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Abstract—We propose a novel payment-based incentive scheme for peer-to-peer (P2P) live media streaming. Using this approach,
peers earn points by forwarding data to others. The data streaming is divided into fixed-length periods; during each of these periods,
peers compete with each other for good parents (data suppliers) for the next period in a first-price-auction-like procedure using
their points. We design a distributed algorithm to regulate peer competitions and consider various individual strategies for parent
selection from a game-theoretic perspective. We then discuss possible strategies that can be used to maximize a peer’s expected
media quality by planning different bids for its substreams. Finally, in order to encourage off-session users to remain online and
continue contributing to the network, we develop an optimal data forwarding strategy that allows peers to accumulate points that can be
used in future services. Simulation results show that the proposed methods effectively differentiate the media qualities received by
peers making different contributions (which originate from, for example, different forwarding bandwidths or servicing times) and at the

same time maintain high overall system performance.

Index Terms—Peer-to-peer, media streaming, incentive, service differentiation, payment.

1 INTRODUCTION

THE high scalability of peer-to-peer (P2P) systems relies
on voluntary resource contributions by individual
peers. However, the prevalent free-riding phenomenon
observed on today’s Internet imposes a practical restriction
on the performance a P2P system. This problem has recently
received a great deal of attention from researchers.
Among the various applications, high-bandwidth live
media streaming presents unique challenges that differ
from those of applications such as P2P file sharing. In
P2P streaming, the bandwidth becomes the bottleneck
resource, and the peers’ quality of service (QoS) depends
on the available bandwidth of the overlay network.

Chu and Zhang [5] first consider altruism as a key
element of P2P streaming broadcast. They show that the
level of altruism has an important impact on the overlay;
even a small degree of altruism brings significant benefits to
the overall system performance. In [4], the same authors
propose a taxation model, in which resource-rich peers are
required to contribute more bandwidth to the system and
subsidize the resource-poor peers. The social welfare
(that is, the aggregate utility of all peers) is hence improved
through the redistribution of wealth (that is, individual
benefits in terms of the received media rate). This model
assumes that a central entity (the content source) has the
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authority to enforce the taxation. In essence, this mechanism
directly relates contribution and benefit in a deterministic
and somewhat rigid manner.

Rather than enforcing compulsory contribution from
peers, a score-based incentive mechanism [11] provides an
indirect mapping between contribution and benefit. In this
mechanism, the contribution level of a user is represented
by a score, which is used to determine the rank of the user
among all those in the system. Peer selection depends on
the rank ordering of the requesters and candidate
suppliers. For example, a peer may be allowed to select
parents of equal or lower ranks. As a result, high-score
peers are offered more flexibility in choosing desired data
suppliers, whereas low-score peers have limited options in
parent selection and hence receive low-quality streaming.
In a payment-based [28] system, the peer network is
treated as a market, in which each overlay node plays the
dual roles of a service consumer and provider. Consumers
try to buy the best possible service from service providers
at the minimum price, whereas the providers strategically
decide their respective prices in a pricing game, in order to
maximize their economic revenues in the long run. To
address the complexity of price setting, the authors use a
reinforcement learning technique to solve for optimal
strategies. This study focuses on the problem of band-
width allocation and does not consider factors like net-
work latency and packet loss rate, which are also critical to
streaming quality.

In this paper, we propose a new incentive mechanism
for P2P streaming. Our scheme uses an internal currency
called points to represent a peer’s contribution level,
which is implicitly converted to the ability to compete for
good parents. Although this paradigm is similar to that of
the two approaches mentioned above, our design exhibits
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several salient features that differentiate it from previous
schemes:

e The overlay network is modeled as a market, in
which peers earn points by selling data transmission
service to others, and all trades are carried out
through a first-price-auction-like procedure—peers
bid for resources on desired parents, and the highest
bidders win the service, thereby avoiding the
complexity of price setting.

e Recognizing that unregulated competitions can
result in very inefficient market trading, we design
a distributed algorithm to facilitate parent finding.
Specifically, we consider various strategies for peers
to select targets for bidding from a game-theoretic
perspective.

e Given a certain number of points, a peer has to
decide how to spend them so as to maximize its
expected media quality. We model the allocation of
points to different substream bids as a combinatorial
optimization problem in the context of a large-
population and incomplete-information game and
discuss possible approaches to addressing it.

e In order to encourage off-session users to continue to
make contributions to the network, we design an
optimal point accumulation strategy for peers to
accumulate wealth, which can be used to improve its
competitive power in future media services.

Simulations are conducted to study the performance of
the proposed mechanism. The results show that the
proposed methods effectively differentiate the QoS received
by peers making different contributions and at the same
time maintains a high overall system performance.

The remainder of the paper is organized as follows:
Section 2 documents the related work. Section 3 presents an
overview of the proposed mechanism. Section 4 presents
the algorithm of reorganizing the overlay and analyzes
strategies for peers to choose their parents. Section 5
discusses possible strategies that can be used to maximize
a peer’s expected media quality. Section 6 considers how to
encourage off-session peers to make contributions through
a point-awarding approach. Section 7 evaluates the perfor-
mance of the proposed schemes through simulations, and
Section 8 concludes the paper.

2 OTHER RELATED WORK

There is a large body of literature on incentive mechanisms
for general P2P systems (for example, [7], [12], and [9]).
Here, we briefly review the techniques that are more
relevant to incentive and differentiated service (DiffServ)
schemes for P2P streaming broadcast.

To differentiate users’ service quality, the system needs a
means to quantify a peer’s contribution/participation level in
the network. A variety of ways have been proposed to do this.
One of the commonly used methods is introducing some kind
of currency. The Lightweight Currency Paradigm (LCP) [25]
allows users to trade any resource with their own currencies;
any entity can introduce their own currency as long as it
is acceptable to others in the system. KARMA [27] uses a
single type of currency and a set of “bank nodes” to facilitate

secure trading. A peer’s wealth is increased as resources
are contributed and decreased as they are consumed. In
view of the possible heavy load imposed on the central
bank nodes, PPay [30] uses a floating self-managed currency
to greatly reduce bank node involvement and thus improve
trade efficiency. In the work of Ma et al. [13], peers
maintain contribution values and trade with each other
using service receipts. The contribution values of peers are
maintained by a set of nodes called the auditing authority,
which plays a similar role to the banking system assumed
in our framework.

