
Coordinated Service Provision in
Peer-to-Peer Environments

Gang Chen, Chor Ping Low, Member, IEEE Computer Society, and

Zhonghua Yang, Senior Member, IEEE

Abstract—In recent years, inspired by the emerging Web services standard and peer-to-peer technology, a new federated service

providing (FSP) system paradigm has attracted increasing research interests. Many existing systems have either explicitly or implicitly

followed this paradigm. Instead of exchanging files, peers in FSP systems share their computation resources in order to offer domain-

specific services. In this paper, we focused on the coordination problem of how to self-organize the service group structures in

response to the varying service demand. We presented our solution in the form of a coordination mechanism, which includes a labor-

market model, a recruiting protocol, and a policy-driven decision architecture. Peers make their service providing decisions based on

their local policies, which can be added, removed, or modified by users. A general methodology is introduced in this paper to facilitate

policy design. Specifically, a heuristic inspired by the Extremal Optimization technique is utilized to handle potential inconsistencies

among policies. A stimulus-response mechanism was further applied to make the decision process adjustable. Experiments under five

application scenarios verified our ideas and demonstrated the effectiveness of our coordination mechanism.

Index Terms—Federated service providing system, P2P system, coordination, decision policy.

Ç

1 INTRODUCTION

THE booming Internet industry has brought many
distributed systems that were dreams yesterday into

reality [4], [7], [16]. Among them, the peer-to-peer (P2P) file
sharing system now wins an astounding popularity and
draws much research attention [1], [2]. P2P systems
resemble a cost-efficient way of aggregating a tremendous
amount of resources, and there lies their major advantage.
Previous research efforts focus mainly on the problems of
scalable data lookup and effective data sharing in P2P
systems [27], [32], [35]. Recently, inspired by the emerging
Web service standards and middleware technology, a new
federated service providing (FSP) system paradigm is formed,
where Internet applications will be comprised of multiple
service components distributed across numerous network
nodes (that is, peers) in collaborative virtual organizations
[15], [20], [21]. The FSP system concept has been widely
explored (either explicitly or implicitly) in many distributed
applications such as multimedia processing [20], data
mining [34], bioinformatics [12], and Universal Description
Discovery and Integration (UDDI) [15]. One specific appli-
cation that has inspired the research reported in this paper is
to construct a self-adaptive semantic Web service discovery
system [6], [33], as illustrated in Fig. 1.

Similar to those in the work of Cuenca-Acuna and
Nguyen [15], peers as shown in Fig. 1 provide Web service
discovery services. Service discovery is achieved by matching

service requests with the ontology-based service descriptions of
registered Web services [25]. According to the essential
ontologies involved, it is convenient to differentiate several
types of services, such as s1 to s4 in Fig. 1. Depending on the
type of services offered, a peer may belong to varied service
groups. Every user of the FSP system is able to access
services provided within any service groups. Comparing
with a centralized architecture, the FSP system shown in
Fig. 1 is more scalable because 1) the logic inference
involved in matching service requests is dispersed across
the peers in different service groups, and 2) the complexity
of the logic inference is further reduced as peers rely
primarily on ontologies of particular domains.

Intuitively, when the demand for a certain service such
as s3 changes, the service group G3 corresponding to s3

should change accordingly. An FSP system is considered
self-adaptive if it can dynamically adjust its service group
structures so as to reflect the changing service demand and
improve users’ satisfaction. Such self-adaptability is desir-
able as it relieves a considerable administrative burden
from human operators. To make any FSP system such as the
one in Fig. 1 self-adaptive, we must create effective
coordination mechanisms to manage the services provided
by peers. Few people have addressed this problem in the
literature. This motivates our research, and a study of such
a coordination mechanism is provided in this paper. Several
research contributions in the process of developing our
coordination mechanism have been made in this paper.
They are summarized as follows:

1. A labor-market model is proposed by us to form the
basis of a recruiting protocol that controls the
interaction between peers that belong to the same
or different service groups.

2. Our solution describes a policy-based decision-
making architecture toward achieving coordinated

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008 433

. The authors are with the Information Communication Institute of
Singapore, School of Electrical and Electronics Engineering, Nanyang
Technological University, Nanyang Avenue, Singapore 639798.
E-mail: {chengang, icplow, ezhyang}@ntu.edu.sg.

Manuscript received 26 Oct. 2006; revised 17 Apr. 2007; accepted 10 July
2007; published online 24 July 2007.
Recommended for acceptance by J. Hou.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0341-1006.
Digital Object Identifier no. 10.1109/TPDS.2007.70745.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

service provision among peers. A peer’s decision at
various stages of a recruiting process is guided by its
local policies. A formal methodology for policy
design has been proposed and explored in this
paper.

3. Policies involved in making a certain decision may
contradict with each other to a certain extent. To
solve this problem, a conflict resolution mechanism
adopted from a technique termed Extremal Optimiza-
tion (EO) [8] has been introduced in this paper. A
stimulus-response mechanism is further utilized to
make the decision process more adjustable. Accord-
ing to our knowledge, the combination of EO and
the stimulus-response mechanism improves the
decision flexibility and is a unique feature of our
policy-based decision-making architecture.

Experiments have been conducted to verify all of our
ideas in a simulated FSP system. Our experiment results
indicate that the proposed coordination mechanism is
effective as the average response time to service requests
is well balanced and kept small. The experiments under
different system configurations also reveal that our co-
ordination mechanism is scalable and quite robust with
respect to service requirement changes.

The remainder of this paper is organized as follows:
Section 2 summarizes and compares related research.
Section 3 describes the FSP system, as well as basic system
assumptions. In Section 4, the labor-market model is
introduced together with the recruiting protocol. Section 5
covers the policy-based decision architecture and policy
design methodology. The effectiveness of our coordination
mechanism is assessed in Section 6. Finally, Section 7
concludes this paper.

2 RELATED WORK

The idea of utilizing the local resources (for example, CPU
cycles) of multiple machines in a distributed environment
has been greatly advanced by the recent research progress in
Grid computing [7]. Traditional Grid systems are often
based on variants of the master-worker paradigm [24], [31].
In heterogeneous environments, very different application
execution times can be witnessed depending on the choice of
both masters and workers [31]. At another extreme of Grid
systems is the so-called desktop grid [26]. In desktop grid,
desktops typically interact with each other directly without
being controlled by masters. Chakravarti et al. further
proposed an organic grid system that enables desktops to
self-organize their task executions [12]. Desktops in the grid

environment share their resources and together finish a
given set of tasks. In comparison, in the FSP system, each
service request from end users will be processed by a single
peer only.

FSP systems have received increasing research interests
recently. Various research issues with sufficient merit in
specific application domains have been studied. For
example, Gu and Nahrstedt considered a service composi-
tion problem in a P2P streaming environment [20]. They
constructed a VoIP application where a speaker’s audio
stream is to be processed by various language processing
services provided by peers. The problem is to find a
proper processing workflow that links multiple peers
together. Ratsimor et al. have studied the service dis-
covery problem in a mobile P2P environment [28]. They
developed a framework called Allia to facilitate service
caching and discovery. Due to the use of a policy-driven
system architecture, their approach can adapt to changes
in the environment with a high degree of flexibility.
Different from these research works, our research focuses
on a common coordination problem. Services in this paper
are viewed as general entities without considering their
actual functionalities.

