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Abstract

This paper presents a design and analysis of schedul-
ing techniques to cope with the inherent unreliability and
instability of worker nodes in large-scale donation-based
distributed infrastructures such as P2P and Grid systems.
In particular, we focus on nodes that execute tasks via do-
nated computational resources and may behave erratically
or maliciously. We present a model in which reliability is
not a binary property but a statistical one based on a node’s
prior performance and behavior. We use this model to con-
struct several reputation-based scheduling algorithms that
employ estimated reliability ratings of worker nodes for ef-
ficient task allocation. Through simulation of a BOINC-like
distributed computing infrastructure, we demonstrate that
our algorithms can significantly improve throughput, while
maintaining a very high success rate of task completion.

1 Introduction

Recently, several distributed infrastructures, including
peer-to-peer networks and donation Grids, have been pro-
posed to host large-scale wide-area applications ranging
from file sharing/file storage to high performance scientific
computing [19, 7, 8, 2, 3]. Despite the attractive features
of these platforms, widespread deployment of such systems
and applications has been elusive. A key problem is the in-
herent unreliability of these systems: nodes may leave and
join unexpectedly, perform unpredictably due to resource
sharing at the node and network level, and behave errati-
cally or maliciously. This paper presents a design and anal-
ysis of techniques to cope with the inherent unreliability
of nodes that execute tasks via donated computational re-
sources.

We present a model in which reliability is not a binary
property but a statistical one based on a node’s prior perfor-
mance and behavior. An example of such an environment
is BOINC [2], or its forerunner SETI@home [3], in which
a server distributes tasks to worker nodes and collects re-

sults. Since nodes are not reliable, the server generally can-
not be certain that the results returned by any given worker
are valid unless application-specific verifiers are provided.

Task replication and voting [5] is a common technique
used to deal with uncertainty in the absence of inexpensive
verifiers. The degree of redundancy is an important param-
eter: a small degree of replication could decrease the like-
lihood that the server will receive a verifiable result. On
the other hand, a large degree of replication could result
in unnecessary duplication of work by multiple resources.
Systems like BOINC rely on the application writer to spec-
ify this value for each task. Since the reliability of workers
in a distributed environment may be uncertain, it is likely
that any statically-chosen redundancy value will reduce the
effectiveness of the system.

To overcome this problem, we propose techniques to de-
termine the degree of redundancy based on the estimated
reliability of the workers. Using a simple reputation sys-
tem [18], it is possible to determine the likelihood that a
given worker will return a correct and timely result with
fairly high accuracy. Using these reliability ratings, the sys-
tem can intelligently schedule tasks to workers such that
throughput is improved, while still maintaining the server’s
ability to distinguish fraudulent results from valid ones.

Applying these techniques in practice introduces a num-
ber of challenges. First, the system must be able to learn
the reliability of individual workers. Given these reliability
ratings, the system needs an algorithm or heuristic to de-
termine how to match groups of workers to tasks. Since it
is likely that the best scheduling technique will be depen-
dent on the environment, we propose a set of algorithms
that are tuned to the characteristics of typical environments.
Through simulation of a BOINC-like distributed comput-
ing infrastructure, we compare the throughput and compu-
tational overhead of each of these techniques. Our results
indicate that reputation-based scheduling can significantly
improve the throughput of the system for worker popula-
tions modeling several real-world scenarios, with overhead
that scales well with system size.
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2 Background and Related Work

Distributed Computing Infrastructures

Numerous computing infrastructures have been designed
to utilize idle distributed resources. The @Home applica-
tions [3, 10] and their generalization, BOINC [2], are in-
stances of a growing number of systems which utilize do-
nated computing cycles to solve massive scientific prob-
lems. In contrast to BOINC, several unstructured cycle-
sharing platforms have been proposed [6, 14] in which
nodes can act as both a client and a server. These platforms
facilitate the formation of ad hoc communities for solving
large-scale computing problems.

