensive
simulations. We rely on simulations since it is difficult to
capture all the relevant mechanisms in BitTorrent clients in
an analytical model. Our simulator calculates network de-
lays caused by multiple flows sharing a network link and
accommodates internal network bottlenecks. The simulator
models a peer’s concurrent uploads, calculation of down-
load rates from its neighbors, the choking/unchoking algo-
rithm to decide who to upload to, and the piece selection
algorithm. Different from other simulation studies [1, 15],
the simulator does not assume that the bottleneck link is the
individual peer’s upload link, but rather can model arbitrary
network links to be the bottleneck.

Our main conclusion is that biased neighbor selection,
in which a peer chooses the majority, but not all, of its
neighbors from peers within the same ISP, can reduce cross-
ISP traffic significantly while keeping the download perfor-
mance nearly optimal.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

• As long as the original seed (the host that starts shar-
ing the file) has moderately high upload bandwidth
(e.g. four times the prevailing upload bandwidth of the
peers), biased neighbor selection results in no degra-
dation in download times, regardless of whether it is
deployed by all ISPs or by just one ISP.

• Under biased neighbor selection, the cross-ISP traffic
due to downloading of a particular file stays relatively
constant, and does not grow as the number of peers
interested in the file increases. In fact, as the number
of peers inside an ISP increases, the traffic is reduced
slightly.

• The “rarest first replication” algorithm is key to the
success of biased neighbor selection. It has a “de-
clustering” effect, improving the chances that peers
within the same ISP have blocks to exchange with one
another. Random piece selection, shown in other stud-
ies to work just as well in regular BitTorrent [1, 16],
does not work well with biased neighbor selection.
Here, “rarest first” refers to the strategy of choosing
a block to download from the blocks a neighbor has.
Under this scheme, the block which is least replicated
among other neighbors is chosen first.

• For a cable modem or DSL ISP, when there are ex-
ternal high bandwidth peers, biased neighbor selection
needs to be combined with bandwidth limiting to keep
cross-ISP traffic at a minimum level. However, unlike
pure bandwidth limiting, the combined scheme does
not increase download time.

• Since each BitTorrent node prefers to upload to neigh-
bors which have been giving data to it at a good rate,
(the “tit-for-tat” mechanism) pure bandwidth limiting
does push a peer toward intra-ISP peers, and can re-
duce cross-ISP traffic. However, its effect is limited
by the initial neighbor selection of the peer, and com-
bining bandwidth throttling with biased neighbor se-
lection is much more effective.

• Allowing only a single peer to connect to the exter-
nal nodes results in a significant increase in down-
load time. This means that ordinary peers cannot act
as gateway peers. Instead, dedicated high-bandwidth
nodes should be used, and the approach does not scale
to multiple concurrent BitTorrent networks.

• Using caches inside ISP’s for BitTorrent traffic re-
quires them to have high upload bandwidth to avoid
increasing the download times. Combining biased
neighbor selection with caches can reduce both the
peak and average bandwidth needed, and the addition
of bandwidth limiting can cap the peak bandwidth.

2 BitTorrent and Related Work

2.1 BitTorrent Protocols and Algorithms

BitTorrent [5] is a P2P file-sharing application which ef-
ficiently distributes large files to a large user population by
making use of the upload bandwidth of all nodes (called
peers) downloading the file. In the following description,
the terms node and peer are used interchangeably.

To distribute a file via BitTorrent, the provider first gen-
erates a separate file containing some meta-information
about the shared file (called the torrent file) and runs a cen-
tral server called the tracker which keeps track of all nodes
downloading this file. This torrent contains the address of
the tracker and also the size of each of the small file blocks
that will be exchanged between the peers. The supplier then
starts its BitTorrent client(the seed). The torrent file is then
published on the Internet using HTTP and interested down-
loaders can download it to run their BitTorrent clients with
the torrent file as the input. Since the tracker’s address is
already embedded in the torrent file, the clients can contact
the tracker using it. So the network consists of the tracker,
the original seed, and all nodes interested in downloading
the file. Peers are not fully connected to each other in this
network. Rather, the network is a random graph.