The need to automate service deployment and manage-
ment has been identified by Cuenca-Acuna and Nguyen
[15]. They considered the UDDI service, which is typically
replicated across multiple peers. They proposed a distrib-
uted resource management framework with the aim of
controlling the set of peers (termed a configuration) that can
host instances of a single service. An optimization objective
is defined for the UDDI service and the genetic algorithm
(GA) [18] is utilized periodically to find new configurations
based on the system status update. Although Cuenca-
Acuna and Nguyen have addressed a problem like ours,
there are several differences between the two research
works:

1. Cuenca-Acuna and Nguyen [15] focused on mana-
ging a single service, whereas we considered the
problem of managing several types of services,

2. GA is used in [15] to find service configurations
based on global system information, whereas peers in
our system rely mainly on their local policies and do
not use any optimization algorithms, and

3. the peer running a deployment planning component
in [15] needs to contact every other peer in the
system, whereas every peer in this paper only needs
to contact a few selected peers.

In Section 6.2, we will further compare Cuenca-Acuna and
Nguyen’s framework with our coordination mechanism
through experiments.

There has been much research into mediating the
interaction among distributed entities through the market-
system paradigm [3], [11], [22], [23]. For example, Hausheer
and Stiller developed a system called PeerMart to support a
decentralized market environment for trading P2P services
[22]. Different from this and similar approaches, in our
labor-market model, peers interact directly with other peers
in different service groups without relying on any broker
peers. The goal is not to obtain a service but to change the
current service provided by these peers. No concepts such
as utilities or prices are involved.

434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 1. A semantic Web service discovery system.

3 THE FEDERATED SERVICE PROVIDING SYSTEM

In an FSP system, each service is viewed as a general unit of
functionality. A peer that provides a service is termed an
instance of the service. A user who wants to access a service
issues a service request, which will be handled subse-
quently by a service instance. At the conceptual level, the
FSP system model is illustrated in Fig. 2.

As shown in Fig. 2, the FSP system architecture is
comprised of two layers: the overlay network layer (ONL) and
the service providing layer (SPL). At the bottom of the system
architecture is the P2P ONL, which provides the basic
network facilities to support peer lookup and communica-
tion. When a peer receives a service request that cannot be
processed by itself, either because it is busy or because the
requested service type is different, the peer needs to find
other peers capable of processing this request. For this
reason, ONL should be able to locate peers that provide any
type of services. One solution to satisfy this requirement is
to follow the decentralized service management framework
proposed by Gu et al. based on the distributed hash table
(DHT) system [21], [30].

Simply put, when a peer p1 wants to provide a service s1, it
registers itself into the DHT system with a key that uniquely
identifies the type of service s1 it provides. As those peers that
offer the same type of service share the same key, the DHT
system will register them on the same DHT-assigned peer, for
example, p2. In the case that another peer p3 wants to locate
peers offering service s1, p3 can generate a query message
using the key associated with service s1. This message will be
routed to the assigned peer p2 by the DHT system. p3 is then
able to discover from p2 that p1 actually provides service s1. It
is to be noted that instead of the DHT technology, unstruc-
tured P2P networks have managed to occupy a significant
portion of today’s Internet bandwidth [1], [2]. The great
success of unstructured P2P networks such as BitTorrent
suggests that directory servers may be utilized by ONL in
order to keep track of peers in every service group. In fact, our
FSP system does not restrict the type of P2P overlay networks
to be adopted in ONL. As ONL is not the focus of this paper,
we will not continue on this topic anymore.

SPL manages the actual service provision and is the
focus of this paper. Every peer in the FSP system runs a
piece of code to implement the SPL functionality. In SPL,
peers are assumed to be cooperative in nature. Multiple peers

can also reside in the same network machine [17]. A peer
therefore simply represents a certain amount of resources
shared by a machine. Although a peer is only allowed to
provide a single type of service at any time, a network
machine is capable of offering several types of services
concurrently. For example, in Fig. 2, three types of services
are provided by the FSP system. The instances of each
service are grouped together to form a separate service
group. By hosting one instance in every service group, a
machine is able to offer all the three services. As “peer” and
“machine” are not identical in concept, certain peers may
become unavailable temporarily when the total amount of
resources shared by all peers hosted in the same machine
decreases (for example, due to competition among peers for
scarce resources). We will go back to this topic in Section 6.6.

4 THE LABOR-MARKET MODEL AND THE

RECRUITING PROTOCOL

As mentioned in Section 1, peers in an FSP system will form
service groups depending on the types of services they
provide. To further regulate the interactions within and
between service groups, a labor-market model is proposed by
us as the basis of a recruiting protocol, which controls the
services provided by peers.

4.1 The Labor-Market Model

The labor-market model establishes an analogy between FSP
systems and a simplified social recruiting structure. In the
literature, sociology structures have long served as general
heuristics to solve problems from trust forming [36],
resource discovery and allocation [37], to decentralized
scheduling [29] in distributed computing environments.
The labor-market model described in this paper aims at
managing the service group structures so as to 1) achieve
system performance requirements and 2) adapt to varying
service demands through self-organization. Several model-
ing concepts as detailed below are essential to the under-
standing of the labor-market model:

. Peer. This is denoted by pi, where i refers to the
universal peer ID ðPIDÞ. A set of peers is represented
as fpig. A peer has several important properties such
as the service it is providing and the computation
resources it is willing to contribute to provide this
service. Normally, computation resources are mea-
sured in terms of a peer’s processing capability, which
is defined as the number of computations (CPU
cycles) allowed by the peer per second. A peer is
capable of processing service requests one at a time.
At any time t, the request being processed by peer pi

is denoted by SrvReqðpi; tÞ.
. Service. We use sj to represent a service, where j

refers to the universal service ID ðSIDÞ. fsig stands
for a set of services. Service is a self-contained unit of
domain-specific functionality. “Self-contained” means
that providing one service does not depend on the
availability of other services. Service is to be
provided by peers who are termed service instances.

. Service request. Users are allowed to submit any
number of service requests to the FSP system. A

CHEN ET AL.: COORDINATED SERVICE PROVISION IN PEER-TO-PEER ENVIRONMENTS 435

Fig. 2. The FSP system architecture.

request for service sj submitted at time t is denoted
as Res

j

t . Res
j

t may finally be processed by a peer pi,
which is an instance of sj. The processing of Res

j

t will
consume a certain amount of computation resources
of pi. A service request is completed after the user
receives a service reply for his request.

. Service group. A service group is comprised of a set
of peers fpig dedicated to providing a single service
sj and is represented as a two-element tuple
G ¼< fpig; sj > . The size of G is identical to the
cardinality of set fpig, kfpigk. We say that a peer pi is
recruited by group G if and only if pi 2 fpig. A peer
can be recruited by at most one service group at any
time. However, it can choose not to work for any
service groups. In this case, the peer becomes
unemployment, namely, pi 2 ;. ; stands for the idle
group. The shared resources of those peers that
belong to the idle group may be utilized for other
purposes but are not considered in this paper. Using
our definition of service groups, the global group
structure is further defined as a set of groups
GS ¼ fG1; G2; � � � ; Gng. For any service sj offered
by the FSP system, there is exactly one service group
Gj in GS that provides service sj.

In addition to the above four concepts, we have further

identified several key events involved in altering peers’

group membership. They together form the basis of a

recruiting process:

. Resignation. At a certain point of time t, a peer pi

may decide to quit its current job in a service group
G. This event changes pi’s group membership from
G to ;, pi 2 G!t pi 2 ;.