A second approach to differentiating peers’ contribution
levels is using reputations. With such a mechanism [10],
peers earn their reputation by sharing, and highly reputed
peers are more likely to obtain better service than peers with
a low reputation. Finally, a score-based P2P system [32]
scores users in order to differentiate peers of different
contributions.

In recent years, game theory has been extensively used to
analyze Internet economics and guide system design in
DiffServ engineering. Buragohain et al. [2] analyze the
optimal strategies of individual peers and the possible
Nash Equilibria that can be obtained under different
situations in the context of file sharing. Considering the
dynamics in a real system, where the supply-demand
relationship keeps changing, Wang and Li [29] model the
P2P system as a Cournot Oligopoly game with dynamic payoff
functions and propose a control-theoretic solution to the
problem. Both sets of research are focused on economic
analysis.

Auctions have been previously used in DiffServ. In [19],
Semret et al. propose a decentralized auction-based
paradigm for the pricing of the edge-allocated bandwidth
in a DiffServ network. Using a game-theoretic model, they
explore the feasibility of auctioning capacity in real time on
the “demand side” and provisioning stable and consistent
service-level agreements across multiple networks on the
“supply side.” Based on an abstract model for general
DiffServ requirements, the work is again focused on
economic analysis rather than the design of specific systems.
A real system that has implemented auction-based micro-
economic resource allocation is Mirage [6], [16]. Mirage is a
sensor network testbed management system that employs a
repeated combinatorial auction to allocate resources. Users send
requests containing information about the bidding price,
sensor set, duration, and radio frequency to the system, and
the system allocates resources in a way that the aggregate
utility is maximized. Although used for totally different
purposes, Mirage and our system share some interesting
features. For instance, in both systems, the auction is first
price and is performed periodically; there exists a
bank system managing users’ credits, and schemes to
mitigate the effects of strategic user behaviors are considered.

3 DESIGN OVERVIEW

In the proposed mechanism, it is assumed that the system
consists of a single source, or content publisher, that
delivers data to the peer network. We also assume that a
lightweight secure payment mechanism among peers is in
place, which has been well studied as a building block of
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TABLE 1
Notation and Variable Definitions

Notation  Definition
N total number of peers in the network
S number of substreams
T the mth period
L length of a period
A bonus for forwarding a substream to a child for a period
C; total income (earned points) of peer ¢ in some period
W; wealth (accumulated points) of peer ¢
I; number of in slots of peer &
O; number of out slots of peer %
li; service latency of substream j of peer ¢
dij data loss rate of substream j of peer %
bij peer ¢’s bid price for substream j
Ui utility of substream j of peer %
U; total utility of peer ¢

P2P economics (for example, [13] and [30]). For example, a
set of bank servers can be used to manage the user accounts
and payment process. There exists some basic bootstrap
service that enables a new peer to identify a set of candidate
parents. Finally, a lightweight network-time protocol is
used to provide approximate overlay time synchronization.
For example, NTP is a mature protocol that provides a
scalable Internet-scale global time service with accuracies of
50 ms [15].

The data stream is divided into S >1 independent
and equally important substreams, or stripes, each with a
unit bandwidth. A peer i has I; incoming bandwidth slots
(or “in slots” for short) and O; outgoing bandwidth slots
(or “out slots”), with each slot representing the bandwidth
capacity of a substream. Since in P2P streaming, the
bottleneck resource is the outgoing bandwidth capacity,
we focus on the efficient utilization of this type of resource
and assume that a peer’s incoming bandwidth is always
enough to support all substreams. In addition, we do not
consider congestion in the core network, as congestion
happens mostly at the access links on the Internet. Therefore,
a peer can forward traffic to others as long as it has spare
outgoing bandwidth. For ease of reference, a list of notation
is given in Table 1.

3.1 Market Model

In the dimension of time, the data stream is also divided into
fixed-length time periods T}, 7}, ..., which can be as long
as several minutes (for example, 4 minutes). Each peer
possesses a certain number of points (that is, its wealth).
Before the start of period 7, a peer i needs to pay a price P/}
of points to its parent peer j to buy the data transmission
service during T,,,; the parent peer j, besides the P/ points
earned from its child, also receives a bonus, a small constant
reward of A (for example, 2) points, from the payment
system. The purpose of the bonus is to stimulate peers to
serve newly arriving peers with 0 points to offer. Fig. 1 gives
an example scenario of the market trading. In this example,
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Out Slot

In Slot » Payment

Fig. 1. lllustration of payment between peers.

Peer 3 requests for the transmission of substream 1 from
Peer 1 during some period at a price of 5, and Peer 1 earns
5 + A points in the same period.

Given a certain number of points, a peer can spend it in
many ways. Since the streaming proceeds in periods, a
natural earning and consuming scheme is to pay all points
earned in 7,, for the data transmission in 7,,;;. Although
more economical and sophisticated methods may be
devised, this scheme has the advantage of being simple
and easy to implement. Hereinafter, we will use this scheme
unless we specially target point accumulation rather than
QoS optimization.

The start times of periods Ty, T3, T3, . . . actually define the
preemption points for peers with different wealth. During
each period, peers compete with each other for good parents
(for example, those near the source) for the next period in a
first-price-auction-like procedure: peers submit sealed bids
simultaneously to their desired parents, and parents always
choose the highest bidders as their children (ties are broken
randomly). As a result, wealthy peers are able to choose
their desired parents, whereas poor peers are given relatively
limited, if any, options in selecting parents. When the whole
overlay is short of bandwidth resource, some peers may not
be able to find parents for all the substreams, thus receiving a
reduced media bit rate. This mechanism stimulates peers to
earn points as much as possible, the capability of which in
turn depends on their forwarding bandwidths or servicing
times contributed to the network. Although large wealth
gaps may exist between peers, the probability of resource-
poor peers suffering starvation is no higher than that in a
nonincentive network, since under the stimulation of the
bonus, peers with spare out slots will be more likely to serve
peers than they are in a nonincentive network, even though
the marginal utility of wealth is decreasing. Note that we
do not claim to completely solve the problem of starvation,
since this ultimately depends on the aggregate amount of
physical resource available in the network; our aim is to
achieve a lower probability of starvation by encouraging
peers to contribute more usable resource.

