
Highly Available Long Running Transactions and Activities for J2EE
Applications∗

Francisco Pérez-Sorrosal1, Jaksa Vuckovic2, Marta Patiño-Martı́nez1, Ricardo Jiménez-Peris1

1Universidad Politécnica de Madrid, Spain 2Universtà di Bologna, Italy
{fpsorrosal,mpatino,rjimenez}@fi.upm.es vuckovic@cs.unibo.it

Abstract

Today’s business applications are typically built on top

of middleware platforms such as J2EE and use transactions

that have evolved into long running activities able to adapt

to different circumstances. Specifications, such as the J2EE

Activity Service, have arised for applications requiring that

support. These applications also demand high availability

to prevent financial losses and/or service level agreements

(SLAs) violations due to service unavailability or crashes.

Replication is a means to attain high availability but current

middleware does not provide highly available transactions.

In the advent of crashes, running transactions abort and

the application is forced to re-execute them, what results in

a loss of availability and transparency. Most approaches

using J2EE consider the replication of either the applica-

tion server or the database. This results in poor availability

when the non-replicated tier crashes. This paper presents a

novel J2EE replication support for both, application server

and database layers providing highly available transactions

and long running activities. Failure masking is transparent

to client applications. A prototype has been implemented

and evaluated.

1 Introduction

The increasing degree of sophistication and complex-
ity of modern business applications is demanding support
for flexible long running activities. Due to the long run-
ning nature of business activities, traditional ACID transac-
tions are not adequate for them. Several specifications have
been proposed in the last years such as the activity service
for CORBA [29] and J2EE [33], WS-Coordination/WS-
Transaction [22] and WS-CAF [25]. They provide the in-

∗This work has been partially funded by the Spanish Research Council
(MEC, TIN-2004-07474-C02-01), the Madrid Regional Research Council
(CAM, P-TIC-285-0505) and the European EUREKA/ITEA S4All project
under MITyC grant FIT-340000-2005-144.

frastructure to support complex long-running business ap-
plications based on advanced transactional models [10].

Furthermore, there has also been a growing demand for
attaining higher levels of availability in business applica-
tions. Companies depend more and more on their IT infras-
tructures what results in an increasing need for more reliable
and available middleware platforms. This need is becom-
ing more acute with the rapid expansion of SLAs among
e-business partners. Server outages can violate the SLA
and result in substantial financial losses. Many other ap-
plications, such as workflows, online analytical processing
(OLAP) and scientific applications, run long transactions
and computations that also keep the state across transac-
tions. In these applications, high availability support for
transactions and long running activities is very important
since the amount of computation that can be lost due to a
crash is very significant. Moreover, since many of these ap-
plications keep state across transactions and activities, they
require transparent failure masking. This means that sim-
ply aborting the current transaction in case of a crash to
maintain a consistent state is not enough. In many cases,
the application will be unable to restart the processing due
to the state kept internally across transactions [5], like, for
instance, variables in the client application code or interac-
tions with third parties. To attain high availability, repli-
cation is used. However, current middleware support usu-
ally fails to satisfy industry expectations for high availabil-
ity mainly due to two reasons: 1) It does not provide highly
available transactions. In the advent of a replica failure, cur-
rent solutions abort all ongoing transactions. In many appli-
cations, like workflows or orchestrated web services, there
is no way to replay the aborted transactions. That is, current
solutions do not solve the availability problem. This fact is
exacerbated in the case of long running activities, mostly ig-
nored by current middleware platforms; 2) Focuses on the
replication of a single tier with the subsequent loss of avail-
ability when the non-replicated tier crashes.

In this paper, we present a set of replication algorithms
following a primary backup approach that tackle these two
issues in the context of J2EE application servers. A first

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



contribution consists in combining the replication of the ap-
plication server (AS) and database tiers. This makes our
platform resilient to any single point of failure. What it is
more, it also guarantees the consistency between the two
tiers in any failure scenario. The combination of the repli-
cation of both tiers is especially novel in that replication is
not made along tiers (i.e. replicating the AS tier indepen-
dently of the database), but across them (i.e. replicating
pairs of AS and database). The former approach is far from
being trivial and requires some sophisticated logic to enable
the consistent integration of both replicated tiers [20]. The
latter approach, the one taken in this paper, enables an in-
tegral replication solution fully achieved at the AS tier and
without modifying the database. This fact is important for
pragmatic reasons since it enables the use of the replication
platform with any existing database and without requiring
access to the database code. A second contribution lies in
that our solution supports highly available transactions and
long running activities. Replica failures are transparently
masked in front of clients. That is, running transactions and
activities are not aborted. Upon failover, processing con-
tinues at the point the primary was when it failed. All pre-
vious solutions (that did not require specific hardware such
as Tandem systems), to the best of our knowledge, abort
ongoing transactions failing to satisfy the high-availability
requirement. The provision of high availability in this con-
text raises many challenges. Unlike previous work, it has to
deal with services used by the application (e.g. the transac-
tion manager, the activity service engine, etc.), in addition
to business components.

We have implemented and evaluated a prototype inte-
grated into the JBoss AS [18]. We have also implemented
a prototype of the J2EE Activity Service for long running
activities. The performance has been evaluated both with
the ECPerf benchmark and a custom benchmark for long
running activities.

The paper is structured as follows. Section 2 intro-
duces J2EE. Section 3 defines the system model. Section
4 presents our replication algorithms. They are evaluated in
Section 5. Section 6 presents related work. Finally, Section
7 concludes the paper.