. Job Change. Any peer pi can apply for joining a
service group (for example, G1) that is different from
its current group (for example, G2). This application
is called a job application. Once the application is
approved, the job-change event will alter pi’s group
membership from G2 to G1, pi 2 G2 !t pi 2 G1.

. Initialization. When a peer pi becomes available, its
initial group membership is determined after an
initialization event.

To help demonstrate the recruiting process, which is a

combination of the three key events above, Fig. 3 highlights

the potential activities of one selected peer in the FSP system.

As shown in Fig. 3, a peer p1 is initially assigned to

provide service s3. After a while, p1 intends to change its job

and provide service s4 instead. It sends a job application to a

randomly selected peer p2 that actually provides service s4.

Every peer in a service group has the responsibility of

handling incoming job applications and therefore can serve

as a recruiter. After p1’s job application has been approved

by p2, p1 triggers a job-change event and starts to provide

service s4. Finally, a resignation event happens, and p1

becomes unemployment.
Our simple scenario reveals two qualitative properties of

the labor-market model. First, peers are encouraged to stay

in their respective service groups as changing jobs will

incur extra communication and processing costs. This is in

accordance with our objective to maintain the stability of

the group structure. Second, the labor-market model

provides enough flexibility to adapt to the varied service

demand. When a certain service has a high demand, other

peers may choose to join the corresponding service group

despite of the joining cost. Peers can also choose to resign

when the service demand drops in order to save their

resources.

4.2 The Recruiting Protocol

In order to exploit the labor-market model in practice, the

recruiting process is interpreted in terms of a distributed

recruiting protocol in this paper. We break the recruiting

protocol into three subprotocols and name them, respec-

tively, as the resignation protocol, the job-application protocol,

and the employment protocol. The resignation protocol

implements the resignation event. As at least one job-

applicant peer and one recruiter peer are engaged in a job-

change event, the activities of these two peers are described

separately in two protocols. The job-application protocol

controls the activities of the job-applicant peer, whereas the

employment protocol regulates the activities of the recruiter

peer. Figs. 4, 5, and 6 show the workflow of the three

subprotocols. Each subprotocol is comprised of two parts,

namely, the precondition part and the action part. When the

preconditions are satisfied, the corresponding actions will

be performed accordingly. A peer will periodically check

the satisfaction of all the preconditions.

436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 3. A simple scenario of the labor-market model. Fig. 4. The resignation protocol.

We believe that the workflows in Figs. 4, 5, and 6 are just
elaborations of our previous discussions and are self-
explanatory. For this reason, we will not detail them
further. The local information of any peer pi involved in
the three subprotocols refer primarily to the range of
information that will affect the service provision process of
pi. More details can be found in Section 5.2.

It is to be noted that no protocols are defined to cover the
initialization event. This is because the group structure at a
later stage, in principle, should not be significantly
influenced by the initial assignment of peers to service
groups due to group self-organization. In our simulation
system, all peers are randomly assigned to a service group
with equal probability when they start operating. This
requirement is very easy to achieve in a P2P environment.
Please refer to Section 6 for more information.

The recruiting protocol contains two tunable parameters,
that is, the m peers to contact in the resignation and
employment protocol and thehpeers to send job applications

in the job-application protocol. By enlarging m, the peers’

local decisions will have a better chance to benefit the service

groups they belong to. Likewise, by enlarging h, a peer might

be able to find more job opportunities at the price of an

increased employment cost. The choice of m and h depends

on the specific applications. As a simple heuristic, if the

number of peers in the FSP system is upper bounded by Np

and the number of service groups is upper bounded byNg, we

might choose m ¼ Np=Ng and h ¼ Ng=2. This is exactly the

heuristic used in our simulation system.

5 POLICY-BASED DECISION HEURISTICS

The recruiting protocol requires a peer to make three

different types of decisions, which are to

1. decide whether to resign (Fig. 4),
2. decide whether to employ (Fig. 5), and
3. decide which service group to join (Fig. 6).

A policy-driven architecture is introduced in this paper to

control the decision-making process. We view a policy as a

rule that governs the condition of making certain decisions.

A policy is said to be inapplicable if the conditions stipulated

by the policy are not satisfied. Policies may potentially

reflect a combination of users’ preferences, performance

considerations, and technical feasibility. A peer’s local

policies are managed through its policy manager. Whenever

a peer needs to make certain decisions, it must consult its

policy manager. This ensures that the peer’s decisions will

always comply with its local policies.
We have developed a methodology to facilitate policy

design in this paper. We first list the major steps involved in

designing a policy and then explain these steps through an

example (that is, design the resignation policies for our

experiments in Section 6). The six policy design steps are

shown in Fig. 7. The first step is to clarify the purpose of a

policy P under design. For example, if policy P controls the

resignation decision, it is termed a resignation policy.

Likewise, there are the employment policy and the group-

selection policy as well. Suppose policy P is a resignation

policy of peer pi. If P is inapplicable, peer pi will not decide

to resign. In step 4 in Fig. 7, the peers involved in making a

decision refer to 1) the m peers in the resignation or

CHEN ET AL.: COORDINATED SERVICE PROVISION IN PEER-TO-PEER ENVIRONMENTS 437

Fig. 5. The employment protocol.

Fig. 6. The job-application protocol.

Fig. 7. The major steps involved in constructing a decision policy.

employment decision or 2) the h peers in the group-
selection decision (Section 4).

After fixing the policy type (for example, resignation
policy), the next thing in designing policy P is to stipulate
the condition for P to become satisfied. This includes

1. identifying and evaluating a decision-related criter-
ion Cr (Steps 2 and 3 in Fig. 7),

2. ordering selected peers based on Cr (Step 4 in
Fig. 7), and

3. deriving and applying a decision threshold � to
determine whether P is satisfied or not (Steps 5 and
6 in Fig. 7).

Overall, we assume that when applied to a peer, every
criterion will evaluate to a real number. Let CrðpiÞ denote
the value of Cr for peer pi. Suppose that a certain
performance metric q (for example, the average service
request response time (SSRT)) is important in our FSP
system. Then, it is a highly desirable property that the
criterion Cr can be closely related to q. Specifically, if Cr
increases, q will increase (or decrease) with a high
probability. Intuitively, this property makes it straightfor-
ward to estimate the merit of any decision and will serve as
the guideline for criteria identification (Step 2 in Fig. 7).

5.1 The Policy Design Process

To help understand the policy-driven decision process, the
design of two resignation policies (Fig. 7) will be detailed in
this section. In many situations, two important criteria are
closely related to the resignation decision:

. Cr1. The amount of computation resources (CPU
cycles) actually contributed by a peer to process
service requests within a unit period of time (that is,
1 second).

. Cr2. The fraction of idle time, where idle time refers
to the time period during which a peer has no
service requests to process.

These two criteria are selected with the aim of reducing
the average SRRT and improving the average resource
utilization (RU). Roughly, if Cr1 increases, SRRT might
decrease because the peer under consideration has put
more resources into processing service requests. Mean-
while, if Cr2 decreases, RU might increase because the peer
has spent more time working. Each of the two criteria is
associated with a separate decision policy. Literally, we
wish those peers that have contributed less computation
resources and frequently remained idle to leave the service
group (that is, to resign).

