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Abstract—Declustering distributes data among parallel disks to reduce the retrieval cost using I/O parallelism. Many schemes were

proposed for the single-copy declustering of spatial data. Recently, declustering using replication gained a lot of interest and several

schemes with different properties were proposed. An in-depth comparison of major schemes is necessary to understand replicated

declustering better. In this paper, we analyze the proposed schemes, tune some of the parameters, and compare them for different

query types and under different loads. We propose a three-step retrieval algorithm for the compared schemes. For arbitrary queries,

the dependent and partitioned allocation schemes perform poorly; others perform close to each other. For range queries, they perform

similarly with the exception of smaller queries in which random duplicate allocation (RDA) performs poorly and dependent allocation

performs well. For connected queries, partitioned allocation performs poorly and dependent allocation performs well under a light load.

Index Terms—Declustering, parallel I/O, spatial range query, Latin square.

Ç

1 INTRODUCTION

MANY database applications, including relational data-
bases, spatial databases, visualization, and geo-

graphic information system (GIS) applications include
large data repositories up to terabytes in size. Although
terabytes of storage space are now achievable, efficient
retrieval is a challenging problem. The most common query
type in such databases is range query. In a range query, the
user specifies an area of interest using a range of values for
each dimension. The result of the range query is the set of
items in the data set that have values within the specified
range for each dimension. An arbitrary query retrieves any
subset of buckets requested by the user, and a connected
query retrieves a set of buckets whose graph representation
forms a connected graph. As the size of the data set grows,
efficient retrieval becomes a challenge.

Research on spatial data management resulted in
efficient retrieval structures and methods [4], [21], [26],
[38]. Traditional retrieval methods based on index struc-
tures developed for single-disk and single-processor envir-
onments are becoming ineffective for storage and retrieval
in multiple-processor and multiple-disk environments.
Since the amount of data is large, it is very natural to use
multidevice/disk architectures in these systems. Besides
scalability with respect to storage, multidisk architectures
offer the opportunity to exploit I/O parallelism during
retrieval. The most crucial part of exploiting I/O parallelism
is to develop storage techniques that access the data in
parallel. A common approach for efficient parallel I/O is as
follows: The data space is partitioned into disjoint regions
and data is allocated to multiple disks. When users issue a
query, the data falling into disjoint partitions is retrieved in
parallel from multiple disks. This technique is referred to as

declustering and can be summarized as a good way of
distributing data to multiple I/O devices.

An allocation policy is said to be strictly optimal if no
query, which retrieves b buckets, has more than d bNe buckets
allocated to the same device. However, it has been proved
that, except in very restricted cases, it is impossible to reach
strict optimality for spatial range queries [1]. In other
words, no allocation technique can achieve optimal perfor-
mance for all possible range queries. The lower bound on
extra disk accesses is proved to be �ðlogNÞ for N disks even
in the restricted case of an N �N grid [6].

Several methods have been proposed for declustering
data, including Disk Modulo [12], Field-wise Exclusive OR

[29], Hilbert [13], Near-Optimal Declustering [5], General
Multidimensional Data Allocation [27], cyclic allocation
schemes [36], [37], Golden Ratio Sequences [7], Hierarchical
Declustering [6], and Discrepancy Declustering [9]. Using
declustering and replication, approaches including Com-
plete Coloring [20] have optimal performance and Square
Root Colors Disk Modulo [20] has one more than optimal.
Some declustering techniques utilize information about
query distribution [22], [23]. The use of combinatorial
designs including Latin squares [28] and Latin cubes [15] is
proposed for a variant of the declustering problem where
array blocks are distributed among multiple memory
modules. When the number of disks is a power of two, a
declustering scheme that achieves the lower bound is
proposed in [3]. Optimization-based approaches [30], [32],
[40] are proposed to handle arbitrary data sets and queries.

Given the established bounds on the extra cost and the
impossibility result, a large number of declustering techni-
ques have been proposed to achieve performance close to the
bounds either on the average case [5], [12], [13], [14], [16], [22],
[24], [25], [29], [31], [36], [37] or, in the worst case, [3], [6], [7],
[9], [41]. Although initial approaches in the literature were
originally for relational databases or Cartesian product files,
recent techniques focus more on spatial data declustering.
Each of these techniques is built on a uniform grid, where the
buckets of the grid are declustered using the proposed
mapping function. Techniques for uniform grid partitioning
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can be extended to nonuniform grid partitioning as discussed
in [34] and [11].

All of these declustering schemes were designed assum-
ing a single copy of the data. Recently, replication strategies
for spatial range queries [8], [18], [19], [20], [49] and
arbitrary queries [42], [44] were proposed. Replication
improves the worst-case additive error for declustering
using multiple copies of the data. In addition to offering a
lower worst case additive error, replication has many other
advantages including better fault tolerance and support for
queries of arbitrary shape.

Although many schemes using replication are proposed,
an in-depth comparison of them has not been done. Most of
the proposed schemes focus on a specific query type and it
is not clear how they will perform for other query types. In
this paper, we investigate the following:

. We introduce a new query type called a connected
query. If the graph representation of a query is
connected, then the query is connected.

. We provide an in-depth comparison of replicated
declustering schemes for range, arbitrary, and
connected queries under various loads.

. We tune the replicated declustering schemes by
carefully choosing the initial copy based on thresh-
old-based declustering and propose a simple retrie-
val algorithm that uses single-copy retrieval, design-
based retrieval, and maximum-flow (max-flow)-
based retrieval based on the criteria set forth by
the user.

. We investigate the performance through both
theoretical analysis and experiments to better under-
stand and tune the replication schemes.

The rest of the paper is organized as follows: In Section 2,
we discuss the basics of declustering and replicated
declustering. We briefly describe the schemes included in
the paper in Section 3 and show how the two copies are
chosen. We formally define query types and investigate
their properties in Section 4. Possible optimizations to the
retrieval algorithm using properties of the declustering
scheme are discussed in Section 5. We discuss experimental
results in Section 6 and conclude with Section 7.

