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Abstract—Distributed peer-to-peer systems rely on voluntary participation of peers to effectively manage a storage pool. In such

systems, data is generally replicated for performance and availability. If the storage associated with replication is not monitored and

provisioned, the underlying benefits may not be realized. Resource constraints, performance scalability, and availability present

diverse considerations. Availability and performance scalability, in terms of response time, are improved by aggressive replication,

whereas resource constraints limit total storage in the network. Identification and elimination of redundant data pose fundamental

problems for such systems. In this paper, we present a novel and efficient solution that addresses availability and scalability with

respect to management of redundant data. Specifically, we address the problem of duplicate elimination in the context of systems

connected over an unstructured peer-to-peer network in which there is no a priori binding between an object and its location. We

propose two randomized protocols to solve this problem in a scalable and decentralized fashion that does not compromise the

availability requirements of the application. Performance results using both large-scale simulations and a prototype built on PlanetLab

demonstrate that our protocols provide high probabilistic guarantees while incurring minimal administrative overheads.

Index Terms—Peer-to-peer, unstructured networks, duplicate elimination, randomized algorithms.

Ç

1 INTRODUCTION

PEER-TO-PEER systems have emerged as cost-effective alter-
natives for scalable data sharing, backup, and archival

storage [6], [14]. Peers contribute data and storage and, in
return, gain access to data at other peers. Effective storage
management is an important issue in the deployment of such
systems. Data replication and caching are key enabling
techniques for scalability, performance, and availability. In
this context, an important problem relates to pruning
unwanted copies of data efficiently and safely. Attempts at
aggressive replication may lead to significant overheads
associated with thrashing in resource constrained environ-
ments. Even if replication at peers is controlled, as in systems
such as Samsara [7], the network as a whole must provide
mechanisms for eliminating replicas that are not accessed,
while leaving a minimum number of replicas in the network
to satisfy availability constraints.

In this paper, we investigate the problem of eliminating
duplicate data items in peer-to-peer systems. We examine
this issue in the context of unstructured networks [13],
where no assumptions can be made about the relationship
between an object and the peers at which it resides.
Unstructured networks differ from their structured counter-
parts [30], [25], [26], [31] in several important respects.
Structured networks provide a simple primitive for locating
an object which relies on a distributed hash table (DHT)
abstraction. The associated lookup techniques provide
bounds on the number of hops as a function of the number
of peers. These bounds are achieved by establishing and
maintaining a well-defined overlay topology. In networks

with a high transient population, the overhead associated
with this may be significant. In contrast to structured peer-
to-peer networks, unstructured networks are resilient to
node failures and incur low overhead on node arrivals and
departures. These characteristics make unstructured net-
works attractive for use in highly transient networks, where
peers do not have significant resources. Unfortunately, the
issue of object location, which is central to the problem of
identifying redundant copies, is significantly more complex
in this environment.

The primary focus of this paper is on systems where peers
are cooperative and nonmalicious. Peers divide their storage
into two spaces: a private and a public space. The private
space contains the peer’s data and is not subject to duplicate
elimination. The public space holds data from other peers and
is subject to duplicate elimination. We can view the public
space as backup storage or a cache to facilitate availability and
performance, respectively. In such an environment, peers can
use any of the conventional object location techniques, such as
the ones developed in [29] and [10].

We can now formally state our problem as follows:
Consider an unstructured peer-to-peer system, with each peer
hosting multiple data items. The problem is to determine whether
each of these data items can be tagged for elimination or must be
retained, with the associated guarantee that each data item is
retained by at least k peers. Here, k is a system parameter chosen to
satisfy a client or application’s availability requirements. The
associated protocol must have minimum network and computing
overhead.

An important issue for the effective elimination of data
in a storage system is the identification of common data at
different peers. Adya et al. [1] proposes convergent
encryption to solve this problem. With convergent encryp-
tion, it is possible to safely store encrypted data at other
peers and, at the same time, recognize if two files from
different users have the same content. Convergent encryp-
tion uses an encryption key derived from the content of the
file and has been used in [8] to identify blocks of data with
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the same content. Doucer et al. [8] motivates the importance
of duplicate elimination problem and proposes SALAD, a
distributed data structure to aggregate file content informa-
tion and location information. In building this data
structure, an underlying structure of the files based on
their content and location is maintained; this structure is
similar to the index employed by structured peer-to-peer
networks. It is unclear how SALAD can be adapted to an
unstructured environment. SALAD imposes a topology on
the network, while, in an unstructured environment, peers
are free to connect to each other at random.

To address these concerns, we present the design,
implementation, and evaluation of two novel solutions to
the problem of identifying and eliminating duplicates in
unstructured peer-to-peer storage systems. Our approaches
are applicable to diverse storage environments [27], [11], [14].
Our key insight is that the problem of duplicate elimination
can be abstracted to a relaxed and probabilistic version of the
leader election problem: We aim to elect a group of k leaders
for each file. The elected leaders are responsible for storing the
file. If a leader must depart the network, it randomly chooses
another node to hold its replicas. Our solution to this problem
relies on the premise that the network state in an unstructured
peer-to-peer system changes fast enough that deterministic
guarantees provided by conventional leader election algo-
rithms are not useful. For this reason, we use our probabilistic
leader election protocol, which has significantly lower
message and time complexity. Our leader election protocol
differs from traditional leader election algorithms in two
important respects:

. The probabilistic nature of our protocol may produce
more or fewer leaders than desired with small
probability, Oð1nÞ, for a system with n nodes.