Each peer, p, upon first joining the network, contacts the
tracker. The tracker then randomly selects C nodes (default
C is 50), out of all the nodes in the network, and hands the
list back to p. Peer p then initiates connections with those
nodes. Later on, other peers joining the network may get
p as one of nodes returned by the tracker and initiate con-
nections with p. By default, each peer connects to a max-
imum of 35 other peers on its own. Moreover, since peers
may leave the network at any time, if p’s neighbor count
drops below a certain threshold (default is 20), p contacts
the tracker again to obtain a new list of nodes. Note that the
this description is of the prevailing default client implemen-
tation.

Peers exchange bit vectors of the blocks in their posses-
sion with neighbors frequently, both at the beginning and
whenever a peer obtains new content. Through this bit vec-
tor exchange, the peer p learns the up-to-date content at each
neighbor. If a neighbor has blocks that p doesn’t have, p
sends an “interested” message to the neighbor. Now, when
and if the neighbor sends blocks to p depends on the “chok-
ing/unchoking” algorithm in BitTorrent.

Every 10 seconds, a peer evaluates which of its “inter-
ested” neighbors it will send data to. It unchokes 4 con-
nections based on a “tit-for-tat” criteria where peers which
have been giving data to it at a high rate are preferred. The
fifth peer is optimistically unchoked i.e. is picked randomly
from the remaining set of peers. Note that all connections
are “choked”(or blocked) by default. This limit of 5 concur-

2

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

rent uploads is the default setting but can be configured to a
different value. Optimistic unchoke allows brand new peers
to bootstrap and also finds other peers which may have a
better upload rate and is done every 30 seconds.

Clearly, the “tit-for-tat” mechanism biases the traffic to-
wards higher bandwidth routes. However, this bias is lim-
ited by the initial neighbor selection that happens in the
“forming the random graph” step.

On getting unchoked by a neighbor in which it is inter-
ested, a peer p chooses a block to download using the “lo-
cal rarest first replication” algorithm. That is, among the
blocks provided by a neighbor, the block that is least repli-
cated among all neighbors of p is chosen. Note that a node
only has visibility into the contents of its neighbors. Stud-
ies have shown that the rarest first selection algorithm is not
necessary for the optimal performance of BitTorrent. How-
ever, as we will show later in the paper, it is in fact quite
important if the graph is not random.

2.2 Existing Studies on BitTorrent

At its heart, BitTorrent attempts to solve the “broadcast-
ing problem”, i.e. disseminating M messages in a popu-
lation of N nodes in the shortest time. Assuming a cen-
tral scheduler and a completely-connected graph, studies
[17, 25, 10] show that the lower bound on download time
is M + log2(N) units, where a unit is the time it takes for
two nodes to exchange a message.

BitTorrent does not support these assumptions but still
appears to work exceedingly well. Simulation studies indi-
cate that the random algorithms used by BitTorrent lead to a
nearly optimal performance by utilizing upload links almost
fully in a setting of cable modem and DSL nodes [1, 10].

A number of analytical studies support the above ob-
servation [16]. This analysis proves that, as long as the
neighbors are chosen either randomly among all peers, or
randomly among peers with the same number of blocks,
the performance of BitTorrent is asymptotically optimal.
The optimal performance does not depend on nodes stay-
ing around after completing their collections or using the
least-replicated-first replication strategy.

All existing simulation and analytical studies, however,
assume that peers choose neighbors randomly among all
nodes in the network. Unfortunately, such neighbor selec-
tion policy is also the root cause of BitTorrent’s high cross-
ISP traffic. Thus, the goal of this study is to find neigh-
bor selection policies that improve intra-ISP traffic local-
ity while preserving the near-optimal performance of Bit-
Torrent. The proposed solution, biased neighbor selection,
achieves this goal.

In addition to bandwidth limiting, two other obvious
methods for reducing cross-ISP traffic are caches [2], and
“gateway peers” (a gateway peer is the only node inside

an ISP that can connect to external peers) [15]. A recent
trace-driven study examined the cross-ISP traffic of the two
approaches and found that they are comparable [15]. How-
ever, the study did not look into peer download perfor-
mance. We found that in order for these solutions not to
increase download latency, the devices involved (caches or
gateway peers) need to have much higher bandwidth than
individual peers. In contrast, changing the neighbor selec-
tion policy requires no extra infrastructure, and can be com-
bined with these methods to improve them further.