Dealing with Unreliability

Dealing with unreliability is a core design challenge in any
distributed system. Redundant task allocation combined
with voting, as used in Byzantine fault-tolerant (BFT) sys-
tems [5], is popular due to its general applicability. This
approach is also used by most BOINC [2] applications to
verify the results of outsourced computations. Since task
replication could result in lower resource utilization, some
techniques have been proposed to verify results for tasks
allocated to a single resource. Golle and Mirnov [12, 9]
present a verification technique that inserts pre-computed
images of special spot-checks called “ringers” into dis-
tributed tasks to verify results returned by a worker and
identify cheaters. Both these techniques can be used only
for verifying computations that exhibit a one-way property,
and are thus not applicable for general computations. An-
other verification technique [16, 20] employs pre-computed
tasks called ‘quizzes’ that are embedded into a batch of
(otherwise indistinguishable) tasks allocated to a worker.
This technique requires pre-computation of certain tasks,
which may be non-trivial or infeasible in many scenarios.

Reputation-Based Scheduling

Reputation systems [15] are commonly used to gauge the
reliability of nodes based on past interactions. The con-
cept of trust-aware resource management for the Grid was
proposed in [4], where a technique is presented for com-
puting trust ratings in a Grid using a weighted combination
of past experience and reputation. GridEigenTrust [1] com-
bines this trust-computation technique with the EigenTrust
reputation system [13] to provide a mechanism for rating
resources in a Grid. Zhao and Lo [20] propose augmenting
peer-to-peer cycle sharing systems with a reputation system
to reduce the degree of replication required to verify results.

Overall, most existing reputation-based scheduling
schemes have focused on correctness as the primary metric,
and have dealt mainly with binary trust values. The unique

elements of our approach include a more general statistical
representation of reliability that includes timeliness as well
as correctness, and the use of this metric to improve appli-
cation and system performance.

3 System Model

Our distributed computing model consists of a central
server that assigns computational tasks to a set of worker
nodes. The worker nodes in this computation model are
not centrally-controlled, and could be participating for var-
ious reasons. For instance, they may be donating their idle
resources voluntarily [7], or they may be providing their
resources in return for some incentive, such as monetary
remuneration [19], credit [3, 2], or use of other nodes’ re-
sources in return [11]. Our system model does not make any
assumptions about the incentive scheme for worker partic-
ipation or the workload generation methodology: the com-
putation tasks could either be pre-generated on the server
by a project designer, or they may be submitted by users
accessing a common service. We assume that the set of
tasks that need to be computed by the available set of worker
nodes is large enough to keep all workers busy for the dura-
tion of the application.

3.1 Reliability Model

Since the participation of worker nodes is voluntary and
outside the server’s control, workers may not return correct
results in a timely manner for several reasons. First, a node
may be overloaded or behind a slow connection, resulting
in slow response. Another reason may be that a node is
misconfigured, hacked, or infected by a virus, resulting in
incorrect computation. Finally, a node may be malicious
(deliberately trying to disrupt a computation) or cheating,
thus returning wrong results.

We model such unreliable behavior by assigning to each
worker a probability of returning a correct response within a
“reasonable” time frame. This probability need not be fixed,
and could change with time. For instance, nodes may go of-
fline and come back up again, or some malicious nodes may
change their behavior with time—returning correct results
for a while to improve their reputation and then deliberately
injecting bad results into the system. When modeling these
unreliable workers, we assume that each worker acts inde-
pendently, and that there is no collusion between them.

3.2 Redundant Computation

A key consideration in our model is that the server
may not have an efficient way of independently verifying
each worker response for correctness. While several tech-
niques [12, 9] have been proposed to verify the correctness
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of results, these techniques are application-specific and are
not applicable to general computational scenarios. In our
system model, we employ a verification technique based
on redundant computation coupled with voting. Under this
verification technique, if a quorum of workers agrees on a
result, the server treats that result to be correct; otherwise,
the task is re-scheduled. While the quorum size could be
application-dependent, majority is typically used to deter-
mine the correct answer.

