
ReDAL: An Efficient and Practical
Request Distribution Technique for

Application Server Clusters
Kaushik Dutta, Member, IEEE, Anindya Datta, Member, IEEE, Debra VanderMeer, Member, IEEE,

Helen Thomas, Member, IEEE, and Krithi Ramamritham, Fellow, IEEE

Abstract—Modern Web-based application infrastructures are based on clustered multitiered architectures, where request distribution

occurs in two sequential stages: over a cluster of Web servers and over a cluster of application servers. Much work has focused on

strategies for distributing requests across a Web server cluster in order to improve the overall throughput across the cluster. The

strategies applied at the application layer are the same as those at the Web server layer because it is assumed that they transfer

directly. In this paper, we argue that the problem of distributing requests across an application server cluster is fundamentally different

from the Web server request distribution problem due to core differences in request processing in Web and application servers. We

devise an approach for distributing requests across a cluster of application servers such that the overall system throughput is

enhanced, and load across the application servers is balanced.

Index Terms—Distributed systems, performance evaluation, Web-based services, client/server and multitier systems, electronic

commerce, middleware/business logic.

Ç

1 INTRODUCTION

REQUEST distribution in clustered environments is an
important problem that has been studied in a number

of different contexts. In this paper, we are interested in
developing effective techniques for distributing requests
to a cluster of application runtimes such as the Java
Virtual Machine (JVM) for Java Enterprise Edition (EE)
applications and the Common Language Runtime (CLR)
for Microsoft.NET applications.

Modern application infrastructures are based on clus-

tered multitiered architectures. Fig. 1 shows a typical

architecture for a Web-based application, one recom-

mended as a “best possible” architecture [1].
In Fig. 1, there are two significant request distribution

points. First, the Web switch must distribute incoming

requests across a cluster of Web servers for HTTP processing.

Subsequently, these requests must be distributed across the

application server cluster for the execution of application

logic. To distinguish between these two steps, we will refer to
them as the Web Server Request Distribution (WSRD) problem
and the Application Server Request Distribution (ASRD)
problem, respectively. In this paper, we develop an effective
ASRD technique for session-intensive applications. ASRD
and WSRD differ greatly in the dynamics of work involved in
serving a request (as described in [2]): Serving application
requests require much more dynamic decision making than is
required for Web server requests.

1.1 Related Work

Extensive literature dealing with the WSRD problem exists,
and significant commercial value has been realized from
this work such as Cisco’s LocalDirector [3] and F5
Network’s BIG-IP [4]. These approaches are variants of
the Weighted Round Robin (WRR) approach [5].

In some commercial products [6], [7], content-based
routing schemes are supported, which route requests based
on information contained in the HTTP header. These
techniques do not consider the impacts of statefulness in
applications and are thus orthogonal to our work. Typically,
content-based routing is used to segment requests across
geographically dispersed environments, multiple applica-
tion domains, etc.

The only strategies, to the best of our knowledge, that
are not WRR variants are the Locality-Aware Request
Distribution (LARD) algorithm [8] and the Client/Session
Affinity schemes, both of which are based on some form
of locality with respect to the servers. The LARD strategy
attempts to route tasks to exploit the locality among the
working sets of received requests (for example, cache sets
on different Web servers), whereas the affinity-based
schemes distribute requests to exploit the locality of
session or state data. Elmeleegy et al. [9] consider the

1516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

. K. Dutta and D. VanderMeer are with Decision Science and Information
Systems, College of Business, Florida International University, 11200 SW
8th Street, Miami, FL 33199.
E-mail: {Kaushik.Dutta, debra.vandermeer}@fiu.edu.

. A. Datta is with the School of Information Systems, Singapore Manage-
ment University, 80 Stamford Road, Singapore 178902.
E-mail: anindya@smu.edu.sg.

. H. Thomas is an independent consultant, 453 Alberta Court, Moab, UT
84532. E-mail: thomas.helen.m@gmail.com.

. K. Ramamritham is with the Department of Computer Science and
Engineering, IIT Bombay, Powai Mumbai 400076.
E-mail: krithi@iitb.ac.in.

Manuscript received 26 Sept. 2005; revised 29 Dec. 2006; accepted 18 Apr.
2007; published online 7 May 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0413-0905.
Digital Object Identifier no. 10.1109/TPDS.2007.1105.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

extension of the LARD technique to the application
server’s Enterprise Java Beans (EJB) layer to take
advantage of EJB data caching where possible.

The bulk of ASRD, in practice, is based on a combination
of Round Robin (RR) and Session Affinity routing schemes
drawn directly from WSRD techniques (for example, [10]).
More specifically, the initial requests of sessions (for
example, the login request at an airline Web site) are
distributed in an RR fashion, whereas all subsequent
requests are handled through Session-Affinity-based schemes,
which route all requests in a particular session to the same
application server. A user’s session state, which stores
information relevant to the interaction between the user and
the Web site (for example, user profiles or a shopping cart),
is usually stored in the process memory of the application
server that served the initial request in the session and
remains there while the session is active: Only the
application server instance where the session resides can
service requests for that session.

There is scant treatment of ASRD in the research
literature. Approaching load balancing as a variant of the
dynamic scheduling problem, techniques from the schedul-
ing field (for example, [11]) may be applicable here. Some
work in the literature [12] takes this approach, proposing
the application of optimization techniques to the problem of
providing different classes of services (for example,
standard and premium services) in the context of Web
services.

Although we can think of the ASRD problem as a variant of
the dynamic scheduling problem at a high level (our
technique will use a variant of the shortest-queue-first
approach), a straightforward application is difficult. Vir-
tually all dynamic scheduling techniques [13] presuppose
some knowledge of the task (for example, duration or
weight), the resource (queue sizes, service times, and so
forth), or both. This assumption really does not work in our
case because both the tasks and the resources are highly
dynamic. Moreover, the scalability requirements of ASRD are
such that any technique usable in practice must have only
negligible overheads. The most direct work comparable to
ours that we were able to discover is [2], in which the authors
show that system resource usage is not a good indicator of
load on an application. The authors suggest that a better basis
for determining load might be the number of active requests
on an application and propose a load balancing technique for

application requests based on a “least-active-requests”
routing policy. We refer to this as the HJ technique
throughout the remainder of the paper. Although the authors
make a good point in showing that system resource usage is
not a strong basis for an ASRD technique, their load balancing
technique has a significant limitation in that it is not
applicable to stateful applications. Stateful session-based
interactive applications form a large class of applications; for
example, a login-based Web application is interactive and,
therefore, stateful. Our approach considers the stateful case.
To summarize, ASRD techniques, in practice, virtually
always utilize WSRD policies, and there does not appear a
good candidate for use in ASRD scenarios in the research
literature.

1.2 Issues in Applying WSRD Strategies to the
Application Layer

It is important to understand why WSRD strategies at the
ASRD layer are suboptimal and, in many cases, ineffective. The
key reason for this is that Web servers and application
servers are fundamentally different entities, and therefore,
the same notions of what constitutes a “loaded” server do
not apply, as demonstrated in [2]. We highlight three key
differences here to illustrate the reasons for this.

First, the biggest difference is in the determinism of the
work performed. Web servers do well-defined and quantifi-
able work, for example, processing HTTP headers and
serving static content. Application servers, on the other
hand, run multilayer ad hoc programs, which might be
dependent on data obtained from outside the application
layer infrastructure. Thus, serving a request to an applica-
tion server is significantly more complex than at the Web
server layer, evidenced by the fact that the application
server cluster saturates well before the Web server cluster in
most dynamic applications.