To actually construct the two resignation policies, we
have adapted our method from a technique termed EO [9].
At the core of EO is the so-called extremal selection mechanism
(ESM), which is used originally to study punctuated
equilibrium in biology [5]. In a nutshell, ESM states that
within a population of individuals (for example, biological
creatures), the one with the lowest fitness should be
replaced by a new individual (for example, a randomly
generated individual). In many optimization problems, EO
has been shown to perform well in finding desirable
solutions [10]. Following the same philosophy as EO, it is
convenient to view each peer pi involved in a resignation
decision as an individual. Assume that policy P1 uses
criterion Cr1 and policy P2 relies on criterion Cr2. The

fitness of peer pi in policy P1 will be equal to Cr1ðpiÞ. Its
fitness in policy P2 will be equal to �Cr2ðpiÞ. This definition
of fitness is adopted with the expectation of removing peers
that perform poorly in terms of SRRT and RU from their
respective service groups. According to ESM, we have

. P1. A peer is allowed to resign if its Cr1 value is the
lowest among the m peers.

. P2. A peer is allowed to resign if its �Cr2 value is
the lowest among the m peers.

P1 and P2 are very rigid in their above form. It is
possible that all peers in a service group will never satisfy
both P1 and P2 concurrently. The reason is because Cr1 and
Cr2 are correlated in a specific way. If a peer has devoted
much of its computation resources (that is, Cr1), it will
probably have a short idle time (that is, Cr2). However,
when considering multiple peers (for example, m peers in
the resignation decision), Cr1 and Cr2 are not consistent in
meaning. A peer with a high processing capability may
have a long idle time, despite of the fact that it has
contributed more computation resources than other peers.
On one hand, we wish peers that share more resources to
stay in the group in order to maintain high performance (for
example, a short SRRT). On the other hand, we also want
these peers to resign if their resources are not being utilized
efficiently.

In order to give every peer at least a small possibility to
resign, a heuristic used in EO is further adopted. This
corresponds to step 5 in Fig. 7. Use P1 as an example.
Suppose that peer p1 is making a resignation decision, which
involves also the local information of peers p2; � � � ; pm. We
can define a permutation � as

Cr1ðp�ð1ÞÞ � Cr1ðp�ð2ÞÞ � � � � � Cr1ðp�ðmÞÞ:

The peer pi with the lowest Cr1 value is ranked 1,
�ð1Þ ¼ i. The peer with the highest Cr1 value is ranked m.
A probability distribution Pr is imposed over the ranks r as

PrðrÞ / r�� ; 1 � r � m

for a given � . Increasing � will result in a higher probability
for lower ranks. Based on Boettcher and Percus’ theoretical
analysis, the value of � can be set to 1þ ½lnðNpÞ��1, where
Np is the number of peers in the FSP system [8]. At each
time of applying policy P1, peer p1 will select a peer pk

according to distribution Pr. The Cr1 value of pk serves as a
decision threshold � that helps p1 to judge whether its
Cr1ðp1Þ is comparatively low. Step 6 in Fig. 7 realizes this
judgment through a stimulus-response mechanism.

In the literature, a stimulus-response function ðFsÞmodeled
after the task allocation behavior of wasps has been
successfully exploited to coordinate distributed service
providers [13]. In the context of policy P1, the stimulus is
Cr1ðp1Þ, and the response threshold is � ¼ Cr1ðpkÞ. The
stimulus-response function Fs adopted in this paper is
given as follows:

Fs Cr1ðp1Þ
� �

¼ ArcTan �P1
� Cr1ðp1Þ � �ð Þð Þ
�

þ 1

2
: ð1Þ

�P1
is termed the steepness factor of policy P1. The probability

that peer p1 is allowed to resign by policy P1 is equal to

438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

1� Fs Cr1ðp1Þð Þ. When �P1
is gradually increased, p1 will

become 1) more and more unlikely to resign if Cr1ðp1Þ is
greater than � or 2) more and more likely to resign if Cr1ðp1Þ
is less than �. In view of this, �P1

actually controls the
influence of � on the final decision of policy P1. Its impact on
the system performance is further evaluated in Section 6.6.

By following the policy design methodology given in
Fig. 7 and using our methods for steps 5 and 6, a policy is
fully determined upon knowing 1) its decision-related
criterion and 2) the total order relation defined over the
criterion.

5.2 Policy Design under Multiple Performance
Requirements

In real applications, it is very likely for an FSP system to
offer various types of services with diverse quality-of-
service (QoS) and resource requirements. QoS requirements
in this paper refer mainly to the quality and nonfunctional
aspect of a service. These may include response time,
latency, availability, reliability, result precision, etc. As our
research aims at self-organizing the group structure GS in
response to the varied service demand, only performance
requirements (for example, response time and failure rate)
will be considered. In general, performance requirements
are closely related to resource requirements. A peer is only
capable of handling a service request provided that it has
the necessary resources. In an attempt to handle an
arbitrary number of performance requirements, an exten-
sion of the policy design methodology in Fig. 7 will be
presented in this section.

Inspired by the system model in [19], we can easily
formalize our coordination problem as follows: Each
service s in an FSP system is associated with a group of
performance metrics ½q1; . . . ; qd�. As a basic requirement,
every metric q will be evaluated to a real number. The higher
the q, the better the system performs. For example, we can
define q to be equal to 1=SRRT , where SRRT denotes the
average SSRT. When SRRT decreases, which is commonly
desirable, metric q will increase accordingly. Performance
metrics are not always independent. In particular, the
increase of one metric might affect another metric nega-
tively. There must be a trade-off between different metrics.
For this reason, an overall performance measure J is also
defined for every service as

J ¼
Xd

i¼1

!i � qi;
Xd

i¼1

!i ¼ 1; 0 � !i � 1; ð2Þ

where !i is a weight that represents the importance of
different performance metrics. We can customize J by
adjusting these weights. The objective of our coordination
mechanism is to constantly improve J of every service
provided by the FSP system.

Assume that there is a peer p that offers service s. The
request for s comes randomly to p. In order to process these
requests, peer p needs to consume its shared resources,
which are characterized by a list of resource properties
½�1; . . . ; �r� (peers’ local information). Each property �
describes the shared resources from a certain perspective.
For example, a property termed processing capability is used
to measure the CPU cycles contributed by a peer (Section 4).

In case that there is more than one peer hosted in the same
machine, they compete with each other for CPU cycles, and
a peer may temporarily become unavailable. The availability
rate (AR) and time-to-recover (TTR) therefore serve as
another two properties of the shared CPU cycles. TTR
represents the time it takes for a peer to become available
again. Other properties might be the available network
bandwidth, the memory space, etc.

Notice that the performance measure of service s, Js, is
defined as the average over all the service requests
processed by a group of peers that provide service s. As a
result, the performance of any peer p in the group, Jsp , can
actually be considered as an estimation of Js. Because the
process to handle each request is largely determined by the
resources shared by p, it is eligible to view the expectation of
any performance metric q involved in evaluating Jsp as a
function of the property list ½�1; . . . ; �r� of p:

EðqÞ ¼ Qð½�1; . . . ; �r�Þ: ð3Þ

Consequently, the expectation of Jsp also becomes a function
of ½�1; . . . ; �r� as

EðJspÞ ¼
Xd

i¼1

!i �Qið½�1; . . . ; �r�Þ: ð4Þ

For the purpose of policy design, EðJspÞ in (4) enjoys a
very important property. That is, when EðJspÞ is high, Js is
also expected to be high (EðJspÞ is closely related to Js).
According to our guideline for criteria identification, it
seems reasonable to treat EðJspÞ as a decision criterion for p.
Policy construction becomes rather straightforward with
the three rules below:

. Rule 1. Peer p is allowed to resign if EðJspÞ is
relatively low.