2 J2EE

J2EE [32] is an extensible framework that provides a dis-
tributed component model along with other useful services
such as persistence and transactions. J2EE components are
called Enterprise Java Beans (EJBs). There are three types
of EJBs: session beans (SBs), entity beans (EBs) and mes-

sage driven beans (MDB). We will not consider MDBs in
this paper. SBs represent the business logic and their life-
time is bounded to the lifetime of clients (i.e., they are
volatile). SBs are further classified as stateless (SSBs) and

stateful (SFSBs). SSBs do not keep any state across method
invocations. SFSBs may keep state across invocations of a
client (conversational state). EBs model business data and
are stored in some persistent storage, usually a database.

The transaction manager is the service that handles trans-
actions in J2EE. J2EE provides the Java Transaction API

(JTA) to demarcate transactions. The transactional at-
tributes of an EJB indicate whether its methods must run
in a transaction, if a transaction must be already running or
if a new transaction must be initiated.

Traditional transactions may be too restrictive for appli-
cations that need to relax some of the ACID properties. For
instance, workflows may last for long periods of time (days,
months). In this context, keeping locks across invocations
drastically reduces the system concurrency. For this reason,
several advanced transaction models have been proposed
[10]. The J2EE Activity Service specification (J2EEAS) al-
lows the implementation of advanced transaction models in
J2EE.

The J2EEAS consists of two components: the activity

service itself and one or more high level services (HLSs)
(Fig.1). The activity service provides an abstract unit of
work called activity, that may or may not be transactional.
An activity may encapsulate a transaction or be encapsu-
lated by a transaction. Activities may be nested.

HLSs are defined on top of the activity service and repre-
sent advanced transaction models. Applications use a HLS
to demarcate activities, which produce an outcome. In or-
der to implement a transaction model using the J2EEAS de-
velopers must provide the demarcation points (signals), the
outcomes and the state transitions (signalset).

Figure 1. J2EE services and components

We have implemented the open nested transactions
model (ONT) [34] as defined in [33]. ONTs are similar to
traditional nested transactions (as specified in J2EE). How-
ever ONTs relax the isolation property of nested transac-
tions in order to be used in the context of long running
transactions. In this way, a workflow can be seen as an
atomic unit of work that is divided into smaller activities
which are ACID transactions. When a subtransaction com-
mits, all the resources are released. Due to the relaxation of

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



isolation, if the global activity fails, atomicity is achieved
by logically undoing (compensating) committed activities.
In order to compensate a committed transaction, when that
transaction commits, it registers a compensator with its par-
ent. This process is done recursively. When the top-level
ONT commits, the registered compensators are discarded.
If the top-level ONT aborts, compensators are applied in
reverse order of completion. Figure 1 shows the possible
interactions among a client, EJBs, the transaction manager
(TM), the ONT HLS and the activity service.

3 Model

In our model, a replica is the pair AS and database. That
is, ASs do not share the database. The set of all replicas is
called a cluster (Fig.2). We will consider that a replica fails
if either the database or the AS fails.

Figure 2. Replication model

ASs communicate using a group communication system
(GCS) supporting strong virtual synchrony [14]. GCSs pro-
vide reliable multicast and group membership [8]. Group
membership services provide the notion of view (currently
connected and active group members). Changes in the com-
position of a view (member crash or new members) are
eventually delivered to the application. We assume a pri-
mary component membership [9]. In a primary component
membership, views installed by all members are totally or-
dered (there are no concurrent views), and for every pair
of consecutive views there is at least one member that sur-
vives from the one view to the next one. Strong virtual syn-
chrony ensures that messages are delivered in the same view
they were sent (sending view delivery) and that two mem-
bers transiting to a new view have delivered the same set of
messages in the previous view (virtual synchrony). Group
communication primitives can be classified attending to the
order guarantees and fault-tolerance provided. FIFO order-

ing delivers all messages sent by a group member in FIFO
order. With regard to reliability, reliable multicast ensures
that all available members deliver the same messages. Uni-

form reliable multicast ensures that a message that is deliv-

ered by a member (even if it fails), will be delivered at all
available members. We assume that multicast messages are
delivered to the sender of the message (self delivery). In the
algorithms presented in this paper, ASs communicate using
uniform FIFO multicast.

4 J2EE Replication

In this section we present a suite of replication algo-
rithms for high available transactions (HA replication). The
proposed algorithms follow a primary-backup replication
scheme and take care of both the state of the AS and the
database. That is, there is one replica (primary) that pro-
cesses client requests and sends the state changes (check-
point) to the rest of the replicas (backups). Backups just
apply the changes the primary sends. Clients invoke EJBs
residing on the primary and EJBs may invoke other EJBs. If
the primary fails (either the AS or the database), a backup
will take over and become the new primary. Clients will
now interact with the new primary.

Although we target long running transactions, first we
present a replication algorithm for transactions whose life-
time is a single client invocation to simplify the presen-
tation. Then we will extend this algorithm with client-
demarcated transactions that may invoke several times the
AS within a single transaction, and finally, we will see
how to replicate long running activities based on ONTs.
The HA replication algorithms provide the following con-
sistency properties in the absence of catastrophic failures
(all replicas fail): 1) Exactly once execution. Every re-
quest is processed exactly once despite replica failures. 2)

Replica state consistency. After a client receives a reply, it
is guaranteed that all running replicas have the same state.
That is, the backups contain the same set of checkpoints
and if the failover is performed, the backups will reach to
the same state that the primary had (the same SFSBs with
the same state, the same committed EB updates, the same
database committed state, the same uncompleted transac-
tions and uncompleted activities with the same associated
updates and reads, and the same activity trees). 3) Highly

available processing. Every client request eventually re-
ceives its outcome despite replica failures. That is, from
the client perspective, transactions and activities never abort
due to replica failures.