The second issue is the degree to which observing the system
yields insights into its load level. System observation is a key
component of most effective WSRD policies such as
WRR policies. Consider, for instance, the fact that a Web
server that is running at 30 percent of CPU would be
considered “lightly loaded” (compared to one running, say
at 50 percent) by most WSRD policies. Although such a
judgment is quite accurate in the case of a Web server, it often
breaks down when applied to an application server. For
instance, an application server running at 30 percent of
CPU might be experiencing low CPU utilization simply
becauseabulkof itsactive threadsare “blocked”(forexample,
waiting for database query results). In contrast, another
application server in the same cluster running at 50 percent of
CPU may actually be less loaded, as it might possess a greater
number of free threads. Note that although we used
CPU utilization as the discussion metric in the above example,
our arguments apply to any WSRD metric.

Third, since it is difficult, if not impossible, to determine the
work required for a request based on the characteristics of the
request or system resource utilization, most WSRD techni-
ques that rely on such information simply will not work when
applied to ASRD. For this reason, most ASRD techniques use
simple RR to distribute requests representing new sessions.
Thereafter, requests for existing sessions are distributed to the
application server instance where the session’s data resides.

DUTTA ET AL.: REDAL: AN EFFICIENT AND PRACTICAL REQUEST DISTRIBUTION TECHNIQUE FOR APPLICATION SERVER CLUSTERS 1517

Fig. 1. Web application architecture.

Clearly, Session Affinity schemes provide certain distinct
advantages (such as state locality) identified previously.
However, these policies often result in severe load imbalances
across the application cluster due primarily to the phenomenon
of the convergence of long-running or high-resource-de-
manding jobs in the same servers.

The problem of load imbalance due to session affinity is
well known among practitioners and has received wide
treatment in the literature (for example, [14] and [15]).
Consider an application cluster having two application
servers A1 and A2 configured identically. Consider a
sequence of sessions arriving at the cluster such that
sessions are of two types: a long session S, which lasts
3 minutes, and a short session s, which lasts 1 minute.
Suppose that the following sequence of 10 sessions arrive to
the cluster and are distributed to A1 and A2 according to the
session affinity-RR policy: s1, s2, S3, s4, s5, S6, s7, S8, S9, and
s10, where the interarrival time between new sessions is
1 minute. This policy results in the load distributions for A1

and A2, as shown in Figs. 2 and 3, respectively.
Both figures show load, in terms of the number of active

sessions assigned, versus time (in minutes). During the time
interval spanning (4, 5), A1 reaches maximum capacity (two
active sessions), whereas A2 remains idle. A similar
situation occurs during the (7, 8) time interval. As this
simple example illustrates, a combined RR and Client/
Session Affinity strategy can easily create load imbalances
across the cluster.

Load imbalance is not the only issue inherent in a session
affinity scheme. There is also the issue of the lack of session
failover. This problem occurs because a session object resides
on only one application server. When an application server
fails, all of its session objects are lost, unless a session
failover scheme is in place. The two main session failover
schemes used are session replication, in which session objects
are replicated at one or more application servers in the
cluster, and centralized session persistence, in which session
objects are stored in a centralized repository (for example, a
database management system (DBMS)).

Effectively, these session failover mechanisms “virtua-
lize” a session’s data, making it available to any application
server instance in the cluster, thus enabling any server in
the cluster to service any incoming request. However, there
is a cost associated with moving a session object from one
server process to another, so it is beneficial to serve a
request on the server instance where the session’s data
already resides. The Request Distribution for the Applica-
tion Layer (ReDAL) approach attempts to optimize this

trade-off by servicing a request on the server instance where
the session data resides, unless a significant load imbalance
situation is detected, in which case the workload may be
transferred off a highly loaded server to a server experien-
cing lower load. We show the benefits of our approach
experimentally in this paper.

The remainder of this paper is organized as follows: In
Section 2, we present our ASRD approach. We evaluate the
performance of our approach and compare it with existing
ASRD policies experimentally in Section 3. Section 4
describes a real-life test of our proposed approach. Finally,
we conclude in Section 5.

2 THE REDAL APPROACH

The ReDAL approach attempts to minimize load imbal-
ances across application servers for stateful session-based
applications. To accomplish this, ReDAL augments the
traditional session-affinity-based schemes with three spe-
cific techniques.

First, we define a nonintrusive load estimation measure that
senses the relative load of an application server without
requiring instrumentation on the application server hard-
ware or software.

Second, based on these load measurements, we propose
a request distribution scheme that dispatches requests to the
affined servers when possible and to less-loaded applica-
tion servers when there is a significant load imbalance.

Third, in order to minimize the movement of session
data between application servers, we introduce a capacity
reservation scheme that attempts to estimate the near-future
expected load on an application server based on the
sessions residing on the server and to reserve future
capacity sufficient to service those sessions’ requests.

2.1 Intuition

In the ReDAL approach, we characterize an application
server as being in one of two states: 1) lightly loaded or
2) heavily loaded. We explain these characterizations by
using Fig. 4 (adapted from [7]), the upper portion of which
shows a typical throughput curve for an application server
as load is increased. Section A represents a lightly loaded
application server, for which throughput increases almost
linearly with the number of requests. This behavior is due
to the fact that there is very little congestion within the
application server system resource queues at such light
loads. Section B represents a heavily loaded application
server. Here, the response time increases proportionally to

1518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 2. Load distribution for application server A1. Fig. 3. Load distribution for application server A2.

the user load due to increased queue lengths in the
application server. Thus, as soon as this peak throughput
point or saturation point is reached, application server
performance degrades. We refer to the load level corre-
sponding to this throughput point as the peak load.

In order to determine the peak load at runtime, we do

not need to find the exact peak throughput point: we need

only determine where the rate of change of throughput with

load reaches zero by looking at the first derivative of the

throughput curve—effectively, the slope of the throughput

curve. We can generate a close approximation of the slope

of throughput curve at runtime by gathering two data

values at a configurable interval: 1) transactions per second

and 2) number of incoming requests. The lower portion of

Fig. 4 shows an approximation of the first derivative dfðxÞ
dx of

the throughput curve fðxÞ shown in the upper part of Fig. 4.

Here, dfðxÞdx is roughly linear in the early stages of Section A,

where the server is very lightly loaded. As the server begins

to experience congestion in the later stages of Section A, the

slope of fðxÞ begins to drop as load approaches its peak. In

this stage, dfðxÞdx drops toward 0 as fðxÞ approaches the peak

load. When fðxÞ reaches the peak load, dfðxÞdx reaches 0. With

this, we can designate a server to be lightly loaded if dfðxÞdx is

positive and heavily loaded if dfðxÞ
dx is 0 or negative.

At an implementation level, finding the point at which
dfðxÞ
dx reaches 0 requires a few tweaks to account for

burstiness in traffic, as well as the potential for differ-

ences in the average response times (ARTs; based on

resource usage) across different types of requests. The

following expression describes a more detailed view of

throughput on a server to help account for these issues:
dfðxÞ
dx �

P
8ðpÞ

dfpðxÞ
dxp
¼
P
8ðpÞ
Pm�1

i¼1

th
ðiþ1Þ
p �thip

count
ðiþ1Þ
p �countip

, where
dfpðxÞ
dxp

is the slope of the throughput curve for request type p.

