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Abstract—Peer-to-Peer (P2P) reputation systems are essential to evaluate the trustworthiness of participating peers and to combat

the selfish, dishonest, and malicious peer behaviors. The system collects locally-generated peer feedbacks and aggregates them to

yield the global reputation scores. Surprisingly, most previous work ignored the distribution of peer feedbacks. We use a trust overlay

network (TON) to model the trust relationships among peers. After examining the eBay transaction trace of over 10,000 users, we

discover a power-law distribution in user feedbacks. Our mathematical analysis justifies that power-law distribution is applicable to any

dynamically growing P2P systems, either structured or unstructured. We develop a robust and scalable P2P reputation system,

PowerTrust, to leverage the power-law feedback characteristics. The PowerTrust system dynamically selects small number of power

nodes that are most reputable using a distributed ranking mechanism. By using a look-ahead random walk strategy and leveraging the

power nodes, PowerTrust significantly improves in global reputation accuracy and aggregation speed. PowerTrust is adaptable to

dynamics in peer joining and leaving and robust to disturbance by malicious peers. Through P2P network simulation experiments, we

find significant performance gains in using PowerTrust. This power-law guided reputation system design proves to achieve high query

success rate in P2P file-sharing applications. The system also reduces the total job makespan and failure rate in large-scale,

parameter-sweeping P2P Grid applications.

Index Terms—Peer-to-Peer system, overlay network, distributed hash table, reputation system, eBay trace data set, distributed file

sharing, P2P Grids, PSA benchmark, system scalability.
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1 INTRODUCTION

IN recent years, peer-to-peer (P2P) computing has gained its
popularity in many large-scale distributed applications

over the Internet. These include distributed file-sharing [22],
digital content delivery [23], and P2P Grid computing [8].
Despite the demand of robustness and scalability of P2P
systems, the anonymous and dynamic nature of peer
activities make them often very vulnerable to abuses by
selfish and malicious peers [11], [27]. For example, most P2P
file-sharing networks, e.g., Gnutella, consist of autonomous
peers with special self-interests. There is no efficient way to
prevent malicious peers from joining the open networks.

To encourage resource sharing among peers and combat
malicious peer behaviors, reputation management is essen-
tial for peers to assess the trustworthiness of others and to
selectively interact with more reputable ones [34]. Without
an efficient reputation management facility, peers will have
little incentive to contribute their computing or bandwidth
resources. The peers may hesitate to interact with unknown
peers due to the concern of receiving corrupted or poisoned
files or being exploited by malware [11]. Identifying
trustworthy peers is especially necessary in commercial
P2P applications, such as P2P auctions [18], trusted content
delivery [23], pay-per-transaction [29], and P2P service
discovery [20].

A reputation system calculates the global reputation score
of a peer by considering the opinions (i.e., feedbacks) from all
other peers who have interacted with this peer. After a peer
completes a transaction, e.g., downloading a music file, the
peer will provide his or her feedback for other peers to use
in future transactions. By making the reputation scores
publicly available, peers are able to make informed
decisions about which peers to trust.

The eBay reputation system is a simple and successful
one, since it has a centralized authority to manage all user
feedback scores. However, in an open and decentralized
P2P system, peers will not have any centralized authority to
maintain and distribute reputation information. Instead,
most existing P2P reputation systems calculate the global
reputation scores by aggregating peer feedbacks in a fully
distributed manner [1], [3], [6], [13], [15], [26], [29], [30], [34],
[36]. Building an efficient P2P reputation system is a
challenging task due to several intrinsic requirements of
large-scale P2P systems. Listed below are six key issues that
should be addressed in the design of a cost-effective P2P
reputation system.

. High accuracy. To help distinguish reputable peers
from malicious ones, the system should calculate the
reputation scores as close to their real trustworthi-
ness as possible.

. Fast convergence speed. The reputation of a peer
varies over time. The reputation aggregation should
converge fast enough to reflect the true changes of
peer behaviors.

. Low overhead. The system should only consume
limited computation and bandwidth resources for
peer reputation monitory and evaluation.
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. Adaptive to peer dynamics. Peer joins and leaves an
open P2P system dynamically. The system should
adapt to this peer dynamics instead of relying on
predetermined peers.

. Robust to malicious peers. The system should be
robust to various attacks by both independent and
collective malicious peers.

. Scalability. The system should be able to scale to
serve a large number of peers in term of accuracy,
convergence speed, and extra overhead per peer.

As global reputation scores are aggregated from local

feedbacks, the distribution property of feedbacks plays a

significant role in the design of an efficient reputation

system. Surprisingly, most previous work either ignored the

distribution of peer feedbacks or assumed an arbitrary

random distribution, which could be misleading.
We propose a trust overlay network (TON) to model the

local trust and reveal feedback relationship among peers.

We argue that the eBay user behavior is decentralized by

nature, as the peers are autonomous entities to make

decisions individually. So, it is fully justified to model the

eBay user behavior by a decentralized trust model. After

examining the eBay transaction traces of over 10,000 users,

we discover a power-law distribution in user feedbacks. We

design the PowerTrust system by leveraging the power-law

distribution of peer feedbacks. This design leads to fast

aggregation speed and accuracy, robustness against mal-

icious peers, and high scalability in large-scale P2P

applications. This article provides both theoretical founda-

tions and experimental results to validate the design of the

PowerTrust system, which extends significantly from our

preliminary results reported in [38].
The remaining parts of this paper are organized as

follows: Section 2 reviews existing work on P2P reputation

systems. We introduce the new PowerTrust system concept

and the use of trust overlay network in Section 3. We

analyze in Section 4 the eBay trace data to reveal the power-

law distribution of peer feedbacks. Section 5 specifies the

detailed design of our PowerTrust system and the reputa-

tion aggregation algorithms used. We evaluate the perfor-

mance attributes of the PowerTrust system in Section 6 and

report its application benchmark results in Section 7.

Finally, we conclude with a summary of contributions

and make suggestions for further research work.

2 RELATED WORKS

A formal treatment of trust and reputation was given by

Aberer and Despotovic [1] in the context of P2P networks.

Their approach is based on a decentralized storage method

(P-Grid). The information provided by P-Grid is used to

assess the probability that an agent will cheat in the future.