It should be highlighted that the first and second proper-
ties are provided by previous work, but only in the context
of a single replicated tier (the application server tier). Our
proposed algorithms fulfill these two properties replicating
both tiers and therefore, without exhibiting any single point
of failure. More importantly, our approach is the only one
that fulfils the third condition to the best of our knowledge.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



4.1 One Request Transactions

In this algorithm we only consider transactions that start
and complete during a client invocation to an EJB. This EJB
may invoke other EJBs. The transaction will commit or
abort before the client invocation finishes.

The client as part of the algorithm sends in each invo-
cation a request identifier (rid). Rid consists of the client
identifier and a request number. There is a request number
per client that is increased each time that client invokes an
EJB. This is done transparently by the client stub, so the
client application code is not changed.

When the primary receives an EJB invocation from a
client, it starts a transaction and executes that request. This
request may call other EJBs, resulting in a nested invoca-
tion. The primary collects all the changes done to the in-
voked EJBs (checkpoint) and the associated rid in a table
(changes table) whose key is the client id. Request changes
also include the creation and deletion of EJBs. Before re-
turning the results to the client, the primary commits the
transaction and FIFO multicasts to the backups the changes
and the results of the request. Therefore, at most one mes-
sage is sent to the backups per client invocation. If no EJB is
modified, the primary does not send any message. The pri-
mary returns the result to the client after it delivers the mul-
ticast message with the EJB changes, if any. Uniform mul-
ticast guarantees that if the primary has delivered that mes-
sage, the backups will also deliver it. The primary commits
transactions sequentially and FIFO multicasts the changes
in the commit order to the backups. This guarantees that
backups will commit transactions in the same order as the
primary. If the transaction commits, the backups will re-
ceive the committed EJBs changes and apply them. If the
transaction aborts, no message corresponding to that trans-
action is sent to the backups. Backups process primary mes-
sages (applying the changes) in the delivery order (FIFO).
Backups store the request identifier and the results in a ta-
ble (results table). A backup keeps the results of a request
message till it receives a new request from the same client.
Failures. If an AS fails, the GCS informs all the ASs about
the failure delivering a new view. If a backup has failed (it
does not appear in the new view), nothing is done. If the
primary fails, one of the backups will be chosen determin-
istically to become the new primary (e.g. the replica with
the smallest identifier in the view). Since strong virtual syn-
chrony is assumed and messages are uniform multicast, all
the backups that belong to the new view have delivered the
same set of messages the old primary delivered when the
new view is delivered. So, all of them will have the same
EJB changes and anyone can take over as the new primary.
If a database fails, the AS connected to it will detect the
failure and shut down itself. Therefore, it will also fail. The
new primary must apply the changes received from the old

primary before starting to process client requests in order
to ensure it has the same state the old primary had when it
failed. If those changes are not applied by the time the view
change is delivered, the processing of new client requests
will be delayed until all outstanding changes are applied.

In order to be able to fail over, the client stub needs to
know the available ASs. The client stub receives the view
of the cluster from the primary. Each view has a unique
identifier (view id). The client stub attaches the view id to
each request. If the primary detects that the client view id is
not the id of the current view, it will piggyback the new view
to the reply. So, if the primary fails, a client invocation will
not succeed and the client stub will try to contact another AS
from the last view received. That replica may or may not be
the new primary. If the chosen AS is the new primary, it will
process the request; otherwise it will reply with a message
indicating the new primary.

If the primary fails while processing a request, the client
stub will receive an exception and resubmit that request to
another server. Due to the use of uniform multicast, if the
primary sent the changes before failing and delivered that
message, the rest of the replicas also delivered the message
and have the request changes and results. If the primary did
not deliver that message, uniformity guarantees that the rest
of the replicas will either all deliver the message or none. In
the former case, the new primary has delivered the changes
produced by that request. When the client resubmits the re-
quest, the new primary will access the results table using
the rid, detect that the request is a duplicate (the rid is in the
results table) and send the cached reply to the client. In the
latter case, none of the backups is aware of that request be-
cause the primary failed before the corresponding changes
were delivered. So, the new primary will access the results
table and not find that rid, and therefore will execute the re-
quest. Otherwise, all of them are aware of it and then the
behaviour is as in the former case.

Note that the primary does not send any message to
the backups if a request does not update any SFSB or EB
(“read-only” request since SSB changes are not stored).
Therefore, when a client resubmits a “read-only” request,
the new primary is not aware of that request (the rid is not
stored in the results table). The new primary will execute
the request and return the results to the client.

4.2 Client-Demarcated Transactions

Clients may demarcate transactions in J2EE using the
Java Transaction API (JTA). A client-demarcated transac-
tion may bracket several invocations to EJBs. Transactions
are started, committed or aborted by the server transaction
manager on behalf of the client. When a client begins a
transaction, the primary will create a transaction and gen-
erate a transaction identifier (tid). The primary stores this

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



tid and the corresponding client identifier in a transaction

table to associate that client with that transaction. Then,
it multicasts this information (begin message) to the back-
ups and suspends the transaction before returning to the
client. The client attaches the tid and a request number to
each EJB invocation from that transaction. When the pri-
mary receives a request within that transaction, it accesses
the transaction table to resume the associated transaction
and then processes the request. The primary processes re-
quests as in the basic algorithm (the primary stores the EJB
changes, multicasts them together with the request results)
but, before returning to the client it suspends the associated
transaction. This transaction suspension just deassociates
the thread from the transactional context (this is in fact done
by applications servers even if they are not replicated).