. Rule 2. Peer p is allowed to be employed if EðJspÞ is
relatively high.

. Rule 3. Peer p should select a service group in which it
has a relatively high EðJspÞ.

Based on the above rules, we can follow the steps in
Section 5.1 to implement the resignation policy, employ-
ment policy, and group-selection policy. The intuition
behind is to assign any peer p to the service group where
it can contribute most and remove p from any service group
where it will contribute less.

The result of our discussion in this section is a general
method to deal with multiple performance requirements. As
a prerequisite for its practical application, function Qð�Þ,
which establishes the relation between EðqÞ and ½�1; . . . ; �r�
((3) and (4)), must be defined. In many situations, Qð�Þ may
be either represented mathematically (for example, based
on theoretic analysis) or obtained through low-cost learning
and simulation. In our experiments to be introduced in
Section 6.6, Qð�Þ is evaluated via simulations.

6 EXPERIMENTS

Experiments have been conducted in an attempt to evaluate
the effectiveness of the recruiting protocol and policy-based
decision heuristics (that is, our coordination mechanism)
described in Sections 4 and 5. These experiments were

CHEN ET AL.: COORDINATED SERVICE PROVISION IN PEER-TO-PEER ENVIRONMENTS 439

performed in a P2P simulation system called PeerSim. The
system configuration varies in different experiments in order
to test the robustness of our coordination mechanism with
respect to environment changes. In total, experiments in five
different application scenarios will be presented in this
section. In the first four scenarios, SRRT is considered as the
main performance metric to be improved. In order to further
examine the method proposed in Section 5.2, in the last
application scenario, the performance measure J is redefined
as a weighted sum of two performance metrics, SRRT and the
failure rate. The definitions of these performance metrics, as
well as other system objectives involved in our experiments,
are described below:

. SRRT. This is obtained by averaging the response
time of all service requests submitted to the FSP
system within a period of time. The response time is
defined as the duration from the time when the FSP
system receives a service request to the time when a
peer has finished processing this request.

. Failure rate. This is the fraction of service requests in
which the processing has failed. Request handling
can fail if a peer that is processing a request becomes
unavailable.

. Resource efficiency. This is the fraction of computa-
tion resources actually being utilized to process
service requests within each service group.

. Load distribution. This is the distribution of the
service processing load among all peers in the
service groups. We expect that the processing load
can be evenly distributed in the FSP system, subject
to the local processing capability of each peer. We
use the standard deviation over the peers’ idle time
divided by the peers’ average idle time as a measure
for the distribution of the load. The measure is given
in the percentage format.

In the sequel, simulation and common experimental
settings will be introduced first. Experiments in the five
application scenarios will be described subsequently.

6.1 The Simulation System

The peers in the simulation system are divided into fast,
medium, and slow categories based on their processing
capability. The processing capability of each peer follows a
normal distribution. For the fast category, the mean of the
normal distribution is set to 1� 105 computations (that is,
CPU cycles) per second, and the deviation is 1� 104. For the
medium category, the mean is set to 5� 104, and the
deviation is 8� 103. For the low category, the mean is
2� 104, and the deviation is 3� 103. In general, there can be
five times in difference between two peers. A peer is
randomly assumed for one of the three categories. The fast
category comprises roughly 30 percent of the system
population. The medium category covers 40 percent, and
the low category takes the remaining 30 percent.

The number of requests received by the FSP system for
any service si is assumed to follow the Poisson distribution
with mean �si . By adjusting the value of �si , we are able to
control the demand for various services. All peers can
receive service requests from users. If necessary, these
requests will be redirected to peers that offer the requested

service. In our simulation system, every peer has a request

queue to hold incoming service requests. When the request
queue of a peer p becomes empty, p will ask other peers in
the same service group for unprocessed service requests.

The recruiting protocol is implemented to run after every
10 seconds. A peer will not have much intention to leave a
service group before it has served in this group for 50 seconds

(to maintain the stability of the group structure). We assume
that peers have fast connections to the Internet and the time
used to transfer a message between any two peers is negligible
as compared to the time used to process service requests.

Peers are initially assigned to provide a randomly selected
service. All services are chosen with equal probability.

In many experiments, the entire simulation runs for up to
100,000 simulated seconds. Because performance metrics
such as SRRT converge long before the simulation ends, we
have decided to present the simulation results before

20,000 simulated seconds. This may help to show the
transient process toward convergence more clearly. The
simulation advances in time steps of 10 seconds. The
responses for service requests received from 50 seconds

onward are collected for evaluating performance metrics.
Based on our previous discussions, it is convenient to let

the performance measure J be equal to 1=SRRT in the first
four application scenarios. In Section 5.1, two policies have
already been designed to govern the resignation decision. In

this section, a summary of all four policies created by us to
reduce SRRT is further presented in Table 1. Each criterion
used in these policies is assumed to be part of a peer’s local
information, which we believe is fairly common in a
distributed environment. Our intention is to use very

simple criteria that are closely related to J to guide the
peers’ local decision process.

Besides resignation policies P1 and P2, policies P3 and
P4 in Table 1 will handle, respectively, the employment and
the group-selection decisions. According to P3, a peer p will

have more chance to be employed if its processing
capability is relatively high. P3 is designed to reduce SRRT,
especially when fast peers are available in the FSP system.
Additionally, based on policy P4, p will prefer to join a
service group where it will have less idle time (in other

words, a group where it can contribute more). In all
application scenarios, a simple hand-tuning technique [13]
is used to determine the value of every steepness factor �P .
According to our experience, the performance of the
simulation system does not vary considerably for different

�P . An experiment to demonstrate this can be found in
Section 6.6. With respect to each steepness factor in Table 1,

440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

TABLE 1
The Four Decision Policies Used in the Experiments

Table 2 further lists the corresponding value used in our
experiments.

6.2 Scenario 1

We first consider a relatively simple application scenario.
The FSP system contains 30 peers and provides a single
service s1. �s1 is adjusted such that approximately two
service requests will be received every 10 sec. The
number of computations required for processing each
request follows a normal distribution with mean 1� 106

and deviation 5� 104. Obviously, the number of peers
involved in the simulation outweighs the demand for s1.
In order to improve the resource efficiency, the service
group G1 ¼< fpig; s1 > needs to maintain only enough
peers for request processing. Meanwhile, since there are
no competing service groups, peers with higher proces-
sing capabilities should be more likely to be employed by
G1 so as to reduce SRRT. Finally, it is also desirable that
the processing load can be evenly distributed over the
peers in group G1.

Simulations have been performed to verify all the above
expectations. � is set to 1.3 according to the heuristic
presented in Section 5.1. m and h in the recruiting protocol
(Figs. 4, 5, and 6) are set to 10 and 1, respectively. Fig. 8
illustrates the change in group G1’s size during simulation.
As evidenced in Fig. 8, the group size gradually decreases
until it reaches 8. Fig. 9 further shows the average processing
capability of the peers in groupG1 during simulation. There is
a drop in the average processing capability between 10,000
and 15,000 seconds in Fig. 9. One possible explanation of this
drop is that it is due to the sudden increase of service demand,
which has resulted in a long request queue. In response to this
demand fluctuation, group G1 employs more peers with a
relatively low processing capability. However, even at the
bottom of the drop, the average processing capability is still
much higher than that of medium-category peers. Under a
long simulation with 100,000 simulated seconds, it is
witnessed that a drop with such a time span seldom happens.