Measurement studies of BitTorrent traffic on the Inter-
net [8, 14, 12] show that a BitTorrent network typically goes
through three stages in its life: flash crowd, steady state
and winding down [14], and the peer join rate decreases
exponentially with time [12]. A flash crowd occurs when
the content is first made available, and can last for several
days [14]. Among the three stages, flash crowd generates
the highest rate of traffic and is the most challenging for
ISPs to handle. Thus, in this paper, the focus is on the flash
crowd scenario, though the results are also validated with a
Poisson arrival pattern.

Some other schemes using end systems for content dis-
tribution either build explicit overlay trees [9, 4, 3, 21]
or meshes [3], and are quite different from BitTorrent.
Slurpie [24] adopts the same randomized approaches as Bit-
Torrent. We focus on BitTorrent due to its popularity.

Schemes using network coding to improve BitTorrent
[11] solve the “last missing block” problem and signifi-
cantly improve content availability in the network. In a
sense, network coding is a replacement of the rarest first
replication policy and is complementary to biased neighbor
selection. We expect it can further reduce the cross-ISP traf-
fic of biased neighbor selection, though a detailed study of
the combination remains our future work.

3 Biased Neighbor Selection: Concept and
Implementation

In biased neighbor selection, a peer chooses most of its
neighbors from the same ISP as itself, and only a few from
other ISPs. Specifically, a parameter k is associated with the
scheme, where for each peer, all but k neighbors are from
the same ISP, and only k neighbors are chosen from outside
the ISP. If there are fewer than 35− k internal peers (a peer
by default keeps 35 neighbors), more external neighbors are
retained. However, in this case, the peer contacts the tracker
again at periodic intervals to find more internal neighbors.

Therefore, with biased neighbor selection, peers within
the same ISP form a highly connected cluster. Each peer,
however, keeps a few connections to the outside world,
making the contents in the outside world visible to it. The
difference between the normal randomized neighbor selec-

3

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 1. Uniform random neighbor selection vs. biased neighbor selection. The graph on the left
is a result of uniform random neighbor selection, while the graph on the right is a result of biased
neighbor selection.

tion and the biased neighbor selection is illustrated in Fig-
ure 1.

There are two ways to implement biased neighbor selec-
tion:

• Modifying trackers and clients: Biased neighbor se-
lection can be implemented easily by changing the
tracker and the client. The tracker selects 35 − k in-
ternal peers and k external peers to hand back to the
client. If there are less than 35 − k internal peers, the
tracker also notifies the client to contact it again after
a certain duration. The challenge here lies in inform-
ing the tracker of the ISP locality. A number of op-
tions exist to solve the problem. The tracker can use
Internet topology maps or IP to Autonomous System
(AS) mappings to identify ISP boundaries. ISPs wish-
ing to preserve traffic locality can also publish their
IP address ranges to trackers. Finally, since BitTor-
rent tracker-client communication protocols run over
HTTP [6], an ISP’s HTTP proxy can append a new
header “X-Topology-Locality” that contains a locality
tag. All peers with the same locality tag can be as-
sumed to be from the same ISP.

• P2P traffic shaping devices: In recent years, the need
of ISPs to control P2P traffic has given rise to a new
category of devices that we call P2P shaping devices.
Situated along side the edge routers of the ISPs, these
devices use deep packet inspection to identify P2P traf-
fic and manipulate them. Representative vendors in-
clude CacheLogic [2], Sandvine [23] and Cisco’s P-
Cube appliances [19]. For BitTorrent traffic which
runs on HTTP [6], many HTTP proxy appliances per-
form the role too. A P2P shaping device can imple-
ment biased neighbor selection without much obstacle.
For each content file, it needs to keep track of peers in-
side the ISP downloading it. When a peer joins the
network for a file, the device intercepts and modifies
the responses from the tracker to the peer, substituting
outside peers with internal peers. When it is necessary
to change a peer’s neighbors (for example, when more

internal peers join the network), the device inserts TCP
RESET on the connections between the peer and its ex-
ternal neighbors, forcing the peer to contact the tracker
to obtain new neighbors. The device then manipulates
the tracker’s response to add internal neighbors.

Indeed, it is due to the prospect that biased neighbor se-
lection can be implemented by P2P shaping devices with-
out modifications to clients or trackers, that it is a practical
method for ISPs.