3.3 Definitions

Definition 1 Task (7;): A task is defined as a self-contained
computational activity that can be carried out by a worker
node. Upon completion, each task generates a well-defined
result that is returned to the server.

A task would typically correspond to an independent unit of
a larger computation. For example, a task may correspond
to computing the determinant of a submatrix, and the result
of the task would be the value of the determinant.

Definition 2 Reliability (r;): Reliability of a worker i is
defined as the probability that the worker returns a correct
result within a (system-defined) time period.

Note that reliability is not a binary property—a node could
return the correct result some of the time, and a wrong re-
sult at other times. Moreover, the reliability property of a
worker could also change with time.

Definition 3 Redundancy Group'(G;):  Redundancy
group for a task T; is defined as the group of worker nodes
assigned to compute the task.

In most existing systems, the size of each redundancy group
is typically set to a fixed static value. In our system model,
the redundancy factor for each group can be different and
dynamically determined, and is dependent on the reliability
of the group’s constituent worker nodes.

Definition 4 Quorum: We say that a group G; has reached
quorum if some number of worker nodes, which may be
fixed or dependent on the group size, return the same result.

In our system model, we say a group has reached quorum if
a majority of the workers return the same result.

Definition 5 Likelihood-of-Correctness (\;): Likelihood-
of-correctness for a group G; is defined as the probability
that the group would return a correct result based on ma-
jority voting.

The LOC \; for a group represents the collective reliabil-
ity of the group. This value is dependent on the individual
reliability values of the constituent nodes of the group.

!n the rest of the paper, we would refer to a redundancy group simply
as a group unless required to avoid confusion.

4 Reputation-based Scheduling

We now present a reputation-based scheduling algo-
rithm for distributing the server workload among the worker
nodes. This algorithm employs reliability ratings of individ-
ual worker nodes for task assignment in order to improve
the overall throughput and success rate of task completions.
This reputation-based task scheduling algorithm consists of
the following steps:

e Estimating reliability ratings of individual workers.

e Using the estimated worker reliability ratings to com-
pute the LOC of possible groups.

e Grouping workers for task assignment based on LOC
estimates to maximize the throughput and success rate.

4.1 Estimating Reliability Ratings

We use a reputation system to estimate the reliability rat-
ings of individual worker nodes. These reliability ratings
are learned over time based on the results returned by the
workers to the server. We estimate a worker’s reliability
r;(t), at a given time ¢, as follows:

_oni)+1
ri(t) = M) +2

where n;(t) and N;(t) are respectively the number of cor-
rect responses generated and the total number of tasks at-
tempted by the worker by time ¢. The rating of each worker
is updated each time it is assigned a task, based on the re-
sponse it returns (a missing or late response is treated as
incorrect).

If the workers in a group reach a quorum, the server ac-
cepts the majority answer as the “correct” result, and up-
dates the reliability ratings accordingly. However, this still
raises the question of how to update the ratings of work-
ers in a group that doesn’t reach quorum. We present four
different heuristics to handle this case:

e Neutral: If no quorum is achieved for a group, the rat-
ings of its workers are not changed.

o Pessimistic: If a group does not achieve a quorum, all
of its workers are given negative ratings.

e Optimistic: In the absence of a quorum, this heuristic
increases the reliability ratings of any set of workers
that agree on the result value. It penalizes those worker
whose answers do not match any other answers.

o Verification-based: This heuristic verifies results using
an independent verifier. We use this heuristic is an up-
per bound, since it relies on perfect knowledge of the
results’ correctness.
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4.2 Computing the LOC

The likelihood-of-correctness (LOC) of a group repre-
sents the probability of getting a correct answer from that
group using the majority-based voting criterion of verifica-
tion. This value can be computed using the individual re-
liability ratings of the members of the group, as estimated
above. Consider a group G = {w, ..., wak+1} consisting
of workers w;,i = 1...2k + 1. Let r; be the reliability
rating of a worker w;,7 = 1...2k + 1, at a given point in
time. Then, the LOC X of the group G is given by:

2k+1 2k+1

A= > IIna-mt o

m=k+1 {e:||e]|=m} i=1

where € = {e1, ..., €251} is a vector of responses from the
workers in the group, with 1 representing a correct response,
and O representing an incorrect response. For example, for
a group G consisting of 5 workers w; through ws, one pos-
sible vector could be {1,1,0,0,1}, indicating correct re-
sponses from workers wi, wo, and ws. Intuitively, Equa-
tion 1 considers all possible subsets of the given set of work-
ers in which a majority of workers could respond correctly.
It then computes the probability of occurrence of each of
these subsets as a function of the reliability rating of the
workers. We assume that the likelihood of the false-positive
case where a majority of workers return the same wrong
answer is negligible, and hence ignored in Equation 1.

The complexity of computing the A value can be shown
to be O(22F), which is infeasible for most practical pur-
poses. To reduce the cost of computing A values for mul-
tiple groups, we use a lower bound A for \ based on
Jensen’s inequality that has an O(n?) computation com-
plexity [17].

4.2.1 The Role of LOC in Task Scheduling

To determine the size and composition of the groups, the
system relies on a parameter indicating whether or not the
LOC for a proposed group is acceptable. That is, we require
some value Aiqrger such that if A > Aggrget, then we con-
clude that G is an acceptable group. We refer to A\iqrger as
the target LOC. Since A¢qrget represents a lower-bound on
the likelihood that a group will return a successful result, it
can be thought of as a target success rate for the system.
Choosing a proper value for Aq,qes is critical to max-
imizing the benefit derived from the system. If Aygrges is
too small, many groups may return incorrect results, caus-
ing the tasks to be rescheduled. If it is set too high, the
scheduler will be unable to form groups which meet the
target, and the scheduler will degenerate to forming large

2We consider odd-sized groups to avoid ambiguity in defining majority
for even-sized groups.

fixed-size groups, adversely affecting the system through-
put. Thus, the target LOC must be carefully selected to fit
the reliability distribution of the workers.

4.3 Forming Redundancy Groups

So far, we have described heuristics for estimating indi-
vidual worker ratings, and provided a mechanism for com-
bining these ratings to determine the reliability of groups.
We now present algorithms to assign workers into groups
using these heuristics and mechanisms. The goal of forming
these groups is to maximize both the throughput of success-
ful tasks completions (those that result in correct results)
and the rate of successful task completion (success rate)
given a set of individual worker ratings.

There is a natural trade-off between the throughput of
successful task completion and the success rate. By form-
ing larger groups, we generally increase the likelihood that
an individual group will return a correct answer, but we de-
crease the number of tasks attempted, which may in turn
decrease the throughput of successful tasks. Conversely, de-
creasing the average group size will make each group less
likely to return correct results, but may increase the num-
ber of successful tasks completed due to the increase in the
number of tasks attempted.

We now present several reputation-based scheduling al-
gorithms that form groups G; from the pool of available
worker nodes such that \; of each G satisfies A\arger-

4.3.1 Fixed-Size

This is the baseline algorithm for our system model as
it represents “‘standard-best-practice” exhibited in systems
such as BOINC. The Fixed-size algorithm randomly assigns
workers to groups of size R4, Where R4, 1S a statically-
defined constant. Every worker of a given group G; is as-
signed the same task. This algorithm does not use the relia-
bility ratings r; of workers to size R; in an intelligent way.
For a given set of workers, this algorithm will form a fixed
number of groups, irrespective of r;.