. Other nodes participating in the protocol that are not
elected as leaders need not know the identity of the
elected leaders.

Our first approach to the elimination problem uses

probabilistic quorum systems [20]. In this approach, each

node creates a quorum for each of its replicas by choosingffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

nodes in the system uniformly at random and queries

the quorum on whether it needs to keep the file. If it receives a

negative response from any node in the quorum, the file is

discarded. The details on how a quorum member responds to

a query are provided in Section 2. In the worst case, if a replica

is present at all peers, the total message complexity of the

elimination process of this protocol is Oðn
ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

Þ.
In the second approach, we use a novel randomized

leader election protocol. The protocol proceeds in two
phases. In the first phase, consisting of OðlognÞ rounds, the
number of nodes that are potential leaders is reduced. The
second phase is similar to the probabilistic quorum
approach: A quorum is formed for each of the remaining
nodes, and k leaders are chosen. The elimination process of
this protocol has optimal message complexity OðnÞ for a
network with n nodes.

We evaluate these protocols using real-world file system
traces from Microsoft Research [9]. We consider both a
detailed simulation to study the scalability of the protocols
and a prototype implementation on PlanetLab [23] to
quantify administrative overheads and efficiency in real
network environments. Our experiments measure the
amount of space reclaimed, memory and communication

overhead, and the average storage gain per node. The main
contributions of the paper are:

. two novel randomized protocols for duplicate
elimination in peer-to-peer storage systems, along
with analytical insights into their performance,

. an investigation, using detailed simulation, of the
interaction between the choice of the number of
duplicates to be maintained (availability) and the
administrative overheads (scalability), and

. an implementation on PlanetLab using real-world
file traces, which validates analytical and simula-
tion-based performance characterization.

The rest of the paper is organized as follows: Section 2
presents a detailed description of the protocols. The
experimental and simulation setup and corresponding
results are given in Section 3. Related work is presented
in Section 4. Conclusions are outlined in Section 5.

2 DUPLICATE ELIMINATION PROTOCOLS

In this section, we describe the duplicate elimination
protocols. These protocols rely on leader election as the
main kernel, with leaders assigned the responsibility of
preserving specified data items, while all other participants
are free to remove them.

2.1 A Probabilistic Quorum (PQ) Approach

Our first protocol is based on ideas proposed for building
probabilistic quorum (PQ) systems. A quorum is defined as
a set of subsets of peers such that any two subsets have a
nonempty intersection. To guarantee nonempty intersection
with high probability, the number of members in each
quorum is equal to

ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

[20], where n is the number of
peers in the network.

For duplicate elimination, k nodes need to be elected
among the nodes holding a specific data item. Each node
with the data item creates a quorum of the prescribed size,
as specified above. Each node with a candidate data item
sends a REQUEST_TO_KEEP message to all its quorum
members. It decides to keep or delete the data item based on
the response to this message. A REQUEST_TO_KEEP
message contains the following information:

. SENDER_ID: identity of the sender,

. DATA_DESCRIPTOR: content hash of the file, and

. RANDOM_NUMBER: a random number locally
generated by the node in the range ½0 . . .n4� [19].1

Each quorum member waits for a prescribed time period (a
system parameter) and processes all the messages received.
At the end of the time period, it takes all the messages
received for the same DATA_DESCRIPTOR. Positive re-
sponses (ACKs) are sent to the k peers that have the largest
random numbers among all the messages with the same data
descriptor. The ACKs include the random numbers that were
selected by the quorum member. Negative responses (NAKs)
are sent to the rest of the peers. A peer that receives at least one
NAK deletes the data. A peer that receives only positive
responses must sort all of the random numbers in the ACKs it
receives to verify if its random number is among the top k. If
this is the case, the peer retains the data; otherwise, the data is
deleted. If a data item is present at all peers in the network
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which corresponds to the worst-case scenario, the message
complexity of this protocol is Oðn

ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

Þ. Observe that this
message complexity does not include the cost for selecting
nodes uniformly at random from the network. In Section 2.3,
we discuss how a node can obtain uniform samples in an
unstructured network. When the PQ protocol is applied
separately for each data item, the message complexity must
include the number of data items. In Section 2.2.2, we discuss
how information about separate data items can be aggregated
to keep the message complexity the same as the message
complexity for a single data item.

2.2 A Randomized Election (RE) Approach

As an alternative to probabilistic quorum systems, we also
consider a randomized leader election protocol based on a
balls and bins [22] abstraction. The protocol operates in two
phases. In the first phase, the number of nodes holding the
same data item is reduced. In the second phase, the
remaining nodes determine the k leaders that retain the
data item. The main features of the protocol are as follows:

. There are k peers holding a copy of the file at the end
of the protocol with high probability.

. The message complexity of the elimination protocol
is OðnÞ, where n is the number of peers in the
system.

. Any peer among the set of peers having a duplicate
is equally likely to be elected as one of the k leaders.

To simplify the explanation, we assume that there are
multiple copies of a single data item in the entire system and
each peer holds one copy of this data item. Although our
presentation at this point assumes a synchronous protocol,
we show how to relax this assumption in Section 2.2.1.

Before we describe the protocol, we formalize a few terms
used in the description. A contender is a participating peer in
the protocol that holds a copy of the data. A mediator is a peer
that receives a message from a contender and determines
whether the contender participates in subsequent steps of the
protocol. The mediator is similar to a quorum member in the
probabilistic quorum approach. A round is composed of
communications between a single contender and a set of
mediators. The set of contenders can change with each round
of the protocol. A contender that does not proceed to a new
round deletes the copy of the data item.