It has to be noted that now the primary sends committed
and uncommitted changes to the backups. The state sent
consists of the SFSBs and EBs modified in the current in-
vocation. The state of SFSBs is not transactional. Even
if a SFSB method runs within a transaction, if the transac-
tion aborts that state is not undone to the previous state.
Therefore, we will consider those changes as committed
changes. When the client calls the commit (abort) oper-
ation, the primary will resume the associated transaction,
invoke the commit (abort) operation, and multicast a com-
mit (abort) message with the tid to the backups. If SFSBs
implement the afterCompletion method, the container will
execute that method after committing (aborting) the trans-
action. That method may change the state of the EJB. In
this case, the primary will also send those changes in the
commit (abort) message.

An EJB method may start a new independent transaction
when it is invoked. In this case, the enclosing (client) trans-
action is suspended, and a new inner transaction is started.
That is, in J2EE it is possible to run several transactions on
behalf of a single client invocation, by suspending/resum-
ing transactions. This implies that a message to a backup
can carry changes from several transactions.

When each client request corresponds exactly to a single
transaction, backups only need to apply committed changes.
They do not need to know which reads were performed in
the database. However, when transactions span multiple
client requests, this is not the case anymore. Reads per-
formed by uncommitted transactions at the primary are im-
portant to guarantee consistency if the primary fails, since
they affect the serialization of transactions (i.e. by setting
read locks). For instance, if there are two transactions T1
and T2, T1 has read object a and T2 has begun. Then, the
primary fails. T1 and T2 are recreated on the new primary.
Now, T2 modifies object a and commits. T1 performs other
operations and reads a again. The value of a is different to
the value read previously, though, both reads are executed
within the same transaction (non-repeatable reads). If the

primary would not have failed, T2 would block when try-
ing to modify a till T1 finishes. In order to implement the
same semantics for failure and failure free scenarios, the
primary in addition to the changes also sends information
about database reads. Since results of reads can be very
bulky, the primary sends the SQL read statement submitted
by the container to the database.

When a backup receives a begin transaction message, it
just stores the information received in the transaction table.
Upon a backup receives changes from the primary, it ap-
plies all committed changes and stores the request results
in the results table. A backup will delay the application of
uncommitted changes till it processes the commit message.
When a backup processes the commit message, it applies
the uncommitted changes for that transaction, discards the
reads associated to the transaction, and stores the result of
the transaction (commit) in the result table. If a backup re-
ceives an abort message, it discards uncommitted changes
and reads.
Failures. If the primary fails before a client transaction
completes, the new primary will recreate that transaction.
The new primary will not process any client request till it
has applied all the messages sent by the old primary. When
this happens, the primary checks if there are uncompleted
transactions in the transaction table. If this is the case, the
new primary will recreate a transaction for each of these
transactions, apply uncommitted changes and execute the
associated reads in the order they were sent by the old pri-
mary. This guarantees that each recreated transaction will
hold the same state it held at the old primary, therefore guar-
anteeing consistency of recreated transactions.

If the primary fails between two client invocations, the
client just needs to contact the new primary. If the primary
fails while running an invocation, the client stub will resub-
mit the invocation behaving as in the previous algorithm.
If the primary fails when the client called the begin opera-
tion, there are two cases. If the transaction is in the trans-
action table, the new primary will send back the tid. Oth-
erwise, the new primary did not receive the begin message
in the previous view and will process it now. Finally, if
the commit (abort) operation failed, the new primary might
have the result and return it to the client, or not have it, in
which case it will execute the operation. Replicating the un-
committed state on each client invocation avoids the abor-
tion of the client transaction in case the primary fails. The
new primary resumes the transaction transparently provid-
ing highly available transaction support.

4.3 Open Nested Transactions

Like client-demarcated transactions, ONT activities are
started, completed and compensated on the server and may
involve multiple server invocations. ONT activities are de-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



marcated either by the client or by SBs. This can yield to
arbitrarily complex ONT activity trees as it happens with
nested transactions in JTA. The main difference from the
replication point of view is that whenever a child ONT ac-
tivity succeeds, a compensator is registered with its parent.
This procedure is performed recursively until the top-level
ONT activity is reached. When the top activity commits,
registered compensators are discarded. Whenever an ONT
activity aborts, the registered compensators are executed.
Therefore, in order to replicate ONT activities and provide
transparent failover the primary must send the correspond-
ing ONT activity tree state with all this information to the
backups.