4.3.2 First-Fit

In the First-fit algorithm, the available workers are sorted by
decreasing reliability rating. Starting with the most reliable,
workers are assigned to group G; until either A\; > Aiarget
or until the maximum group size R4, is reached. This
process is repeated until all the available workers are as-
signed to a group. Intuitively, First-fit attempts to form the
first group that satisfies A¢qrger from the available workers
in a greedy fashion. By bounding the size of G; with Ry,q2,
we ensure that First-fit forms bounded groups and degener-
ates to the Fixed-size heuristic in the absence of a sufficient
number of reliable workers.
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4.3.3 Best-Fit

The Best-fit algorithm attempts to form groups G; such that
A; is as close as possible to A¢qrget. The Best-fit algorithm
searches the space of available workers and groupings to
find a G; that exceeds Ay get by the smallest possible mar-
gin. If no group of size Ry,q, or smaller meets Aiorgets
the algorithm forms a group that falls short of the target
by the smallest amount. Intuitively, this algorithm attempts
to form the best-fit of worker nodes for a given Agrget-
As a result, tasks are not overprovisioned with more reli-
able resources than necessary, and well-balanced groups are
formed.

4.3.4 Random-Fit

The Random-fit algorithm uses reliability ratings to form
groups by randomly adding workers to a group G; until ei-
ther A\; meets Aigrger OF the group has Ry, workers. It
differs from First-fit in that workers are added to groups
randomly, rather than in sorted order.

5 [Evaluation

In this section, we evaluate the performance of the rating
techniques and grouping algorithms described in the pre-
vious section through simulation of a donation-based dis-
tributed computing platform. In our simulations, we model
a large number of real-world scenarios using different dis-
tributions for worker reliability values.

Through our simulations, we first measure the rating er-
ror associated with various reliability estimation techniques.
Next, we combine the most promising of these techniques
with our reputation-based scheduling algorithms to evalu-
ate their throughput and success rate of task completion.
Finally, we briefly consider the overhead introduced by the
proposed scheduling algorithms.

5.1 Evaluation Methodology

Our evaluation is based on a simulator loosely modeled
around the BOINC [2] distributed computing infrastructure,
which consists of a task server and some number of worker
machines. We make two simplifying assumptions to enable
fair comparison between different grouping algorithms:

e The simulator is round-based—work assignment and
verification is done periodically in fixed-duration time
periods called rounds. The task server assigns work to
all the workers at the beginning of a round, and then
waits for the workers to return their results. At the
end of each round, the server collects and verifies the
received results, updates the reliability ratings, and re-
forms groups for task allocation in the next round. In

Name Distribution Real-world Scenario

General environment
Most workers reliable
Most workers unreliable

Uniform Uniform
Heavy-tail-high 1-Pareto(1, 0.1)
Heavy-tail-low Pareto(1, 0.2)

Normal-high N(0.9, 0.05) Reliable environment
Bimodal N(0.2,0.1) + N(0.8,0.1) | 50% (un)reliable workers
Normal-low N(0.3,0.1) Hostile environment

Table 1. Probability distributions used in the
simulations to emulate different real-world
reliability scenarios.

the results shown here, we ran our simulations for a
total of 1000 rounds each.

e The task server has an extremely large pool of work
relative to the number of workers available. This as-
sumption is consistent with the projects hosted by the
BOINC infrastructure, and is likely to be true for future
large-scale scientific computing applications as well.
As a result, the task server will always attempt to uti-
lize all of the available workers, and workers will never
have to wait for work.

An individual worker’s reliability is modeled by assign-
ing it a probability r; of returning a correct result within
a round. When a worker is assigned a task, it returns the
correct result with probability r;. These probabilities are
known only to the workers - the task server has no knowl-
edge of these values a priori.

To simulate various real-world reliability scenarios, we
generate individual worker probabilities from several dif-
ferent probability distributions. Table 1 lists some of the
distributions used in our simulations and the corresponding
scenarios modeled by each of them. For instance, we use a
normal distribution with a high mean to emulate a highly-
reliable system, where most workers are well-connected
and return correct results most of the time. On the other
hand, we use a bimodal distribution to represent a system
that has a mix of highly-reliable workers and compromised
or poorly-connected nodes.