In this expression, i represents an interval of time (where

the typical interval duration on in the order of a second),

and the sequence of m intervals represents the m most

recent time intervals from the current time, thip represents

the throughput achieved for a specific request type p

during an interval i, and countip represents the number of

requests for request type p that arrived during the

interval i. This expression allows us to normalize for

burstiness by considering the slope of the throughput

curve over a sliding window of time rather than at

distinct points in time. It also enables us to generate a

separate throughput curve slope per request type and

sum these values to get an estimate of the overall health

of the application server.

With respect to Fig. 4, we characterize a given applica-

tion server as either dispatchable or nondispatchable. A

dispatchable application server corresponds to a lightly

loaded server, whereas a nondispatchable application server

corresponds to a heavily loaded application server. At an

implementation level, this maps to the scenario where
dfpðxÞ
dxp
� 0 for most or all of the throughput curves for the

individual request types p.
The goal of the ReDAL approach, intuitively, is to keep

all application servers in its control under “acceptable”
throughput thresholds; that is, the goal here is not to “balance”
load per se, but rather to keep the cluster in a stable (not
overloaded) state as long as possible: balancing load is an ancillary
effect. Here, “balanced” load refers to the distribution of
requests across an application server cluster such that the
load on each application server is approximately equal.

The mechanism that the algorithm follows to achieve this
goal is explained as follows. At decision time, that is, when
a request needs dispatching, it attempts to send the request
to an affined dispatchable server (that is, the server where
the immediately prior request in the session was served),
failing which it attempts to send the request to the “least
loaded” dispatchable server, and finally, if the above two
conditions cannot be met, sends it to the “least loaded”
server overall. Clearly, we must first figure out the load
levels of servers, which we can then map to dispatchability.

ReDAL follows a capacity reservation procedure to judge
load levels. At an intuitive level, this capacity reservation
mechanism is based on two key premises. First, it assumes
that the think time or view time between user actions is
predictable based on past behavior. This is a valid
assumption: previous research (for example, [16]) on online
user behavior shows that think time is highly predictable.
Second, it assumes that session affinity, where consecutive
requests in a given user session are handled by the same
application server instance, will improve performance. We
show the validity of this assumption through the experi-
mental results in Section 3.

We now describe the capacity reservation procedure in
detail. Consider an application server Ak processing

DUTTA ET AL.: REDAL: AN EFFICIENT AND PRACTICAL REQUEST DISTRIBUTION TECHNIQUE FOR APPLICATION SERVER CLUSTERS 1519

Fig. 4. Typical throughput curve for an application server and its first

derivative.

y sessions. Assume that it is desired to keep the server
under a throughput of T . Further, it takes h seconds, on the
average, between consecutive requests inside a session (this
is referred to as think time) and that the system, at any
given time, considers the state of this application server
G seconds into the future. Given this information, for
tractability, let us partition the look-ahead period G into
C distinct time slices of duration d. Such partitioning allows
us to make judgments effectively: Given that we are
attempting to compute a decision metric (throughput in
this case), it is easier and more reliable to monitor this
metric over discrete periods of time rather than performing
continuous dynamic monitoring at every instant.

In terms of the capacity reservation procedure, given
y sessions in the current time slice, we assume that each of
these sessions will submit at least one more request. Clearly,
these requests are expected to arrive in a time slice h units
of time away from the current slice in time slice ch. This
prompts us to reserve capacity for the expected request in
this application server in ch. More accurately, when a
request r arrives at an application server Ak at time t,
assuming that this request belongs to a session S, we
reserve a unit of capacity (sufficient to service a request) on
Ak for the time slice containing the time instant tþ h. Note
that this reflects our desire to preserve affinity: we assume
that all requests for session S will ideally be routed to Ak.
Such rolling reservations provide a basis for judging
expected capacity at an application server. To dispatch a
request, if dispatching the request to the affined server is
not possible, then we check the different application servers
in the cluster to see which ones have the property that the
amount of reserved capacity in the current time slice is
under the desired maximum throughput T and choose the
least loaded server among them.

If all the application servers are found to be in the
nondispatchable state, then we have two options: 1) we can
send the request to the application server with the least load
at the current time or 2) we can delay the dispatching
decision until some server becomes dispatchable. Since the
overall system is not fully deterministic, the first dispatch-
able server may not be the server that would have been
chosen under option 1.

Thus, we consider two variations on our algorithm to
handle the case where no server is in a dispatchable state:
standard ReDAL and a modified version of ReDAL, which
we will call ReDAL-Wait (ReDAL-W). In the standard ReDAL,
the request is queued at the application server to which it was
dispatched until the application server has finished proces-
sing prior requests and has the capacity to service the request.
In ReDAL-W, the new request is not sent immediately to any
particular application server instance but rather placed into a
queue on the ReDAL request dispatcher. Requests in this
queue are dispatched to an application server only when an
application server becomes dispatchable. Delaying the
dispatching decision until a server becomes dispatchable
takes advantage of additional information available in the
future, specifically which application server instance be-
comes dispatchable first, allowing us to make a more accurate
dispatching decision than in the standard ReDAL case.

The above discussion, of course, does not account for
every practical issue. In reality, we have to account for
various other issues, for example, the fact that the current
request may actually be the last request in a session (in
which case the reservation that we have made is actually an
overestimation of the capacity required), and the fact that
we may have misestimated the think time for a particular
request. The full ReDAL algorithm takes care of these
practical issues.

2.2 System Architecture

The architecture of our proposed approach is similar to that
shown in Fig. 1. Our system consists of two main logical
modules: 1) the Application Analyzer and 2) the Request
Dispatcher. The Application Analyzer and Request Dis-
patcher reside together on the Web server as a plug-in
(denoted as circles within the Web servers in Fig. 1).

The Application Analyzer is responsible for characterizing
the behavior of an application server as dispatchable or
nondispatchable. This module monitors each application
server’s throughput to generate a close approximation of
the slope of the server’s throughput curve fðxÞ and
designates a server as dispatchable if dfðxÞ

dx is positive and
nondispatchable if dfðxÞ

dx is zero or negative (we remind the
reader that, as noted earlier in this section, it is not
necessary to generate the exact throughput curve for an
application server: we only need the slope of the curve).
These values are used by the Request Dispatcher module,
which we describe next.

The Request Dispatcher is responsible for the runtime
routing of requests to a set of application servers according
to our proposed request routing policy. To accomplish this,
the Request Dispatcher monitors the expected and actual
load on each application server. Upon receiving a request,
the Request Dispatcher first determines whether the request
is part of an existing session. If so, it will direct the request
to the application server owning the session, as long as the
affined server is in a dispatchable state. Otherwise, it will
send the request to the application server having the lowest
expected load. Requests that initiate a new session are also
routed to the least loaded application server. Though not
shown in Fig. 1, we assume that there is a session
virtualization mechanism (as described in Section 1) in
place to enable session failover.1

2.3 Technical Details

We consider a set of application serversA ¼ fA1; A2; . . . ; Ang
configured as a cluster, where a cluster is a set of application
servers configured with the same code base and sharing
runtime operational information (for example, user sessions
and EJBs). For the sake of simplicity, we assume that each
application server Ak ðk ¼ 1; . . . ; nÞ is identical, though our
approach also applies in the case of heterogeneous applica-
tion servers. A request r is a specific task to be executed by an
application server. We assume that each request is part of a
sessionS, where a session is defined as a sequence of requests
from the same user or client. In other words, S ¼< r1;S; r2;S;
. . . ; rs;S > , and rj;S denotes the jth request in S. A set of Web

1520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

1. Such mechanisms are provided with virtually every commercial
application server, either as a native feature or through the use of a DBMS.
Third-party solutions are also available.

servers W ¼ fW1;W2; . . . ;Wng dispatches application re-
quests to the application servers in A. Based on this
foundation, let us define some notions that will be used in
our algorithmic description.