In a realization of this balls-and-bins abstraction, a peer
can be a contender as well as a mediator at the same time.
Casting a ball into a randomly chosen bin corresponds to
sending a REQUEST_TO_KEEP message from a contender to
a mediator, picked uniformly at random. The REQUEST
_TO_KEEP message has the same fields as the REQUEST
_TO_KEEP message in the PQ approach and an extra field
(ROUND_NUMBER), indicating the round number.

The protocol is played as a tournament in two phases:
The first phase consists of logn� logðc� kÞ rounds for a
system of n nodes, where c is constant and k is a system
parameter (the desired number of replicas). In round i of
this phase, each contender casts mi balls into n bins; the
precise expressions for mi in terms of n and i are given in
Fig. 2. A contender is said to “win” a bin if its ball is the
only one that lands in the bin. If a contender wins all of the
bins that its balls land in, it is considered a winner in this
round and proceeds to the next round. This process is
illustrated in Fig. 1 for n ¼ 8, k ¼ 1, and c ¼ 2. Here, the first
phase consists of log2 8� 1 ¼ 2 rounds.

The number of mediators that a contender sends messages
to (the number of balls to cast) in a round is calculated
independently by every contender based on the system size
(total number of nodes) and the round number. The formula
given in Fig. 2 is an approximation of the exact theoretical
value. We present the theoretical value in Section 2.4 with the
proofs of the bounds of the algorithm. Each mediator sends an
ACK if it receives only a single REQUEST_TO_KEEP
message. Otherwise, it sends a NAK to all the contenders
that sent a message to it. A contender deletes a data item if it
receives at least a single NAK; otherwise, it proceeds to the
next round. The number of contenders remaining after each
round is reduced by half, on average. The remaining
contenders at the end of the first phase proceed to the second
phase. The expected number of contenders at the end of the
first phase is c� k. The second phase of the protocol is
identical to the probabilistic quorum approach, but with a
reduced number of contenders. Details about the protocol are
summarized in Figs. 2 and 3.

2.2.1 An Asynchronous Protocol

We now relax the assumptions made earlier and provide a
solution that supports asynchronous communication
among mediators and contenders. In the asynchronous
case, messages from contenders to a mediator for a specific
round need not be received at the same time. Therefore, in
every round of the first phase, a mediator sends an ACK to
the first contender request for that round. A NAK is sent to
subsequent requests from other contenders for that round.
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Fig. 1. Illustration of the protocol—contenders are illustrated by squares,
mediators by buckets, and messages from contenders to mediators by
labeled balls (the label indicating the source of the ball). In all rounds,
contenders that are no longer in the running are shaded dark. In the first
round, each contender casts one ball and contenders 2, 4, 5, and 6
proceed since their balls uniquely occupy their respective buckets. In
round 2 (last round of the first phase), each contender casts two balls
and contenders 5 and 6 proceed. Finally, in round 3 (the only round of
the second phase), each contender casts five balls and contender 6 is
selected the leader since it has a higher node id (in our protocol, we use
a random number as the criterion in the second phase. We use node id
here for ease of illustration.).



In the first phase of the asynchronous protocol, a
contender sends REQUEST_TO_KEEP messages, along
with a round number to a set of mediators picked uniformly
at random, as in the synchronous protocol. A mediator M
maintains a vector V of size equal to the number of rounds
ðlognÞ. All the entries in V are initially set to zero. On
receiving a REQUEST_TO_KEEP from a contender C in
round j, if entry j in V at M is zero, M sends an ACK to C
and sets the entry j to C (signifying that the winner of the
jth round at M is C). Otherwise, a NAK is sent to C. The
purpose of this step is to reduce the number of contenders
that proceed to subsequent rounds. The contenders that
survive (which do not receive even a single negative
response) all of the rounds in the first phase proceed to
the second phase of the protocol.

The second phase of the asynchronous protocol follows
the protocol for probabilistic quorum given in Section 2.1,
but with a constant number of contenders. An analytical
modeling of this algorithm is presented in Section 2.4.

2.2.2 Aggregation

We now relax the assumption of a single data item in the

entire system and explain how the protocol can be extended

to deal with multiple data items efficiently. A simple

extension would be to perform leader election for each file

in the system separately. However, this approach results in

a protocol complexity of Oðn �# of unique data itemsÞ. A

better approach that reduces message complexity and, thus,

improves efficiency is to hold a single election. In this case,

a contender, say C1, initially sends messages to mediators

with a list of all the local data items. On collision with

contender C2 at the mediator M, M sends ACKs for files

held by C1 that are not present in C2. C1 proceeds to the

next round with the list of files for which it received an

ACK. The complexity of this method is Oðn
ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

Þ,
assuming that the list of data items can be packed into a

constant number of messages. The multiplicative factorffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

is present because each node, in the worst case, can

go to the second phase of the protocol for a disjoint set of

files. Given that the number of unique data items is likely to

be significantly larger than the number of nodes in the

system, the latter approach is expected to be more scalable.

Furthermore, observe that the same aggregation scheme can

be applied to the PQ approach. The resulting complexity in

this case is also Oðn
ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

Þ.