4 Evaluation Methodology and Criteria

To understand the interaction of neighbor selection with
other BitTorrent mechanisms, a discrete-event simulator
was built to simulate the download of a large file over a
simplified network topology.

4.1 Representative Network Topology

The basic network consists of 14 ISPs each having 50
peers joining a BitTorrent network. All peers inside the
ISP are modeled after cable modem and DSL nodes, and
have asymmetric upload/download bandwidths. The up-
load bandwidth of these peers is 100Kbps, and the down-
load bandwidth is 1Mbps. These peers are referred to as
“cable modem nodes” in this paper.

All ISPs are assumed to be completely connected. There
are two scenarios to be considered, when ISPs do not im-
pose bandwidth caps on BitTorrent traffic, and when ISPs
do. Both are evaluated in this paper. In the case of band-
width caps, the bandwidth cap is modeled as an ISP having
a single limited bandwidth link to all other ISPs.

In addition to cable modem ISPs, the simulator consid-
ers the presence of high-bandwidth nodes that have sym-
metric links. We call these nodes “university nodes” for
obvious reasons. The topology assumes that all university
nodes have point-to-point links with each ISP and also with
each other. The experiments vary both the number and the

4

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

bandwidth of these nodes to examine their impact on the
BitTorrent network.

Most of the simulations are conducted with all peers
joining the network at once, i.e. the flash crowd scenario.
The focus is on a flash crowd since it is the most challenging
for ISPs to handle. Furthermore, it is assumed that all peers
leave the network as soon as they finish download, but the
original seed always stays online. Studies have shown that
the majority of peers leave soon after they finish download-
ing [12]. The exception is the original seed. Since the con-
tent provider is interested in distributing the content using
BitTorrent, it is reasonable to expect that the original seed
stays around to see the last of the peers finish downloading.

4.2 Event-Driven Simulation

We built a discrete event simulator to calculate the down-
load time of BitTorrent peers under various algorithms. The
discrete event simulator models the following events in the
BitTorrent network:

• Join: peers joining the network;

• Leave: peers leaving the network;

• Block-Transfer: a block is sent from one peer to an-
other;

• Peer-Report: peer’s periodic contact with the tracker;

Unlike simulators used in other studies, our simulator
does not assume that the bottleneck is solely the upload
links of the nodes, but rather accommodates bottlenecks in
other network links. As a result, it needs to calculate the
network delay of each block transfer based on the number
of connections sharing bottleneck links and should also be
capable of handling multiple bottlenecks.

The simulator calculates the network transfer delay in
the following fashion. Every 100ms, the simulator recali-
brates the transfer rate of each connection between peers,
based on an idealized assumption of equal share and max-
imum capacity utilization. Each link has an associated up-
load and download bandwidth. For each link, the number
of flows passing through it is recorded. Then, the simu-
lator starts with the link that is most congested, i.e. with
the lowest per-connection bandwidth, and sets the transfer
rate for connections going over that link, assuming equal
share. For each connection whose rate is set, the simulation
goes through all links used by the connection and subtracts
the connection’s rate from those links. The leftover band-
width of a link is assumed to be equally divided among the
remaining connections. The simulator then finds the next
most congested link, and repeats the above calculation.

This approach assumes idealized performance of TCP,
and does not model the dynamics and idiosyncrasies of TCP
implementations. Rather, we rely on the long-term fairness

of TCP, documented by numerous analytical and measure-
ment studies. The simulator also does not model the prop-
agation delay of control messages, since they are negligible
when compared to data transfer latencies.

The code simulating a peer is “fork-lifted” out of the
original BitTorrent implementation. Data transfer events are
translated into bytes received at the peer. Logic for calcu-
lating past download rates from the neighbors remains un-
changed. The implementation of choking/unchoking algo-
rithm is preserved. Each peer holds the bit-vector content
of all its neighbors, and implements the “rarest first” repli-
cation algorithm.

4.3 Evaluation Criteria

There are two main evaluation criteria: download time
and ISP traffic redundancy. Measurement of download time
includes the cumulative distribution function (CDF), the
50th percentile value and the 95th percentile value. The
size of the shared file is 64 MB in all experiment results
presented in this paper. The file is divided into 2000 equal-
sized blocks. Though a lot of files shared on real BitTorrent
networks are much larger, a smaller file has been used in
our experiments for the sake of speeding up the simulations.
However, it was confirmed that running our simulator with
a file 4 times as large does result in download time increased
by a factor close to 4. So all results can be scaled for larger
file sizes. The term “ISP traffic redundancy” means the av-
erage number of times each block of the content file travels
into the ISP, until all peers inside the ISP finish their down-
loads. The lower the redundancy, the lower the cross-ISP
traffic. The lowest redundancy is 1. The highest redundancy
is N , where N is the number of peers inside the ISP.