3.2 Utility Function

In a free market, the goal of every peer is to maximize its
own benefit in terms of media quality in every period. The
media quality may be represented by using a utility
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Fig. 2. An example of distributed virtual overlay construction. The numbers represent the bid prices.

function. Let integer l;; > 1 denote the service latency
(the sum of network latencies of all overlay hops from the
source to the peer) in milliseconds of substream j of peer i
and d;; € [0,1] denote the accumulative data loss rate of
substream j received by peer i. Then, a simple expression of
the utility of a single substream j could be

In(1 + data delivery rate) In(1+1 — d;;) 1)
Uij = = .
lij lij

Clearly, the utility increases as the data loss rate or
latency decreases. In particular, u;; tends to 0 when d;; tends
to 1 or l; tends to infinity. The concave function In(-)
captures the diminishing returns of a decreased data loss
rate. In other words, when there is serious data loss (that is,
di; is high), the same improvement in data delivery
reliability brings more noticeable improvement to the
user-perceived media quality than when the streaming is
already reliable (that is, d;; is low).

In order to examine the different impacts of the data loss
rate and latency on the utility, we add two weight parameters,
a and 3, and a normalization factor In 2 to (1) as follows:

~ In{1+max[0,1 — - dyl}
In2- (l”){i

Ujj ’ (2)
where a >0 and 0 < (8 < 1. Parameter « reflects the
decreasing speed of utility as the loss rate increases, and
B controls the impact of service latency. For applications
without user interactions, service latency is less important,
and (§ can be small. In the evaluation, we will use the
definition of (2) and assume that all peers have the same «
and f. Finally, the collective utility of a peer’s substreams
can be characterized as follows:

Ui =1In (1 + iui]) . (3)
J=1

As in [4], the concave function In(-) represents the
diminishing benefit for the user-perceived media quality
as the overall bit rate increases.

It is worth noting that the above definitions are not the
only way of relating the metrics w;;, d;, and l;;; many other
definitions are possible as long as they correctly capture the
increasing/decreasing relationship between these metrics.

4 VIRTUAL OVERLAY CONSTRUCTION

During each period, peers need to find their next-period
parents. These peers and the planned parent-child

connections thus form a wvirtual overlay, which must be
constructed before the next period starts; otherwise, peers
have to find parents randomly and receive only random
QoS. We design a distributed algorithm to generate the
virtual overlay. For simplicity of discussion, we first assume
that there is only one substream; the multiple-substream
case is then extended on this basis.

4.1 The Distributed Algorithm

The distributed algorithm allows individual peers to contact
their candidate parents themselves. This allows them to
identify the best parents through real network probing
and measurements. A naive way for a peer to find its
optimal parent is to bid for the best peer (for example, the
source node) first and then try for the second best, the
third best, and so on, until it wins one parent. In this way,
each peer needs to compete for O(N) times in order to find
a parent. In a large network, this may result in excessive
competitions and, hence, very inefficient trading. Therefore,
the competitions must be regulated.

To do this, our scheme uses the following recursive
searching process. When a peer wants to find an ideal
parent, it takes part in a competition for that parent. If it
wins, it becomes a child of that parent; otherwise, it obtains
a list of the winner peers, from which it tries to find a new
best parent. It again takes part in the competition for that
new parent and continues this process until it wins a parent
or has no parents to choose. In the latter case, it tries to find a
parent in a best effort manner (with no guarantee of QoS of
course). An example of this process is illustrated in Fig. 2.

In Fig. 2a, there are seven peers competing for two spare
slots of the top peer. The two highest-bid peers, 9 and 8
(a peer is identified using its unique bid value), are adopted
by the top peer, as shown in Fig. 2b. The rejected peers, 7, 2,
6,5, and 0, then receive a peer list that contains the addresses
of 9 and 8. Using this list the rejected peers begin to look for
new candidate parents with some criteria, which will be
discussed in the next section. As a possible scenario, as
shown in Fig. 2¢, peers 7 and 2 choose 9, whereas peers 6, 5,
and 0 choose 8 as their new targets and begin a new round of
competition. As a result, peers 2 and 0 are ruled out, and
peers 7, 6, and 5 find their positions in the tree (Fig. 2d).
Using the same method of finding new parents, peers 2 and 0
finally find 7 and 5 as their parents, respectively (Fig. 2e),
and this finishes the virtual overlay construction.

In each period, the parent finding procedure starts from
the source node as this provides the most opportunities
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for peers to find their desired parents. The distributed
algorithm divides a period into multiple bidding rounds,
during which peers submit bids to their target parents
and collect the responses. The length of a bidding round is
set to L (the length of a period) divided by the maximum
possible number of tree levels, which is a fixed parameter
and can be estimated according to the expected network
population size and average node bandwidth. For example,
if L = 180 seconds and the maximum number of tree levels
is 30, then the round length is 6 seconds. Generally, the
round length should be at least in the order of seconds so that
the round-trip times of all peers can be accommodated and
the global time errors become negligible. If a peer does not
receive a response from a target parent within a bidding
round, it tries to contact another target for the next round.
Under exceptions such as the early departure of the
determined parent before the start of the next period, a peer
finds its parent in a best effort manner: it selects a parent from
itsnear neighbors that has spare outslots and wishes to accept
it as a child—no bidding is needed, and the parent receives
the basic bonus as its income. The same happens if a peer
enters the system in the middle of a period. Payments are
made at the beginning of the next period. If a peer finds that
its parent leaves in the middle of a period, it is entitled to
get back all the points it paid for the current period. It reports
the parent leaving early to the bank system, which returns
the points to it and then notifies the parent of the “refund”;
if the parent identifies that the child is lying, it simply stops
sending media data to that child. To prevent a peer from
consistently requesting for a refund at the end of each period,
the refund can be allowed only for a certain time (for example,
10 seconds) before the end of a period.

4.2 Choosing New Parents for Bidding

As described in the preceding section, when a peer fails in
the competition for a certain parent, it needs to choose a
new target parent from the winners (which become the
children of the original parent). We consider two strategies
for this, namely, the Shortest Path (SP) strategy and the
Balanced Tree (BT) strategy.

4.2.1 Shortest Path (SP) Strategy

With this strategy, a bidding peer contacts all the candidate
parents to obtain their service delays and at the same time
measures the delays between itself and those candidates.
The bidding peer then selects a target parent from the
candidates that makes its accumulative service latency to
the source the smallest. Note that here we do not consider
the loss rate, which is another factor in the utility function,
because it is more difficult to obtain an accurate measure-
ment of the loss rate in a short time [20].