Think time ðhÞ is defined as the time between two
consecutive requests rj;S and rjþ1;S , measured in seconds.
Think time is computed as a moving average of the time
between consecutive requests from the same session
arriving at the cluster. The moving average considers the
last g requests arriving at the cluster, where g represents the
window for computing the moving average and is a
configurable parameter.

A time slice ðciÞ is defined to be a discrete time period of
duration d (in seconds, where d is greater than the time
required to serve an application request), over which we
record measurements for throughput on each application
server. We consider a finite number of such time slices
C ¼ fc0; c1; . . . ; cC�1g, where c0 represents the current time
slice, each ci ði ¼ 0; . . . ; C � 1Þ represents the ith time slice,
and C allows sufficient time slices for reservations h sec in
the future, that is, C ¼ dhde. The C time slices are organized
in a cycle of time slices for each application server, as shown
in Fig. 5. Each time slice will have an associated set of two
load metrics, actual load and expected load, which are
updated as new requests arriving and as existing requests
are served.

The actual load ðltkÞ of an application server Ak at time t is
defined as the number of requests arriving at Ak within a
time slice ci such that t 2 ci (we drop the t superscripts
when t is implicit from the context). Intuitively, ltk maintains
the count of requests that have been assigned to application
server k within the current time slice ci. For example, if
10 requests have been assigned to application server k since
the start of ci, then ltk ¼ 10.

Consider a request rj of a session S arriving at time tp.
The predicted time slice cq of the subsequent request in the
session, that is, rjþ1, is the time slice containing the time
instant tp þ h such that the request rjþ1 is predicted to arrive
at the time instant tp þ h.

The expected load ðeki Þ of an application server Ak for the
time slice ci is defined as the number of requests expected to
be served by Ak during the time slice ci. The expected load
is determined by accumulating the number of requests that
a given application server should receive during ci based on
the predicted time slices for future requests for each active
session associated with Ak.

Fig. 6 helps illustrate how the expected load is
determined. The figure shows a linear view of a partial
cycle of time slices. Each time slice has an expected load
counter. For instance, consider the cycle for Ak. Here, ek0
represents the expected load counter for the current time

slice ðc0Þ, ek1 the expected load counter for time slice c1, and
so on. Suppose that request r1 in a particular session
occurred at time t1, as shown in the figure. From the think
time ðhÞ, we can determine the time slice in which request
r2 is expected to arrive. Suppose that, based on the think
time, it is determined that request r2 will arrive at time t2,
which occurs in time slice c2 (refer to Fig. 6). Then, ek2, which
is the expected load for time slice c2, is incremented by 1.
This effectively reserves capacity for this request on Ak

during c2.
Since predicted time slices are not guaranteed to be

correct, we may need to adjust the expected load to account
for incorrect predictions. An incorrectly predicted request
may arrive either 1) in a time slice prior to its predicted time
slice or 2) in a time slice subsequent to its predicted time
slice. In the former case, we simply decrement the expected
load counter for the predicted time slice upon observing the
arrival of the request in the current time slice. For example,
referring to Fig. 6, suppose that request r2 actually arrives
during the current time slice ðc0Þ. In this case, the actual
load l for the current time slice is incremented, whereas the
expected load ek2 for time slice c2 is decremented. This
effectively cancels the reservation for this request on the
application server during the future time slice.

In the case where a request arrives subsequent to its
predicted time slice, we have no way of knowing about this
error until we reach the end of the predicted time slice. We
can only estimate that this type of error will occur with a
certain frequency. We account for this type of error in our
modified load metric mk for application server Ak, defined as
mk ¼ ltk þ �ek0, where � ð0 < � � 1Þ is an expected load
factor, which adjusts for requests that arrive after their
predicted time slices.

Setting an optimal value of � requires first estimating the
think time and then adjusting � for the correctness of that
estimate. There are multiple methods of estimating the think
time in the literature, for example, based on the analysis of
Web logs [17] or logs generated with an HTTP packet sniffer
[18]. Such logs provide data on the interarrival times for user
requests, that is, think time. Finding the correctness of the
think time estimates generated from such logs can be done
with standard train and test techniques drawn from artificial
intelligence, that is, using two data samples, where an
estimate of the think time is generated using the first sample
and tested using the second sample to obtain a value for
correctness of the think time estimate. For applications where
the think time estimate is very accurate, higher values of� can
be used (for example, � ¼ 0:9). The value of � should be
reduced as the correctness of the think time estimate becomes
less accurate.

DUTTA ET AL.: REDAL: AN EFFICIENT AND PRACTICAL REQUEST DISTRIBUTION TECHNIQUE FOR APPLICATION SERVER CLUSTERS 1521

Fig. 5. Cycle of time slices.

Fig. 6. Load metrics.

We briefly summarize the above-described load metrics.
For a given application server, we maintain an expected
load counter for each time slice. For the current time slice,
we record the actual load by observing the number of
requests served by the application server. We then compute
the modified load for the current time slice by summing the
actual load and the adjusted expected load (adjusted to
account for prediction errors).

2.4 Handling Multiple Web Servers

The preceding discussion focused on the load metrics
maintained by a single Web server. In the best practices
recommended architecture [1], each Web server dispatches
requests to a separate cluster, so there is no need to share load
metrics across Web servers. However, in practice, there are
multi-Web server environments (for example, as depicted in
Fig. 7) in which multiple Web servers dispatch requests to the
same application server cluster. Since each Web server runs
its own instance of the Request Dispatcher, we must ensure
that each Request Dispatcher accesses the same global view of
load metrics. To accomplish this, each Request Dispatcher
maintains a synchronized copy of the global view of load
metrics. This global view is updated via a multicast
synchronization scheme, in which each Request Dispatcher
periodically multicasts its changes to all other Request
Dispatcher instances. This data sharing scheme allows all
Request Dispatcher instances to operate from the same global
view of load on the application servers and yet allows each
instance to act autonomously. Another issue that arises in a
multi-Web server environment is computing the think time,
given that consecutive requests from the same session may be
sent to a different Web server. To address this issue, each Web
server, upon sending an HTTP response, records the time that
the response is sent in a cookie. Thus, if a subsequent request
from this session is sent to a different Web server, then the
new Web server can retrieve the time of the last response and
use it to compute the think time.

It should be noted that this synchronization scheme adds
very little overhead to the system, both in terms of network
communications overhead and processing overhead. The
communications overhead depends on the number of
application servers, the number of time slices, and the
storage space needed for the load metrics. The number of
Web servers is not included in this computation because in
a multicast network, the number of recipients of a message
(here, Web servers are the recipients) does not matter: the
message is broadcast once, and all recipients receive it. To

reduce the potential for multiple Web servers to assign
requests to the same “least loaded” server, the multicast

interval should be set to ensure that synchronization of load
metrics occurs multiple times per time slice.