When a client starts an ONT activity, the primary gen-
erates an activity identifier (aid) and stores it with a client
identifier in an activity table. The primary multicasts an ac-

tivity begin message to the backups with that information,
suspends the ONT activity and returns the aid to the client.
When a client submits a request, it attaches the aid and a
request identifier. The primary resumes the associated ONT
activity and executes the request. That request may start a
nested ONT activity. The primary will register that ONT
activity in the ONT activity table as a child ONT activity
of the client ONT activity (ONT activity tree). If the nested
ONT activity succeeds, a compensator is registered with the
parent ONT activity to be invoked in case the parent ONT
activity fails. The primary will multicast the request identi-
fier, the request result, the changes of the completed nested
ONT activity as committed changes, the uncompleted par-
ent ONT activity changes as uncommitted ones, read state-
ments, the ONT activity tree with the status of each ONT
activity in the tree and the registered compensators before
returning to the client. In the case under consideration, the
child activity has committed and therefore, the ONT activ-
ity tree has a single ONT activity (the parent). When the
client submits a commit operation, the primary resumes and
commits the associated ONT activity, multicasts the ONT
activity outcome, and returns to the client. Now the aid

is removed from the ONT activity table. If the parent ONT
activity fails, the primary executes the compensators and af-
terwards, it collects all the EJB changes. Then, it multicasts
the changes and the ONT activity outcome. After delivering
this message, it returns the outcome to the client.

Backups store the aid and the client id when they re-
ceive a begin message. When a backup receives a message
with changes, it updates the ONT activity tree according
to the one in the message and proceeds as in the previous
algorithm. Uncommitted changes will be applied when a
commit message is received, and discarded if the message
is abort. In that case, the compensators are executed.
Failures. When the new primary finishes processing mes-
sages from the previous primary, it reconstructs all unfin-
ished ONT activities. For each ONT activity in the table,

it traverses top-down the corresponding ONT activity tree.
The new primary creates an (possibly nested) ONT activ-
ity and associates the registered compensators, if any, for
each node in the ONT tree. Then, it applies uncommitted
changes, and executes the reads performed on behalf of the
ONT. Now, the primary can resume request processing.

5 Evaluation

We have implemented the replication algorithms in the
JBoss AS. Our implementation is based on the ADAPT
framework [2]. It supports the prototyping of replication
protocols in JBoss using interceptors. The ADAPT frame-
work provides two types of interceptors: client component

monitor (CCM) and component monitor (CM). The client
component monitor intercepts all the outgoing invocations
at the client side. It implements the client side of the repli-
cation algorithms. The CCM is dynamically loaded by the
client when getting the stub of a remote EJB. There is one
CCM instance per client. The CM is the server side coun-
terpart responsible for intercepting both, remote invocations
from the client to the EJBs, and local invocations between
EJBs. It implements the server side of the replication algo-
rithm.

We have evaluated the overhead of the replication algo-
rithms both in a traditional transactional application and in
an application based on the ONTs model. We used a non-
replicated JBoss and JBoss clustering as baselines for the
experiments. Although, none of them provides the avail-
ability and fault-tolerance guarantees our algorithms do. In
JBoss clustering there is a single shared database. The repli-
cation algorithm of JBoss is not transaction aware and trans-
fers the state of an SFSB at the end of each invocation that
modifies the SFSB. JBoss clustering is configured to exe-
cute as a primary-backup. We have also measured the time
needed for failover when the primary fails.

The experiments were run in a cluster of 2 GHz AMD
dual-processor PCs with 512 MB of RAM running Red Hat
Linux 9.0. We used JBoss 3.2.3 AS [18], PostgreSQL 7.3.2
database, JGroups [1] as a GCS and JASS [26], our imple-
mentation the activity service. In all experiments the clients,
each instance of JBoss and the database were run in separate
hosts. All the results of the experiments have been obtained
over the steady phase of the test.

5.1 Transaction Replication

The evaluation of the replication algorithm has been
done using ECperf [31]. It simulates a supply chain, defin-
ing four application domains: corporative, order entry, sup-
ply chain management and manufacturing. ECperf mea-
sures the throughput in BBops per minute (benchmark busi-

ness operations). BBops are the sum of the number of trans-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



actions of the order entry application and the number of
work orders the manufacturing application generates.

The main parameter in the tests is the injection rate (Ir),
which models the load injected to the system. The number
of clients is five times the Ir in the order entry application,
and three times the Ir in the manufacturing application. The
ECPerf target determines for a given load, the conditions
that the performance metrics of the system should fulfil. It
specifies a maximum response time for all the requests (2
seconds for the order entry domain and 5 seconds for the
manufacturer domain) and also that the response time cor-
responding to the percentile 90% is no more than a 10% of
the average.

Figure 3 shows the overall average response time for
the order entry transactions (the ones with stricter response
time) under ECPerf. As expected, non-replicated JBoss of-
fers the lowest response time, since it does not incur any
overhead due to replication. Till 10 Ir the response time
of our algorithm (HA Replication) is similar to the one
of JBoss clustering (JBoss Primary-Backup) and the non-
replicated JBoss. From 10 to 20 Ir the overhead of repli-
cation has a noticeable impact on the response time of our
algorithm becoming higher than the one of JBoss primary-
backup. However, the response time is still within the lim-
its admitted by ECPerf for order entry transactions (2 sec-
onds). This means that for moderate loads the overhead
of our replication algorithm is negligible and only for high
loads it results in an increased, although still reasonable, re-
sponse time.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20

Injection Rate (per second)

R
e
sp

o
n

se
T
im

e
(m

s)

Non-replicated JBoss

JBoss Primary-Backup

HA Replication

Figure 3. ECperf results: Response time

Figure 4 shows the maximum throughput with respect to
the ECPerf target. We only show the dots corresponding
to experiments that fulfilled the ECPerf target. All configu-
rations fulfilled the ECPerf target till 20 Ir. HA Replication
saturates for higher Irs. JBoss Primary-Backup and the non-
replicated JBoss accomplished the target for a load of 21 Ir.
This means that with respect the ECPerf target, our repli-
cation algorithm has a loss of throughput of 5%. It is also
worth to notice that the non-replicated JBoss degrades more
gracefully under saturation. In particular for an Ir of 21, our