This approach suffers from several shortcomings, e.g., trust

is evaluated only according to referrals from neighbors, not

based on all information in the system. Buchegger and

Budded presented a reputation evaluation approach based

on Bayesian learning technique [3]. In their approach, the

first-hand information is exchanged frequently and the

second-hand information is merged, if it is compatible with

current reputation rating.
Xiong and Liu [34] presented an approach that avoids

aggregation of the individual interactions. Their PeerTrust

system computes the trustworthiness of a given peer as the

average feedback weighted by the scores of the feedback

originators. The limitation of this approach is that the

computation convergence rate in large-scale P2P systems is

not provided. The five factors used in their trust model

must be retrieved with a heavy overhead.
The EigenTrust mechanism [13] aggregates trust infor-

mation from peer by having them perform a distributed

calculation approaching the eigenvector of the trust matrix

over the peers. EigenTrust relies on good choice of some

pretrusted peers, which are supposed to be trusted by all

peers. This assumption may be over optimistic in a

distributed computing environment. The reason is that

pretrust peers may not last forever. Once they score badly

after some transactions, the EigenTrust system may not

work reliably.
Table 1 compares our PowerTrust system with the

established EigenTrust and PeerTrust systems in four

technical aspects. Our system concept is introduced in

Section 3.1. The system construction algorithms are de-

scribed in Section 5. The table entries are justified in

subsequent sections.
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TABLE 1
Comparison of PowerTrust with Two Established P2P Reputation Systems



3 OUR POWERTRUST SYSTEM APPROACH

Our PowerTrust system makes a distinction in robustness
and scalability from previously reported P2P reputation
systems. In this section, we introduce the system concept
and discuss new features in PowerTrust. The underlying
trust overlay network is specified for modeling peer
feedbacks in global reputation aggregation.

3.1 The PowerTrust System Concept

Inspired by the power-law findings in peer feedbacks, the
PowerTrust system dynamically selects a few power nodes
that are most reputable by using a distributed ranking
mechanism. The good reputation of power nodes is
accumulated from the running history of the system. Like
a democratic system, power nodes are dynamically replace-
able, if they become less active or demonstrate unacceptable
behavior. They play a crucial role in both local and global
scoring processes. We leverage more on their roles to
aggregate and produce the global reputation scores.

Fig. 1 shows the major building blocks in a PowerTrust
system. First, a trust overlay network (TON) is built on top of
all peers (nodes) in a P2P system. All peers evaluate each
other, whenever a transaction takes place between a peer
pair. Therefore, all peers send local trust scores among
themselves, frequently. These scores are considered as the
raw data input to the PowerTrust system. The system
supposes to aggregate the local scores to calculate the global
reputation score of each participating peer. All global scores
form a reputation vector, V ¼ ðv1; v2; v3; . . . ; vnÞ, which is the

output of the PowerTrust system. All global scores are
normalized with

P
i vi ¼ 1, where i ¼ 1; 2; . . . ; n and n is the

TON network size.
The system is built with five functional modules as

shown in Fig. 1. The regular random walk module supports
the initial reputation aggregation. The look-ahead random walk

(LRW) module is used to update the reputation score,
periodically. To this end, the LRW also works with a
distributed ranking module to identify the power nodes. The
system leverages the power nodes to update the global
reputation scores. PowerTrust achieves high aggregation
speed and accuracy, robustness to resist malicious peers,
and high scalability to support large-scale P2P applications.
We will discuss the details of these functional modules in
the subsequent sections.

3.2 Trust Overlay Network (TON)

A TON is a virtual network on top of a P2P system. We
represent a TON by a directed graph in Fig. 2. The graph
nodes correspond to the peers. The directed edges or links
are labeled with the feedback scores between two interact-
ing peers. The feedback score is issued by a peer (source of
the link) for the service provided by the interacting peer
(destination of the link). For example, node N5 after
downloading music files from nodes N2 and N7 issues the
feedback scores, 0.7 and 0.3, to the two provider nodes,
respectively. If a node gets more than one service from the
same provider, this consumer node generates a newly
updated score after each transaction.
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Fig. 1. Functional modules in the PowerTrust system and the control flow pattern in local trust score collection and global reputation aggregation.

Fig. 2. A trust overlay network (TON) for a P2P system with 10,000 nodes, where a node represents a peer and an edge is labeled with the peer

feedback score for the service provided. The global reputation of a peer is calculated by the weighted sum of local trust scores received on all

incoming edges to that node.



Our system can incorporate different methods to gen-
erate feedback scores, such as Bayesian learning [3]. In a
TON, every node keeps feedback scores for its neighbors.
Because every peer has its own criteria to generate feedback
scores, in our PowerTrust system, the feedbacks will be
normalized to local trust scores defined in Section 4.3. Each
node Ni is rated with a global reputation score vi. This global
reputation of a node is aggregated from local trust scores
weighted by the global reputations of all its in-degree
neighbors.

For example, the global reputation score of N2 could be
calculated below by weighting three incoming local scores
(0.8, 0.7, 0.6) from N1, N5, and N10;000, respectively: v2 ¼ 0:8
v1þ0:7v5þ0:6v10;000. Given v1 ¼ 0:04, v5 ¼ 0:0007, and v10000 ¼
0:000005, then we compute v2 ¼ 0:8� 0:04þ 0:7�0:0007þ
0:6� 0:0000005 ¼ 0:032þ 0:00049þ 0:00003 ¼ 0:032493. It is
interesting to note that nodeN1 has a much higher reputation
score v1, compared with v5 and v10;000 in this example. Thus,
node N1 carries more weight in the global reputation
aggregation process. We will consider N1 a power node in the
subsequent sections.

Detailed algorithms will be given in Section 4.3 to
determine the global reputation scores in an iterative
convergence process. In a TON, the number of users to
whom a peer sends feedback scores is indicated by the
outdegree of that node. The number of users from whom a
peer receives feedback scores is represented by the indegree
of that node. We accumulated a huge TON to study the
feedback distribution in eBay reputation system, which
equals the node degree distribution in the TON graph.