As the average processing capability of groupG1 increases
(Fig. 9), a short SRRT of 13.8 seconds is achieved. Notice that if
we perform simulation without using the decision policies in
Table 1, SRRT would be around 28 seconds. Moreover, in the
case that groupG1 contains only fast-category peers, the best
SRRT would be slightly higher than 10 seconds. During a
majority time period (from 2,000 simulated seconds onward)
of the simulation, the resource efficiency is maintained at a
level of 0.8, and the load distribution is around 25 percent. We
feel this is quite acceptable after considering the randomness
involved in generating and processing service requests.

6.2.1 Comparison Experiment

Application scenario 1 introduced in this section has posed
a similar problem as addressed by the resource manage-
ment framework proposed by Cuenca-Acuna and Nguyen
[15]. As a comparison study, we have implemented their
framework within our simulation system. The essential part
of the framework is to periodically use GA1 to identify those
peers that together form service group G1. The selection of a
group member in GA is guided by a fitness function, which
is able to estimate the expected performance of any group
configurations according to the current service demand.
Conceptually, it is eligible to define the fitness function as

� fpig; 	 � � �

� �

; ð5Þ

where � refers to the average number of service requests
received per second,
 represents the average number of
computations consumed by each service request. 	 is a
positive factor such that when the total processing
capability of peers in fpig exceeds 	 � � �
, group G1 is
said to outweigh the service demand. Our implementation
of function � in (5) follows exactly the fitness model in [15].
Simulation results with varied 	’s are summarized in
Table 3.

Table 3 indicates that with different 	s, GA will produce
different configurations for service group G1. As the group
size increases, SRRT will decrease accordingly at the
expense of reduced resource efficiency. In general, there
seems to be a trade-off between SRRT and resource
efficiency in the FSP system. Comparing with the results
in Table 3, it is further evidenced that our coordination
mechanism is able to balance the trade-off desirably due to

CHEN ET AL.: COORDINATED SERVICE PROVISION IN PEER-TO-PEER ENVIRONMENTS 441

1. In the experiment, GA is used after every 100 seconds.

TABLE 2
Steepness Factor Values Used in the Experiments

Fig. 8. The change in group G1’s size during simulation.

Fig. 9. Average processing capability of group G1 during simulation.

the relatively short SRRT and high resource efficiency.
Moreover, our results are achieved through the peers’ local
interaction without relying on any global information
required by GA.

6.3 Scenario 2

In this section, we will consider an application scenario
where peers are not seemingly abundant as in Section 6.2.
Intuitively, groups with a high processing demand should
be able to attract more peers, whereas other groups’
interests may be compromised. The FSP system contains
30 peers as in Section 6.2 and offers five services. Table 4
lists the specific settings of each service.

Since there are five service groups in the simulation, m
and h in the recruiting protocol now are equal to 6 and 5,
respectively. Other settings remain the same as described in
Section 6.2. Fig. 10 shows the group size change for G2 and
G5 from 0 to 20,000 simulated seconds. Fig. 11 depicts the
change of the total processing capability of the two service
groups.

According to Figs. 10 and 11, group G2 has a larger
group size and more computational power than group G5

during the simulation. This is due to the fact that processing
a request for service s2 will consume more computation
resources than processing a request for s5 (Table 4). Table 5
summarizes the average group size, the total processing

capability, and the average response time for the five
groups.

As evidenced in Table 5, the group structure is able to
properly reflect the varied service processing demand via
self-organization. As a result, the SRRTs of the five service
groups are very close to each other. The standard deviation
of SRRT is 5.6. Without using the decision policies in
Section 5, this deviation may reach to 93.6.

Similar to our observations in Section 6.2, for a majority
period of time during simulation, the resource efficiency of
each service group stays around 0.8. Specifically, as shown
in Fig. 12, there is only a small difference between the
resource efficiency of separate service groups. This fact in
turn implies that our coordination mechanism has achieved
a fairly even distribution of load.

6.4 Scenario 3

In this section, we further test the effectiveness of our
coordination mechanism when an FSP system contains
more peers and offers more services. In one experiment,
200 peers are involved in providing 10 different services.
The settings of each peer follow the same rule as introduced
in Section 6.1. The first five services provided by the system
(that is, s1, s2, s3, s4, and s5) use the same settings as in
Table 4, whereas the last five services (that is, s6, s7, s8, s9,
and s10) simply copy the respective settings of the first five
services. Table 6 lists SRRT and average group size of the
10 service groups observed during simulation.

As shown in Table 6, despite of the fact that 200 peers
were involved in the simulation, the group size for each
service is only enlarged slightly as compared with the
experiment results in Table 5. This is because the demand
for each service is kept at the same level as the experiment
in Section 6.3. Nevertheless, SRRT is considerably reduced
since the competition between service groups is not as
strong as in Section 6.3. More opportunities are available for
each service group to employ fast-category peers.

442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

TABLE 3
Comparison Experiment Results Using the
Resource Management Framework in [15]

TABLE 4
Specific Settings for the Five Services Adopted in the Simulation

Fig. 10. Group size change for G2 (real line) and G5 (dashed line) during

simulation.

Fig. 11. Total processing capability of G2 (real line) and G5 (dashed line)

during simulation.

TABLE 5
Average Performance of Each Service Group during Simulation

The experiment results in Table 6 suggest that our
coordination mechanism scales well with an increasing
number of services and peers. The improved opportunity
of employing fast peers is exploited to reduce SRRT,
whereas the group size remains compatible with the service
demand. In fact, more extreme experiments are performed.
In one experiment where 500 peers and 40 services are
involved in the simulation, the SRRTs of those 10 services
listed in Table 6 are still maintained at the same level
(Table 7).

6.5 Scenario 4

In order to test the robustness of our coordination mechan-
ism in the face of joining and leaving peers, two experiments
are conducted in this section. In both of the experiments, the
FSP system provides five services, as defined in Table 4. In
the first experiment, there are initially 30 peers in the system.
As the simulation continues, new peers will constantly join
the system at a speed of one peer per 20 sec until there are
200 peers. Fig. 13 illustrates the change of SRRT with respect
to service s2 during simulation.

As evidenced in Fig. 13, newly joined peers have been
effectively exploited to gradually reduce SRRT. After
around 4,500 simulated seconds, SRRT cannot be further
improved because all the 200 peers have joined the FSP
system by that time. The final response time observed at
20,000 simulated seconds is 25.0 seconds, which is very
close to the results given in Table 6.

In the second experiment in this section, there is a
probability of 0.02 for peers that just resigned from their
service groups to leave the system. There are 200 peers that
are active before the simulation starts. Fig. 14 depicts the
number of peers in the FSP system, as well as the SRRT of
service s2, during simulation.

Since peers may permanently leave the FSP system, the
number of peers during simulation is continuously decreas-
ing. By the time the simulation is terminated, there are only
41 peers left in the system. As the system shrinks its size, the
SRRT of service s2 is gradually increasing but at a much
slower pace. In fact, SRRT has only been increased by about
8 sec as fast-category peers are more reluctant to resign and
consequently leave the system according to the policies in
Table 1. Based on the results in Figs. 13 and 14, we believe
that our coordination mechanism is good at handling
joining/leaving peers.