0

250

500

750

1000

1250

1500

1750

2000

2250

0 5 10 15 20

Injection Rate (per second)

B
B

o
p

s/
M

in

Non-replicated JBoss

JBoss Primary-Backup

HA Replication

ECPerf Target

Figure 4. ECperf results: Throughput

replication algorithm was far from reaching the ECPerf tar-
get, whilst JBoss Primary-Backup was not that far for a load
of 22 Ir. This means that the results in terms of the ECPerf
target are very promising for the replication algorithm pro-
posed. The additional cost of HA Replication is also natu-
ral since it is transaction aware and takes into account both
the state of the database (entity beans) and the application
server (stateful session beans).

Table 1 shows the number of messages sent from the pri-
mary to the backup and their average size for the order entry
domain and 10 Ir. JBoss Primary-Backup and HA Replica-
tion send a similar number of messages for the order entry,
though, JBoss clustering does not replicate EBs. The num-
ber of messages sent by our replication algorithm increases
when we take into account the manufacturing domain (Ta-
ble 1). It sends about three times more messages than JBoss
primary-backup. In both application domains the messages
are also three times larger than the ones of JBoss. This ex-
tra overhead is reasonable taking into account that JBoss
only replicates the state of SFSBs that are scarcely used in
ECPerf (only the shopping cart is an SFSB) and does not
replicate the database (EBs). This means that when a state-
less session bean is invoked and only accesses EBs, JBoss
replication does not send any message, whilst our algorithm
sends a message with the changed EBs.

Order entry domain (Ir=10)
System Number of Msgs. Avg. size(bytes)

JBoss Primary-Backup 5169 797
HA Replication 5261 2073

Order entry and manufacturing domains (Ir=10)
System Number of Msgs. Avg. size(bytes)

JBoss Primary-Backup 5406 786
HA Replication 17183 2095

Table 1. Number and size of messages

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



5.2 Advanced Transactions

The goal of this experiment is to evaluate the overhead of
our replication algorithm for applications with long running
activities. We have implemented the J2EE Activity Service
specification and the ONTs and integrated them into JBoss.
We are not aware of any benchmark to evaluate the J2EEAS
itself or any advanced transaction model. So, we have built
a custom benchmark that consists of a shopping cart appli-
cation derived from the one in the ECperf order entry appli-
cation domain. We have reused all the ECPerf infrastruc-
ture to inject the load and evaluate whether the target was
fulfilled. That is, this benchmark has same level of strict-
ness as ECPerf. The client for the shopping cart application
is also an adaptation of the ECperf entry order application
in order to generate client requests as ECperf does. The in-
jection rate (Ir) is the parameter used for determining the
experiment load.

The benchmark works as follows. Every client adds be-
tween five and fifteen items to the cart. The first time a
client adds an item, an ONT representing the cart is cre-
ated (Top-level TX in Fig.5). Each time that a client adds
an item to the cart, a child transaction of the top-level ONT
is started (Middle TX in Fig.5). Within this transaction, the
application updates the client credit and stock of the item
accordingly. Each of these two actions is a nested ONT
transaction (Leaf TX in Fig.5). When any of these ONTs
commits, a compensating action is registered in the parent
transaction (Middle TX). The compensating action for the
item increases the quantity of the item in the stock. The one
for the customer increases the customer credit. If the cus-
tomer has enough credit and the selected item is available in
the stock, the item is added to the cart, and the middle ONT
registers the compensators with the top-level ONT. On the
other hand, if one of the checks fails, the middle transaction
aborts and the registered compensators are executed. Fi-
nally, the client decides whether to buy the contents of the
cart (the top-level ONT commits or aborts). If the top-level
ONT commits the compensators are forgotten. Otherwise,
the compensators are executed by the top-level ONT undo-
ing the changes previously made.

We have run the benchmark with the replication al-
gorithm (HA Replication) and with JBoss extended with
the J2EE activity service. The latter uses three sites, one
for JBoss with J2EEAS, one for the database and another
one for clients. HA Replication uses five sites: one for
the clients, two sites for each of the two JBoss with the
J2EEAS, and two sites for each of the two databases.
The JBoss clustering configuration was not used this time,
since JBoss clustering does not support the replication of
J2EEAS.

The throughput of both the non-replicated JBoss and our
replication algorithm are very close (Fig.6). Both are able

Figure 5. J2EEAS benchmark

Configuration CPU Utilization Ir=3 CPU Utilization Ir=8
JBoss Non-Replicated 27% 60%

HA Replication 42% 99%

Table 2. CPU usage in J2EEAS benchmark

to reach the target till an Ir of 7. The throughput beyond 7
Ir keeps similar till Ir=10. At that point, our replication al-
gorithm degrades very fast, whilst the non-replicated JBoss
exhibits a more or less flat curve before falling. The rea-
son for the faster degradation of our replication algorithm is
the incurred overhead for replicating EBs, that although is
moderate, once the server saturates it becomes noticeable.
Table 2 shows the CPU usage. For high loads, HA Replica-
tion is almost saturated with an usage of 99%. In summary,
our replication algorithm shows a good behaviour for long
client interactions. The overhead of replicating ONTs is not
perceptible in terms of throughput. Since the main motiva-
tion of our algorithm precisely targets long transactions, the
attained results are very promising.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11

Injection Rate (per second)

B
B

o
p

s/
M

in

Non-Replicated JBoss
HA Replication
AS Benchmark Target

Figure 6. J2EEAS results: Throughput

5.3 Failover

Here, we measure the time needed to complete the
failover starting from the instant at which the new primary
detects the failure of the previous primary. Since the proto-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



col is based on group communication, the failure detection
of the primary is instrumented by means of view changes.
When the primary fails, the underlying group communica-
tion infrastructure delivers a view with the new member-
ship. The backup that appears first in the view takes the role
of new primary and the failover is triggered.