4 POWER-LAW DISTRIBUTION OF

PEER FEEDBACKS

Power-law distribution is well known in the Internet
community [7]. We study the public-domain eBay reputa-
tion system to verify the conjecture that the feedback
distribution of a typical P2P reputation system follows the
power-law. In eBay, feedback is generated after every
transaction. However, nearly 90 percent seller-buyer pairs
conducted just one transaction during the past five years
[21]. So, the node in-degree in TON is approximated by the
number of received feedbacks. Three key parameters are
used: The feedback amount of a node i is denoted by di, which
is the indegree of this node. For example, node N2 in Fig. 1
has an in-degree of 3, meaning three feedback scores
received. Feedback frequency fd is the number of nodes with
feedback amount d. The ranking index �d indicates the order
of d in the decreasing list of feedback amounts.

4.1 Collection Procedure of eBay Reputation Data

The eBay is by far the most successful cyber-exchange
platforms based on a simple reputation mechanism [21].
The eBay users provide feedbacks to a centralized reputa-
tion center and report their experiences in eBay transac-
tions. The scoring scheme in eBay is simple: positive 1 for a
good or successful transaction, negative 1 for a poor or
failed feedback, and zero for a neutral or don’t-care
feedback. Every eBay user has a time-varying reputation
by summing up all transaction scores received up to the
current time.

It is difficult to collect all user feedback scores from eBay
since the total number of eBay users exceeds 100 million.
We apply a sampling technique to collect 108 MB feedback
data over 10,000 users. We start from an arbitrary power
user (a very reputable user) in eBay, who has a reputation
score higher than 10,000. In order to infer the in-degree
distribution in the TON, we put together a list of users to
whom the power user left feedback scores from July 1999 to
March 2005. Then, we extract the number of feedbacks
received by each user in that list.

Apparently, the more feedback scores a peer has
received from others, the easier the user is crawled. Let pd
be the probability that a node with feedback amount d is
discovered by a random crawler, we have pd ¼ d=

Pn
i¼1 di,

where di is the received feedback by node i and n is the total
number of nodes in the eBay TON. Therefore, the
probability that this node is not discovered after k random
crawls follows a Poisson distribution, i.e., ð1� pdÞk. For a
power user to issue k feedback scores, the probability of a
node being crawled from the power node is estimated by
(1), assuming d feedback scores received by this node.

Qd ¼ 1� ð1� pdÞk ¼ 1� 1� d=
Xn

i¼1
di

� �k
: ð1Þ

Let nd be the initial number of nodes with feedback
amount d in the eBay TON. Let n̂d be the number of nodes
with feedback amount d in the sample data set. We calculate
n̂d ¼ EðndÞ �Qd. So, the expected value EðndÞ ¼ n̂d=Qd.
This implies that we recover nd from Qd and n̂d. This
recovery process generates a more accurate distribution of the
eBay trace data.

4.2 Feedback Distribution in eBay Reputation Data

Initially, we start with the sampling eBay trace of more than
11,000 users (nodes). Considering unregistered users and
obsolete users, we assume that eBay has 80 million stable
users out of 100 million claimed by eBay authority. The
average feedback amount per user is 68 based on our trace
data. We approximate the total

Pn
i¼1 di by 80; 000; 000�

68 ¼ 5:24� 109. We apply the recovery process specified in
Section 4.1 to the eBay trace data. The feedback numbers in
eBay follow the power-law distribution plotted in Fig. 3.
There are more than 10,000 dots (nodes) forming the peer
feedback distribution.

We plot in Fig. 3a the feedback frequency as a function of
the feedback amount. This distribution shows the feedback
frequency fd is inversely proportional to the feedback
amount d in log-log scale, which is approximated by (2)
below. We plot in Fig. 3b the variation of the pairs ðd; �dÞ
using the recovered data, where �d is the ranking index of d
in the decreasing order of the feedback amounts. The plot is
approximated by a linear-regression with a correlation
coefficient 0.92. In log-log scale, the feedback amount d is
inversely proportional to the feedback index �d.

4.3 Feedback Distribution Analysis in P2P Systems

The power-law feedback distribution is resulted from two
factors: dynamic growth of TON size and preferential node
attachment [22]. Dynamic growth allows the network to
expand freely. Preferential attachment enables the new
node to interact with reputable peer nodes with higher
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probability. Both factors are common in a P2P reputation
system. The reputation system must make the global
reputation scores accessible by all peers. We prove below
why power-law feedback distribution applies to P2P
reputation systems in general.

Theorem 1. In a general dynamic P2P system, the received
feedback amount or the indegree ðNÞ of the associated TON
graph follows the Power-law distribution specified by:

Prob: ½Indegree ðNÞ ¼ d� ¼ c� d��; ð2Þ

where N refers to any peer node in the TON graph, the
exponent � decides the decreasing feedback frequency with
respect to the increase of the feedback amount d.

Proof. Consider a new transaction taking place at time instant
t. LetXkðtÞ be the number of users with in-degree k after t
time steps. A user increases Xkðtþ 1Þ, if it interacts with
the one with ðk� 1Þ in-degree. Such a transaction has a
probability ðk� 1ÞXk�1ðtÞ=t to occur. On the other hand,
the user decreases Xkðtþ 1Þ with a probability kXkðtÞ=t.
We obtain the expected differenceEðXkðtþ 1Þ �XkðtÞÞ ¼
ðk� 1ÞXk�1ðtÞ=t� kXkðtÞ=t between two transactions.
Suppose �XkðtÞ converges to ck as t!1, we have
ck ¼ ðk� 1Þck�1 � kck. This completes the proof. tu

In general, we know the range 1 � � � 3. Both � and the
constant c are experimental decided by traces of transaction
data in a given P2P system. For the eBay trace distribution,
we observed � ¼ 2:4 by binning the data into exponentially
wider bins [2]. The power-law distribution implies that the
node with a few feedbacks is common, whereas the node
with a large number of feedbacks is extremely rare.
Therefore, only a few nodes have much higher degree than
others. These nodes are selected as power nodes as described
in Section 3.1.

5 POWERTRUST SYSTEM CONSTRUCTION

In this section, we describe methods to construct the
PowerTrust system. We give details on all functional
modules introduced in Fig. 1. Three construction algorithms
are given below to show the initial construction, distributed
ranking, and updating process of the PowerTrust system.