2 PRELIMINARIES

A declustering of a 5 � 5 grid using five disks is given
in Fig. 1. Each square denotes a bucket, and the number
on the square denotes the disk that the bucket is stored
at. An i� j range query has i rows and j columns. For
retrieval of an i� j range query, the best we can expect
is dij5e, and this happens if the buckets of the query are
spread to disks in a balanced way. In most cases, this is
not possible. We use the notation ½i; j�, 0 � i, j � N � 1,
to denote the bucket in row i and column j. A query can

be represented as a set using this notation. Consider the
2 � 2 query Q1 ¼ f½0; 0�; ½0; 1�; ½1; 0�; ½1; 1�g shown in Fig. 1.
Since two buckets of the query are stored on disk 1, it
requires two disk accesses. The deviation from the
optimal retrieval cost dij5e is called the additive error.
For the 2� 2 query, the additive error is 1. The
2� 3 query Q2 ¼ f½3; 2�; ½3; 3�; ½3; 4�; ½4; 2�; ½4; 3�; ½4; 4�g given
in Fig. 1 is optimal since d2�3

5 e ¼ 2 and its additive error
is 0. The additive error of a scheme is the maximum
additive error over all the queries.

When replication is used, each bucket is stored on
multiple disks and we have to choose one of the disks for
the retrieval of the bucket. Consider the query q1 given in
Fig. 3. This is a 3 � 2 query with an optimal retrieval cost of
d3�2

7 e ¼ 1. However, since in the first copy, the buckets [0, 0]
and [2, 1] are both stored on disk 0, retrieval using the first
copy requires two disk accesses. When we consider both
copies, we can represent the problem using a bipartite
graph. For each bucket and for each disk, we create a vertex.
We connect vertex v to disk d only if the corresponding
bucket is stored on disk d. The bipartite graph for the
query q1 given in Fig. 3 is given in Fig. 2.

Let X be any set in V ðGÞ and let �ðXÞ denote all points in
V ðGÞ that are adjacent to at least one point of X. The
following theorem provides the fundamental tool to solve
the matching and max-flow problems needed to test the
optimality of queries:

Theorem 1 (P. Hall’s Theorem) [33]. Let G ¼ ðA;BÞ be a
bipartite graph. Then, G has a matching of A onto B if and
only if j�ðXÞj � jXj for all X � A.

For example, let X have the buckets {[1, 0], [1, 1]}. The
set �ðXÞ contains all the neighbors of X and is {2, 3, 4}. In
this case, j�ðXÞj ¼ 3 � 2 ¼ jXj. For the query q1, the
matching is shown using thick lines in Fig. 2. For strict
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Fig. 1. Declustering of a 5 � 5 grid using five disks.

Fig. 2. Representation of query q1.

Fig. 3. Example of orthogonal allocation.



optimality of all queries, the matching should exist for
every subset.

When the number of buckets to be retrieved is larger than
the number of disks, more than a single bucket needs to be
retrieved from some of the disks. One way to do this is
replicate each disk vertex d bNe times to find the retrieval
schedule for b buckets. A bucket that is stored on disk i needs
to be connected to all the d bNe copies of disk vertex i. This
increases the number of edges in the bipartite representation.
Another approach is to represent the problem as a max-flow
problem [10]. In this case, a source vertex and a sink vertex are
added. The source vertex is connected to all the buckets, and
all the disks are connected to the sink vertex. Each edge has a
capacity of 1. To accommodate for the retrieval of more than
N buckets, the capacity of the edges between the disks and the
sink are set to d bNe for a query involving b buckets. If the max
flow between the source and the sink is b, then the query can be
retrieved using d bNe accesses. Otherwise, we need to increase
the capacity of edges between the disks and the sink and rerun
the max-flow algorithm. The max-flow representation of
query q1 is given in Fig. 4. Max flow is shown using thick lines
in the figure.

We use threshold-based declustering [43], [45], [48], [47]
as the base allocation of replicated declustering when we
can choose the base allocation. Although threshold-based
declustering is designed for range queries, it has many
desirable properties that can be utilized in our setting. We
next formally define threshold-based declustering.

Definition 1. Let f be a declustering scheme on an N �N grid
using N disks. The threshold of f �ðfÞ is k if all spatial range
queries on f with at most k buckets can be retrieved optimally.

Threshold-based declustering returns declustering
schemes that are Latin squares and provides high thresh-
olds. High thresholds yield better results for range queries
and allow us to tune the base copy for range queries.

3 ANALYSIS OF REPLICATED DECLUSTERING

SCHEMES

In this section, we analyze the algorithms in detail and
prove new results that are used in the comparison of
algorithms. The algorithms we investigate include random
duplicate allocation (RDA), orthogonal allocation, parti-
tioned allocation, dependent periodic allocation, and de-
sign-theoretic allocation.

3.1 RDA

RDA stores a bucket on two disks chosen randomly from the
set of disks. The retrieval cost of random allocation is at most

one more than the optimal with high probability [39]. For
large queries, an additive error of 1 translates to a small
increase in retrieval cost. However, for small queries that
have optimal one disk access, an additive error of one is
significant. The lower bound on the probability that a query
involving k buckets is nonoptimal is given by the following
theorem:

Theorem 2. Consider 2k balls placed randomly into N bins

ðk < NÞ. The probability that the number of nonempty bins is

< k is N
k�1

� �
ðk�1
N Þ

2k.

Proof. Pick k� 1 bins and map each ball to the k� 1 bins.tu

The balls placed into bins denote the randomly selected

disks for the query. If the number of disks selected is < k, it

is not possible to reach optimality by Theorem 1. The

optimal retrieval cost for k buckets is d kNe ¼ 1.
If one of the copies chosen is a Latin square, then all

1�N and all N � 1 queries will be optimal. However,
when RDA is used, a single copy will render these queries
nonoptimal as shown by the following theorem:

Theorem 3. M balls placed randomly into M bins. The expected

number of empty bins is Mð1� 1
MÞ

M � M
e .