2.3 Algorithmic Issues

Effective realization of the duplicate elimination protocols
presented in the paper builds on a number of recent results
on generating random walks and efficiently estimating
network size for unstructured networks. In our protocols,
nodes need to select quorum members or mediators,
uniformly at random. To select nodes uniformly at random
from the network, we rely on random walks. Gkantsidis
et al. [12] show that it is possible to construct a uniform
sample of size k in an unstructured network by performing
a random walk of length �ðlogn) and then proceeding with
the random walk for k more hops. The last k peers
encountered in the walk represent a uniform random
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sample. This result, however, applies to network topologies
that can be modeled as expander graphs. For more generic
networks, such as the ones encountered in real-world
networks, an auxiliary algorithm must be executed to
determine probabilistic weights for different branches of
the network on which a random walk is performed. The
problem of uniform sampling in nonuniform graphs has
been extensively studied [21], [15], [2]. For the sake of
completeness, we briefly discuss the Metropolis-Hastings
(MH) algorithm that we use in our simulations.

2.3.1 Uniform Sampling

In a simple random walk, all neighbors of a node p have the
same probability of being selected as the next hop, that is,
Prpj ¼ 1=K, where j is one of K neighbors of p. It is well
known [22] that a simple random walk in an undirected
graph of a minimum length proportional to logn converges
to a stationary distribution �T . The probability of a node i
being selected as a sample of the distribution �T is equal to
di=2m, where di is the degree of node i and m is the number
of edges of the graph. In real-world networks, the degrees of
the nodes vary significantly. This variation in degrees
implies that a simple random walk selects nodes with
different probabilities, with low degree nodes having lower
probabilities of being selected. We present an algorithm that
modifies the transition probabilities between nodes to
produce a probability transition matrix that has a stationary
uniform distribution. Thus, a random walk on a network
with node transition probabilities defined using this
algorithm results in a uniform sample. The algorithm is
traditionally presented in the context of Markov chains, for
example, in [5], but its adaptation to a distributed network
is straightforward.

Metropolis-Hastings. This algorithm is an adaptation for
uniform sampling of the classical Metropolis-Hastings
algorithm [21], [15], [5]. In this distributed algorithm, each
node i sends a message containing its degree information, di,
to each of its neighbors j 2 �ðiÞ, where �ðiÞ is the set of nodes
directly connected to i. Once the information of each of the
neighbors is received, the transition probabilities are set up as
follows:

Prmhij ¼
1=maxðdi; djÞ if i 6¼ j and j 2 �ðiÞ;
1�

P
j2�ðiÞðPrmhij Þ if i ¼ j;

0 otherwise:

8<
:

The result of this algorithm in the entire network is the
implicit construction of a doubly stochastic matrix. A random
walk of a given minimum length using the probabilities
above results in uniform samples. We refer the reader to [21],
[15], [5], [2] for more details on the algorithm and its analytical
underpinnings. Observe that the message complexities of the
elimination protocols presented earlier in this section do not
include the cost for uniform sampling. If random walks are
used for uniform sampling, anOðlognÞ factor must be added
to the complexities since we need to perform a random walk
of length OðlognÞ to each random sample. In this case, the
complete RE protocol would have worst-case complexity
Oðn lognÞ and the PQ protocol Oðn

ffiffiffi
n
p

lognÞ. This cost,
however, can be amortized across multiple runs of the
elimination protocols.

2.3.2 Network Size

Another input to our protocol is the size of the network. An
estimate of the number of processes in the system is needed

to determine the number of messages that need to be sent in
each round of the protocol. Horowitz and Malkhi [16]
presents a scheme that allows a node to estimate the size of
its network based only on local information with constant
overhead by maintaining a logical ring. Bawa et al. [3]
proposes an estimation scheme based on the birthday
paradox [22, p. 45]. A peer estimates the network size by
sending a message on a random walk and using the hop
count when the message returns to the peer. It is shown that
it takes approximately

ffiffiffi
n
p

hops for a message to return to
its sender. In our current implementation, we have the
system size as a parameter.

2.4 Analysis

In this section, we establish performance bounds of our
algorithms. We consider a distributed system of n processes
represented by the set �n ¼ faij1 � i � ng, for processes
a1; a2; . . . ; an. The set of contenders in round j of the protocol
is represented by �j ¼ f�ij1 � i � j�jjg, where �j � �n,
�jþ1 � �j, and �1; �2; . . . ; �j�jj are the contenders. The number
of messages (balls) sent by a contender in a round j is denoted
by ’j. The set of mediators associated with a contender �i in
round j is denoted by �ij. We associate a unique integer �i
with every contender �i. The protocol concludes by declaring
a unique member in �w to be the final winner, where w
corresponds to the final round in the protocol andf8j : j < w;
j�jj > 1; j�wj ¼ 1g. We show that w < logðnÞ. For purpose of
clarity, we present the proofs for k ¼ 1. The generalization for
k > 1 is straightforward.

Theorem 1. In the first phase of the protocol, the number of

contenders in round jþ 1 is approximately half the number of

contenders in round j.

Proof. Let Xij be an indicator random variable correspond-

ing to process �i in round j obtaining a positive response

from every process in �ij.