5.1 Look-Ahead Random Walk (LRW)

In our PowerTrust system, feedback scores are generated by

Bayesian learning [3] or by an average rating based on peer
satisfaction. Each node normalizes all issued feedback

scores. Consider the trust matrix R ¼ ðrijÞ defined over an
n-node TON, where rij is the normalized local trust score

defined by rij ¼ sij=
P

j sij, and sij is the most recent
feedback score that node i rates node j. If there is no link

from node i to node j, sij is set to 0. Therefore, for all 1 � i,
j � n, we have 0 � rij � 1 and 8i

Pn
j¼1 rij ¼ 1. In other

words, matrix R is a stochastic matrix, in which all entries
are fractions and each row sum equals 1. This demands that

the scores issued by the same node to other peers are
normalized.

All global reputation scores vi for n nodes form a

normalized reputation column vector V ¼ ðviÞ, where
P

i vi ¼ 1.
The reputation vectorV is computed by (3), given an arbitrary

initial reputation vector Vð0Þ and small error threshold ". For a
system of n nodes, we can simply assume vi ¼ 1=n to start

with. For all t ¼ 1; 2; . . . ; k, while jVðiÞ � Vði�1Þj > ", we
compute the successive reputation vectors recursively by:

Vðtþ1Þ ¼ RT � VðtÞ: ð3Þ

After a sufficient number of k iterations, the global

reputation vector converges to the eigenvector of the trust
matrix R [13]. This recursive process is motivated by the

Markov random walk, which is widely used in ranking
Web pages. This is similar to a random knowledge surfer

hopping from nodes to nodes to search for a reputable
node. At each step, the surfer selects a neighbor according

to the current distribution of local trusts. The stationary
distribution of the Markov chain is the converged global

reputation vector.
We propose a look-ahead random walk (LRW) strategy to

efficiently aggregate global reputations. Each node in the

TON not only holds its own local trust scores, but also
aggregates its neighbors’ first hand ones. Compared to

regular random walk, the surfer makes the decision based
on knowledge from itself and all neighbors. The extra

aggregation overhead grows linearly in sparse power-law
graphs [17]. This is not true for random graphs.

464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

Fig. 3. Power-law peer feedback distribution extracted from the eBay transaction trace data over 10,000 users from July 1999 to March 2005.

(a) Feedback frequency versus feedback amount. (b) Feedback amount versus rank index.



The efficiency of the LRW strategy is analyzed below.
Each peer node aggregates the first-hand local trust scores
from its neighbors, the enhanced trust matrix S by using the
LRW strategy is computed by S ¼ R2. Define a speedup
factor by comparing the number of convergence iterations
for a regular random walk to that of LRW. Table 2 shows
the speedup factor for various graph sizes. We generated
100 random graphs and 100 Power-law graphs to make the
comparison. The node degree distribution of a random
graph is specified by:

Prob: ½Indegree ðNÞ ¼ d� ¼ n� 1
d

� �
pdð1� pÞn�d�1; ð4Þ

where N is an arbitrary node, n is the graph size, and
p ¼ ðNumber of linksÞ=n2. As shown in Table 2, the LRW
strategy greatly improves the convergence rate in both
Power-law graph and random graph. The Power-law graph
has higher speedup in all network sizes. The improvement
comes from the random walker in a power-law graph can
quickly hop towards highly reputable nodes, which
preserve a lot of useful reputation information.

5.2 Distributed Ranking Mechanism

A distinction of our PowerTrust system is to leverage mainly
the power nodes to aggregate the global reputations.
However, in a large P2P system with frequent peer joining
and leaving, we could not assume that there always exist
some static and predetermined power nodes. Instead, we
propose a fully distributed ranking mechanism to select them
most reputable power nodes, dynamically. The process to
find themmost reputable nodes is described in Algorithm 1.

PowerTrust uses a Distributed Hash Table (DHT) such as
Chord [31] to implement the distributed ranking mechanism.
As in EigenTrust [13], every node has a score manager that
accumulates its global reputation. When a new node i joins
the system, node j is assigned as the score manager of node i if
node j is the successor node of ki, where ki is the hash value of
the unique identifier of node i by a predefined hash function.
All other nodes can access the global reputation of node i by
issuing a lookup request with key equal to ki. Different hash
functions can be used to have multiple score managers for
each node in case the malicious score manager reports some
wrong global reputation scores.

To select the m most reputable nodes, our distributed
ranking mechanism applies locality preserving hashing (LPH)
[4] to sort all nodes with respect to their global scores. Hash
function H is a locality preserving hash function if it has the
following two properties: 1) HðviÞ < HðvjÞ, iff vi < vj,
where vi and vj are the global reputations of node i and j,

respectively, and 2) if an interval ½vi; vj� is split into ½vi; vk�
and ½vk; vj�, the corresponding interval ½HðviÞ; HðvjÞ� must
be split into ½HðviÞ; HðvkÞ� and ½HðvkÞ; HðvjÞ�.

Algorithm 1: Selection of top-m peers (Power nodes)

Input: global reputations stored among score managers

Output: m most reputable nodes

Procedure:

for each score manager j, suppose it is the score manager of

node i do

hash reputation value vi to a hash value HðviÞ using a

LPH function

insert the triplet ðvi; i; jÞ to the successor node of HðviÞ.
end for

initialize node x ¼ successor node of the maximum

hash value

Set p ¼ the number of triplets with highest reputation values

stored in node x

loop: if p > m then return;

else

node x sends a message to its predecessor

node y to find the

next m� p highest reputation triplets

node x ¼ node y

m ¼ m� p
p ¼ number of triplets stored in node y

goto loop

end if

Suppose node j is the score manager of node i, it stores a
pair ðvi; iÞ for node i, where vi is the global reputation of
node i. Node j hashes the reputation value vi using a LPH
function to a hash value HðviÞ and inserts the triplet ðvi; i; jÞ
to the successor node of HðviÞ. The triplets are stored in the
ascending order of their reputation values in the DHT hash
space due to the property of LPH. Assume node x is the
successor node of the maximum hash value and it stores
k triplets with highest reputation values. If k is less than m,
node x sends a message to its predecessor node y to find the
next m� k highest reputation triplets. This process repeats
recursively until the m highest reputation triplets are found.