For example, consider an application environment

having 50 application servers and a think time ðhÞ of
60 seconds.2 If we assume a time slice duration ðdÞ of

5 seconds, then the number of time slices ðCÞ is 60=5 ¼ 12.
The load metric value and the current throughput value can

each be stored as 1-byte integers. Since there is only a single
value for each of the actual load and current throughput

values, synchronizing this data across the Web server plug-
ins requires transmitting 2 bytes for each of the 50 applica-

tion servers and thus incurs 100 bytes of synchronization
overhead. Transmitting the expected load requires sending

12 bytes (1 byte for each time slice) for each of the
50 application servers, incurring 600 bytes of synchroniza-

tion overhead. Thus, the total synchronization overhead
incurred for a Web server cluster, summing the overheads

for actual load, current throughput, and expected load, is
700 bytes per transmission per Web server. Considering the

overhead for the Ethernet protocol (42 bytes), Internet
Protocol version 4 (IPv4; 20 bytes), and User Datagram

Protocol (UDP; 8 bytes) [19], the total network overhead per
Web server becomes 770 bytes per transmission. If we
assume a UDP multicast interval of 1 second and five Web

servers (to serve the 50-application-server cluster), then the
maximum overhead possible at any given time is 30.8 kilo-

bits per second (Kbps), which is negligible (less than
0.03 percent) in the context of the total capacity of a

network of 100 megabits per second (Mbps; and far less on
gigabit networks, which are becoming increasingly pre-

valent in enterprise application infrastructures).
With regard to processing overhead, a given Request

Dispatcher performs n� C operations to apply the updates

that it receives from another Request Dispatcher. Since each
Request Dispatcher applies the changes that it receives to its

own copy of the global view array, there is no locking
contention.

A second potential issue can arise in the scenario where

multiple Web servers dispatch requests to the same
application cluster (as depicted in Fig. 7). In such a scenario,

if a very large number of requests for new sessions arrive
within this time interval, all the new requests will be sent to

the same least loaded application server. To prevent this
from occurring, we implement a simple estimation scheme

in the Web servers, assuming a uniform distribution of this
large number of requests for new sessions across the Web

server cluster. Here, each Web server in the cluster
maintains a separate estimated actual load value between

updates. For each request requiring a new session arriving
at a given Web server instance, the instance assumes that a

similar request has arrived on all other clusters and
increments the actual load for the least loaded application

server by 1 and the estimated actual load by the size of the
cluster. This estimate is reset every time the updated load

values arrive from the other Web servers in the cluster.

1522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

2. These values were obtained from a major Web retailer.

Fig. 7. Web application architecture with a single application server

cluster.

3 EXPERIMENTAL RESULTS

In this section, we show the runtime performance of the
ReDAL algorithm with a set of experimental results,
comparing it to a widely used existing technique,
specifically a commercial implementation of the RR
scheme and the HJ load balancing scheme. We consider
two cases for the ReDAL algorithm with two different
settings for the � parameter, ReDAL�ALPHA ¼ 0:9 and
ReDAL�ALPHA ¼ 0:5, to show the impact of varying
�.3 Here, higher values of � take greater advantage of
ReDAL’s reservation scheme than lower values.

In this, we are interested in five particular questions:

1. How does the throughput performance compare
a c r o s s t h e R R , H J , ReDAL�ALPHA ¼ 0:5,
ReDAL�ALPHA ¼ 0:9, a n d ReDAL�W �
ALPHA ¼ 0:9 algorithms?

2. How does the response time performance compare
across the RR, HJ, ReDAL�ALPHA ¼ 0:5,
ReDAL�ALPHA ¼ 0:9, a n d ReDAL�W �
ALPHA ¼ 0:9 algorithms?

3. How does each of these policies impact the CPU
resource utilization on the Web server?

4. How does ReDAL impact CPU overheads on the
application server?

5. How is application server scaling affected by
ReDAL?

3.1 Experimental Architecture

Our experiments were run using the general architecture
described in Fig. 1, with the addition of a load generation
tool to simulate user requests and a session clustering
mechanism. As the topology described in Fig. 1 is
described as the “best possible topology” by the IBM
WebSphere scalability documentation [1], we primarily
focus on this topology. Later in this section, we also
demonstrate the impact of the topology depicted in Fig. 7
on our ReDAL approach.

The experimental environment consists of a LoadRunner
v6 load generator [20], which simulates client requests,
several Apache HTTP server v2.0 [21] Web server instances,
and several WebLogic server v7.1 [10] application server
instances. The numbers of Web server and application
server instances that we use in our experiments are
described in Table 1. We use two Oracle 10-Gbyte [6]
database servers.

Of the two database servers, one stores application data.
The other serves as a session object repository, which
ensures that all session objects are accessible from each
application server instance. Session access is implemented
as an override of the HttpSession object, which connects to
the database to read and write the session data, if not
already residing in the application server’s memory space.

We have implemented the ReDAL algorithm as an
Apache Web server plug-in module, written in C++. For
the RR algorithm, we use the WebLogic Apache plug-in

module, which implements a round-robin dispatching
policy. We have implemented HJ as an Apache plug-in,
adding support for statefulness (not addressed in [2])
through calls to an external session object repository.

The Transaction Processing Performance Council
benchmark W (TPC-W) [22] is used in all experiments.
The TPC-W application is an online bookstore. One
Oracle database 10-Gbyte server is used to store the book
and transactional data, as described in TPC-W. The
cardinality of the ITEM table in TPC-W in these
experiments is 100,000. Fourteen user activities are
defined in the TPC-W benchmark, of which six activities
fall under the “browse” classification, and eight activities
fall under the “order” classification. Three different mixes
(“Browsing,” “Shopping,” and “Ordering”) of these
activities are defined in TPC-W. For our experiments,
we used the “Shopping” mix, where 80 percent of the
user actions fall under “browse,” and 20 percent of the
user actions fall under “order.”

The load generator is configured to simulate a varying
number of simultaneous user sessions, with each session
submitting a stream of requests to the Web server. Each
request is chosen randomly, as defined in the TPC-W
benchmark. The think time ðhÞ between requests is set to a
small number of milliseconds to allow us to minimize the
number of threads required on the load generator while still
simulating significant loads on the experimental architecture.

Due to the short think times between requests, we must
also use a small window size. For all experiments, the
window size for the ReDAL algorithm is set to 100 ms, that
is, d ¼ 0:1 (in real life, the think time is significantly longer
than millisecond time frames: typically, d is in the multi-
second range).

Sessions are stored to the external session repository (in
an Oracle 10-Gbyte database) and in the application server’s
memory space. If a request arrives at an application server
for a locally stored session object, then the read speed is
dramatically reduced over the external retrieval case. If a
request updates a session object that resides on another
application server, then an invalidation message is sent to
remove the object. This configuration is used in the HJ and
ReDAL cases, where session virtualization is required (RR
does not require session virtualization).

All machines used in the experiments are configured
with a dual-core dual-CPU (1.5 MHz), 2-Gbyte RAM, and
20-Gbyte disk, and run a Windows 2003 server. All
communications take place on a local-area 100-Mbps
Ethernet network. All application server instances are
installed in 10 machines, deployed as follows: When we
use 30 application servers, each machine is running three

DUTTA ET AL.: REDAL: AN EFFICIENT AND PRACTICAL REQUEST DISTRIBUTION TECHNIQUE FOR APPLICATION SERVER CLUSTERS 1523

3. We have found that � ¼ 1 is effective only in the case where there is no
error in the think time prediction in capacity reservation. This is not a
realistic scenario; thus, we consider values of � up to 0.9 in these
experiments.