Proof. This is a special case of Theorem 4.18 in [35]. tu

For the optimality of a 1�N or a N � 1 query, the
number of empty bins should be zero and the probability of
this happening is low.

An example of RDA allocation is given in Fig. 5.

3.2 Orthogonal Allocation

Orthogonal allocations [42], [18] guarantee that, when the
disks that a bucket is stored at are considered as a pair,
each pair appears only once in the disk allocation. In an
N �N declustering system with N disks, there are
N2 buckets and N2 pairs. Therefore, it is possible to have
each pair exactly once. Orthogonal allocations guarantee a
retrieval cost of at most d

ffiffiffi
b
p
e for an arbitrary query

containing b buckets. If each copy is a Latin square, then
orthogonal allocations reduce to orthogonal Latin squares.

An example of orthogonal allocation is given in Fig. 3.
The disks allocations in the figure are

fði; jÞ ¼ 3iþ jmodN;

gði; jÞ ¼ 2iþ jmodN:

We want to use threshold-based declustering as the first

copy, and since threshold-based schemes are of the form
fði; jÞ ¼ aiþ jmodN , we provide the following theorems
to find disk allocations that are orthogonal:
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Fig. 4. Max-flow representation of query q1.

Fig. 5. Example of RDA.



Theorem 4. Disk allocations fði; jÞ ¼ aiþ jmodN and
gði; jÞ ¼ biþ jmodN are orthogonal if gcdðb� a;NÞ ¼ 1.

Proof. This is given by contradiction. Assume that a pair
appears twice, and use gcdðb� a;NÞ ¼ 1 to reach a
contradiction. tu

Theorem 5. Given a disk allocation fði; jÞ ¼ aiþ jmodN ,
where gcdða;NÞ ¼ 1, we can always find another disk
allocation gði; jÞ ¼ biþ jmodN such that fði; jÞ and gði; jÞ
are orthogonal.

Proof. If 1 � a < N � 1, let gcdði; jÞ ¼ ðaþ 1Þiþ jmodN . If
a ¼ N � 1, then let gcdði; jÞ ¼ ða� 1Þiþ jmodN . In both
cases, we have a difference of 1, and gcdð1; NÞ ¼ 1 for
every N. We use the fact that gcdða; bÞ ¼ gcdðjaj; jbjÞ. tu
The general form of orthogonal allocations is given

below. We can use threshold-based declustering as fði; jÞ
and choose gði; jÞ to guarantee orthogonality:

fði; jÞ ¼ aiþ jmodN;

gði; jÞ ¼ biþ jmodN; gcdðja� bj; nÞ ¼ 1:

3.3 Partitioned Replication

In partitioned replication [8], [17], [18], [2], the set of disks is
divided into groups and disks in a group are replicated on
other disks in that group. Each group has c members for a c-
copy replicated declustering scheme based on partitioned
replication. The number of disksN has to be a multiple of c so
that each group has an equal number of elements. For 2-copy
replicated declustering, the number of disks has to be even.

Given an N �N base allocation hði; jÞ, 2N � 2N disk
allocations fði; jÞ and gði; jÞ can be constructed as follows:

fði; jÞ ¼

hði; jÞ 0 � i; j � N � 1

hði�N; jÞ þN N � i � 2N � 1; 0 � j � N � 1

hði; j�NÞ þN 0 � i � N � 1; N � j � 2N � 1

hði�N; j�NÞ N � i; j � 2N � 1;

8>>><
>>>:
gði; jÞ ¼ ðfði; jÞ þNÞmod 2N:

Note that this formulation does not assume anything
about the allocation hði; jÞ. Therefore, any N �N disk
allocation can be used in the above formulation. The choice
of allocation can be done based on other factors, and we
choose the threshold-based scheme for the allocation hði; jÞ.

An example of partitioned allocation is given in Fig. 6.

3.4 Dependent Periodic Allocation

Dependent periodic allocation [49] allocates a shifted
version of the first copy as the second copy. More formally,

fði; jÞ ¼ aiþ jmodN;

gði; jÞ ¼ fði; jÞ þmmodN; 1 � m � N � 1:

An example of dependent periodic allocation is given in
Fig. 7. The disk allocations in the figure are

fði; jÞ ¼ 3iþ jmodN;

gði; jÞ ¼ fði; jÞ þ 1 modN:

Dependent periodic allocation has a desirable property
for range queries. Given s and t, if an s� t query is optimal
using both fði; jÞ and gði; jÞ, then all s� t queries are
optimal. In fact, by storing the matching for a single s� t
query, we can compute the matching for any s� t query.

3.5 Design-Theoretic Allocation

Design-theoretic allocation [44] uses the blocks of an
ðN; c; 1Þ design for c-copy replicated declustering using
N disks. A block and its rotations can be used to determine
the disks the buckets are stored at. The (9, 3, 1) design and
the design-theoretic allocation using this design is given in
Figs. 8 and 9, respectively. Design-theoretic allocation
guarantees that ðc� 1Þk2 þ ck buckets can be retrieved
using at most k disk accesses.

Design-theoretic allocation supports up to NðN�1Þ
c�1 buckets.

Using two copies, this is equal to NðN � 1Þ buckets. We can
extend design-theoretic allocation toN2 buckets by using the
same pair in two different buckets. The selection of these
buckets should be done in a way that produces the best
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Fig. 6. Example of partitioned allocation.

Fig. 7. Example of dependent periodic allocation.

Fig. 8. Blocks of the (9, 3, 1) design.

Fig. 9. Design-theoretic 3-copy declustering using the (9, 3, 1) design.



guarantees. Our choice is to have two buckets whose first

copy is stored on disk m and second copy is stored on disk

mþ 1 modN , where 0 � m � N � 1. In this case, in the first

copy, each disk ID appears N times, and we can use the

threshold-based declustering scheme as the first copy.