The SP strategy may result in a tall tree since a
large number of peers may compete for a single well-
located peer, making the subtree under the target peer tall.
On the other hand, some peers may not even attract enough
peers to fill in their slots and become leaf nodes early. In an
unbalanced tree, a peer’s expected overlay path length
(that is, the number of overlay hops from the source to
itself) can be much larger than in a BT. A possible scenario
is illustrated in Fig. 3a, in which six peers (each with
two out slots) are competing for two out slots on a single

7N N
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(@) (b)

——— bid request established connection

Fig. 3. lllustration of the different parent selection strategies. Each node
has two out slots. (a) SP strategy. (b) BT strategy.

parent. As a result, the subtree under the parent will be at
least two levels high, whereas the sibling peers cannot
attract child peers and themselves become leaf nodes.

4.2.2 Balanced Tree (BT) Strategy

A peer with this strategy chooses a candidate parent
probabilistically in an attempt to balance the tree. Given a
set of candidates, the probability of one candidate parent
being picked is proportional to its number of out slots.
See Fig. 3b for an example.

The BT strategy helps to construct a short tree, which
translates to a small average overlay path length for peers.
This has important implications on the system’s perfor-
mance. Since in an overlay network, the transience of peers
becomes the dominant factor that affects the streaming
stability, a shortened overlay tree can effectively reduce the
probability of streaming disruptions and, hence, the packet
loss rate [17], [24], [21] and finally increase the average utility
of peers (see (2)). On the other hand, due to the ignorance of
locality information, the average service latency may be
larger than it is when all peers use the SP strategy, thus
impacting on the average QoS. As a result, how system
performance benefits from the two strategies ultimately
depends on the relative importance of the loss rate and
service latency to the streaming quality—when the loss rate is
weighted higher, the BT strategy benefits the system more;
otherwise, the SP strategy is a better choice.

Although the BT strategy benefits the system as a whole
under certain circumstances, it might be important to look
at it from the viewpoint of individual peers. One interesting
question is why would all rational peers be willing to
choose the BT strategy?

To explore this, let us first consider a simplified problem
as follows: Suppose that there are I peers competing for
m slots on some parent peers, each peer has exactly d out
slots, and both the latency and the loss rate between any
pair of peers are constant. The question is, does there exist a
decision agreement for all peers from which individuals
would not make unilateral changes? Alternatively, in terms
of game theory [14], does there exists a strategy profile that
leads to a Nash Equilibrium for game I'y = [I,{A(S))},
{u;(-)}], where I is the player set, A(S;) denotes player i’s
mixed strategy over the pure strategy set S; = {1,2,...,m},
and wu;(-) is player i’s payoff function as defined in (2)? The
following theorem shows that if each peer chooses the
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out slots with equal probability, then a Nash Equilibrium
can be achieved:

Theorem 1. Define the mixed strategy for player i (i =
1,2,...,1), 0;, that assigns equal probability 1/m to all pure
strategies in S;. Then, the mixed strategy profile o=
(01,09, ...,01) constitutes a Nash Equilibrium of game I' y.

Proof. Refer to Appendix A. ]

Now, we return to the original problem. It can be seen that
the BT strategy has the same effect of letting a peer choose
any out slot from the candidate parents with equal
probability. If we assume that the peer is completely
unaware of the latency and loss rate between any peer pairs,
including the parent and its rivals, then it can simply assume
that each rival has d out slots on average, and the latency and
packet loss between any peer pair are both constants, which
can be interpreted as their expected values. Theorem 1
therefore applies, and the BT strategy leads to a game
equilibrium. To make this assumption hold, we make a small
change to the basic bidding procedure: when the peers who
failed in the competition for some candidate parent obtain a
list of the winners, the identifiers of the winners are only
given in the form of some opaque IDs instead of their IP
addresses; a peer chooses one of the IDs as its next bidding
target and then asks the candidate parent for the target’s IP
address. This way, the bidding peer will not be able to
calculate its own service delay, thus having no motivation to
deviate from the strategy that leads to a game equilibrium.

4.3 Security Issues

Under the DiffServ rules, the resource-rich peers generally
are more competitive than others and thus are likely to
remain high in the tree. This leaves the possibility
that adversaries equipped with plenty of points occupy all
high-level tree positions and then issue a denial-of-service
attack to block critical broadcast services (until their points
are exhausted). Indeed, this issue is likely to be common to
all incentive schemes for tree-based multicast systems where
proximity to the root is a major reward to the contributing
peers. A simple solution to this problem is to reserve a
certain proportion (for example, 20 percent) of root out slots
for serving peers in a nonincentive manner (for example,
First Come, First Served). In so doing, a partial non-
incentive-based tree will be available for normal data
dissemination in the presence of malicious behaviors,
although the streaming performance may be degraded. This
actually reflects a trade-off between incentive strength and
system security: the more root slots open for competition,
the more effective the incentive rule is, but the more likely
the system is to be exposed to a denial-of-service attack.
Another security issue of the incentive scheme comes
from the use of the bonus. If a peer A pretends to provide a
service to some conspirator peer B in every period
regardless of the bidding rule, then peer A can continu-
ously receive the bonus for the fake service. This problem
can be mitigated by enforcing the bidding rule: the highest
price bidders are selected first (with ties broken randomly).
This rule ensures that the conspirator peer B cannot
guarantee a constant connection with peer A for exploiting
the bonus at a low price; if peer B is to pay a high price to

peer A in order to maintain such a connection, then peer B
is effectively transferring its wealth to peer A. We will also
describe in the following a method to reduce the possibility
of two peers exploiting the bonus by frequently paying a
high price to each other.

The bidding rule is enforced in the following way: Every
peer maintains a history of its failed bids and periodically
sends information including the bidding time, bidding
price, and bidding target to the source node via the reverse
route of the streaming data; the source node also periodi-
cally retrieves the payment records corresponding to the
successful bids from the banking system (which we assume
is able to provide such data). Combining these data, the
source node can run a background program that periodi-
cally checks whether peers do not adhere to the bidding
rule in selecting their children or whether points are paid in
an abnormal way (for example, two peers paying each other
in a single period or frequently exchanging points across
successive periods). If the source node detects that some
peers are obviously, or with a high probability, violating the
bidding rule or cheating, then the source node asks the
banking system to impose a punishment on those peers by
deducting a certain number of points from the their
deposits and to stop awarding bonuses to them in the
future. Considering that inspecting every peer’s behavior
can be a nontrivial task, the source node can sample a
certain fraction of peers at a time; the sampling process can
also be biased toward the wealthy or long-lived peers.

4.4 Extension to Multiple Substreams

So far we have assumed the case of a single substream, in
which a peer can use all of its out slots for that substream.
When there is more than one substream, peers need to
determine how to assign the out slots to each. To simplify
the problem and considering that all substreams are
symmetric, we choose to allocate the out slots evenly to
all substreams. This proves to be a viable approach, as will
be demonstrated by the experimental results.