TABLE 1
Experimental Parameters

application server instances. When we use 20 application
servers, each machine is running two application server
instances, and when we use 10 application servers, each
machine is running one application server instance. Each
Web server instance is run on a separate machine. Thus,
when we are running five Web server instances, we have
five machines dedicated for Web servers. Three machines
are used to simulate user sessions, and one of these three
machines additionally hosts the LoadRunner console,
which displays consolidated performance data.

In these experiments, we measure three performance
metrics: 1) throughput refers to the average number of
transactions per second that the cluster of application server
provides, 2) Average Response Time (ART) refers to the
average request response time that the cluster of application
servers can provide (the throughput of the cluster and ART
are measured from the perspective of the user), and 3) Web
Server CPU Utilization (WSCU) refers to the percentage of
CPU utilization on the Web server, as measured by
operating system utilities.

3.2 Throughput Performance

Fig. 8 shows how throughput varies for ReDAL�W�
ALPHA ¼ 0:9, ReDAL�ALPHA ¼ 0:9, ReDAL�ALPHA
¼ 0:5, HJ, and RR as the number of simultaneous sessions
increases from 5 to 100 for 20 application servers and two Web
servers.

For all approaches, the throughput shows an inverted
“U” shape; that is, the throughput rises initially, peaks, and
then falls. The throughput rises initially as the arrival rate of
requests increases and then peaks when a resource on the
server reaches maximum utilization (for example, CPU
reaches 100 percent). Once a resource reaches its maximum
usage, queuing for that resource begins, causing the
throughput to drop.

We now consider each curve relative to one another. For
the ReDAL�ALPHA ¼ 0:5 curve, the throughput/server
peaks at 80 simultaneous sessions, with 192 transactions per
second per server. HJ and RR do not perform as well as
ReDAL�ALPHA ¼ 0:5: both peak at 60 simultaneous
sessions, providing only 130 transactions per second per
server in the RR case and with 157 transactions per second
in the HJ case. The lower throughput in the RR case results
from one or more of the application servers in the cluster
reaching a resource bottleneck (in this case, CPU utilization
reaching 100 percent) due to unbalanced load, bringing

down the overall throughput on the cluster. This clearly
shows the impact of maintaining balanced load across the
application server cluster that ReDAL provides. The lower
throughput in the case of HJ stems from the fact that HJ
does not take advantage of session affinity and needs to
retrieve the session from external storage on every request.
On the other hand, ReDAL�ALPHA ¼ 0:9 outperforms
ReDAL�ALPHA ¼ 0:5, peaking at 80 simultaneous ses-
sions and providing higher throughput, with 243 transac-
tions per second per server. This shows the benefit of
ReDAL’s reservation planning capability, which has greater
impact as � is increased. The ReDAL�W�ALPHA ¼ 0:9
performs the same as ReDAL�ALPHA ¼ 0:9 until all
servers reach the saturation point (peak throughput). At
the saturation point, all servers become nondispatchable.
Here, the ReDAL-W algorithm performs better than the
ReDAL, with the peak at 269 transactions per seconds at
80 simultaneous sessions. The nominal improvement of our
ReDAL-W is also seen at the load of 100 sessions, where the
throughput in the case of ReDAL�W�ALPHA ¼ 0:9 is
264 transactions per second compared to 234 transactions
per seconds in the case of ReDAL�ALPHA ¼ 0:9.

3.3 Response Time Performance

Our response time experimental results, shown in Fig. 9,
show how ART varies for ReDAL�W�ALPHA ¼ 0:9,
ReDAL�ALPHA ¼ 0:9, ReDAL�ALPHA ¼ 0:5, HJ, and
RR as the number of simultaneous sessions increases from 5
to 100.

For all approaches, the ART curves are exponential.
Here, response time is relatively flat initially and then
begins to increase with each successive value for simulta-
neous sessions. The points where the slopes of these curves
begin to increase sharply are closely correlated to the peaks
in the throughput curves. Specifically, these “knee points”
map exactly to the peaks in the average throughput per
application server (ATAS) curves. Here, as the arrival rate
of requests increases, the response time begins to increase
sharply when a resource on the server reaches maximum
utilization, at which point queuing begins, causing rising
response times.

We now consider each curve relative to one another. For
the ReDAL�ALPHA ¼ 0:5 curve, the response time begins
to increase sharply at 80 simultaneous sessions, with a
response time of 346 ms. RR does not perform as well as
ReDAL�ALPHA ¼ 0:5. Here, the response time begins to

1524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 8. Average throughput per application server. Fig. 9. Average response time.

increase sharply at a lower simultaneous session load of
60 sessions, providing a response time of 662 ms at
80 simultaneous sessions. This underscores the point made
with regard to throughput: maintaining balanced load across
the application server cluster provides significant benefit. For
the HJ case, the response time is higher than the
ReDAL�ALPHA ¼ 0:5 case, that is, 440 ms at 80 sessions,
reinforcing the points shown in the throughput experiment
that there is significant advantage in utilizing session affinity.
On the other hand, ReDAL�ALPHA ¼ 0:9 outperforms
ReDAL�ALPHA ¼ 0:5. Although it begins to rise sharply at
the same number of simultaneous sessions (that is, 80), it
provides a lower ART of 280 ms for 80 simultaneous sessions.
This reiterates our point regarding the benefits of ReDAL’s
reservation mechanism. Further, at high loads when all
servers reach the saturation point, that is, the nondispatch-
able state, our ReDAL-W algorithm performs better than
ReDAL. The ART value for 80 simultaneous users in the case
of ReDAL�W�ALPHA ¼ 0:9 is 250 ms compared to
280 ms in the case of ReDAL�ALPHA ¼ 0:9. Similarly, the
ART value for 100 simultaneous users is less in the case of
ReDAL�W�ALPHA ¼ 0:9 than ReDAL�ALPHA ¼ 0:9.
This demonstrates the benefit of dispatching a request only
when an application server is ready to serve, which is done in
our algorithm ReDAL-W. In most real-life scenarios, applica-
tion servers are seldom operated at the saturation point, that
is, in the nondispatchable states, so we focus our further
experimental and real-life studies on our standard ReDAL
algorithm.

3.4 Peak CPU Usage on the Web Server

We show that the response time and throughput benefits of
ReDAL come at a very low computational cost by
considering the average CPU overheads on the Web server,
which is where the three approaches differ. Fig. 10 shows
how WSCU varies for ReDAL, HJ, and RR as the number of
simultaneous sessions increases from 5 to 100 for 20 applica-
tion servers and 2 Web servers. Here, we show only the
results for � ¼ 0:9 for the ReDAL case, since the value of �
does not impact the work required for ReDAL. In addition,
experiments showed that the impact of the single additional
thread in the case of ReDAL-W is so minimal that the
percentage CPU utilization in the case of ReDAL-W is
almost same as the ReDAL case. Thus, we do not report the
CPU utilization of the Web server in the case of ReDAL-W
separately.

For all approaches, the WSCU curves are linear with a
positive slope; that is, CPU utilization increases with
increasing simultaneous sessions. The RR approach shows
the lowest overall WSCU, rising from 1.55 percent at five
sessions to 8.5 percent at 100 sessions. The HJ case shows
slightly higher values than RR, rising from 2 percent to
10.2 percent, due to the fact that it tracks more information
about the application cluster than RR, essentially a count of
active requests on each application instance. ReDAL also
shows slightly higher WSCU values than RR, rising from
2.2 percent to 11.6 percent. These values are higher than that
of RR and HJ because ReDAL not only maintains load
information for application servers but also exchanges that
data across the Web server cluster. Overall, this costs 3 percent
of additional CPU over RR and 1.4 percent over the HJ case,
which is a very low cost to pay to obtain the throughput and
response time benefits shown above.