4 QUERY TYPES

In this section, we describe the query types and their

properties used in the analysis and comparison of the

declustering schemes:

. Range query. Range queries are rectangular in shape.
We assume a wraparound grid consistent with the
choice of disk allocations. A range query is identified
with four parameters ði; j; r; cÞ0 � i, j � N � 1, 1 � r,
c � N . i and j are indices of the top left corner of the
query, and r and c denote the number of rows and
columns in the query. The number of distinct range
queries on an N �N grid is N2N2. The first term
denotes the number of ways to choose the starting
point, and the second term denotes the number of
queries we can have starting with the chosen point.

. Arbitrary query. Arbitrary queries have no geo-

metric shape. Any subset of the set of buckets is an

arbitrary query. We can denote arbitrary queries as

a set, and the number of arbitrary queries isPN2

i¼1
N2

i

� �
, which is equal to 2N

2
(the number of

subsets of a set with N2 elements).
. Connected query. The buckets in a connected query

form a connected graph. Create a node for each
bucket in the query and connect two buckets ½i; j�
and ½m;n� by an edge if they are neighbors in the
wraparound grid. The four possible neighbor rela-
tionships is given below and shown in Fig. 10:

– m ¼ iþ 1 mod N and j ¼ nð½m;n� is the bottom
neighbor of ½i; j�).

– i ¼ mþ 1 mod N and j ¼ nð½m;n� is the top
neighbor of ½i; j�).

– j ¼ nþ 1 mod N and i ¼ mð½m;n� is the left
neighbor of ½i; j�).

– n ¼ jþ 1 mod N and i ¼ mð½m;n� is the right
neighbor of ½i; j�).

Examples of connected queries are given in Fig. 11.
We next investigate the number of disk accesses

required for queries of each type. Let Aðk;NÞ denote
the number of arbitrary queries that require k disk
accesses optimally on an N �N declustering scheme.
Then, Aðk;NÞ can be computed as

Aðk;NÞ ¼
XkN

i¼ðk�1ÞNþ1

N2

i

� �
: ð1Þ

The values of Aðk;NÞ for N ¼ 8, N ¼ 16, and N ¼ 32 are
given in Fig. 12. The symmetry is because of the following
combinatorial identity:

N2

i

� �
¼ N2

N2 � i

� �
: ð2Þ

Let Rðk;NÞ denote the number of range queries that
require k disk accesses optimally on an N �N declustering
scheme. We compute Rðk;NÞ using Sðk;NÞ, where Sðk;NÞ
denotes the number of range queries that require at most
k disk accesses on an N �N declustering scheme. Sðk;NÞ
can be computed as

Sðk;NÞ ¼ N2
XN
i¼1

min
kN

i

	 

; N

� �
: ð3Þ

There areN2 possibilities for the top-left corner of a range

query on a wraparound grid. Given i rows in a query, there are

minðbkNi c; NÞ possibilities for choosing the number of col-

umns, which result in an i� j range query with� k retrieval

cost. Using Sðk;NÞ, we can computeRðk;NÞ as follows:

Rðk;NÞ ¼ Sðk;NÞ � Sðk� 1; NÞ: ð4Þ

The values of Rðk;NÞ for N ¼ 8, N ¼ 16, and N ¼ 32 are

given in Fig. 13.
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Fig. 10. Possible neighbor relationships for buckets. Fig. 11. Example of connected queries.

Fig. 12. Values of Aðk;NÞ.



Let Cðk;NÞ denote the number of connected queries that

require k disk accesses optimally on an N �N declustering

scheme. Computing Cðk;NÞ is harder. However, we have

Rðk;NÞ � Cðk;NÞ � Aðk;NÞ. We can derive a tighter lower

bound Dðk;NÞ using the compositions of a positive integer.

Dðk;NÞ denotes the number of connected queries in which

the blocks in a row are connected.
Computing Dðk;NÞ requires working with compositions

of a positive integer. A combinatorial composition is

defined as an ordered arrangement of k nonnegative

integers that sum up to n. For example, there are eight

compositions of 4. These are 4, 3þ 1, 2þ 2, 2þ 1þ 1, 1þ 3,

1þ 2þ 1, 1þ 1þ 2, and 1þ 1þ 1þ 1. Given a composition

ðc1; . . . ; ci; . . . ; cdÞ representing c1 þ . . .þ ci þ . . .þ cd, we

can find the number of connected queries corresponding

to composition c as follows:

P ðcÞ ¼
Yd
i¼2

ðci�1 þ ci � 1Þ: ð5Þ

The above equation is based on the following simple

step. If we have a segment involving ci�1 squares and

another involving ci squares, then we can combine them in

ci�1 þ ci � 1 ways in a connected query involving two

rows, where the top row has ci�1 squares and the bottom

row has ci squares. For example, let ci�1 ¼ 2 squares and

ci ¼ 3 squares. We have 2þ 3� 1 ¼ 4 ways to combine

them. These are given in Fig. 14.
The number of compositions of i into m parts is given by

CmðiÞ ¼
i� 1

m� 1

� �
ð6Þ

and the total number of compositions of i is given by

F ðiÞ ¼
Xi
j¼1

CjðiÞ ¼
Xi
j¼1

i� 1

j� 1

� �
¼ 2i�1: ð7Þ

Let T ðiÞ denote the set of compositions of i. Clearly,

jT ðiÞj ¼ F ðiÞ. We can compute the number of connected

queries with i buckets denoted by GðiÞ using the following

equation:

GðiÞ ¼
X
c2T ðiÞ

P ðcÞ: ð8Þ

Using GðiÞ, we have the following formula for Cðk;NÞ:

Dðk;NÞ ¼ N2
XkN

i¼ðk�1ÞNþ1

GðiÞ: ð9Þ

A single composition corresponds to multiple connected
queries, and in our case, compositions involving numbers
more than N are not allowed. The reason for this is that we
have N buckets on each row of the N �N declustering
system. To compute Dðk;NÞ, we need to generate all the
compositions and compute the number of connected
queries for each composition. These issues make it harder
to compute the exact value of Dðk;NÞ.