Basically, distributed reputation ranking requires two
different hash overlays. One assigns peers to their score
managers and another ranks the peers by their global
reputation scores. Fig. 4 presents a 5-node PowerTrust system
built on top of a Chord with 4-bit circular hash space. Node
N15 is the score manager of nodeN2 whose global reputation
is 0.2. NodeN15 hashes the reputation value 0.2 using a simple
LPH function HðxÞ ¼ 32x. The resulting hash value is 6.4.
Node N15 sends out Sort Requestfkey ¼ 6:4; ð0:2; N2; N15Þg
message, which is routed to node N8. Node N8 stores the
triplet (0.2, N2, N15), since it is the successor node of hash
value 6.4. For simplicity, we illustrate below how to find the
highest reputation node with m ¼ 1.

Node N2 is the successor node of the maximum hash
value 15, so node N2 initiates the process to find m power
nodes. Node N2 is responsible for the hash values in the
union of two ranges (15, 16] [ [0, 2]. Since it has no
corresponding triplets within the range (15, 16], it stores
zero triples with highest reputation values, i.e., k ¼ 0.
Therefore, it sends a Top m Requestðm ¼ 1; k ¼ 0Þ message
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to its predecessor node N15, which finds its stored triplet
with value 0.4 being the highest one. So, node N8 is the most
reputable node in this example system. Multiple LPH
functions could be used to prevent cheating by the
malicious peers.

The following theorem guarantees that Algorithm 1
always produces the top-m reputation values in h hops,
where h is the number of nodes between SuccessorðHðvkÞÞ
and Successorð2b � 1Þ, and vk is the mth highest reputation
score.

Theorem 2. If we use a locality preserving hash function H to

map reputation score v into the b-bit Chord circular space

½0; 2b � 1Þ, the nodes that store the top m largest reputation

scores must have an identifier located between the

SuccessorðHðvkÞÞ and Successorð2b � 1Þ nodes.

Proof. Let V ¼ fvij0 � i < mg be m highest reputation
scores, we have vk � vi � vmax, where vmax is the highest
score. Using a LPH function H, we map the score vk to
successorðHðvkÞÞ, where HðvkÞ � HðviÞ � HðvmaxÞ. Since
all hashed values within the identifier space ½0; 2b � 1Þ,
HðvmaxÞ must not exceed 2b � 1. Therefore, we have
HðvkÞ � HðviÞ � 2b � 1. Since successorðHðvkÞÞ is the
first node which follows the identifier of HðvkÞ, the
reputation score vi is assigned to the nodes between
successorðHðvkÞÞ and successorð2b � 1Þ. So, the distrib-
uted ranking module guarantees to find the m most
reputable nodes by traversing nodes from successorð2b �
1Þ to successorðHðvkÞÞ. tu

5.3 Initial Global Reputation Aggregation

Algorithm 2 specifies the initial round of global reputation
aggregation. Each node i sends all local trust scores to the
score managers of its out-degree neighbors. Let �1 and �2 be
the largest and the second largest eigenvalue of the trust
matrix R defined over the TON. The Power-law property of
a TON leads to a tight bound on the ratio �2=�1 [10]:

1� �ð1= lognÞ < �2=�1 < 1� �ð1= log2 nÞ: ð5Þ

Because of the obvious gap between �1 and �2, the power-law
feedback distribution of TON guarantees the convergence at
the very first round of global reputation aggregation.

Algorithm 2: Initial Global Reputation Aggregation

Input: Local trust scores stored among nodes

Output: Global reputation for every node
Procedure:

for each node i do

forall node j, which is an out-degree neighbor of node i

do

Send the score message ðrij; iÞ to the score manager of

node j

end forall

if node i is the score manager of node k, then

forall node j, which is an in-degree neighbor of node k

do

Receive the score message ðrjk; jÞ from node j

Locate the score manager of node j

end forall

Set a temporary variable pre ¼ 0; initialize the error

threshold "

and global reputation vk of node k

Repeat

Set pre ¼ vk; vk ¼ 0

Forall received score pair ðrjk; jÞ, where j is an

in-degree neighbor of node k do

Receive the global reputation vj from the score

manger of node j

vk ¼ vk þ vjrjk
end forall

Compute � ¼ jvk � prej until � < "

end if

end for

Theorem 3. Given a small error threshold " and the ratio
b ¼ �2=�1, the number of iterations in Algorithm 2 is upper
bounded by the smallest integer k such that

k ¼ logb "d e: ð6Þ

Proof. Consider a trust matrix R with m eigenvectors

x1; x2; . . . ; xm and corresponding eigenvalues �1 > �2 >;

. . . ; > �m. The initial reputation vector y is
Pm

i¼1 bixi. We

have Ry ¼
Pm

i¼1 biRxi ¼ �1ðb1x1 þ
Pm¼2

i ð�i=�1ÞbixiÞ and

Rjy ¼ �j1ðb1x1 þ
Pm

i¼2ðð�i=�1ÞjbixiÞ. Since ð�2=�1Þk ¼ ",
we have ð�i=�1Þk < ", where 2 < i � m. Therefore,

Rky ¼ �k1b1x1 þ oð"Þ. Algorithm 2 is thus converged with

repeated application ofR to y in k steps, where k is defined

in (6). tu

5.4 Global Reputation Updating Procedure

After first round aggregation, the score managers collabo-
rate with each other to find the power nodes using
Algorithm 1. If node x stores the triplet ði; vi; jÞ and finds
i a power node, node x will notify node j. Because the trust
matrix R is dynamically changing with new peers joining
and new transactions performed, the global reputation
scores should be updated periodically, especially for power
nodes. The updating of global reputation aggregation
leverages the use of the power nodes.
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Fig. 4. Distributed reputation ranking using the locality-preserving hash

function over a DHT-based P2P system with five peer nodes.



The reputation updating process is specified in Algo-

rithm 3. Our PowerTrust scheme works as random walks

along a Markov chain. The random surfer starts its journal

on any node with the same probability. We define a greedy

factor � as the eagerness probability of the surfer jump

directly to the power node. The higher is the value of �, the

keener the surfer wants to attach to a power node.
At any given node, the surfer selects a neighbor

according to the local trust distribution with a probability

1� �. With a probability �, the surfer attaches itself with a

power node. The power nodes are re-elected based on new

global reputation score after each round of aggregation. We

can adjust the greedy factor � to control the gap between the

first and second largest eigenvalues of a transition matrix T ,

because largest eigenvalue �1 ¼ 1 and the second largest

eigenvalue �2 � 1� � as proved in [19].