Xij ¼
1; if 8s : s 2 �ij; s sent a positive response
0; otherwise:

�

The expectation of Xij is given by

E½Xij� ¼PrðXij ¼ 1Þ ¼ 1� ’j
n

� �’jðj�jj�1Þ

� e�
’2
j
ðj�j j�1Þ
n :

ð1Þ

Let Yjþ1 be a random variable that represents the number

of processes proceeding to round jþ 1. We have

Yjþ1 ¼
Pj�jj

i¼1 Xij. The expectation of Yjþ1 is given by

E½Yjþ1� ¼ E½
Xj�jj

i¼1

Xij� ¼
Xj�jj

i¼1

E½Xij� � j�jje�
’2
j
ðj�j j�1Þ
n : ð2Þ

Since ’j ¼
ffiffiffiffiffiffiffiffiffiffi
n ln 2
j�jj�1

q
, we have

E½Yjþ1� �
j�jj

2
: ð3Þ

tu

Observe that, in Section 2.2, we present a simplified
expression for mj that uses the fact that the number of
contenders is reduced by half in each round.
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Theorem 2. The probability of having at least one contender at
the end of the first phase is 1� �, i.e., PrðYw > 0Þ 	 1� �,
where �! 0 as n!1.

Proof. By using the Second Moment Method, (based on
Chebyshev’s Inequality), for a nonnegative integer-
valued random variable Yw, we have:

PrðYw ¼ 0Þ � V arðYwÞ
E½Yw�ð Þ2

¼ E½Y 2
w �

E½Yw�ð Þ2
� 1: ð4Þ

Let k ¼ j�w�1j,

E½Y 2
w � ¼

Xk
i¼1

E Y 2
iw

� �
þ
X
i6¼j

E½YiwYjw�

¼E½Yw� þ kðk� 1ÞE½Y1wY2w�

¼E½Yw� þ kðk� 1Þ 1� ’w�1

n

� 	’w�1ð2k�3Þ

¼E½Yw� þ kðk� 1Þe�
’2
w�1
n ð2k�3Þ:

Without loss of generality, assume that Cn < j�1j. At the

start of the final round of the first phase, in the worst

case, there are at least Cn þ 1 contenders. By substituting

for j�w�1j ¼ Cn þ 1, ’w�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln 2
j�w�1j�1

q
, E½Yw� ¼ j�w�1j

2 in (4),

we have

PrðYw ¼ 0Þ � 2

Cn þ 1
þ 4Cn

ðCn þ 1Þ2
2Cn�1
Cnþ1

� 1:

Therefore, PrðYw > 0Þ 	 1� �, where

� ¼ 2

Cn þ 1
þ 4Cn

ðCn þ 1Þ2
2Cn�1
Cnþ1

� 1:

For Cn ¼ �ð
ffiffiffiffiffiffiffiffiffiffi
logn
p

Þ, �! 0 as n!1. tu
Furthermore, if we fix the number of rounds so that the

expected number of contenders in the last round of the

first phase of the protocol is 2 logn
�2 , where 0 < � < 1 and �

is a constant, then, by the Chernoff bound [22], we have

P ðYw � ð1� �ÞE½Yw�Þ � 1
n . For a typical value of � ¼ 1

2 , we

have P ðYw � 4 lognÞ � 1
n . Informally, the number of

contenders entering the second phase of the protocol Yw
is close to the expected value w.h.p. Correspondingly, the

number of messages in the second phase would be
2 logn
�2

ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

, which still maintains the message complexity.

Theorem 3. There is exactly one contender remaining at the end

of the protocol w.h.p.

Proof. 8u; v : u, v 2 �w, u 6¼ v, the probability that any two

sets �uw and �vw intersect is

Prð�uw \�vwÞ ¼ 1� 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

n

 ! ffiffiffiffiffiffiffiffi
n lnn
p

� 1� 1

n
:

Since the sets intersect w.h.p., only the process �i with
the highest value of �i receives positive responses from
all processes in �iw. The rest of the contending processes
have at least one decline message. Hence, a unique final
winner of the protocol is chosen w.h.p. tu

Theorem 4. The number of rounds in the protocol is OðlognÞ.
Proof. From (3), it is clear that, in every round of the first

phase, the number of contenders reduces by at least half.
Since there is only one round in the second phase, the
number of rounds in the protocol is Oðlog j�1jÞ. In the
worst case, when j�1j ¼ n, the number of rounds of the
protocol is OðlognÞ. tu

Theorem 5. When j�1j ¼ n, the total number of messages in the
system is OðnÞ.

Proof. The total number of messages in the system in the first

phase is 2
Pw�1

j¼1 j�jj
ffiffiffiffiffiffiffiffiffiffi
n ln 2
j�jj�1

q� �
. When j�1j ¼ n, the number

of contenders in round j is approximately n
2j�1 , which

results in 2nðln 2Þ
Pw�1

j¼1
1

2
j�1

2

� 	
messages. Hence, the

number of messages in the first phase is OðnÞ asPw�1
j¼1

1

2
j�1

2

converges.

At the end of the first phase, the number of
remaining contenders is no more than Cn. Since each
contender sends at most

ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

messages in the
second phase, the maximum number of messages
exchanged in the second phase is 2c lnn

ffiffiffi
n
p

, where
Cn ¼ c

ffiffiffiffiffiffiffiffi
lnn
p

and c is a constant. Hence, the total
number of messages in the protocol is OðnÞ. tu

When j�1j ¼ Oð1Þ, the total number of messages in the

system is Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
n lnn
p

Þ.

3 IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present experimental results for the two
protocols described in the previous section. Our experi-
ments consider a detailed large-scale simulation, as well as
a prototype implementation on PlanetLab. The simulation
setup allows us to quantify the performance of our
protocols for various system parameters. This is not easily
done for the PlanetLab implementation. For our PlanetLab
experiments, we use file traces from real systems.

3.1 Simulation Setup and Results

Recent studies show that the topology of unstructured
networks can be modeled using power-law random graphs
[28]. In our experiments, we use a power-law random graph
with 50,000 nodes. To generate the graph, we first generate
the degrees of the nodes according to a power-law distribu-
tion with parameter � ¼ 0:8 and then connect the nodes
randomly.