6.6 Scenario 5

In this section, a new performance metric, namely, the
failure rate, will be considered together with SRRT.
Different from the four application scenarios discussed
previously, the resources shared by any peer in the FSP
system are characterized by three properties, which are the

1. processing capability �1,
2. AR �2, and
3. TTR �3.

As usual, �1 refers to the number of computations
allowed per second. �2 measures the probability for a peer p
to become unavailable temporarily. As �2 approaches 1,
peer p will have more chances to remain available. Even if
peer p is unavailable, it can still stay in a service group.
However, no service requests will be accepted and
processed by peer p anymore. The processing of any service
request will fail at the time when peer p becomes
unavailable. As time passes, peer p will become available
again. The average time for peer p to recover is indicated by
property �3. Notice that it is possible to use other properties

CHEN ET AL.: COORDINATED SERVICE PROVISION IN PEER-TO-PEER ENVIRONMENTS 443

Fig. 12. Resource efficiency of G2 (real line) and G5 (dashed line) during

simulation.

TABLE 6
Average Performance of Each Group during Simulation

TABLE 7
Average Performance of Each Service Group

during a Simulation with 500 Peers and 40 Services

Fig. 13. SRRT of service s2 during simulation.

and models to describe shared resources, depending on
specific application requirements. In this section, only
properties �1, �2, and �3 will be utilized for the purpose of
demonstrating the policy design method in Section 5.2.

Similar with the preceding experiments, the FSP system
contains three categories of peers. Properties �2 and �3 of
each peer are assumed to follow normal distributions. In
order to highlight the interaction between SRRT and the
failure rate, the AR ð�2Þ of fast-category peers will be
considerably lower than that of medium-category peers.
The specific settings for each category of peers can be found
in Table 8.

Following the policy design method in Section 5.2,
exactly one resignation policy, one employment policy,
and one group-selection policy are created. We use �res,
�emp, and �grp to denote, respectively, the steepness factors of
the three policies. Function Qð�Þ (3) is evaluated through
low-cost simulations. For each peer p, the simulation starts

with the assumption that a fraction of the service requests
have been assigned to p. The processing of every service
request is estimated according to the computation speed �1

of p. Request processing might fail with a probability that is
equal to 1� �2. Finally, the predicted value of SRRT or the
failure rate (that is, Qð�Þ) is obtained by averaging all
handled service requests during simulation.

Experiments have been performed with an FSP system
that contains 50 peers and offers five services, as defined in
Table 4. Our experiments show that by adjusting the weight
!1 associated with 1=SRRT (2), we can have different
performance results. Table 9 specifically compares the
failure rate and SRRT of service s2 in two experiments, A
and B. The SRRT in experiment A ð!1 ¼ 0:8Þ is less
important than that in experiment B ð!1 ¼ 0:95Þ.

Due to the low AR ð�2Þ of fast-category peers, in order
to reduce the failure rate, service groups need to employ
more medium-category peers. Therefore, the SRRT in
experiment A is longer than the SRRT in experiment B
(Table 9). Fig. 15 helps to demonstrate the effectiveness of
our coordination mechanism by showing the performance
measure J associated with s2 in experiment B. Experi-
ments with varied system configurations are conducted.
Overall, we find that policies designed via the method in
Section 5.2 are as effective as those policies applied in the
preceding four sections.

Experiments are also carried out in an attempt to
understand how sensitive the results are to chosen steep-
ness factors �p. Using policies designed in this section, one
particular experiment is conducted with the FSP system
introduced in Section 6.2, which offers a single service s1.
Throughout the experiment, �res and �grp are fixed at 0.8 and
3.5, respectively. Fig. 16 shows the group size and SRRT of
service s1 when �emp has different values. As indicated in
Fig. 16, after increasing �emp from 0.5 to 10, the group size

444 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 14. The number of peers in the system and the response time for

service s2 during simulation.

TABLE 8
Resource Property Settings for Each Category of Peers

TABLE 9
SRRT and Failure Rate of Service s2

Fig. 15. The change in the performance measure J of service s2 during

simulation.

will shrink to about 2.3, whereas the performance metric
SRRT does not vary significantly. Based on this and other
experiments we performed, we believe that the FSP system
is not very sensitive to steepness factors.

7 CONCLUSION

In this paper, we targeted on the coordination problem that
arises in the FSP systems where distributed peers contribute
their computation resources to offer domain-specific ser-
vices. The research focuses on the question of how to adjust
the service group structures with respect to varying service
demands through self-organization. We have presented our
solution under the scope of a coordination mechanism.

A labor-market model was proposed in order to establish
an analogy between the FSP system and a simplified social
recruiting structure. A recruiting protocol was further built
on top of the model to regulate the peers’ interaction through
a recruiting process. The protocol followed a policy-driven
decision architecture. A general methodology was intro-
duced in this paper for policy design. Each policy is mapped
to a decision-related criterion, which, in turn, establishes a
total order relation over the peers involved in the decision-
making process. We have identified the problem that policies
may contradict with each other to a certain extent. A general
heuristic inspired by EO was adopted to solve this problem. A
stimulus-response mechanism was also utilized to make the
decision process more adjustable. In real applications with
diverse performance and resource requirements, an extra
method for policy design was further introduced based on the
estimated performance measure.

Experiments in a simulated P2P environment were
conducted under five application scenarios. The system
configuration involved in the simulation varied in different
experiments in order to test the robustness of our coordina-
tion mechanism. The experiment results showed that our
mechanism was effective in terms of improving resource
efficiency, reducing SRRT and the failure rate, and
balancing the load distribution. Based on the experiment
results, we believe that our coordination mechanism might
become a practical solution in real-life FSP applications.

In this paper, it was assumed that peers are cooperative
in nature. They are willing to contribute all their shared
resources to the processing of incoming service requests.
However, the problem of cooperation and incentives in P2P
systems is a major concern in the literature. In order to

encourage cooperation, it is necessary to extend our
coordination mechanism with effective incentive mechan-
isms. For example, an incentive mechanism that gives any
peer a higher priority of accessing services offered by other
peers when it has processed many service requests might
encourage peers to contribute [14].

It is to be noticed that the purpose of our work is the
initial exploration of coordination problems in FSP envir-

onments. We do not address issues such as the degree of
fault tolerance, cooperation, security, etc. These and other

problems will be left here as future work.

REFERENCES

[1] Kazaa Media Desktop, http://www.kazaa.com/, 2001.
[2] BitTorrent, http://bitconjurer.org/, 2003.
[3] M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner, and D.D.

Yao, “Optimal Peer Selection in a Free-Market Peer-Resource
Economy,” Proc. Second Workshop Economics of Peer-to-Peer Systems,
2004.

[4] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-
Peer Content Distribution Technologies,” ACM Computing Sur-
veys, vol. 36, no. 4, pp. 335-371, 2004.

[5] P. Bak and K. Sneppen, “Punctuated Equilibrium and Criticality
in a Simple Model of Evolution,” Physics Rev. Letters, vol. 71,
pp. 4083-4086, 1993.

[6] F. Banaei-Kashani, C.C. Chen, and C. Shahabi, “WSPDS: Web
Services Peer-to-Peer Discovery Service,” Proc. Int’l Symp. Web
Services and Applications, 2004.

[7] Grid Computing: Making the Global Infrastructure a Reality,
F. Berman, G. Fox, and A.J.G. Hey, eds. John Wiley & Sons, 2003.

[8] S. Boettcher and M. Grigni, “Jamming Model for the Extremal
Optimization Heuristics,” J. Physics A: Math. and General, pp. 1109-
1123, 2002.