5 RETRIEVAL ALGORITHMS

The max-flow-basedretrieval algorithm hasOðjQj2Þcomplex-
ity and finds the best possible retrieval schedule. Recently, an
OðjQjÞ retrieval algorithm that retrieves ðc� 1Þk2 þ ck buck-
ets in k disk accesses was proposed for design-theoretic
allocation [46]. This algorithm does not guarantee that the
retrieval schedule is the best one possible. However, it
performs well in practice.

In this section, we investigate what kind of optimizations
are possible for retrieval algorithms using the structure of
the allocations. We first derive optimizations using a single
copy and then derive optimizations using multiple copies.

If two queries are related by a 1-1 function, they have the
same retrieval cost. This fact can be used to find the
retrieval cost of some queries efficiently by precomputing
and storing the retrieval cost. Theorems 6 and 7 provide the
theoretical foundations of this using a single copy.

Theorem 6. Given an allocation of the form

fði; jÞ ¼ aiþ jmodN;

let Q ¼ f½i; j�g be a range/arbitrary/connected query. Derive

another range/arbitrary/connected query

Q0k;l ¼ f½ðiþ kÞmodN; ðjþ lÞmodN �j½i; j� 2 Qg:

Then, there exists a 1-1 function that maps Q to Q0k;l.

Proof. There is a 1-1 function h : Zn ! Zn defined as
hðiÞ ¼ iþ akþ lmodN . This function maps the disk ID
of ½i; j� given as aiþ jmodN to the disk ID of ½ðiþ kÞmod
N; ðjþ lÞmodN� given as aiþ jþ ðakþ lÞmodN . tu
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Fig. 13. Values of Rðk;NÞ.

Fig. 14. Connected queries for the composition 2 þ 3.



An example is given in Fig. 15. The allocation is
fði; jÞ ¼ 3iþ jmod 7. There are two connected queries
marked in the figure: the top-left query

Q ¼ f½0; 1�; ½1; 1�; ½1; 2�; ½2; 1�g

and the bottom-right query Q03;3 ¼ f½3; 4�; ½4; 4�; ½4; 5�; ½5; 4�g.
In this example, k ¼ 3 and l ¼ 3. The function hðiÞ ¼
iþ 3kþ lmodN ¼ iþ 5 modN maps disk IDs of Q1 into
disk IDs of Q2. For example, the disk ID of [1, 1] is 4, and the
disk ID of [4, 4] is 4þ 5 mod 7 ¼ 2.

Theorem 7. Given an allocation of the form fði; jÞ ¼
aiþ jmodN and a query Q, there are N2 � 1 other queries
of the same query type that are related to Q by a 1-1 function.

Proof. It follows from Theorem 6 since 0 � k, l � N � 1. tu

Next, we investigate how to use the 1-1 mapping
between queries when replication is used. In order to reuse
the mapping, we need the graphs to be isomorphic, and we
restrict the allocations to achieve isomorphism. Theorem 8
is our fundamental result for replication.

Theorem 8. Given replicated allocations of the form fði; jÞ ¼
aiþ j mod N and gði; jÞ ¼ fði; jÞ þmmodN , let Q ¼
f½i; j�g be a range/arbitrary/connected query. Derive another
range/arbitrary/connected query

Q0k;l ¼ f½ðiþ kÞmodN; ðjþ lÞmodN �j½i; j� 2 Qg:

Then, bipartite graphs corresponding to Q and Q0k;l are
isomorphic.

Proof. The queries Q and Q0k;l have the same number of
buckets and disks. Consider a bucket ½i; j� in Q.
This bucket is stored on disks aiþ jmodN and
aiþ jþmmodN . The corresponding bucket in Q0k;l is
½ðiþ kÞmodN; ðjþ lÞmodN�, and this bucket is stored
on disks aðiþ kÞ þ jþ lmodN ¼ aiþ jþ ðakþ lÞmodN
and

aðiþ kÞ þ jþ lþmmodN ¼ aiþ jþmþ ðakþ lÞmodN:

Therefore, the function h : Zn ! Zn defined as fðiÞ ¼
iþ ðakþ lÞmodN maps the disk IDs of Q to Q0k;l, and the
bipartite graphs are isomorphic. tu
An example using the allocation in Fig. 7 is given in

Fig. 16. The bipartite graphs correspond to the queries q1

and q2 shown in Fig. 7. The advantage of Theorem 8 is that

we can store the retrieval schedule for a query Q ¼ f½i; j�g
and use the isomorphism to find the retrieval schedule for

Q0k;l ¼ f½ðiþ kÞmodN; ðjþ lÞmodN �j½i; j� 2 Qg using the

stored retrieval schedule. However, for arbitrary and

connected queries, the number of possibilities is too high.

For range queries, given i and j, the retrieval schedules for

an i� j query can be stored and used to retrieve all

i� j queries. The space requirement for this approach for

range queries is

XN
i¼1

XN
j¼1

ij ¼ NðN þ 1Þ
2

� �2

:

In fact, the space requirement will be much lower. Some
of the queries will be optimal using one of the individual
copies, and the matchings need not be stored.

By precomputing and storing information for range
queries, we can answer complement queries in some cases.
We next investigate the optimizations possible for comple-
ment queries. Our fundamental result is Theorem 9. We use
the notation ci to denote the number of buckets stored on
disk i.

Theorem 9. In a declustering scheme where ci ¼ N ,

0 � i � N � 1, a query Q ¼ f½i; j�g that has maxN�1
i¼0 ci �

minN�1
j¼0 cj ¼ 1 and its complement �Q ¼ f½i; j�j½i; j� =2 Qg are

optimal.