Algorithm 3: Global Reputation Updating Procedure

Input: Local trust scores stored among nodes

Output: Global reputation scores for all nodes for use by

score managers collaboratively to find

the m most reputable nodes using Algorithm 1

Procedure:

for each node i do

forall node j, which is an out-degree neighbor of node i

do

Aggregate local trust scores from node j

Send the score message ðrij; iÞ to the score manager of

node j

end forall

If node i is the score manager of node k, then

forall node j, which is an in-degree neighbor of node k

do

Receive the score message ðrjk; jÞ from node j
Locate the score manager of node j

end forall

Set a temporary variable pre ¼ 0; initialize the error

threshold " and global reputation vk of node k

repeat

Initialize pre ¼ vk; vk ¼ 0

forall received score pair ðrjk; jÞ, where j is an

in-degree neighbor of node k do

Receive node j global reputation vj from score

manager of node j

end forall

if node k being a power node,

then vk ¼ ð1� �Þ
P
ðvj � rjkÞ þ �=m

else vk ¼ ð1� �Þ
P
ðvj � rjkÞ

end if

compute � ¼ jvk � prej, until � < "

end if

end for

6 SYSTEM PERFORMANCE ANALYSIS

The performance of the PowerTrust system is analyzed
below in terms of reputation convergence overhead, ranking

discrepancy, and aggregation errors by malicious peers.

6.1 Simulation Setup and Experiments Performed

Three sets of simulated P2P experiments were performed.
We use the convergence overhead to measure the aggregation
speed. We use peer dynamics to enable system scalability.
We use ranking discrepancy to measure the accuracy and
RMS aggregation error to quantify the system robustness to
malicious peers. Our simulation experiments were imple-
mented on a dual-processor Dell server. Each data point
represents the average of at least 10 simulation runs.

Simulation parameters and default values used in the
experiments are summarized in Table 3. Our simulated
TON for a P2P system was a fully connected Power-law
graph, consisting of 1,000 nodes initially with a maximum
node degree dmax ¼ 200 and a feedback factor � ¼ 2:4. We
assume 80 percent honest peers and 20 percent malicious
peers in the simulated P2P system.

We model two types of malicious behaviors: One type
reports dishonest trust scores (such as reporting low trust
scores for good peers and vice versa). Another type of
abusers collaborates with each other to boost up their own
ratings. They may rate the peers in their collusion group
very high and rate outsiders very low. The system selects
up to 1 percent of the total number of nodes in a TON as the
power nodes.

Table 4 shows the relationship between �, convergence
overhead (defined in Section 6.2) and ranking discrepancy
(specified in Section 6.3) in a 1,000-node P2P reputation
system under two network conditions: without any mal-
icious peers and with 20 percent malicious peers. When
there is no malicious peer in the system, as � increases,
there is a trade-off between convergence overhead and
ranking discrepancy. With 20 percent malicious peers, the
ranking discrepancy first decreases then increases, as �

increases. So, we choose � ¼ 0:15 as a default value to
balance the trade-off between efficiency and accuracy.
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TABLE 3
Parameters and Their Default Values Used in Simulation Experiments



6.2 Reputation Convergence Overhead

The convergence overhead is measured as the number of

iterations before the global reputation convergence. As

indicated in Section 4, convergence means that distance

between two consecutive reputation vectors is smaller than

the threshold. The EigenTrust approach relies on a few

pretrusted nodes to compute the global reputations. They

assumed that some peers are known trustworthy, essen-

tially among the very first few peers joining the system.

This assumption may not agree with the reality of a

decentralized P2P computing. We randomly choose some

reputable nodes as pretrust nodes in our simulations. We

report in Fig. 5 the effects of different greedy factor � and
system sizes n on the variation of the convergence
overhead.

For all fairness, we choose the same number of power
nodes equal to that of pretrusted nodes used in EigenTrust.
Figs. 5a and 5b shows the convergence overheads for two
reputation systems, assuming no pretrusted node or power
node leaving the P2P network. We observe the slight saving
of iteration count in PowerTrust as shown in Fig. 5a. The
overhead drops to the same level as � increases toward 1.
Fig. 5b shows small fluctuation of the convergence over-
head as the system size increases. In the case of a low
� ¼ 0:15, we see an approximately 50 percent reduction in
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TABLE 4
Relationship among �, Convergence Overhead, and Ranking Discrepancy in a PowerTrust Reputation System over 1,000 Peers

Fig. 5. Convergence overhead of two reputation systems under variable peer greedy factor and increasing P2P system sizes. (a) Disallowing

departure of power nodes in PowerTrust or pretrusted nodes in EigenTrust system. (b) Disallowing departure of power nodes or pretrusted nodes

with a fixed � ¼ 0:15. (c) Allowing departure of power nodes in PowerTrust or pretrusted nodes in EigenTrust system. (d) Effect of system size n with

departure of power nodes or pretrusted nodes under a fixed � ¼ 0:15.



convergence overhead in using PowerTrust over EigenTrust
system. The overheads in both systems are only moderately
sensitive to the variation in network size.

In Figs. 5c and 5d, the power nodes in PowerTrust and the
pretrusted node in EigenTrust are allowed to leave freely.
These two plots show significant widening of the overhead
gap between the two systems. We observe a sharp drop of
iteration count in using PowerTrust to a flat small number less
than 50 in Fig. 5c, when � increases from 0.15 to 1, while the
EigenTrust still requires more than 100 iterations to converge.
Fig. 5d shows that our PowerTrust system has almost a flat
low convergence overhead, independent of the system size
under the default value of � ¼ 0:15. The EigenTrust system
overhead can reach as high as 400 iterations as the system
increases to 4,000 nodes.

In both plots, the PowerTrust system outperforms the
EigenTrust system sharply. The EigenTrust system con-
verges very slowly. The system cannot guarantee its
convergence, when the pretrusted nodes are allowed to
leave the system freely. In the PowerTrust system, the
power nodes are re-elected after each aggregation round.
Based on the distributed ranking mechanism, the score
managers of the departing power nodes notify the system to
replace them timely with other more qualified power nodes.
The decrease of computation overhead means significant
traffic reduction on the network, and less work for all peers
involved. The low overhead in using the PowerTrust
system makes it attractive in performing highly scalable
P2P applications, including P2P Grids as reported in [38].