It should be noted that for a file of size 64 MB, the min-
imum time required to fully upload it through a 100Kbps
upload link is 5,120 seconds. This should also be the down-
load time ideally experienced by all peers in a homoge-
neous network where every node has an upload bandwidth
of 100Kbps. As is shown later, BitTorrent performs nearly
optimally by bringing the download time very close to this
number.

For each experiment, the simulation is run multiple
times, with a different seed for the random number gener-
ator in each run. The variance of the results from multiple
runs is very low, specifically < 5%.

5 Biased Neighbor Selection: Benefits and
Performance

The experiments examine two network settings: a ho-
mogeneous network consisting of 700 cable modem nodes
spread among 14 ISPs, and a heterogeneous network con-
sisting of a number of university nodes and 700 cable mo-

5

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Table 1. Normalized download time and traffic
redundancy under bandwidth throttling, in a
homogeneous network. Download time for
1.0 is 5,312 seconds.

ISP bottleneck 50th 95th Traffic
percentile percentile redundancy

no bottleneck 1.0 1.35 46.9
2.5Mbps 1.43 1.59 31.76
1.5Mbps 2.01 2.05 24.88
500Kbps 3.33 3.53 21.65

dem nodes. In both cases, the original seed (the one pro-
vided by the content provider) is a separate node whose
bandwidth varies. In the following discussion, we refer to
the BitTorrent network using uniform random neighbor se-
lection as “regular BitTorrent”, and the BitTorrent network
using biased neighbor selection as “biased BitTorrent”.

5.1 Effects of Bandwidth Throttling

Bandwidth throttling by ISPs reduces the traffic redun-
dancy moderately but causes a significant increase in down-
load time, particularly when the seed has a high bandwidth
or when there are external high bandwidth nodes. The per-
formance with bandwidth throttling in homogeneous net-
works is shown in Table 1 and Figure 2. The seed is a sep-
arate node with a 400Kbps uplink bandwidth. For clarity,
the download time results are presented as ratios between
the download time and a base download time, which is the
50th percentile download time for the no bottleneck case at
5,321 seconds.

In uniform random neighbor selection, the number of ex-
ternal neighbors that a peer has on average is 35∗(1−N/G),
where N is the number of peers in the ISP, and G is the
total number of peers in the BitTorrent network. In homo-
geneous networks where there is no internal network bot-
tleneck, all the neighbors have the same upload rate to the
peer and hence they are indistinguishable from each other
which leads leads to an expected redundancy of N ∗ (35 ∗
(1−N/G))/35 = N ∗ (1−N/G). Our simulations match
this analysis with 50 nodes per ISP and a total of 700 nodes.

Note that tit-for-tat causes the increase in download time
to be less than linear to the reduction in bottleneck band-
width. However, while a bottleneck of 1.5Mbps leads to
halving the redundancy, setting the bottleneck to 500Kbps
only reduces redundancy slightly further. It appears that
beyond a certain level, bandwidth throttling cannot reduce
traffic redundancy anymore because it is constrained by the
initial neighbor selection.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

no bottleneck
2.5 Mbps
1.5 Mbps
500 Kbps

Figure 2. CDF of download times under band-
width throttling, in homogeneous networks.

Table 2. Download time and traffic redun-
dancy of regular vs. biased neighbor selec-
tion in a homogeneous network.

Neighbor 50th 95th Traffic
Selection percentile percentile redundancy
Regular BitTorrent 5,312 7,152 46.9
Biased k = 1 5,168 6,206 3.04
Biased k = 5 5,172 6,281 9.74
Biased k = 17 5,220 5,872 21.38

5.2 Biased Neighbor Selection in Homo-
geneous Networks

The above observation motivates our technique: biased
neighbor selection. Namely, for BitTorrent traffic to have
ISP locality, the neighbors need to be chosen well.