Proof. Let minN�1
j¼0 cj ¼ k, and assume that � disk IDs

appear k times and the rest appear kþ 1 times. The

optimal retrieval cost is d�kþðN��Þðkþ1Þ
N e ¼ kþ 1. The

retrieval cost of Q is also kþ 1. Therefore, Q is optimal.

Similarly, in �Q, we also have maxN�1
i¼0 ci �minN�1

j¼0 cj ¼ 1,

and �Q is optimal. tu
Theorem 10. Let Q be a range query, then �Q is a connected

query.

Proof. Since the grid is a torus, we cannot divide it into two
pieces by a range query. tu

The above properties can be used for efficient retrieval in
declustering as long as the declustering scheme follows the
assumptions. However, some declustering schemes such as
RDA have no structure, and the max-flow-based retrieval
algorithm needs to be used for efficient retrieval. Next, we
discuss retrieval algorithms for specific replicated declus-
tering schemes.

In the RDA scheme, disk allocation is done randomly,
and there is no structure that can be utilized for optimiza-
tion. Therefore, the max-flow computation needs to be
computed to find the retrieval schedule.

As the first copy of orthogonal allocation ðfði; jÞÞ, we use
the best threshold-based scheme. Second-copy selection is
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based on the orthogonality requirement. For range queries,
we maintain an N �N array that stores whether a given
range query is optimal using fði; jÞ or gði; jÞ. By the
structure of fði; jÞ and gði; jÞ, if an i� j query is optimal,
then all i� j queries are optimal.

By the structure of partitioned replication, the retrieval
schedule for any query Q can be computed in OðjQjÞ time.
The buckets are initially mapped to disks using the base
allocation hði; jÞ. In partitioned replication, disks are
grouped into pairs and replicated on each other. Therefore,
the second step is to balance the load between the disks.
This can be done easily using round-robin mapping.

In dependent periodic allocation, we can store the
retrieval schedule and reuse it when a similar query arrives.
We store the retrieval schedule only for range queries since
there are a limited number of range query types ðN2Þ and
the recognition of a range query is easy (just use the number
of rows and columns).

The OðjQjÞ retrieval algorithm for design-theoretic
allocation supports NðN � 1Þ buckets. In this paper, we
use declustering schemes with N disks and N2 buckets. To
use this algorithm in our work, we make the following
modification: We divide the set of buckets in a query into
two sets A and B, where jAj þ jBj ¼ N2 and each bucket
appears in only one set. Set A consists of the buckets
according to the design-theoretic allocation. It has
NðN � 1Þ buckets and, for two buckets b1 and b2 in A, they
are stored on different disks on the first copy, they are
stored on different disks on the second copy, or they are
stored on different disks on both the first copy and the
second copy. For the set of buckets in A, the design-
theoretic guarantee holds, and k2 þ 2k buckets can be
retrieved in k disk accesses. The set B consists of the
remaining N buckets. In orthogonal allocation, this set
consists of the buckets that are stored on the same disk on
both the first and second copy. In design-theoretic alloca-
tion, this set consists of the buckets that are stored on
consecutive disks. In both cases, the set of buckets in B can
be retrieved in one disk access. By combining these results,
we have the following on the worst case retrieval cost: k2 þ
2kþ 1 buckets can be retrieved in kþ 1 disk accesses. The
extra disk access is for the retrieval of set B. Although the
worst case retrieval cost of this algorithm is high, the
average-case retrieval cost is good. The worst case retrieval
cost for N ¼ 8, N ¼ 16, and N ¼ 32 disks is given in Fig. 17.

We use the threshold-based declustering scheme as the
base copy, and some queries will be optimal using a single
copy. We use the three-step retrieval algorithm given in
Fig. 18 for retrieval. The goal is to find a retrieval schedule
with an additive error < �. We first check if a single copy is
satisfactory or not. If a single copy is satisfactory, we can

easily compute the retrieval schedule by assigning buckets
to the disks that they are stored at. If a single copy is not
satisfactory, we can use the design-theoretic OðjQjÞ com-
plexity algorithm. This algorithm does not always return
the lowest cost schedule. If the schedule returned is not
satisfactory, then we can use the OðjQj2Þ complexity max-
flow algorithm. Using this strategy, we try to improve the
number of disk accesses required by the query progres-
sively. We can compute Step 1 in constant time for some
types of queries such as range queries by precomputing and
storing the retrieval cost.

An interesting question is how well a single-copy scheme

works for arbitrary queries. Next, we try to answer this

question. The total number of arbitrary queries with

i buckets is N2

i

� �
, and we next investigate the number of

queries that are optimal using a single copy. Given i buckets,

the optimal retrieval cost is d iNe. Let OPT ðN;M;B; iÞ denote

the number of ways to map i items to N bins, where each

bin can store at most B items, and there are M items to

choose from to map to each bin. With this notation,

OPT ðN;N; d iNe; iÞ is the number of queries with i buckets

that can be retrieved optimally using a single copy. The

computation of OPT ðN;M;B; iÞ can be done as follows: If

i > BM or i � 0, then OPT ðN;M;B; iÞ ¼ 0; if N ¼ 1 and

0 � i � B, then OPT ðN;M;B; iÞ ¼ i. Otherwise,

OPT ðN;M;B; iÞ ¼
XB
j¼0

M

j

� �
OPT ðN � 1;M;B; i� jÞ:

Since each bin can store at most B items, the number of

queries that are optimal can be computed recursively using

the number of items in the first bin. We place j items in the

first bin and find the number of ways to place i� j items in

the remaining N � 1 bins with the same constraints. The

value of j for the first bin varies from 0 to B. Therefore, we

have to compute the summation over all the possible values.

The expression M
j

� �
denotes the number of ways we can

choose j buckets out of the M buckets stored on the disk.
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Fig. 17. Worst-case retrieval cost.