3.5 CPU Overheads on the Application Server

Here, we demonstrate how the peak CPU of application
server varies for different load distribution schemes. For
each load distribution scheme, that is, HJ, RR, and ReDaL,
at each number of simultaneous sessions, we note the peak
percent of CPU across 20 application servers with two Web
servers. We plot this peak percent of CPU versus the
number of simultaneous sessions in Fig. 11. Due to highly
unbalanced load distribution, the peak percent of CPU is
higher in the case of RR and HJ than in the case of ReDal.
Also, for RR and HJ, the peak CPU reaches 100 percent
earlier than in the ReDal case. This is reflected in the
increase in ART in Fig. 9.

3.6 Scaling with Additional Application Servers

Fig. 12 shows CPU usage on the Web server for simulta-
neous sessions increasing from 5 to 100, for 10, 20, and
30 application servers running behind the two Web servers.
Each case uses ReDal, with � ¼ 0:9, to distribute the request
load across the application servers. The curves all increase
as the number of simultaneous sessions increases: each
additional session increases the number of requests that
must be distributed across the application server set. The
curves for 10, 20, and 30 application servers all show very
similar CPU growth rates as the number of simultaneous
sessions increase, with the 10-server case showing slightly
lower CPU usage than the 20-server case and the 20-server
case showing slightly higher CPU usage than the 30-server
case. Clearly, increasing the number of application servers
results in increased CPU usage on the Web server due to the

DUTTA ET AL.: REDAL: AN EFFICIENT AND PRACTICAL REQUEST DISTRIBUTION TECHNIQUE FOR APPLICATION SERVER CLUSTERS 1525

Fig. 10. Average CPU utilization on the Web server. Fig. 11. Peak percent of CPU on the application servers.

increased complexity in tracking the load states of more
servers; however, this increase is very small: the difference
between the 20-server and 30-server cases is about
4 percent.

3.7 Scaling with Additional Web Servers

Fig. 13 shows how the ReDAL approach performs with
varying numbers of Web servers. In this experiment, we
kept the number of application servers constant at 20 and
varied the number of Web servers to 1, 2, and 5, and
measured the end-to-end response time for each case. We
consider two topologies in this experiment: 1) the hierarch-
ical topology shown in Fig. 1, in which each Web server
dispatches requests to a separate application server cluster
(for one, two, and five Web servers) and 2) the nonhier-
archical topology shown in Fig. 7 (for five Web servers,
marked “NH” in Fig. 13).

The first noticeable point about this set of plots is that the
curves are clustered tightly together, showing that the end-
to-end response time does not vary significantly with the
number of Web servers. This is due to the fact that the
primary bottleneck in the TPC-W benchmark is the
application server processing. The slight improvement in
the performance with the increased number of Web servers
is due to the fact that the HTTP protocol and image request
processing (which is the responsibility of the Web server) is
spread across a larger number of Web servers.

We now consider the differences between the curves in
Fig. 13 based on topology. Topology begins to impact the
ReDAL experimental setup when the number of Web
servers is greater than 2. In both the hierarchical (Fig. 1)
and nonhierarchical (Fig. 7) topology cases, when two
Web servers are deployed, they are typically fully

synchronized for failover purposes, including any plug-
in information. Thus, we do not show a curve here for
“#Web Server ¼ 2 NH” because it is exactly the same as
in the hierarchical case.

We are therefore interested in the curves for
“#Web Server ¼ 5” and “#Web Server ¼ 5 NH.” The curve
for “#Web Server ¼ 5 NH” shows a slight decrease (8 per-
cent at the highest load levels) in performance as compared
to the case of “#Web Server ¼ 5.” This is due to the
additional overhead of sharing load metrics across the
Web server cluster when the load and throughput data
must be synchronized, as well as the slight increase in
processing required to compute the load matrix for all the
application servers.

4 CASE STUDY

To validate our experimental results, we tested the
performance of our ReDAL algorithm in the staging
environment of an online application at a major US credit
card issuer. In this staging environment, the application
runs on 30 instances of the WebLogic application server
running on RedHat Linux 9.0, where the WebLogic cluster
receives requests through an Apache HTTP server 2.0
running on Linux RedHat 9.0.

Load is distributed across the WebLogic cluster using
WebLogic’s Apache plug-in, which uses the RR algorithm
to distribute requests. User sessions are synchronized
across the cluster using the WebLogic session synchroniza-
tion mechanism.

We implemented two additional Apache plug-ins,
representing the ReDAL and HJ algorithms, for perfor-
mance comparison purposes. Based on anonymized Web
server logs from the application, we generated LoadRunner
6.0 [20] scripts to emulate user behavior. In Fig. 14, we show
the response time of the system as recorded by LoadRunner
versus the number of sessions connected to the system for
ReDAL, HJ, and RR.

For ReDAL, we varied � and found that we obtained the
optimal performance at � ¼ 0:8 for the application. Thus, in
Fig. 14, we plot ReDAL for � ¼ 0:8. As can be seen in
Fig. 14, the response time is lowest in the case of ReDAL.
The rate of change in the slope of the curve, that is, the
increase of response time as the number of sessions
increases, is also much lower for ReDAL than for HJ and
RR. Though RR is the most widely used ASRD logic, it is a
very rudimentary algorithm. In this study, HJ improves the
response time by 25 percent at 1,000 sessions, whereas our

1526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 12. Scaling with application servers.

Fig. 13. Scaling with Web servers.

Fig. 14. Performance on a real-world application.

ReDAL improves the overall performance by 50 percent
over RR. This demonstrates the applicability of our
algorithm in a real-life case.

5 CONCLUSION

We devise an approach for distributing requests across a
cluster of application servers such that the overall system
throughput is enhanced, and load across the application
servers is balanced. Our approach considers two cases: one
suited to clustered servers that are sized to handle peak
load on the site and a second case that is best suited for a
highly loaded cluster of servers that operates beyond the
saturation point. We compare the performance of our
approach with widely used industrial and recently pro-
posed techniques from the literature experimentally in
terms of the throughput and response time performance, as
well as resource utilization.

REFERENCES

[1] K. Ueno, T. Alcott, J. Blight, J. Dekelver, D. Julin, C. Pfannkuch,
and T. Shieh, WebSphere Scalability: WLM and Clustering, Using
WebSphere Application Server Advanced Edition (IBM Redbook). IBM
Int’l Technical Support Organization, Sept. 2000.

[2] S. Hwang and N. Jung, “Dynamic Scheduling of Web Server
Cluster,” Proc. Ninth Int’l Conf. Parallel and Distributed Computer
Systems (ICPADS ’02), 2002.

[3] Cisco, LocalDirector, www.cisco.com, 2007.
[4] F5-Networks, BIG-IP, www.f5.com, 2007.
[5] Linux Virtual Server Project, Linux virtual server, www.linux

virtualserver.org, 2007.
[6] Oracle 10g database server, Oracle, Inc. http://www.oracle.com,

2007.
[7] WebSphere, IBM, http://www.ibm.com, 2007.
[8] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.