Table 2 and Figure 3 show the performance for biased
neighbor selection, with the number of external neighbors
k varying from 1 to 17 (half of all neighbors).

The results show clearly that biased neighbor selection
reduces the variation in download times among the peers,
has median download times similar to regular BitTorrent,
and reduces ISP traffic redundancy significantly. The re-
duction in download time variances has to do with the fact
that pieces are replicated more evenly in biased BitTorrent,
since the estimate of replication ratios of pieces is improved
due to the clustering properties of the graph. The variation
in k has little impact on download time, and lower k results
in lower redundancy. Thus, k = 1 should be used.

We also increased the number of peers inside each ISP,
first to 75 and then to 100. Surprisingly, it was found that
the redundancy decreases as the number of peers inside an
ISP increases. The redundancy is 2.64 for 75 peers per ISP,
and to 1.83 for 100 peers per ISP. We believe that as the
number of peers inside an ISP increases, rare pieces brought
from outside get more time to replicate inside the ISP as

6

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

Regular BT
Biased, k = 1
Biased, k = 5

Biased, k = 17

Figure 3. CDF of download times under bi-
ased BitTorrent in homogeneous networks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+06 4e+06 6e+06 8e+06 1e+07

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

Regular BT (all clients)
Biased BT clients (Mixed setup)

Reg. BT clients (Mixed setup)

Figure 4. CDF of download times when only
one ISP uses biased neighbor selection with
k = 1.

compared to when all internal peers decide that a particular
piece is rare and get it inside simultaneously.

The seed bandwidth was also increased from 400Kbps to
1Mbps. The traffic redundancy of biased BitTorrent stays
virtually unchanged. Thus, in homogeneous networks, the
traffic redundancy is mainly determined by the number of
peers inside an ISP, and appears to stay under 4 in all cases.

Figure 4 shows the CDF of download times when only
one ISP uses biased neighbor selection with k = 1. There
is little change in median download time and the spread be-
tween download times is reduced for all peers. The ISP
traffic redundancy is increased to 25.2 in this case, since the
ISP using biased neighbor selection allows other ISPs to
connect to nodes inside the ISP, and the average number of
external neighbors for the ISP using biased neighbor selec-
tion is high. If the ISP allows only k connections per node
from other ISPs, then the traffic redundancy can be reduced.

Overall, biased BitTorrent is a practical and effective so-
lution at reducing cross-ISP traffic caused by BitTorrent.
Any ISP using it realizes an immediate benefit.

The performance of biased neighbor selection, however,

Table 3. Effect of piece selection algorithms
on biased BitTorrent. The download time of
1.0 means 5,168 seconds.

Piece 50th 95th Traffic
Selection percentile percentile redundancy
Random 1.84 2.51 14.4
Rarest first 1.0 1.20 3.04

depends on the rarest first replication algorithm. Table 3
shows that the “de-clustering” effect of this algorithm which
makes peers more interested in blocks that are rare inside
the ISP.

Similar to other studies [1], we found that if the upload
bandwidth of the original seed is 1x or 2x of cable modem
peers’ upload bandwidth, the average upload link utiliza-
tion is around 50%. If the seed bandwidth is 400Kbps (4x
cable modem peer’s upload bandwidth) or higher, the av-
erage upload link utilization approaches 100% and biased
neighbor selection in this case has no effect on download
time. However, at a low seed bandwidth, the effect becomes
unpredictable. We believe that since content providers can
easily establish seeds with upload bandwidths 4 times that
of an average node, low seed bandwidth cases are rare in
practice.

Finally, in all our experiments, the original seed does not
use biased neighbor selection. Since the goal of the original
seed is to distribute contents to as many nodes as possible,
it should not use biased neighbor selection.

5.3 Performance in Heterogeneous Net-
works

High-bandwidth “university nodes” (upload bandwidth
of 400 KBps) were added to the above mentioned homo-
geneous network. Their number varies from 7 to 31, they
leave as soon as finishing their download and do not use
biased neighbor selection.

Table 4 and Fig. 5 show that biased BitTorrent seems to
take advantage of the presence of these nodes sooner than
regular BitTorrent. Furthermore, with 31 university nodes,
biased BitTorrent outperforms regular BitTorrent slightly,
mainly due to more uniform piece replications.