The duration of the failover mainly consists of two com-
ponents: 1) The time needed to recreate the transaction
(and activity tree); 2) the number of updated entity beans
(EBs) that have not been yet committed. Upon failover, the
transaction (and activity tree) is recreated and updates cor-
responding to uncommitted transactions are replayed at the
new primary. The number of uncommitted transactions de-
pends on the number of concurrent clients. The experiment
measures the failover time for an increasing number of con-
current clients and of uncommitted EBs per client (1, 5, and
10 EBs per client).

0

50

100

150

200

250

300

1 5 10 20 50 100

Load (# of clients)

F
a
il
o
v
e
r

ti
m

e
(m

s)

1

5

10

Uncommitted beans per client

Figure 7. Failover time

Figure 7 shows that even for large loads (100 clients)
and the highest number of uncommitted EBs per client (10
EBs), the time taken by the failover is quite affordable (250
ms). In this worst case scenario the new primary has to
recreate one hundred transactions (one per client) and ap-
ply the changes of 1,000 uncommitted EBs during failover.
The failover time is almost independent of the number of
EBs for small loads (till ten clients). When the number of
clients increases, the number of EBs becomes the dominant
factor of the failover time. We can conclude that the failover
time is quite reasonable even for high loads. As far as the
failover time is smaller than the time failure detection takes,
the failover overhead is acceptable. Failure detection time is
typically around 1 second to prevent false failure suspicions
when the system is overloaded, so failover shows good per-
formance.

6 Related Work

Most of J2EE ASs provide some replication facilities
(SSBs for load balancing and SFSBs). JBoss open source
AS [18] provides replication for SSBs and SFSBs [19]. The

state of SFSBs is multicast to the rest of the replicas af-
ter each method invocation. The database is always shared
among all JBoss replicas (becoming a single point of fail-
ure). Another popular open source J2EE AS, JOnAS [27],
only replicates SSBs. Oracle9iAS [30] and WebLogic [7]
replicate SFSBs at the end of every method invocation. We-
bLogic clustering has cluster-aware stubs for EJBs. So, if
the primary fails, the stub retries on another replica. It is
transaction aware, although it does not provide highly avail-
able transactions. If an EJB is running within a transaction,
replication occurs after the transaction commits. That is, if
there is a failure, ongoing uncommitted transactions cannot
be resumed at a backup. They abort and must start from
scratch. A similar behavior is found in the Data Replication
Service (DRS), which is in charge of handling replication in
WebSphere 6.0 [17]. WebSphere also implements the Ac-
tivity Service. Activities are treated as transactions. Beans
accessed within an activity are not replicated until the activ-
ity completes.

Replication for CORBA has received a lot of attention
[24, 12, 23, 11, 3, 28]. However, none of these approaches
addressed the integration of replication and transactions, al-
though it was recognized as a challenging problem [13].
[36] presents a transaction-aware implementation of FT-
CORBA. Papers like [15] defines formally exactly-once
correctness in multi-tier systems. They study the replica-
tion of stateful and stateless ASs with a shared database.
Each client request is executed as a single transaction. For
each transaction a “marker” is inserted in a shared database.
The new primary will look for this marker during failover
in order to ensure exactly once execution of each client re-
quest. In this case, the database is a single point of failure
(there is a single shared instance). There is no transaction
high availability, i.e., when a server crashes all the ongo-
ing transactions are aborted. [35] applies this technique for
transactions spanning a single client request in JBoss. Our
replication protocol handles transactions that span across
several client requests (very common in J2EE).

The integration of replication in J2EE application servers
and a replicated database has been studied in [20]. This
paper shows that careful engineering is needed to integrate
the replication protocols of two different systems.

Phoenix [6, 4] provides primary/backup replication for
.NET. Component state is replicated periodically and re-
quests between checkpoints are logged. If the primary
crashes, the backup recovers the last checkpoint and ap-
plies the logged requests since the checkpoint. In [5] the
authors propose ODBC support for highly available trans-
actions in the presence of short-lived database server fail-
ures. They target, as we do, an scenario with long running
transactions (such as OLAP) where the amount of lost work
may be very high. Their approach consists in making the
database connection state persistent, so it can be recovered

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



upon a crash of the database server. Therefore, database
crashes are masked transparently to client applications.

The use of the CORBA Activity Service [29] to imple-
ment advanced transaction models was studied in [16]. The
J2EE Activity Service [33] is based on this specification.
Currently, several efforts for supporting long running activ-
ities are emerging in the web services arena, such as WS-
Coordination/WS-Transaction [22], and WS-CAF [25, 21].