5 IN-SESSION UTILITY MAXIMIZATION

During each period 7, a peer i needs to plan for the bids
for each substream using the C' points earned before the
start of T,,, with the objective of maximizing its expected
utility during 7},,+1. (The index ¢ is omitted for brevity of
notation.) We consider three possible strategies.

5.1 The Even Allocation Strategy

The first and simplest strategy is to allocate points to all
bids evenly. This strategy is static and easy to implement.
Unfortunately, it does not lead to a Nash Equilibrium:
consider a simple example of two peers, 1 and 2, with
Cy and O, (Cy < C) points, respectively, competing for
two slots s; and s, on some parent peer. It can be seen that
the even allocation makes peer 2 fail in every competition
(because % < %), hence becoming a dominated strategy for

peer 2. Peer 2 may therefore deviate from this strategy.

5.2 The Random Allocation Strategy

The second strategy is to randomly allocate points to the
bids. In the above example (here, we assume more generally
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that C, <)), if peer 2 chooses one of its two bids
uniformly at random between [0, C5] and lets the other bid
take the rest of the points, then its winning probability
would be higher. In particular, if peer 1 chooses its bidding
prices in this random way as well, then the expected
number of bids won by peer 1 and peer 2 are %
gfﬂ, respectively, and both peers would not be better off

deviating from this randomized strategy, thereby achieving

and

a Nash Equilibrium. Formally, we define a two-player game
I'=[1,{A(S)}, {wi(-)}], where I ={1,2} is the player set,
A(S;) denotes player i's mixed strategy over the pure
strategy set S; = {(b},C; —b}) : b} =0,1,...,C;}, and u;(-) is
player i’s payoff function defined as the expected number
of bids won. Then, the following theorem holds:
Theorem 2. Define the mixed strategy for player i (i = 1,2), oy,
that assigns equal probability &= to all pure strategies
s; € S;, then the mixed strategy profile ¢ = (o1, 02) constitu-

tes a Nasg Equilibrium, at which point uy (o) = % and
uz(0) = Cf+1‘
Proof. Refer to Appendix B. O

Generally, for an m-slot, n-player game in which the
ith player has C; points, we can prove that the strategy
profile that every peer assigns uniformly random prices
(under the constraint of C;) to the bids still leads to a
Nash Equilibrium. The proof is similar to that of Theorem 1,
and we omit it in the paper.

5.3 The Estimate-Based Allocation Strategy

Although it has the advantages of being simple and
leading to a Nash Equilibrium, the random allocation
strategy does not explicitly consider the optimization of
utility in terms of (2). We want to see how an individual’s
utility and system performance are affected if peers take a
strategy that considers both service latency ! and loss rate
d. In the following estimate-based allocation strategy, a peer
estimates its tree positions and then [ and d in the next
period and allocates its points in such a way that the
expected utility in terms of (2) is maximized. Specifically,
let the bids for substream 1,2,...,S be by, bo,..
respectively, and let functions L;(-) and D;(-) denote the
mappings from bid b; to the expected service latency and
loss rate of substream j, respectively. Then, this problem
can be formulated as follows:

'7bS/

Maximize U = Uj (4)

Iy

1

J
In [1 + max(0,1 — ad;)]

5
- (5)
]Z:; In2- (l]‘)ﬂ
B ZS: In [1 + max(0,1 — OéDj(b.i)} (6)
=1 In2- Lj(bj)ﬂ
s
subject to Z bj=C. (7)
=1

Unfortunately, both L;(-) and D;(-) are not known a priori
since one peer has no preview of the overlay to be formed in
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the next period, which requires at least the knowledge of all
other peers’ bidding prices and a prediction of the overlay
dynamics. We have to let each peer estimate L;(-) and D;(:)
from past experience. Note that due to the very limited
knowledge of individuals about the network, the following
estimates may not be accurate; however, at this first step, our
aim is only to investigate whether the effort in this direction
will be paid off in peers’ utilities.

First, a peer ¢ maintains a mapping BH ; from bid b; to the
average tree level number h; for each substream. Due to the
limited experience of individual peers (recall that a peer’s
lifetime usually lasts only tens of periods, and hence, the
samples derived are very limited), it also exchanges this
information with other trustworthy peers to obtain more
samples (for example, those bids not made by itself but
observed on others and the associated results). In order to
keep a relatively accurate picture of the external environ-
ment, peers only use the information from the past few
periods. Second, a peer maintains a mapping ﬁf, from its
tree level number h; to the service latency I; for each
substream, and when needed, it estimates a latency for a
given level number using linear regression. Third, a peer
maintains a mapping @j from its level number h; to the loss
rate d; for each substream.

Given a bid b;, peer i first uses Eﬁ j to estimate the level
number it is expected to be at in the tree. The service lat-
ency l; and the data loss rate d; can then be estimated using
I?Ej and @j, respectively. Using these estimates a utility
can be computed. So far, we have established the mapping
from a bid b; to the expected utility w;.

The next step is to solve the optimization problem
defined by (6) and (7). We choose to use a genetic algorithm,
which provides a general solving framework for combina-
torial optimization problems. Being an iterative algorithm,
it allows one to conveniently balance the execution time and
solution quality and hence is suited to a time-constrained
scenario.

In the above method, a peer makes decisions based on
the assumption that all other peers would not change their
bids and there is no change in the external environment.
This is not the case in our network. However, under a
highly dynamic environment and with unpredictable
individual behavior, it is very difficult to mathematically
characterize all the dynamics and then solve for optimal
strategies, and therefore, the “myopic” strategy [1] might
be a plausible choice; this is in spirit like playing a
fictitious play [8]. In Section 7, we will examine whether
this approach can bring improvement to peers’ utilities.

6 OFF-SESSION POINT ACCUMULATION

The purpose of off-session point accumulation is to
encourage peers that are no longer in the media sessions
to continue to make contributions to the network. In return
for this, they earn points that can be used in later sessions to
improve their media quality. To maximize the individual
benefit, such a peer will seek to maximize its wealth instead
of media quality. Here, a decision problem during each
period is how to allocate points from its current wealth ¥;
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to the substream bids so that its expected income in terms of
points during the next period is maximized. If we let the
vectors (by, by, ...,bg) and (01, 09,...,05) denote its bids and
out slot allocations for all substreams, respectively, and
define the function E; as the mapping from b; to the
expected income from a single out slot of substream j
(again, the index ¢ is omitted), then the wealth maximiza-
tion problem can be formulated as follows:

s s
Maximize E](b]) c 05 — Z bj (8)
J=1 J=1
5
subject to ij <W 9)
=1
s
and 0j <O. (10)

J=1

By analyzing the market behavior and based on
experimental experience, we can make several observations:

1. Ej(bi) > Ej(by) for any b; > by, which means that a
higher bidding price always brings no less than the
expected income. This is the case since a higher
bidding price leads to a higher utility for a substream,
which makes it more attractive to other peers.