Understandably, the traffic redundancy of biased BitTor-
rent increases as the number of university nodes increases
due to their high upload bandwidth. They are favored by the
cable modem peers and also supply more blocks to them.

Table 5 shows that combining bandwidth throttle with
biased BitTorrent in this case restores low redundancy and
only increases download time slightly. At a 500Kbps band-
width bottleneck, the traffic redundancy of biased BitTor-
rent is lowered to a value that is close to what is achieved

7

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Table 4. Normalized download time and traffic redundancy of regular vs. biased neighbor selection
as the number of high bandwidth peers increases. A download time of 1.0 is 5,312 seconds.

Extra University Nodes Regular BitTorrent Biased BitTorrent (k=1)
50th 95th Traffic 50th 95th Traffic

percentile percentile redundancy percentile percentile redundancy
0 1.0 1.34 46.9 0.97 1.16 3.04
7 1.0 1.33 47.06 0.94 1.12 4.19
15 1.0 1.37 46.98 1.01 1.01 7.81
31 0.93 1.28 47.06 0.83 1.06 8.21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

%
 o

f p
ee

rs
 fi

ni
sh

ed

Time(ms)

CDF curves for Download Times

Regular BT
Biased BT clients

Figure 5. CDF of download times of regular
BitTorrent vs. biased BitTorrent, with 31 high
bandwidth nodes in the network.

Table 5. Combination of bandwidth throttling
and biased BitTorrent in heterogeneous net-
work. Download time of 1.0 is 4,446 seconds.

ISP bottleneck 50th 95th Traffic
percentile percentile redundancy

No bottleneck 1.0 1.27 8.21
2.5Mbps 1.10 1.33 6.74
1.5Mbps 1.09 1.32 7.37
500Kbps 1.12 1.34 4.40

when external high bandwidth nodes are not present, and
the download time is increased only slightly (< 12%). Yet,
since most neighbors of a peer are within the same ISP and
are not crossing the bottleneck link, the download time is
not impacted much while the university nodes become less
attractive.

Thus, throttling can be applied with biased neighbor se-
lection without increasing download times significantly, re-
gardless of whether the external peers have a high band-
width. Our results also show that if an ISP deploys band-
width throttling for BitTorrent traffic, then the peers inside
the ISP can use biased neighbor selection to successfully
avoid the bottleneck!

Table 6. Normalized download of the gateway
peer approach, compared to regular BitTor-
rent, in homogeneous network.

Technique 50th 95th

percentile percentile
Regular BitTorrent 1.0 1.34
100Kbps gateway peers 2.59 2.81
400Kbps gateway peers 1.0 1.14

6 Comparison with Other Locality-
Enhancing Approaches

The above discussions show that biased neighbor selec-
tion performs much better than bandwidth throttling, and
the two techniques can be combined for best results. This
section examines two other techniques to reduce cross-ISP
traffic: using a single peer, called “gateway peer”, to con-
nect to the external world [15], and using a cache to store
blocks sent to the ISP [2].

An ISP can designate a single node inside it as the gate-
way peer. All peers inside the ISP can only connect to each
other and to the gateway peer, but only the gateway peer
can connect to the external world. However, as results from
Table 6 show, gateway peers need to have an upload band-
width that is at least 4x that of normal nodes in the in ISP to
avoid increasing download times. Moreover, since the gate-
way peer has nothing to gain from the internal peers, be-
cause of the tit-for-tat mechanism it would rather exchange
blocks with external peers, benefitting peers in other ISP’s,
causing them to finish faster (by as much as 20 % in one
experiment). Finally, this approach is not scalable as the
gateway requires 400KBps of upload bandwidth for each
BitTorrent network that nodes from the ISP participate in.

Another approach to eliminate traffic redundancy is to
use caches. Positioned at the ISP’s gateway to the Inter-
net, a cache stores blocks sent by external peers to internal
peers, and when an internal peer wants to fetch a block from
an external node, the cache intervenes transparently [2] and
sends a locally-stored copy to the internal peer.

8

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Table 7. Peak and average upload bandwidth
needs of caches.