Fig. 18. Algorithm for retrieval.



6 EXPERIMENTAL RESULTS

In this section, we compare the declustering schemes for

different query types and query loads.

6.1 Query Types

6.1.1 Arbitrary Queries

We use three different query loads for arbitrary queries. We
first select the number of disk accesses required by the
query and then select the number of buckets in the query.
The total number of arbitrary queries is given as

AT ¼
PN

i¼1 Aðk;NÞ. We use the notation pik to denote the
probability that an arbitrary query in load i can be retrieved
in k disk accesses optimally. Once the optimal number of
disk accesses k is selected, the number of buckets is selected

uniformly from the range ½ðk� 1ÞN þ 1; kN �. The different
query loads for arbitrary queries are given as follows:

. Load 1. The distribution of queries is similar to

the distribution of Aðk;NÞ. We achieve this by

setting p1
k ¼

Aðk;NÞ
AT

.

. Load 2. The distribution of queries is uniform. We

achieve this by setting p2
k ¼ 1

N .
. Load 3. Smaller queries are more likely. We achieve

this by setting p3
k ¼ 2N

ð2N�1Þ	2k . In this case, p3
k ¼ 1

2 p
3
k�1,

2 � k � N .

6.1.2 Range Queries

The total number of range queries is given as
RT ¼

PN
i¼1 Rðk;NÞ. We use the notation pik to denote the

probability that a range query in Load i can be retrieved in
k disk accesses optimally. Once the optimal number of disk
accesses k is selected, the number of buckets is selected

uniformly from the range ½ðk� 1ÞN þ 1; kN �. The different

query loads for range queries are given as follows:

. Load 1. The distribution of queries is similar to the

distribution of Rðk;NÞ. We achieve this by setting

p1
k¼

Rðk;NÞ
RT

.
. Load 2. The distribution of queries is uniform. We

achieve this by setting p2
k ¼ 1

N .
. Load 3. Smaller queries are more likely. We achieve

this by setting p3
k ¼ 2N

ð2N�1Þ	2k . In this case, p3
k ¼ 1

2 p
3
k�1,

2 � k � N .

6.1.3 Connected Queries

We are not able to compute the total number of connected

queries exactly. Therefore, we use two loads instead of a

single load that depends on the total number of connected

queries. The first load assumes the distribution of arbitrary

queries and the second load assumes the distribution of

range queries. We use the notation pik to denote the

probability that a connected query in load i can be retrieved

in k disk accesses optimally. Once the optimal number of

disk accesses k is selected, the number of buckets is selected

uniformly from the range ½ðk� 1ÞN þ 1; kN �. The different

query loads for connected queries are given as follows:

1586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

TABLE 1
Disk Specifications

Fig. 19. Arbitrary queries.



. Load 1a. The distribution of queries is similar to the

distribution of Rðk;NÞ. We achieve this by setting

p1
k ¼

Rðk;NÞ
RT

.

. Load 1b. The distribution of queries is similar to the

distribution of Aðk;NÞ. We achieve this by setting

p1
k¼

Aðk;NÞ
AT

.

. Load 2. The distribution of queries is uniform. We

achieve this by setting p2
k ¼ 1

N .
. Load 3. Smaller queries are more likely. We achieve

this by setting p3
k ¼ 2N

ð2N�1Þ	2k . In this case, p3
k ¼ 1

2 p
3
k�1,

2 � k � N .

6.1.4 Mixed Queries

We vary the fraction of arbitrary, range, and connected

queries and investigate how this affects the result. Once the

fraction of queries is determined, individual query types are

chosen based on the above loads. The different query loads

for mixed queries are given as follows:

. Load 1. The fraction of queries is 50 percent arbitrary,
25 percent range, and 25 percent connected. The
distribution of queries is uniform. That is, p1

k ¼ 1
N .

. Load 2. The fraction of queries is 25 percent arbitrary,
50 percent range, and 25 percent connected. The
distribution of queries is uniform. That is, p2

k ¼ 1
N .

. Load 3. The fraction of queries is 25 percent arbitrary,
25 percent range, and 50 percent connected. The
distribution of queries is uniform. That is, p3

k ¼ 1
N .

6.2 Disk Specification

We got experimental results on two different architectures:
one with barracuda-based average speed disks and another
with cheetah-based fast disks. The key parameters for the
architectures are given in Table 1. We provide results only
for the cheetah-based disks here due to space constraints.
The results for barracuda-based disks are given in the
technical report version of the paper.

6.3 Analysis of Results

We generate 1,000 queries for each disk and for each load.

The queries are written to a file so that we can use the same

queries for each declustering method. We get experimental

results for up to N ¼ 100 disks. We also plot the value of

strict optimal allocation (retrieves b buckets using d bNe disk

accesses) and use it as a benchmark. Note that it is not

possible to achieve strict optimality in general.
The results for arbitrary queries are given in Fig. 19.

Many of the allocations perform similarly. The only
exceptions are partitioned allocation and dependent
allocation. Partitioned allocation [18], [8], [2] divides the
disks into pairs and replicates a disk on the other disk in
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the pair. Therefore, there are n
2 distinct possibilities for the

pair of disks a bucket can be stored at. Because of this
limitation, it performs poorly for arbitrary queries. The
advantage of partitioned allocation is that the retrieval
algorithm is very simple and max-flow computation is not
needed (does not improve results). Compared to n

2 pairs of
partitioned allocation, orthogonal allocations uses all
N2 pairs for storing buckets, and this helps during
retrieval. Dependent periodic allocation is optimized for
range queries, and it stores the max flow for range queries
instead of computing them for each query. For arbitrary
queries, the max flow needs to be computed (partitioned
allocation is an exception), and the results are slightly
worse than the RDA, orthogonal, and design-theory-based
schemes. Under Load 3, which consists of a large number
of smaller queries, the performance of the schemes varies a
lot. The design-based scheme performs the best, followed
by the orthogonal and RDA schemes. As expected, the
dependent and partitioned schemes perform poorly. The
number of disk accesses for N ¼ 26 is given in Table 2 to
give the reader a better understanding of how close the
numbers are. Under Load 1, both the orthogonal and
design-based schemes retrieve all queries optimally.