2. E,()=E,(b) for any substream m and n. This
means that the same bidding price brings the same
expected number of points for different substreams.
This is reasonable, given that all substreams are
symmetric.

3. A single peer’s out slot allocation has negligible
influence on the supply-demand relationship of any
substream. In a market with a large population, F;(-)
would not change as a single peer adjusts its out slot
allocation (which is invisible to others), so Ej(-) - o;
still represents the total expected income from sub-
stream j no matter how peer ¢ allocates its out slots.

These observations lead to the following conclusion:

Theorem 3. The problem defined in expressions (8)-(10) is
equivalent to the following problem:

Maximize E,(b;) - O — b, (11)

subject to b, < W, (12)
where x is any integer from {1,2,...,S}.
Proof. Refer to Appendix C. ]

The above conclusion means that rather than bidding and
allocating out slots for multiple substreams, we only need to
choose a single substream x and allocate all out slots to it.
With the simplification, the remaining problem becomes how
to determine the bidding price for substream z so that the
objective of (11) is achieved. Central to this problem is to
determine E;(-). Once again, we must resort to historic
knowledge. A peer can maintain a mapping from b, to the
average income from an out slot of substream j using the
record of the past few periods; at the same time, it exchanges
this information with others to supplement its own experi-
ence. This way an estimated mapping E;(-) can be generated.

Using this, the problem defined in Theorem 3 can be solved in
O(W) time.

When a peer enters a session in the future, it has many
ways to spend the accumulated points. For example, it can
evenly allocate them to an estimated number of periods.
The increased points will help it compete for a better QoS
than it can obtain without the accumulation process. From
the system’s perspective, the point accumulation mechan-
ism also helps to increase the overall system resources.
Since in this mode, a peer consumes only one substream
(that is, it occupies one out slot from another peer) while
contributing all of its out slots, the total number of spare
bandwidth slots can be effectively increased as more and
more off-session peers choose to stay online rather than quit
the applications or shut down the hosts.

Note that even if some peers who accumulate a large
number of points offline go online suddenly, they could
barely impact on the stability of the system, because peers
arriving in the middle of a period can only find parents in a
best effort manner—the preemption only happens at the
beginning of the next period, when all peers are ready for
parent changes.

7 PERFORMANCE EVALUATION

To study the performance of different P2P streaming
algorithms, we have developed an event-driven simulator
based on a carefully configured simulation model. The
GT-ITM transit-stub model [31] is used to generate an
underlying network topology consisting of 2,592 nodes.
Link delays between two transit nodes, transit nodes and
stub nodes, and two stub nodes are chosen uniformly
between [15, 25] ms, [5, 9] ms, and [2, 4] ms, respectively. A
total of 1,800 nodes are randomly selected to be peers
participating in the multicast tree. The server’s location is
fixed at a randomly chosen stub node. The packet loss rate
between any two peers is uniformly drawn from [0, 0.06].
These underlying network settings are independent of the
upper layer application logic, and we have found that
varying these parameters (for example, the network size
and the latency ranges) generated consistent results
regarding the relative performance of different schemes,
so we will only report results for this particular setting.

In all simulations, there are eight substreams. The
total stream bandwidth is assumed to be 300 Kbps. The
root node has 80 out slots (or 10 full streams). Other nodes’
outgoing bandwidths follow a bounded Pareto distribu-
tion." Let BP(u, v, p) denote the bounded Pareto distribution
with lower bound u, upper bound v, and scale p. Then, the
default number of a peer’s out slots is generated from
BP(0.4, 15, 1.2) times 300. This generates the bandwidth
setting as shown in Table 2, which is comparable to the
statistics reported in [21]. The nodes’ lifetimes follow a
lognormal distribution [26], [22] with the p (location
parameter) and o (shape parameter) set to 5.5 and 2.0,
respectively, which are chosen according to the statistical

1. Previous studies [21], [18] have shown that the (access link)
bandwidths of overlay nodes exhibit characteristics similar to that of
heavy-tailed distributions, a typical example of which is the Pareto
distribution. Considering the practical limits of possible bandwidth values,
we use a bounded Pareto distribution to model the members’ bandwidths.



948 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO.7, JULY 2008

TABLE 2
Default Bandwidth Setting Used in the Simulation
| Bandwidth range | # Full stream / substream | % |
(0,300) Kbps 07/0-7 70.55
(300, 600) Kbps 1/8-15 17.45
(600, 1200)Kbps 2/16-23 7.75
> 1.2 Mbps 3-14 / 24-159 4.25
| Total | - | 100.0 |
| Average | 1.279.6 | -]
1.0 |
0.9
5 08F
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Fig. 4. Individual average utility versus bandwidth.

findings in [26]. According to Little’s Law, the node arrival
rate A is determined from M divided by the mean lifetime,
that is, 1,809 seconds. By default, the streaming period is
120 seconds, the o and 3 parameters in the utility evaluation
function are 1 and 0.25, respectively, and the parent
selection strategy is SP. Except in Section 7.5, each peer
has 0 points when it initially joins the network. The bonus
value (see Table 1) is set to 10.

We will compare our scheme against a nonincentive
scheme, in which a peer chooses its parents in a best effort
manner; that is, for each substream, it tries to find from the
candidates the parent that makes the accumulative service
delay the smallest; it will give up if no candidate parents
with spare slots can be found. This method is similar to the
one used in [17] or the minimum-depth algorithm used in
[21]. The same bandwidth distribution is assumed in both
incentive and nonincentive cases.