6.3 Reputation Ranking Discrepancy

To estimate the accuracy of the aggregated global reputa-
tion, we rank the peers by their global reputation scores. We
measure below the ranking discrepancy between the esti-
mated ranking and the actual ranking. The discrepancy
comes mainly from greedy factor � and malicious peers
reporting false trust scores. We use normalized Euclidean
distance [9] to measure the ranking discrepancy. During
each round of reputation aggregation, we assume 100 new
peers joining the system and transacting with existing
peers. We refer each aggregation round to one full
convergence of reputation vector computations.

The probability of an interaction between nodes i and j is
determined by the ratio didj=

Pn
k¼1 dk, where di and dj are

the corresponding node degrees. This property ensures that
the growing TON follows the power-law connectivity [10].
Fig. 6 shows the ranking discrepancy between the actual
and estimated rankings as a function of the greedy factor
and aggregation rounds respectively.

The result is plotted in Fig. 6a after the first round and
10th round of global reputation aggregation. After the first
round, both pretrusted nodes in EigenTrust and power
nodes in PowerTrust system can reduce the effects of
malicious nodes slightly, when � is very small ð� < 0:05Þ.
When � is larger than 0.05, PowerTrust has about 50 percent
less ranking discrepancy than that of EigenTrust. Power-
Trust discrepancy is independent of the number of
aggregation rounds.

Fig. 6b shows the aggregation effect with � ¼ 0:15, the
ranking discrepancy of EigenTrust increases from 28 percent
to 44 percent with the increase of round number, while
PowerTrust always maintains the low discrepancy at about
20 percent. This accuracy improvement shows that Power-
Trust updates reputation scores more accurately than
EigenTrust. The main reason is that our power nodes are
the most reputable nodes, which are dynamically chosen
after each aggregation round, while the pretrusted nodes
are statically chosen in EigenTrust, regardless of their
sustained performance.

6.4 Effects of Malicious Peer Behaviors

We evaluate the effectiveness and robustness of the
PowerTrust system against various malicious peer beha-
viors. The experiment was performed under both non-
collusive and collusive malicious settings. We compute the
root-mean-square (RMS) of the aggregated global reputation
of all peers. A lower RMS error indicates higher accuracy.
The RMS error is defined by:

RMS aggregation error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ððvi � v0iÞ=viÞ

2

n

s
; ð7Þ

where vi and v0i are the actual and measured global
reputation scores of peer i, respectively.
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Fig. 6. Ranking discrepancy percentage of two reputation systems with 1,000 nodes initially under variable peer greedy factor and aggregation round

number. (a) Effects of greedy factor after one round and 10 rounds of aggregation. (b) Effect of aggregation round number under a fixed � ¼ 0:15.



We plot the RMS error against the percentage of
malicious peers in Fig. 7a. The default greedy factor � ¼
0:15 was assumed. The probability of a node being
malicious is modeled by the inverse of its global reputation,
because a node providing corrupted services is highly likely
to issue dishonest scores. Fig. 7a shows the RMS aggrega-
tion error incurred by malicious peers reporting false local
trust scores, independently. With 2 percent malicious peers,
the PowerTrust system has 53 percent less aggregation error
than that of the EigenTrust system. As the percentage
increases, the error gap is closing up between the two
systems.

In Fig. 7b, we model the collusive peers working
collaboratively to abuse the system. We report the RMS
aggregation errors under different collusion group si-
zes—the number of malicious peers in a group. The
malicious peers rate each other high in the same group
and rate outsiders very low. In all cases (2 percent and
10 percent malicious peers), the PowerTrust shows its
robustness against collusive peer groups of various sizes.
The EigenTrust system is less resistant to abuses by large
collusive peer groups.

7 P2P APPLICATION BENCHMARK RESULTS

In this section, we show two simulated P2P application
performance results in using PowerTrust to aggregate peer
reputations. One application is distributed file sharing
among the peers and the second is distributed P2P super-
computing over the benchmark of parameter sweeping applica-
tions (PSA), often used in Grid evaluation experiments [28].

7.1 Query Success Rate in Distributed File Sharing

We have applied the PowerTrust system on simulated P2P
file-sharing applications. We choose the same query model
used by Marti and Garcia-Molina [15]. There are more than
100,000 files in our simulated P2P systems. The number of
copies of each file in the system is determined by a content
Power-law distribution with � ¼ 1:2. Each peer is assigned
with a number of files based on the Sarioiu distribution [24].
At each time step, a query is randomly generated at a peer
and completely executed before the next query/time step.

The query distribution determines which file each query

search for. We rank the queries according to their

popularity.
We use a query Power-law distribution with � ¼ 0:63 for

queries ranked 1 to 250 and � ¼ 1:24 for the remaining lower

ranking queries. When a query for a file is issued, the list of

nodes having this file is generated and the one with the

highest global reputation is selected to download the desired

file. Fig. 8 shows the query success rates in using the

PowerTrust and EigenTrust reputation systems, separately.
The query success rate is measured by the percentage of

successful queries over the total number of queries issued.

Every node may respond a query with inauthentic files. For

simplicity, this behavior is modeled as inversely propor-

tional to the node’s global reputation. We consider both

cases of allowing or disallowing power nodes or pretrusted

nodes to leave the system. We also consider the case of a no-

trust system, meaning no trust management in the P2P

system. The no-trust system randomly selects a node to

download the file without considering reputation.
Fig. 8a shows the results without the departure of power

nodes or pretrusted nodes. There are 1,000 queries issued

after each round of global reputation aggregation. The

query success rate of PowerTrust is maintained at 90 percent

level after just one round of reputation aggregation. The

query success rate of EigenTrust drops from 85 percent to

50 percent as the round number increases. This is due to the

fact that pretrusted nodes cannot cope with the dynamic

variation of the peer reputations.
In Fig. 8b, the PowerTrust has a steady query success rate

higher than 90 percent after only one round of aggregation.

Allowing the pretrusted nodes to leave freely in the

EigenTrust system makes the query success rate even

worse only after first rounds of reputation aggregation.