We assume that a single file is the target of duplicate
elimination and that the file is duplicated at a fraction � of
the nodes. The file is placed at nodes selected uniformly at
random across the network. We vary � from 1 percent to
50 percent. These percentages are chosen to simulate files of
differing popularity, from rare files to extremely popular
ones; in other words, popular files are duplicated at many
nodes, while unpopular ones are not. The desired number
of replicas k is varied from 1 to 100 and the value of c is
fixed and equal to 2. This value of c is sufficient to
guarantee the accuracy of the protocol, as discussed in
Section 3.1.4, and it also minimizes the network overhead
by allowing a small number (twice the value of k) of peers
to participate in the second phase of the protocol.
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3.1.1 Message Overhead

We first investigate the scalability of our protocols with
respect to the total number of messages exchanged in the
system. Fig. 4 shows the number of messages for the two
duplicate elimination approaches applied to a file with
varying replication fraction and with different values of k.
In the PQ approach, the parameter k has no impact on the
number of messages—the results are identical for all values
of k. This is expected since the protocol consists of a single
round in which all peers containing a replica send the same
number of messages to the quorum members. The decision
to delete a file is made locally based on the responses
received. This protocol, however, does not scale well when
the percentage of duplicates increases in the network. When
the file is replicated at 50 percent of the nodes, the number
of messages in the PQ protocol is more than an order of
magnitude greater than the worst case ðk ¼ 100Þ of the RE
protocol. This shows that the RE is more resilient to the
number of duplicates in the network.

3.1.2 Load Distribution

We evaluate the load at each node in the system with
respect to the number of messages handled. We study the
load when the percentage of duplicates is 50 percent and
k ¼ 100, which corresponds to the highest load among the
different parameters studied. Fig. 5 shows the number of
messages handled by each node. For each approach, the
nodes are sorted independently based on the number of
messages processed. We only compare the nodes in the
figure based on its ranking, ranked by the number of
messages processed in the two approaches. The load per
node is greater using the PQ protocol than RE due to the
larger number of total messages in the former case. Recall
that RE eliminates roughly half the contenders at each
round, thus significantly reducing the number of messages
processed in subsequent rounds.

The load is evenly spread across all nodes in the system for
the PQ approach. We can see that the biased random walk
using the Metropolis-Hastings algorithm is able to select
peers uniformly from the network. We refer the reader to [2]
for a survey of uniform sampling algorithms and an extensive
evaluation of their parameters. For the RE approach,
however, we observe a slight discrepancy in which a small
set of nodes process more messages. This is due to an
optimization we use in the implementation of the protocol.

The winners of each round should pick new sets of mediators
in a way that any node can be selected uniformly from the
network. However, in our simulation, the winners include the
same set of mediators from a previous round in the set of
mediators for the new round and only select additional nodes
from the network to satisfy the number of mediators for the
new round. Therefore, the mediators picked by the nodes that
eventually retain the files must process more messages than
the rest of the nodes in the system. This simple optimization,
however, does not interfere with the accuracy of the protocol,
as discussed below.

3.1.3 Different Objects

In a second experiment, we evaluate how the two schemes
scale to the number of different objects in the network. We
install different objects in the network with different levels
of popularity for each object. The number of different
objects is varied as a function of the number of nodes in the
network. We vary this value from 1 percent of the number
of nodes up to 200 percent. In this experiment, the
maximum number of different objects is, therefore,
100,000. For each object, we place a different number of
replicas. The number of replicas is varied from 10 percent
up to 50 percent of the nodes. We perform a single election
for each experiment using aggregation, instead of one
election per object. We assume that each message can store
a maximum of 20 file descriptors. If a node has more than
20 different files, multiple messages have to be sent to the
mediators. Fig. 6 shows the comparison of the two protocols
in terms of number of messages sent in the network. The
number of messages sent by RE is divided by the number of
messages sent by PQ. We can see that RE performs much
better than PQ when the number of different objects in the
network is relatively small, sending less than 20 pecent of
the number of messages sent by PQ in the best case shown.
As the number of different objects increases, PQ outper-
forms RE. This result is expected since a single election is
performed and a node with multiple objects may lose in the
first phase for some objects, but still go to the second phase
with other objects. Since the second phase of RE is an
execution of PQ with an expected smaller number of
contenders, if the contenders are not pruned due to
different objects, the second phase of RE may, in the worst
case, include all the initial contenders. In this case, the first
phase becomes an extra overhead.
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Fig. 4. Total number of messages in the system versus percentage of

duplicates.
Fig. 5. Number of messages received per node (Y-axis in log scale).



3.1.4 Accuracy of the Protocols

The eventual goal of both protocols is to delete all duplicates
while retaining k copies in the network. To evaluate how
close each protocol gets to this goal, we fix the object
popularity to 1 percent (500 copies) and vary k from 1 to 100.
In 10,000 different runs with different seeds, the number of
copies left in the network matched the values of k in
99.8 percent of the runs. This indicates that both protocols
are highly accurate in achieving the target replica count.

3.2 PlanetLab Experiment

Although PlanetLab is smaller than what we would expect
from a large-scale storage system (and what our simulation
results measure), it is nonetheless a useful testbed for
evaluating the performance of our application and addres-
sing important issues that arise in real implementations that
are not captured in a simulation study. These include
memory requirements and realistic message delays. In
PlanetLab, nodes are spread around the world and are
connected to the Internet with varying bandwidths. The
message delays are actual processing and network delays
and mimic the delays that a large scale application would
encounter in a real scenario. Nodes in PlanetLab consist of
PCs with Pentium IV processors with at least 512MB of
RAM and run Linux as their operating system [23].