7.1 Effectiveness of the Incentive Mechanism

This experiment compares the individual utilities and
system performance under situations with and without the
proposed incentive mechanism. A metric called individual
average utility is defined as a peer’s utility averaged over all of
its periods, which is then normalized over a maximum value
obtained when the peer is directly connected to the source
and with no packet loss. Fig. 4 plots the results against the
peers” bandwidths after the network enters a steady state.
Two observations can be made from this figure. First, when
there is no incentive mechanism, the peers’ utilities exhibit a
random distribution, whereas with incentives, there is a clear
correlation between the outgoing bandwidth and the
utilities—the higher the bandwidth, the higher the utility.
This indicates that our mechanism effectively differentiates
the service quality of peers with different service capacities.
A second observation is that after using an incentive, most
peers have substantially higher utilities than they do without
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Fig. 5. Average utility of all peers as a function of time.
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Fig. 7. Individual average network stretch versus bandwidth.

it. This can be further seen in Fig. 5, in which the average
utility of all peers (with a 95 percent confidence interval)
changing over a time interval of 6,000 seconds is plotted. It
can be seen that the incentive mechanism provides consider-
able benefits to the overall system performance.

Figs. 6 and 7 can serve as an explanation for the above
phenomena. In Fig. 6, the individual average tree level number,
that is, the average tree level number of a peers’ collective
substreams averaged over all periods in its lifetime, is
plotted against the outgoing bandwidth. It can be seen that
with added incentives, the peers’ average tree level
numbers are far smaller than they are in a nonincentive
network. This is because the high-bandwidth peers are
offered high positions in the multicast tree, thus resulting in
a wider and shorter tree. This generally means that peers
have smaller average service latencies and packet loss rates.
Fig. 7 shows the individual average network stretch against a
peer’s bandwidth. A peer’s network stretch is the ratio of its
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Fig. 8. Overlay maintenance cost in terms of the number of parent
changes.

accumulative service latency to its latency from the root
along a unicast path in the underlying network [3]. The
individual average network stretch is then defined as the
average network stretch of all substreams averaged over all
periods. The results show that the incentive mechanism
effectively reduces the network stretches of most peers,
with the average value being reduced by a factor of
56 percent (from 6.32 to 2.78). Note that for both incentive
and nonincentive cases, there are a few points with very
high stretch values. This is because the corresponding peers
are very close to the source server but are placed in a low
level due to the randomness of the overlay construction (in
the nonincentive case) or their limited contribution levels
(in the incentive case).

7.2 Effects of Period Length

The incentive mechanism enforces fairness and improves
system performance by offering peers many opportunities to
actively switch parents. In this experiment, we examine how
this mechanism affects the overlay maintenance cost, which is
measured by the average number of substream parent
reconnections of all peers, including the reconnections
introduced by both the incentive mechanism and the
departure of upstream parents. Fig. 8 plots the maintenance
costs under different period lengths (the “no-incentive” case
is equivalent to the case of an infinite period length). As
expected, a longer period leads to fewer parent changes.
When the period is 2 minutes long, the average number of
parent changes for a single peer is less than 72, which
translates to nine changes per substream. Observing that the
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Fig. 9. Effect of period length on system performance.
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Fig. 10. Average service latency of all peers over time.

average lifetime is more than 1,800 seconds, the parent
change frequency is actually less than once every 200 seconds,
which is at an acceptable level. Another important observa-
tion is that with a period length of 5 minutes, the overlay
maintenance cost is indeed very close to that of the
nonincentive case (which has an average substream parent
change frequency of once every 360 seconds). The reason
behind this is that although the incentive mechanism requires
peers to make extra parent changes in order to adjust the
overlay, the shortened tree helps reduce the parent changes
incurred by another major source—that of unexpected
upstream parent departures. Given the heterogeneous node
out-degrees, a shortened tree causes fewer parent changes for
tree nodes because the average number of nodes” descen-
dants in a short tree is smaller than in a tall tree; the same
observation has also been made in [17], [24], and [21].

While a longer period reduces the individual overhead,
from the system'’s viewpoint, a shorter period offers more
chances for the overlay to be adjusted and hence means
better systemwide performance. As shown in Fig. 9, a short
period leads to higher and more stable system performance
in terms of the average utility of all peers, especially when
the bandwidth resource is not so rich.

7.3 Comparison of Parent Selection Strategies

In this experiment, we examine the effect of different parent
selection strategies on tree characteristics and media quality
received by peers. Figs. 10 and 11 compare the average
service latencies of all peers and tree depths under the
SP and BT strategies. As expected, the SP strategy results in
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Fig. 11. Tree depth over time.
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a much smaller average service latency because peers have
the freedom to choose near parents, although the tree under
the SP strategy is much higher than that under the
BT strategy (see Fig. 11). On the other hand, due to more
overlay hops between the source and the peers, the average
loss rate under the SP strategy can be much larger than that
under the BT strategy. Therefore, how peers’ utilities
compare under these two strategies depends on the weights
of the loss rate («) and the latency () in the utility function.
Figs. 12 and 13 show the average utility as a function of
time under different settings of @ and 3. When « is 1 and 3
is 0.25 (see Fig. 12), the SP strategy is better than the BT
strategy, whereas in Fig. 13, where « is changed to 2.5 and
to 0.05, the BT strategy becomes a better choice. Note that
the short tree produced by the BT strategy has more
implications on streaming quality than what is shown here;
for a more thorough discussion of the relationship between
tree shape and streaming quality, particularly with respect
to reliability, the reader is referred to [23].

7.4 Comparison of Bidding Strategies

We compare the performance of three bidding strategies.
For the genetic algorithm used in the estimate-based
strategy, we set the population size to 50 and the number
of generations to 30. The crossover and mutation probabil-
ities are 0.2 and 0.02, respectively. These settings are not
meant to be optimal for finding solutions; we only need the
algorithm to produce some good solutions within a short
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time. On our modern desktop machine, the computation of
one solution took only a few milliseconds.

Figs. 14 and 15 plot the cumulative percentages of peers
whose average utilities are above certain values under the
SP and BT strategies. The results show that the three
bidding methods yield almost the same results. This is easy
to understand for the random allocation scheme, because
under this scheme, peers do not specially optimize the
expected utility. The advantage of such a strategy is the
equilibrium achieved, as discussed in Section 5. For the
estimate-based strategy, the increased complexity actually
brings no improvement over the two simple schemes. This
is mainly because every peer is optimizing its expected
utility based on the assumption that others do not change
their decisions in the next period, which is obviously not the
case in our framework. The simultaneous changing of point
allocations by all the peers make the tree that is formed
totally different from the trees envisioned by individuals,
and consequently, the peers’ calculated allocations do not
help in the new configuration. In effect, the new allocations
are no more than some random allocation input to the utility
optimization problem. In game theory, an interesting
problem of this kind of fictitious play [8] is whether the
players’ best response strategies could converge to equili-
bria. Unfortunately, for a large-population and incomplete-
information game, little can be said about this issue with
current game theory, nor have we observed any converging
phenomenon in the experiments, even in a static setting
where dynamic peer joining/leaving is disabled. In conclu-
sion, in terms of simplicity and obtainable performance, the
random allocation strategy appears to be the best choice for
individual peers.
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7.5 Effect of Off-Session Point Accumulation

This section examines how the off-session point accumula-
tion mechanism affects individual and system performance.
Fig. 16 plots the wealth of four typical peers changing over
time. It can be seen that before their departures (denoted by
the circles in the figure), a peer’s accumulated wealth
fluctuates around some constant level. After it leaves the
session, the peer’s wealth increases at an approximately
linear speed.