5.2 Reliability Rating Estimation

In Section 4.1, we presented several heuristics for esti-
mating the reliability ratings of workers. In this section, we
evaluate the effectiveness of each of these heuristics. For
each of the reliability distributions in Table 1, we measured
the mean rating error across all workers during a simulation
of 1000 rounds. We assume that the server has no infor-
mation about the workers at the beginning of a simulation.
Thus, each worker starts with an initial estimated reliability
rating of 0.5, indicating that they are as likely to return a
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Figure 1. Mean Rating Error - Bimodal Distri-
bution

correct answer as not. At the end of each round, we update
each worker’s rating and compare the estimated ratings to
the actual reliability values. The rating error of each worker
is computed as |actual rating — estimated_rating.

Figure 1 shows the results obtained for simulations using
the bimodal distribution. Results for other distributions are
similar and omitted due to space constraints. The Neutral
heuristic is the least accurate, with a mean rating error of
about 40% for the bimodal distribution. Since Neutral does
not update ratings of a group when a majority is not found, it
is unable to learn the ratings of unreliable workers quickly,
resulting in highly inaccurate reliability estimates. The Pes-
simistic heuristic performs better than the Neutral heuristic,
because it is able to discover unreliable workers quickly.
However, it still has a high rating error (about 20%). This
is because the Pessimistic heuristic assigns negative ratings
to all workers in a group which fails to achieve a majority,
resulting in unfair ratings being assigned to reliable workers
that happen to be in a group with less reliable workers.

The mean rating error of Optimistic converges to about
10% within 30-40 rounds. This heuristic performs well
because it makes use of the assumption that workers are
unlikely to return the same wrong answer independently.
Thus, it is able to identify reliable workers, even in the ab-
sence of a majority, by matching their common results. Fi-
nally, as expected, the Verification-based heuristic, which
assumes the presence of an independent verifier, has the
smallest rating error, and can be considered the baseline
heuristic for our purposes. In the remaining experiments,
we employ the Optimistic and Verification heuristics for rat-
ing estimation. In the preceding experiment, we assumed
that the task server used all of a worker’s past history to cal-
culate its reliability rating. While this approach has the po-
tential to be extremely accurate, it will be slow to respond
to sudden changes in a worker’s reliability. To deal with
workers whose reliability is non-stationary, we introduce
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Figure 2. Rating Error Comparison: Sliding-
Window vs. Infinite History

sliding-window versions of each of the rating estimation
heuristics. The sliding-window based heuristics maintain
a bounded history of information for each worker, and they
rely on this window of recent worker behavior to estimate
reliability. A smaller window will cause more recent behav-
ior to have a greater impact on the worker’s rating, resulting
in more adaptive ratings. However, if the window shrinks
too much, the rating values may start oscillating, limiting
the achievable accuracy for stable workers.

In Figure 2, we compare the accuracy of sliding-window
versions of Optimistic and Verification-based heuristics to
their infinite history counterparts. We use a window size
of 20 rounds in these experiments. As expected, while the
accuracy is not as high as in the infinite history case, the
sliding-window versions of both heuristics are still fairly
accurate (both converge to 15% rating error within 20
rounds).

5.3 Reputation-Based Scheduling

To evaluate the effectiveness of the grouping algorithms,
we use the following metrics:

e Throughput (p): The throughput during a round is de-
fined as the number of tasks for which a majority was
achieved during that round (i.e., the number of ’suc-
cessful’ tasks).

e Success Rate (s): The success rate during a round is
defined as the ratio of throughput to the number of
tasks attempted during that round.

To fully understand the behavior of the reputation-based
schedulers, we ran an exhaustive set of simulations covering
a large parameter space. Due to space constraints, we will
present a subset of the results here. A full analysis can be
foundin [17].
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For a given distribution , we set Aq,ge: €qual to the suc-
cess rate of the Fixed algorithm for the same parameter val-
ues. This ensures that the success rate of the various algo-
rithms will be approximately the same, facilitating a com-
parison between our proposed algorithms and the baseline
Fixed algorithm.