In our experiments, we use a separate application
(command center) to control data collection and initializa-
tion of the nodes. The command center informs the nodes
which file systems they should use and how they should
connect to each other. The number of (overlay) connections
at each node is generated using a zipf-like distribution.
Once the nodes are connected, the command center informs
the nodes that they can start the elimination protocol. After
receiving the start notification, the nodes wait for a random
time interval before starting the elimination protocol.

3.2.1 File Traces

The file traces we use in our experiments are data sets
obtained from [9]. These traces correspond to 10,568 file
systems from 4,801 Windows machines in a commercial

environment. The trace contains information about
140 million files with total storage requirement of 10.5 TB.
The trace does not contain file contents, only the names and
the sizes in bytes of the files. For our experiments in
PlanetLab, we were able to consistently acquire 250 nodes
to run our application; we run four processes per machine,
resulting in a network with 1,000 peers. We randomly
choose 1,000 file systems from the trace and assign one file
system to each process. We process the obtained trace to
eliminate any duplicates within the same file system and,
thus, our results do not reflect duplicate elimination of files
that belong to the same file system.

A unique ID of 20 bytes is generated for each file within
the file system by hashing the file name plus the file size.
The file systems are assigned at random to the PlanetLab
nodes without considering the storage, bandwidth, and
processing power of the nodes, or any specific topological
relationship among the nodes. We assume these traces
correspond to backed up data on the peers that are subject
to duplicate elimination. The characteristics of the file
systems used in our experiments, as well as the other
parameters are shown in Table 1.

3.2.2 Experimental Results

Our main goal in the PlanetLab experiments is to measure
administrative overheads, such as memory usage and
messages processed, in a realistic scenario. Since RE is a
more complex protocol and includes PQ as its second phase,
we show only the results for RE. Our experiments examine
the effectiveness and overheads of the protocol as the
minimum file size for duplicate elimination is varied. Files
below a minimum size are not considered by the protocol. The
minimum file size is varied from 1 KB to 10 MB. The following
parameters are investigated in our experiments:

. Total Space Reclaimed: This reflects the total
amount of space reclaimed in the entire system.
We show this value to be close to optimal, which is
the sum of all the sizes of all unique files in the
system.

. Communication Overhead: This indicates the total
number of messages including REQUEST_TO_KEEP,
ACK, and NAK messages in the system.

. Storage per node: This parameter gives the file size
distribution with respect to the nodes in the system.
At the end of the protocol, the space used at each
node should decrease as a percentage of the number
of duplicates it originally held.

. Memory Overhead per node: Each node in the
system can potentially act as a mediator. Measuring
memory load, the maximum memory used at any
point of the execution, helps us in identifying the
additional memory needed by the system to support
the protocol.

Fig. 7 presents the main results of the experiments. We
calculate the initial storage system size by obtaining file
system sizes from each node. Similarly, from the file
systems used, we find the number of unique files separately
for all the file systems used and the corresponding storage
size. The unique storage system size is the optimal storage
size. The initial and unique storage system sizes are
represented by horizontal lines in the figure. We perform
the RE protocol for varying minimum file sizes, from 10 KB
to 10 MB. Only files greater than the established minimum
file size are considered for duplicate elimination. Upon
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Fig. 6. Comparison of the number of messages sent by the two
elimination algorithms. The X-axis shows the number of different objects
as a function of the number of nodes in the network. The number of
different objects is varied from 0.01 to 2.00 times the number of nodes in
the network. The Y-axis show the comparison of the two algorithms, the
total number of messages sent by RE is divided by the total number of
messages sent by PQ. The different curves represent the number of
copies of each object as a function of the number of nodes in the network.



conclusion of the protocol, we obtain the final file system
sizes for each node and compute the final storage system
size. As the figure shows, with an increase in the minimum
file size, the final storage size deviates from the optimum
storage. When the minimum file size is 10 KB, the final
storage size is close to the optimum, which is around
50 percent of the initial storage size. In other words, the
protocol performs better when the percentage of files
considered for duplicate elimination increases, as expected.

The total number of messages processed in the system is
also presented on the right Y-axis of the figure. With an
increase in the minimum file size, the number of messages
exchanged in the system reduces. The presence of the
messages processed along with the final storage space gives
an approximate estimate of the minimum file size that
needs to be used. For example, when the minimum file size
is set at 100 KB, the number of messages processed is quite
low with final storage space slightly deviating from the
optimum storage space. There is a clear trade-off between
the space reclaimed as a function of the minimum file size
and the message overhead. By increasing the minimum file
size, the message overhead is reduced, but the number of
duplicates in the system is increased.

We also study the amount of storage reclaimed per node.
Fig. 8 presents the initial storage requirement for each node
in the system. The results for minimum file size of 10 K and
500 K are shown in the figure. We use only these two for
clarity in presentation. The results for other minimum file
sizes show a similar pattern. It is clear that, for both
minimum file sizes, the amount of storage per node
decreases for the majority of the nodes. Furthermore, the
storage reclaimed per node when the minimum file size is
10 K is greater than when it is 500 K. This is due to the
elimination of a larger number of smaller-sized files.