The results for range queries are given in Fig. 20. We
tuned the first copy of many allocations for range queries.
This can be observed in the results. For Loads 1 and 2, they
perform very close to the optimal. For smaller queries
generated by Load 3, the gap between the optimal and the
schemes widens. This gap is the largest for the RDA
scheme. This is not a surprising result since RDA is not
tunable. For smaller queries generated by Load 3, depen-
dent allocation performs the best. The number of disk
accesses for N ¼ 28 is given in Table 3 to give the reader a
better understanding of how closes the numbers are. As can
be observed from the figure, dependent allocation performs
well for range queries.

We investigated the performance of dependent alloca-
tion further to see if we can tune it more. The advantages of
dependent allocation are obvious since we can store the
max flow and reuse it. The memory requirement to store
the max flows for range queries in dependent periodic
allocation is given in Fig. 23. The maximum value in the
figure is 12 megabits. Therefore, using 1.5 megabytes of
memory, all the matchings for range queries can be stored,
and retrieval can be done in OðjQjÞ time for a query Q. If the
memory is at a premium, the matching for most common
queries can be stored. By using compression, the memory
requirement can be further reduced.

We used the best threshold scheme as base allocation
and varied m to find the dependent allocation that
maximizes the fraction of range queries that is optimal.
The distribution scheme is the one used for Load 1 of range
queries. There are dependent allocations schemes that
render a huge fraction of range queries optimal. The results
are given in Fig. 24. For values of N up to 100, the fraction
is more than 0.99. We did not get results for larger values
of N since some matchings end up having more than
10,000 nodes in it.
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For Load 3 of range queries, partitioned allocation does
reasonably well even without matching. It beats RDA,
which requires max-flow computation. This is mainly due
to the following property of partitioned allocation:

Theorem 11. N �N declustering scheme ðN > 5Þ with thresh-
old �ðhÞ used as the base allocation for an 2N � 2N partitioned
allocation. An s� t range query Q with st < 2N buckets can
be retrieved in optimal one disk access if the s� t rectangle can
be divided into two rectangles each having <¼ �ðhÞ buckets.

Proof. Assume that an s� t range query Q can be divided
into two rectangles each having <¼ �ðhÞ buckets. Since,
for N > 5, the threshold is < N , each number appears at
most once in each rectangle. The maximum count for a
disk in an s� t range query is 2. Since partitioned
allocation stores a disk on its pair, one of the two buckets
mapped to a disk can be retrieved from its pair. Using
this approach, the query can be retrieved in optimal one
disk access. tu

The results for connected queries are given in Fig. 21. The
gap between the optimal and the schemes compared is
wider in this case. Partitioned allocation performs the worst
since it does not utilize max-flow computation. Dependent
allocation performs the best under Load 3, which favors
small queries.

The results for mixed queries are given in Fig. 22. The

compared schemes perform well with the exception of
partitioned replication. Note that the max-flow computa-
tions stored for dependent allocation will work only for

range queries. Due to the large number of connected queries
and arbitrary queries possible, the max-flow computation
cannot be stored and needs to done for each query.

We next investigate the three-step retrieval algorithm
given in Fig. 18. It first uses a single copy and tests if the
query is optimal. If it is not, the algorithm uses the design-
theoretic algorithm and tests if the query is optimal. If it is
not, then it solves the max-flow problem. Theoretically,
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Fig. 22. Mixed queries.

Fig. 23. Memory requirement for dependent allocation for range queries. Fig. 24. Fraction of optimal range queries.



max-flow complexity is OðjQj2Þ and single-copy retrieval
and the design-theoretic algorithm are OðjQjÞ. We com-
puted the fraction of queries rendered optimal using these
three retrieval strategies. The results for arbitrary queries
and range queries are given in Tables 4 and 5, respectively.
By the design of partitioned allocation, computing the max
flow is equivalent to using the design-theoretic retrieval
algorithm. For arbitrary queries, queries that are optimal
constitute a very small fraction of all queries. RDA relies
more on max-flow computation since individual copies are
randomly chosen. Since we tune the first copy of some
allocations for range queries, we have a higher fraction
rendered optimal using a single copy. For Load 1, all
schemes except RDA render at least 40 percent of queries
optimal. This jumps to 56 percent for Load 2 and 60 percent
for Load 3. For range queries, RDA relies more on matching
and returns worse results than orthogonal allocation.

7 CONCLUSION

Many replicated declustering schemes were proposed in the
literature. Some of them are loosely defined, and some of
them are proposed for specific queries. A general comparison
of their performance has not been done. However, to
understand replicated declustering better, an in-depth
performance comparison is needed. In this paper, we
compare the performance of replicated declustering schemes
for different query types and query loads. We tune each
scheme for range queries and choose the other copy to target
arbitrary and connected queries. We propose a three-step
retrieval algorithm for the compared schemes. For arbitrary
queries, the dependent and partitioned allocation schemes
perform poorly; others perform close to each other. For range
queries, they perform similarly with the exception of Load 3,
in which RDA performs poorly and dependent allocation
performs well. For connected queries, partitioned allocation

performs poorly and dependent allocation performs well
under a light load.
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[17] H. Ferhatosmanoglu, A.Ş. Tosun, G. Canahuate, and A. Rama-
chandran, “Efficient Parallel Processing of Range Queries through
Replicated Declustering,” J. Distributed and Parallel Databases,
vol. 20, no. 2, pp. 117-147, 2006.
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[42] A.Ş. Tosun, “Replicated Declustering for Arbitrary Queries,” Proc.
19th ACM Symp. Applied Computing, pp. 748-753, Mar. 2004.
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