Zwaenepoel, and E. Nahum, “Locality-Aware Request Distribu-
tion in Cluster-Based Network Servers,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’98), 1998.

[9] H. Elmeleegy, N. Adly, and M. Nagi, “Adaptive Cache-Driven
Request Distribution in Clustered EJB Systems,” Proc. 10th Int’l
Conf. Parallel and Distributed Systems (ICPADS ’04), pp. 179-186,
July 2004.

[10] Weblogic server v7.1, BEA, Inc., http://www.bea.com, 2007.
[11] M. Colajanni, P. Yu, and D. Dias, “Scheduling Algorithms for

Distributed Web Servers,” Proc. 17th Intl’ Conf. Distributed
Computing Systems (ICDCS ’97), pp. 169-176, May 1997.

[12] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and
A. Youssef, “Performance Management for Cluster Based Web
Services,” Proc. Eighth IFIP/IEEE Int’l Symp. Integrated Network
Management (IM ’03), pp. 247-261, Mar. 2003.

[13] A. Tannenbaum, Modern Operating Systems. Prentice Hall, 2001.
[14] V. Viswanathan, Load Balancing Web Applications, p. 1, http://

www.onjava.com/pub/a/onjava/2001/09/26/load.html?, Sept.
2001.

[15] The Effects of Distributing Load Randomly to Servers, white paper,
Cisco, 1997.

[16] J. Heer, “Mining the Structure of User Activity Using Cluster
Stability,” Proc. SIAM Conf. Data Mining, Web Analytics Workshop,
2002.

[17] I. Nino, B. de la Ossa, J. Gil, J. Sahuquillo, and A. Pont,
“Carena: A Tool to Capture and Replay Web Navigation
Sessions,” Proc. Fifth Workshop End-to-End Monitoring Techniques
and Services (E2EMON ’05), May 2005.

[18] F. Smith, F.H. Campos, K. Jeffay, and D. Ott, “What TCP/IP
Protocol Headers Can Tell Us About the Web,” Proc. Joint ACM
Int’l Conf. Measurement and Modeling of Computer Systems (SIG-
METRICS/Performance ’01), pp. 245-256, June 2001.

[19] W. Stevens, B. Fenner, A. Rudoff, and R. Stevens, UNIX Network
Programming, Vol. 1: The Sockets Networking API, third ed.
Addison-Wesley Professional, 2003.

[20] Mercury Interactive, Loadrunner v6, http://mercuryinteractive.
com, 2005.

[21] The Apache HTTP Server Project, Apache http server v2.0, http://
www.apache.org, 2007.

[22] TPC benchmark W, 2001, Transaction Processing Performance
Council, http://www.tpc.org/tpcw/default.asp, 2007.

Kaushik Dutta received the BS degree in
electrical engineering from Jadavpur University,
the MS degree in computer science from the
Indian Statistical Institute, and the PhD degree
from Georgia Institute of Technology. He was
the director of engineering at Chutney Technol-
ogies, a software company that develops solu-
tions to improve the scalability and performance
of enterprise Web applications. He has almost a
decade of experience in software product

development in India, Europe, and the US. He worked as a senior
software engineer at Intarka Inc, a New Enterprise Associates (NEA)-
funded company that was acquired by Update.com. He also worked for
Wipro Ltd. He is currently an assistant professor at the College of
Business, Florida International University. His research interests include
the design and development of emerging technologies, electronic
commerce, mining Web log data, building scalable e-business infra-
structures, database systems, and data management. He has published
articles in the ACM Transactions on Database Systems, IEEE
Transactions on Mobile Computing, Management Science, VLDB
Journal, and INFORMS Journal on Computing. He also has several
publications in various IEEE conferences proceedings. He is a member
of the IEEE and the IEEE Computer Society.

Anindya Datta received the BS degree from the
Indian Institute of Technology, Kharagpur, and
the MS and PhD degrees from the University of
Maryland, College Park. He is a former faculty
member of the Georgia Institute of Technology
(Georgia Tech) and the University of Arizona. He
advised large corporations such as AT&T, US
West, IBM, the government of Israel, and a
number of venture capital firms on high-perfor-
mance database systems. He cofounded Chut-

ney Technologies in 1999, a software company that develops solutions
to improve the scalability and performance of enterprise Web applica-
tions, and was the chief executive officer (CEO) of the company. He
founded the iXL e-Commerce Center, College of Management, Georgia
Tech. He has also served as a visiting scientist at AT&T Laboratories.
He is currently a visiting associate professor in the School of Information
Systems, Singapore Management University. His research interests
include database systems, data warehousing, data mining, and e-
commerce. He has published more than 50 papers in various IEEE and
ACM journals and is the holder of several patents in a variety of
technologies. He is a member of the IEEE and the IEEE Computer
Society.

DUTTA ET AL.: REDAL: AN EFFICIENT AND PRACTICAL REQUEST DISTRIBUTION TECHNIQUE FOR APPLICATION SERVER CLUSTERS 1527

Debra VanderMeer received the BA degree
from Georgetown University, the MS degree in
management information systems (MIS) from
the University of Arizona, and the PhD degree
from the Georgia Institute of Technology (Geor-
gia Tech). She has served in engineering and
managerial roles in large companies such as
Tandem, as well as early-stage venture-funded
software enterprises. She is currently an assis-
tant professor in the College of Business, Florida

International University. Her research interests focus on applying
concepts developed in computer science and information systems to
solve real-world problems. She has published widely in well-known
journals such as Management Science, ACM Transactions on Database
Systems, and IEEE Transactions on Knowledge and Data Engineering,
as well as prestigious conference proceedings, including the Interna-
tional Conference on Data Engineering, International Conference on
Distributed Computing Systems, and the Very Large Database
Conference. She is a member of the IEEE and the IEEE Computer
Society.

Helen Thomas received the BS degree in
decision and information sciences from the
University of Maryland, College Park, the MSE
degree in operations research and industrial
engineering from the University of Texas at
Austin, and the PhD degree from the Georgia
Institute of Technology (Georgia Tech). She
previously served as an information systems
faculty member at Carnegie Mellon University.
She was also a cofounder and the director of

product strategy at Chutney Technologies, a software company that
develops solutions to improve the scalability and performance of
enterprise Web applications. She has significant consulting experience,
including several years of working with the American Management
Systems. Her research interests include data management in e-
commerce and decision support databases. She has published articles
in well-known information systems journals such as the Information
Systems Research and Management Science. She is a member of the
IEEE and the IEEE Computer Society.

Krithi Ramamritham received the BS degree in
electrical engineering and the MS degree in
computer science from the Indian Institute of
Technology (IIT), Madra, and the PhD degree in
computer science from the University of Utah.
Presently He is currently theVijay and Sita
Vashee Chair Professor at the Department of
Computer Science and Engineering, IIT, Bom-
bay. He is also the Dean R&D at IIT, Bombay.
His research explores timeliness and consis-

tency issues in computer systems, in particular databases, real-time
systems, and distributed applications. His recent work addresses these
issues in the context of dynamic data in sensor networks, embedded
systems, and mobile environments. During the last few years, he has
been interested in the use of information and communication technol-
ogies for creating tools aimed at socioeconomic development. He is a
coauthor of 5 books, 27 book chapters, 71 journal publications including
various IEEE and ACM journals, and 156 conference proceedings. He is
a fellow of the IEEE, the IEEE Computer Society, the ACM, and the
Indian National Academy of Engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1528 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