Technique Peak Average
bandwidth bandwidth

Caching (Regular BitTorrent) 3.61Mbps 1.73 Mbps
Caching (Biased BitTorrent) 1.32Mbps 153Kbps

Caches also need a high upload bandwidth to avoid in-
creasing download times The estimated peak and average
upload bandwidth needs of caches were obtained by sum-
ming up the bandwidth of flows crossing the ISP bound-
ary that are “intervened” by the cache (see Table 7). Un-
der regular BitTorrent, both the peak and average upload
bandwidths of the cache are high. However, ISPs that de-
ploy caches should instead use biased neighbor selection as
the bandwidth needs of the cache are significantly reduced
and furthermore, this can still be combined with bandwidth
throttling.

7 Summary and Future Work

Our results show that BitTorrent networks can be clus-
tered, as long as each node within each cluster keeps one or
two connections to the outside, and rarest first piece replica-
tion is used. By clustering and biasing the peer connectivity
graph, the linear growth of cross-ISP traffic in BitTorrent
to the number of peers is eliminated, without an increase
in download times. Biased neighbor selection can be com-
bined with bandwidth limiting and caching to improve their
performance further.

Our immediate next step is an implementation study.
We are implementing the scheme in a modified BitTorrent
client, and also in a HTTP proxy acting as a P2P shaping
device. We are also in the process of obtaining approval to
conduct BitTorrent experiments on the university network.

An intriguing potential of biased neighbor selection is
that it offers a way for BitTorrent-like applications to bypass
congestions on the Internet and optimize its performance.
Toward this end, we plan to look into both simulations with
more complex network scenarios, and analytical modeling
and analysis to gain further insights.

References

[1] A. Bharambe, C. Herley, and V. N. Padmanabhan. Under-
standing and deconstructing bittorrent performance. In Pro-
ceedings of SIGMETRICS, 2005.

[2] CacheLogic. Cachelogic - advanced solutions for peer-to-
peer networks. http://www.cachelogic.com.

[3] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. Splitstream: High-bandwidth content

distribution in a cooperative environment. In Proceedings of
IPTPS’03, 2003.

[4] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS, pages 1–
12, 2000.

[5] B. Cohen. Incentives build robustness in bittorrent, 2003.
[6] B. Cohen. Bittorrent documentation: Protocol, 2005.

http://www.bittorrent.com/protocol.html.
[7] EContentMag.com. Chasing the user:

The revenue streams of 2006, 2005.
http://www.econtentmag.com/Articles/ArticleReader.aspx
?ArticleID=14532&ContextSubtypeID=8.

[8] P. G. Epema. The bittorrent p2p file-sharing system: Mea-
surements and analysis.

[9] P. Francis. Your own internet distribution (yoid), 2002.
[10] P. Ganesan and M. Seshadri. On cooperative content dis-

tribution and the price of barter. In Proceedings of ICDCS,
2005.

[11] C. Gkantsidis and P. R. Rodriguez. Network coding for large
scale content distribution. In Proceedings of IEEE Infocom,
2005.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measuremsnts, analysis and modeling of bittorrent-like sys-
tems. In Proceedings of the Internet Measurement Confer-
ence, 2005.

[13] C. S. Incorporated. Network based application recognition
(nbar).

[14] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Hamra,
and L. Garces-Erice. Dissecting bittorrent: Five months in a
torrent’s lifetime, 2004.

[15] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
internet service providers fear peer-assisted content distri-
bution. In Proceedings of the Internet Measurement Confer-
ence 2005, 2005.

[16] L. Massoulié and M. Vojnović. Coupon replication systems.
SIGMETRICS Perform. Eval. Rev., 33(1):2–13, 2005.

[17] J. Mundinger and R. Weber. Efficient file dissemination us-
ing peer-to-peer technology.

[18] W. B. Norton. The evolution of the u.s. internet peering sys-
tem, 2003.

[19] P-Cube. P-cube: Ip service control. http://www.p-
cube.net/indexold.shtml.

[20] Packeteer. Packetshaper. http://www.packeteer.com/prod-
sol/products/packetshaper.cfm.

[21] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative net-
working, 2002.

[22] D. Qiu and R. Srikant. Modeling and performance analysis
of bittorrent-like peer-to-peer networks, 2004.

[23] Sandvine. Sandvine: Intelligent broadband network man-
agement. www.sandvine.com.

[24] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A
cooperative bulk data transfer protocol. In Proceedings of
IEEE Infocom, 2004.

[25] X. Yang and G. de Veciana. Service capacity of peer to peer
networks, 2004.

9

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