5.3.1 Comparing Scheduling Algorithms

In our first experiment, we measured the mean throughput,
and success rate for the different grouping algorithms us-
ing a pool of 100 workers. We compared the algorithms
for each of the worker reliability distributions described in
Table 1 using the Optimistic rating technique.

In Figure 3, we present the throughput results for a max-
imum group size of 7 workers. The First-fit and Best-
fit algorithms improve on the throughput of Fixed by 25-
250%, depending on the worker reliability distribution. The
Random-fit algorithm, while not performing as well as
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Figure 5. Large-scale Blackout: Rating er-
ror using window-based Optimistic rating
heuristic

First-fit and Best-fit, still outperforms Fixed by about 20-
50%.

Figure 4 plots the success rate results for the experiment.
Since we set Aiqrger €qual to the success rate achieved by
the Fixed algorithm, we would expect that the mean suc-
cess rate for the other algorithms to be similar. The suc-
cess rate of Random-fit and Best-fit is nearly identical to
that of Fixed—the minor differences are due to the use of
the lower-bound LOC function combined with approximate
worker reliability measures. First-fit deviates significantly
for most of the distributions due to its greedy group forma-
tion policy, which causes First-fit to overprovision reliable
clients to the first several groups. Overall, these results in-
dicate that reputation-based scheduling algorithms signifi-
cantly increase the average throughput for all of the relia-
bility distributions, while maintaining a high success rate.

5.4 Dealing with Non-Stationary Workers

In the previous set of experiments, each worker was as-
signed a static reliability value (internal probability of re-
turning a correct response) for the duration of the simulation
based on the collective reliability distribution. Real-world
workers are likely to exhibit non-stationary behavior, i.e.,
their reliability will vary with time.

We consider a large-scale worker blackout scenario that
could correspond to a real-world event such as a network
partitioning, a large organization crash, or a major virus,
which may suddenly compromise the reliability of a large
number of workers. To emulate such an event, we modified
the simulation so that 30% of the workers transitioned from
a highly-trusted normal-high distribution to an unreliable
heavy-low distribution after 300 rounds.

Figure 5 shows the rating error for a simulation using the
Best-fit algorithm. In Figure 5, we can clearly see a massive
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spike in the rating error after round 300. However, the sys-
tem quickly adapts to the change, and the rating error stabi-
lizes near its previous levels within a few rounds. This indi-
cates that the sliding-window rating estimation technique is
effective in dealing with sudden changes in worker reliabil-
ity ratings.

5.5 Overhead

The time spent computing the LOC for a given group
is the primary component of the overhead incurred by the
reputation-based schedulers, so we can compare the algo-
rithms in a system-independent manner.

The First-fit and Random-fit algorithms form groups in a
sequential fashion. Each grouping considers at most a con-
stant number of worker pairs, and the number of groups is
linear in the number of workers, so the number of calls to
the LOC function scales linearly with the size of the net-
work. The Best-fit algorithm is more expensive because
it tries to form the best possible groups by using a binary
search of the available workers. Thus, the number of calls
to the LOC function is O(nlogn), where n is the size of
the network.

6 Conclusions and Future Work

In this paper, we have presented a design and analysis of
techniques to handle the inherent unreliability of nodes in
large-scale donation-based distributed infrastructures. We
proposed a reputation-based scheduling model to achieve
efficient task allocation in such an unreliable environment.
Our reputation system represents the underlying reliabil-
ity of system nodes as a statistical quantity that is esti-
mated based on the prior performance and behavior of the
nodes. Our scheduling algorithms use the estimated relia-
bility ratings to form redundancy groups that achieve higher
throughput while maintaining desired success rates of task
completion. The simulation results indicate that reputation-
based scheduling can significantly improve the throughput
of the system (by as much as 25-250%) for worker popula-
tions modeling several real-world scenarios , with overhead
that scales well with system size.
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