7 Conclusions

We have presented a novel approach for replication in
J2EE ASs. This approach brings several innovations. The
first one is to make the J2EE replication transaction and ac-
tivity aware. Another novelty, and possibly the most im-
portant one, is that it provides highly available support for
transactional applications and long running activities that
might span multiple client interactions with the AS. This is
important in many applications (such as workflows, OLAP,
. . . ) in which part of their state and part of the processing is
delegated to a J2EE AS in presence of replica failures. For
these applications, retrying is either very complex or not
possible at all. With the presented solution, running trans-
actions and long running activities continue their processing
despite replica failures transparently to client applications.
Finally, the protocols provide consistent replication of both
the AS and database tier. Previous approaches only repli-
cated the AS tier and forced to use a shared database that
became a single point of failure.

The results of the evaluated prototype have shown that
the overhead is in many cases negligible, especially in the
targeted scenario of long running transactions and activities.

References

[1] B. Ban. JGroups. http://www.jgroups.org.
[2] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuck-

ovic, and H. Wu. A Framework for Prototyping J2EE Repli-
cation Algorithms. In DOA, 2004.

[3] R. Baldoni and C. Marchetti. Three-tier Replication for FT-
CORBA Infrastructures. Software: Practice and Experi-

ence, 33(8):767–797, 2003.
[4] R. S. Barga, S. Chen, and D. Lomet. Improving Logging

and Recovery Performance in Phoenix/App. In ICDE, 2004.
[5] R. S. Barga, D. Lomet, T. Baby, and S. Agrawal. Persistent

Client-Server Database Sessions. In EDBT, 2000.
[6] R. S. Barga, D. Lomet, and G. Weikum. Recovery Guaran-

tees for General Multi-Tier Applications. In ICDE, 2002.
[7] BEA Systems. WebLogic Server 7.0. Programming We-

bLogic Enterprise JavaBeans , 2005.
[8] K. Birman. Building Secure and Reliable Network Applica-

tions. Prentice Hall, NJ, 1996.
[9] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Com-

munication Specifications: A Comprehensive Study. ACM

Computer Surveys, 33(4), 2001.

[10] A. K. Elmagarmid, editor. Database Transaction Models.
Morgan Kaufmann, 1992.

[11] J. Fabre and T. Perennou. A Metaobject Architecture
for Fault-Tolerant Distributed Systems: the FRIENDS Ap-
proach. IEEE Transactions on Computers, 47:78–95, 1998.

[12] P. Felber, R. Guerraoui, and A. Schiper. The Implementation
of a CORBA Object Group Service. Theory and Practice of

Object Systems, 4(2):93–105, 1998.
[13] P. Felber and P. Narasimhan. Reconciling Replication and

Transactions for the End-to-End Reliability of CORBA Ap-
plications. In DOA, 2002.

[14] R. Friedman and R. van Renesse. Strong and Weak Vir-
tual Synchrony in Horus. Technical Report TR95-1537, CS
Dep., Cornell Univ., 1995.

[15] S. Frølund and R. Guerraoui. e-Transactions: End-to-End
Reliability for Three-Tier Architectures. IEEE Trans. Soft-

ware Engineering, 28(4):378–395, 2002.
[16] I. Houston, M. C. Little, I. Robinson, S. K. Shrivastava, and

S. M. Wheater. The CORBA Activity Service Framework
for Supporting Extended Transactions. SPE, 33(4), 2003.

[17] IBM. WebSphere 6 Application Server Network Deploy-

ment, 2005.
[18] JBoss Group. JBoss App. Server. http://www.jboss.org.
[19] JBoss Group. JBoss Clustering, 2002.
[20] B. Kemme, R. Jiménez-Peris, M. Patiño-Martı́nez, and

J. Salas. Exactly Once Interaction in a Multi-tier Architec-
ture. In Proc. of VLDB Workshop on Design, Implementa-

tion and Deployment of Database Replication, 2005.
[21] M. Little. Models for Web Services Transactions. In SIG-

MOD Conf., page 872, 2004.
[22] Microsoft, IBM and BEA. WS-Coordination/WS-

Transaction Specification, 2005.
[23] G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little.

Design and Implementation of a CORBA Fault-tolerant Ob-
ject Group Service. In DAIS, 1999.

[24] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Eter-
nal - A Component-based Framework for Transparent Fault-
tolerant CORBA. SPE, 32(8):771–788, 2002.

[25] OASIS. Web Services Composite Application Framework

(WS-CAF), 2005.
[26] Objectweb. JASS. http://jass.objectweb.org.
[27] Objectweb. JOnAS App. Server. http://jonas.objectweb.org.
[28] OMG. Fault Tolerant CORBA. OMG, 2000.
[29] OMG. Additional Structuring Mechanisms for the OTS

Specification 1.0. September 2002.
[30] Oracle Corp. Oracle9iAS Containers for J2EE. EJBs Devel-

oper’s Guide, Rel. 2 (9.0.4), 2003.
[31] Sun Microsystems. ECperf spec. v1.1 final release, 2003.
[32] Sun Microsystems. J2EE spec. v1.4, 2003.
[33] Sun Microsystems. JSR 95: J2EE Activity Service for Ex-

tended Transactions, Mar. 2004.
[34] G. Weikum and H. J. Schek. Concepts and Applications of

Multilevel Transactions and Open Nested Transactions. In
Database Transaction Models, chapter 13. MKP, 1992.

[35] H. Wu, B. Kemme, and V. Maverick. Eager Replication for
Stateful J2EE Servers. In DOA, pages 1376–1394, 2004.

[36] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Unification
of Replication and Transaction Processing in Three-Tier Ar-
chitectures. In ICDCS, pages 290–300, 2002.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