[9] S. Boettcher and A.G. Percus, “Optimization with Extremal
Dynamics,” Physics Rev. Letters, vol. 23, no. 4, pp. 5211-5214, 2001.

[10] S. Boettcher and A.G. Percus, “Extremal Optimization: An
Evolutionary Local-Search Algorithm,” Computational Modeling
and Problem Solving in the Networked World: Interfaces in Computer
Science and Operations Research, H.K. Bhargava and N. Ye, eds.,
pp. 61-77, Kluwer Academic Publishers, 2003.

[11] R. Buyya, D. Abramson, and J. Giddy, “An Economy Driven
Resource Management Architecture for Computational Power
Grids,” Proc. Int’l Conf. Parallel and Distributed Processing Techni-
ques and Applications (PDPTA ’00), 2000.

[12] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “The Organic
Grid: Self-Organizing Computation on a Peer-to-Peer Network,”
IEEE Trans. Systems, Man, and Cybernetics, vol. 35, no. 3, pp. 373-
384, 2005.

[13] V.A. Cicirello and S.F. Smith, “Wasp-Like Agents for Distributed
Factory Coordination,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 8, pp. 237-266, 2004.

[14] B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc. First
Workshop Economics of Peer-to-Peer Systems, 2003.

[15] F.M. Cuenca-Acuna and T.D. Nguyen, “Self-Managing Federated
Services,” Proc. 23rd IEEE Symp. Reliable Distributed Systems, 2004.

[16] Y. Fu, Z. Dong, and X. He, “An Approach to Web Services
Oriented Modeling and Validation,” Proc. Int’l Workshop Service-
Oriented Software Eng. (IW-SOSE ’06), pp. 81-87, 2006.

[17] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Proc. IEEE INFOCOM, 2004.

[18] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[19] X. Gu and K. Nahrstedt, “Distributed Multimedia Service
Composition with Statistical QoS Assurances,” IEEE Trans.
Multimedia, vol. 8, no. 1, pp. 141-151, 2006.

[20] X. Gu and K. Nahrstedt, “On Composing Stream Applications in
Peer-to-Peer Environments,” IEEE Trans. Parallel and Distributed
Systems, vol. 17, no. 8, pp. 824-837, Aug. 2006.

[21] X. Gu, K. Nahrstedt, and B. Yu, “SpiderNet: An Integrated Peer-
to-Peer Service Composition Framework,” Proc. 13th IEEE Int’l
Symp. High-Performance Distributed Computing (HPDC ’04), pp. 110-
119, 2004.

CHEN ET AL.: COORDINATED SERVICE PROVISION IN PEER-TO-PEER ENVIRONMENTS 445

Fig. 16. The group size and SRRT of service s1 for different values of

�emp.

[22] D. Hausheer and B. Stiller, “PeerMart: The Technology for a
Distributed Auction-Based Market for Peer-to-Peer Services,”
Proc. 40th Int’l Conf. Comm. (ICC ’05), 2005.

[23] D. Hausheer and B. Stiller, “PeerMint: Decentralized and Secure
Accounting for Peer-to-Peer Applications,” Proc. Fourth Int’l IFIP-
TC6 Networking Conf. (Networking ’05), pp. 40-52, 2005.

[24] C.H. Hsu, T.L. Chen, and G.H. Lin, “Grid Enabled Master Slave
Task Scheduling for Heterogeneous Processor Paradigm,” Proc.
Fourth Int’l Conf. Grid and Cooperative Computing (GCC ’05),
pp. 449-454, 2005.

[25] M. Klusch, B. Fries, and K. Sycara, “Automated Semantic Web
Service Discovery with OWLS-MX,” Proc. Fifth Int’l Joint Conf.
Autonomous Agents and Multiagent Systems (AAMAS ’06), pp. 915-
922, 2006.

[26] D. Kondo, M. Taufer, C.L. Brooks, H. Casanova, and A. Chien,
“Characterizing and Evaluating Desktop Grids: An Empirical
Study,” Proc. 18th IEEE/ACM Int’l Parallel and Distributed Proces-
sing Symp. (IPDPS), 2004.

[27] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A Survey
and Comparison of Peer-to-Peer Overlay Network Schemes,”
IEEE Comm. Surveys and Tutorials, vol. 7, no. 2, pp. 72-93, 2005.

[28] O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha,
“Service Discovery in Agent-Based Pervasive Computing Envir-
onments,” Mobile Networks and Applications, vol. 9, pp. 679-692,
2004.

[29] D.M. Reeves, M.P. Wellman, J.K. Mackie-Mason, and A. Ose-
payshvili, “Exploring Bidding Strategies for Market-Based Sche-
duling,” Decision Support Systems, vol. 39, no. 1, pp. 67-85, 2005.

[30] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms, 2001.

[31] G. Shao, F. Berman, and R. Wolski, “Master/Slave Computing on
the Grid,” Proc. Ninth Heterogeneous Computing Workshop, pp. 3-16,
2000.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-32, 2003.

[33] K. Sycara, M. Paolucci, A. Anolekar, and N. Srinivasan, “Auto-
mated Discovery, Interaction and Composition of Semantic Web
Services,” Web Semantics, vol. 1, no. 1, 2003.

[34] R. Wolff and A. Schuster, “Association Rule Mining in Peer-to-
Peer Systems,” IEEE Trans. Systems, Man, and Cybernetics, vol. 34,
no. 6, pp. 2426-2438, 2004.

[35] B. Yang and H. Garcia-Monlina, “Efficient Search in Peer-to-Peer
Networks,” Proc. 22nd IEEE Int’l Conf. Distributed Computing
Systems (ICDCS), 2002.

[36] B. Yu and M.P. Singh, “A Social Mechanism of Reputation
Management in Electronic Communities,” Proc. Fourth Int’l Work-
shop Cooperative Information Agents (CIA ’00), pp. 154-165, 2000.

[37] J. Yu, S. Venugopal, and R. Buyya, “A Market-Oriented Grid
Directory Service for Publication and Discovery of Grid Service
Providers and Their Services,” J. Supercomputing, vol. 36, no. 1,
pp. 17-31, 2006.

Gang Chen received the PhD degree in com-
puter science from Nanyang Technological Uni-
versity, Singapore, in 2006. He is currently a
teaching fellow with the School of Electrical and
Electronics Engineering, Nanyang Technological
University. His main research interests are
multiagent systems, peer-to-peer networks, ma-
chine learning, and evolutionary algorithms.

Chor Ping Low received the PhD degree in
computer science from the National University of
Singapore in 1994. He is currently an associate
professor with the School of Electrical and
Electronics Engineering, Nanyang Technologi-
cal University, Singapore. His current research
interests include network performance modeling
and analysis, combinatorial optimization, and
engineering informatics. He is a member of the
IEEE Computer Society and the ACM.

Zhonghua Yang received the PhD degree in
computing and information technology from
Griffith University, Brisbane, Australia. He is
currently an associate professor with the School
of Electrical and Electronics Engineering, Na-
nyang Technological University, Singapore. His
earlier career included working for the Singapore
Institute of Manufacturing Technology; Griffith
University; University of Queensland, St. Lucia,
Australia; University of Alberta, Canada; and

Imperial College, London. He spent a significant part of his career with
the Chinese aerospace industry. His research interests include grid/
distributed computing, semantic Web services, and multiagent systems.
He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