EigenTrust has a query success rate up to 65 percent, only

slightly higher than that of using the no-trust system.

EigenTrust depends on the stability of pretrusted nodes. We

avoided this restriction. So, PowerTrust is more scalable

and robust in this sense.
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Fig. 7. Global reputation aggregation errors from fake trust scores reported by malicious peers in two P2P reputation systems over 1,000 nodes

initially. (a) Independent malicious peers. (b) Collusive malicious peers.



7.2 P2P Grid Performance over the PSA Workload

In this section, we use two metrics to evaluate the

PowerTrust performance in P2P Grid job execution over

the PSA workload [28]:

1. Makespan: Denote the total number of simulated
jobs as M and denote the completion time of a
single job Ji as ci, the makespan is defined by
Makespan ¼Maxfcig, where i ¼ 1; 2; . . .M.

2. Job failing rate: Job execution may fail at low
reputation sites. Mfail counts the number of failed
jobs. The job failing rate is defined by the ratio
Frate ¼Mfail=M.

We apply a realistic PSA workload of 20,000 to 80,000 jobs

in the simulated experiments over a large-scale P2P Grid,

consisting of 4,000 resource sites. The PSA benchmark runs

independent jobs. A range of scenarios and parameters are

applied to the input data subsets to generate parallel results.

The execution model essentially involves parallel execution

of M independent jobs on N distributed sites, where M is

much greater than N .

A heuristic Min-Min algorithm is used for Grid job

scheduling. Per each job, the Grid sites having the shortest

expected time-to-completion (ETC) is selected. We compute

the ETC ¼ real etc=ð1� fail rateÞ, where the real etc is the

actual ETC of the Grid site and the fail rate is the failing

rate experienced with the Grid site, which is determined by

the site’s global reputation. Then, the job with the minimum

ETC is selected and assigned to the selected Grid site. After

each job execution, the Grid site will update the local trust

scores of other sites according to job execution result.

Therefore, the edges on the TON are relabeled with new

scores, periodically.
A job will be executed if it has not been rejected more

than three times. Fig. 9 shows the performance results of

four different reputation systems over the PSA workload.

The NoTrust in black bars corresponds to the worst case that

the Grid site reputations are not considered in job

scheduling. The IdealTrust in dark-gray bars corresponds

to the ideal situation, where all Grid site global reputation

scores are accessible. The light-gray and white bars
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Fig. 8. Query success rates of two P2P reputation systems: PowerTrust versus EigenTrust under various rounds of reputation aggregation.

(a) Effects of round number without departure of power nodes or pretrusted nodes ð� ¼ 0:15Þ. (b) Effects of round number allowing the departure of

power nodes or pretrusted nodes ð� ¼ 0:15Þ.

Fig. 9. PSA benchmark performance results on a simulated P2P Grid configuration of 4,000 peer-contributed resource sites (nodes). (a) Job

Makespan in second. (b) Average job success rate.



correspond to using the PowerTrust and EigenTrust
systems, respectively.

Fig. 9a plots the job makespan (completion time) of the
PSA workload executed under four P2P reputation systems.
They all increase linearly with respect to the increase of the
job number. Fig. 9b shows the average job success rate, which
drops slowly with the workload size. As predicted, the
NoTrust has the longest makespan and lowest job success
rate. In all cases, PowerTrust slightly outperforms Eigen-
Trust by about 3 percent and PowerTrust is 3 percent to
6 percent lower than the optimal performance of the
IdealTrust system. Without trust, the job makespan in-
creases more than 40 percent and the job success rate drops
by 45 percent, compared with the idealTrust case. These
results prove the effectiveness of using global reputation to
establish trust among the participating peers in a large-scale
P2P Grid system.

8 CONCLUSIONS AND FURTHER WORK

In this paper, we report the design experiences and
simulated performance of a new P2P reputation system,
PowerTrust. Specifically, our contributions are summarized
in four aspects:

1. Power-law distribution of peer feedbacks: We devel-
oped a trust overlay network model for analyzing the
feedback properties of P2P reputation systems. By
collecting real-life data from eBay, we confirmed the
power-law connectivity in TON graph. This power-
law distribution is not restricted to eBay reputation
system. Our mathematic analysis justifies its applic-
ability to general dynamic P2P systems.

2. Fast reputation aggregation, ranking, and updating:
Our PowerTrust system offers the very fast mechan-
isms for global reputation aggregation, ranking, and
updating. Besides leveraging power-law peer feed-
backs, we utilize look-ahead random walk (LRW) strategy
and locality preserving hash (LPH) functions, which are
easily implemented in a DHT-based P2P system.

3. System scalability and wide applicability: Power-
Trust is applicable to P2P systems in general and
to P2P Grids in particular. These are attractive to
cope with dynamic growth of both P2P systems
and collaboration Grid built with distributed peer
resources.

4. System robustness and operational efficiency: The
robustness is resulted from curtailing malicious
peers. The system is resilience to peer abuses in
global reputation evaluation. The operational effi-
ciency comes mainly from the use of reliable power
nodes in PowerTrust.

For further work, we suggest the following research tasks
to solve the peer collusion problem, to extend the current
PowerTrust system to work on unstructured P2P system as
well, and to explore new killer P2P applications supported by
reputation systems:

1. Coping with peer abuses and selfishness: Various
malicious behavior models should be investigated to
secure P2P system applications. New mechanisms
are needed to deal with intrusions, free riders, black

mouths, collusions, and selfishness of peers [12],
[14], [37]. Game theoretic studies and benchmark
studies are recommended.

2. Reputation system for unstructured P2P System:
PowerTrust, EigenTrust, and PeerTrust are all
based on a DHT overlay network. However, most
P2P systems deployed on the Internet are un-
structured. Developing an efficient reputation
system is even in greater demand for unstructured
P2P networks. Without a fast searching or hashing
mechanism, how to perform fast reputation aggre-
gation is a major challenge in unstructured
P2P systems. Our continued effort is focused on
a gossip-based mechanism to solve this problem.

3. Explore new killer P2P applications: We need to
explore new P2P applications for both structured and
unstructured P2P systems. Most current P2P applica-
tions do not have strong collaboration among the
users, except the pair of interacting parties. In
particular, collaboration in P2P Grid applications
should be explored [38].
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