The amount of memory consumed per node as a
mediator is shown in Fig. 9. The nodes are sorted based
on the amount of memory consumed and the experiment is
executed for different minimum file sizes. When the
minimum file size is 10 K, the average amount of memory
consumed across all nodes is approximately 7 MB. Though
most of the nodes have similar memory consumption, there
are a few nodes that have more memory overhead. This is
similar to the observations made in the simulation results.
Mediators that are part of the mediator sets for the nodes
that eventually keep the file receive more messages than the

rest. The same observations made in Section 3.1.2 about our
implementation apply in this case. Observe, though, that
the deviation from average is not significant. The memory
consumed reduces with increase in the minimum file size,
which is due to fewer number of files selected for duplicate
elimination. Due to the uniform selection of mediators, the
memory consumed per node is not correlated to the initial
storage size per node. Recall that the initial storage at each
node is nonuniform (Fig. 8).

We evaluate the total number of messages processed per
node with varying minimum file size in Fig. 10. For smaller
minimum file size, the number of messages processed per
node is relatively higher than that for larger minimum file
sizes. This corresponds to the total message complexity as
shown in Fig. 7. The nonuniformity in the number of
messages processed per node for a given minimum file size
can be attributed to the nonuniform nature of the initial
storage distribution.

4 RELATED WORK

The duplicate elimination problem for wide-area storage
systems has been addressed by Douceur et al. [8]. They
develop SALAD, a Self Arranging, Lossy, Associative
Database, which is a distributed data structure to aggregate
file content and location information. The database is
distributed across machines, where each machine is a leaf
and a group of leaves form a cell. Records are sorted into
buckets and buckets are assigned to a cell. By building this
data structure, an underlying structure is formed and must
be maintained. This is similar to the distributed indexing
approach present in many popular structured peer-to-peer
networks [30], [25]. We address the more general problem
of eliminating duplicates without making any assumptions
on the structure of the overlay network.

Pastiche [6] is a peer-to-peer backup system where each
peer tries to minimize storage overhead by selecting peers
that share a significant amount of data. The problem of
greedy hosts was identified in [6] and solutions have been
proposed. These solutions are based on equivalence classes,
solution of cryptographic puzzles, and various forms of
electronic currency. These solutions tend to be complicated
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TABLE 1
PlanetLab Experiment System Parameters

Fig. 7. The X-axis represents the minimum file size for which the
duplicate elimination was performed, the Y-axis scale on the left
represents the system storage size, the Y-axis scale on the right
represents the total number of messages processed in the system. Initial
and final storage system sizes along with the unique storage size are
also shown.



and involve significant overhead. Cox and Noble [7] revisit
this problem and propose Samsara, a fairness enforcement
mechanism. In this scheme, each peer that requests storage
space from another peer must agree to reserve some space
in its own disk to the peer it is requesting the storage from.
The scheme addresses the problem of greedy peers, but
provides no solution to the problem of common data that
are highly replicated by different peers in the network.

Lillibridge et al. [18] propose a cooperative peer-to-peer
backup system. The problem of cheating peers is addressed
using periodic random challenges to ensure peers hold the
data they committed to store. There is no mechanism for
identifying and removing duplicate data in the system.

A number of researchers have addressed the problem of
duplicate data elimination in storage systems. Kulkarni
et al. [17] proposes a Redundancy Elimination at the Block
Level (REBL) scheme to eliminate redundant data. This
approach uses data compression, duplicate block suppres-
sion, and delta encoding among other techniques. Policro-
niades and Pratt [24] study three different techniques:
whole file content hashing, fixed size blocking, and a
chunking strategy that uses Rabin fingerprints to discover
identical portions of data. Both [17] and [24] focus on
eliminating redundancy within a single site. Our work is

aimed at eliminating redundant data from a wide-area
unstructured storage system with multiple sites. We can
certainly employ the techniques presented in these other
efforts before executing our protocol so that duplicates
within a site are eliminated. Our current implementation
uses content hash of entire files. However, it can be
extended to eliminate duplicates at the block level, but
with an added communication cost.

Bolosky et al. [4] address the problem of multiple copies
of the same file in a file system. The Single Instance Store
(SIS), a component of Windows 2000 that implements links
with the semantics of copies for files, is proposed. SIS uses
copy-on-close to implement the copy semantics of its links.
This again is a solution that manages space within a single
site, while our paper solves the problem of managing space
efficiently across multiple sites.

5 CONCLUSION

This paper addresses the problem of duplicate elimination
in storage systems in the context of unstructured peer-to-
peer networks in which there is no a priori binding between
an object and its location. We abstract the problem of
retaining a copy of a data item to one of electing leaders in a
distributed system. We show analytically, as well as using
simulation and a prototype implementation in PlanetLab,
that our protocols are scalable with respect to message
complexity and to node resource utilization. The experi-
mental results show that RE performs better than PQ when
the number of duplicates in the network is high and the
content is similar among the nodes. When the number of
different objects in the network is high (nodes have unique
objects), PQ performs better than RE. The reason for this
behavior is that the first phase of RE is not able to prune the
number of contenders and, therefore, becomes an extra
overhead. To the best of our knowledge, our work is the
first to address the duplicate elimination problem in
unstructured networks.
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Fig. 8. Storage size per node for varying minimum file sizes. Nodes are

sorted based on the initial file size.

Fig. 9. Memory overhead (in MB) per node for varying minimum file

sizes. Nodes are sorted based on the memory overhead.

Fig. 10. Messages processed per node with varying minimum file sizes.

Nodes are sorted by the number of messages processed.
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