To measure the system resource, a n\}etric called the

Zi:l %

resource availability index is defined as <5 5 *, that is, the
average number of bandwidth slots one peer can use. A
high index means that a peer can find data suppliers more
easily. Fig. 17 shows how this mechanism increases the
overall system resource given the different ratios of leaving
peers that are willing to continue to make contributions. In
this experiment, the original average bandwidth of peers is
set to be less than the full media rate. It can be seen that
without the contribution from leaving peers, the resource
availability index remains below 1 in the steady state (after
2,500 seconds), whereas with a contribution ratio of
20 percent, the resource availability index gradually
increases beyond 2 after the network enters a steady state.
In addition, the higher the contribution ratio, the more
quickly the index increases.

8 CoNcLUSIONS AND FUTURE WORK

This paper introduces a payment-based incentive and
service differentiation mechanism. The P2P overlay net-
work is viewed as a market, in which peers earn points by
forwarding data to others and compete for good parents
using these points. We design a distributed algorithm for
peers to efficiently find parents. More specifically, we
discuss two strategies and analyze their equilibrium
properties from a game-theoretic perspective. Bidding
strategies are also designed for a peer to maximize its
own utility. Finally, a mechanism is provided for off-session
peers to continue to make contributions by rewarding them
with points that can be used in future services. The
experimental results demonstrate the effectiveness of the
proposed mechanism.

In our current design, there are some factors that restrict
the system’s scalability. First, the banking server(s) is still a
centralized component for the sake of easy management
and security control. We are now looking for a distributed
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Fig. 17. System resource availability index.

solution that can remove this potential bottleneck. Second,
in the current protocol, the starting bidding point is always
the root of the tree, which may result in high overheads on
the source node when the network population is large. We
will consider how to mitigate this problem using the notion
of a local market, where peers are clustered by proximity,
and most peer competitions take place locally. In “local
markets,” most peers do not need to submit their first bids
to the root; instead, they submit to some “superpeers” that
are found high in the tree and show good stability. This
way, the scalability problem can be alleviated.

APPENDIX A
PROOF OF THEOREM 1

(Sketch) For any player i, since its opponents choose each
slot with equal probability, it will be in a d-ary tree with
the same mean number of nodes (I — 1)/m + 2, no matter
which slot it initially chooses. Furthermore, the prob-
ability that it will be at a given tree level is the same for
all trees. This means that the probability that the
accumulative service latency [; or loss rate r; (which
equals the latency or loss rate of a single hop times the
tree level number) takes on some given value is the same.
Considering that E(u;) = [ [u;(l;,r;)dlidr;, its expected
payoff is therefore identical for joining all trees. That is,
ui(si,0-;) = u;i(sh,0-;) for all s;, s;€{1,2,...,m}. This
leads to the conclusion that o = (01,09,...,07) constitutes
a Nash Equilibrium of game I'y using the classic method
of identifying the Nash Equilibrium [14].

APPENDIX B
PROOF OF THEOREM 2

Let a peer’s two bids for substreams s; and s, be the first bid
and the second bid, respectively. Since C, < (', the expected
number of bids lost by peer 1 will be at most 1 (two peers
offering the same price for a bid will each win 1/2 bids in
expectation). We first look at the case in which peer 1 loses
the first bid. If peer 2 offers a price z € [0, Cs], peer 1 needs
to allocate no more than z points to lose such a bid.
Therefore, under the random allocation scheme, we have
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. 01 1 1 L T
Pr{peer 1 loses the first bid} = ; Gt (5 . C1+1T01+1>
Gy +1
C2(C1+ 1)

Since the first and the second bids are symmetric, the
probability of peer 1 losing one bid is Pr{peer 1 loses

one bid} = 2 Pr{peer 1 loses the first bid} = &5

Hence,
peer 1’s expected number of bids won is

u1(o) = Pr{peer 1 loses one bid} - 1
+ (1 — Pr{peer 1 loses one bid}) - 2
. 201 — Cy +1
T O +1

Clearly, Pr{peer 2 wins onebid} = Pr{peer 1 loses one bid} =
Cotl

Cy+1
Cl+1-

uz(0) = Pr{peer 2 wins one bid} - 1 =

Now, given peer 1’s mixed strategy o, suppose that
peer 2 chooses a pure strategy (y,Cs — y),y € [0, Cy]. Then,
its probability of winning one bid is Pr{peer 2 wins the
first bid} +Pr{peer 2 wins the second bid} =3 - ﬁ +&) +
Gomt gfff) = gfﬂ ,
means that no matter how it chooses its bidding prices,
peer 2’s expected payoff remains the same. Thus, peer 2
would be indifferent in choosing any pure strategy
53 € Sy. The same situation applies to peer 1 given
peer 2’s mixed strategy oy. Therefore, (01,0:) constitutes
a Nash Equilibrium.

which is independent of y. This

APPENDIX C
PROOF OF THEOREM 3

Consider a solution (by, by, ..., bs) and (51,0, ...,0s) to the
original problem defined by expressions (8)-(10). Since
Ey(by +b2) > Eyi(by),wehave Ey(by + by) - 61 > Ej - 0,. Using
the observation (3) in Section 6, we have Fj(b + by) =
Ey(by + by) > Ey(by). Tt follows that Ey(by + by) - (61 + 69) >
Ey - 01 + E - 05. This means that vectors (51 + by,0,...,bs)
and (01 + 02,0,...,05) also maximize the objective ex-
pression (8). Continuing the deduction in this way, we find
that vectors (Zf:1 b;,0,...,0) and (Zil 0;,0,...,0) are the
solution of the original problem, and expressions (8)-(10)
reduce to (11) and (12), where z =1, and b; = Zle bj.
Taking z as any integer from {1,2,. .., S}, the above analysis
still holds, and thus, this theorem is proved.
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