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Abstract—Application-layer peer-to-peer (P2P) networks are considered to be the most important development for next-generation

Internet infrastructure. For these systems to be effective, load balancing among the peers is critical. Most structured P2P systems rely

on ID-space partitioning schemes to solve the load imbalance problem and have been known to result in an imbalance factor of

�ðlogNÞ in the zone sizes. This paper makes two contributions. First, we propose addressing the virtual-server-based load balancing

problem systematically using an optimization-based approach and derive an effective algorithm to rearrange loads among the peers.

We demonstrate the superior performance of our proposal in general and its advantages over previous strategies in particular. We also

explore other important issues vital to the performance in the virtual server framework, such as the effect of the number of directories

employed in the system and the performance ramification of user registration strategies. Second, and perhaps more significantly, we

systematically characterize the effect of heterogeneity on load balancing algorithm performance and the conditions in which

heterogeneity may be easy or hard to deal with based on an extensive study of a wide spectrum of load and capacity scenarios.

Index Terms—Distributed hash table, load balance, local search, structured peer-to-peer system, generalized assignment problem.
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1 INTRODUCTION

PEER-TO-PEER (P2P) systems make it possible to harness
resources such as the storage, bandwidth, and comput-

ing power of large populations of networked computers in
a cost-effective manner. In structured P2P systems, data
items are spread across distributed computers (nodes), and
the location of each item is determined in a decentralized
manner using a distributed hash lookup table (DHT) [1].
Structured P2P systems based on the DHT mechanism have
proven to be an effective design for resource sharing on a
global scale and on top of which many applications have
been designed such as file sharing, distributed file systems
[2], real-time streaming, and distributed processing.

In these systems, each data item is mapped to a unique
identifier ID drawn from an identifier space. The identifier
space is partitioned among the nodes so that each node is
responsible for a portion of the ID space, called zone, and
storing all the objects that are mapped into its zone.
However, there are several problems with this approach.
Following [3], let N be the number of nodes in the system
and fmax be the ratio of the largest zone size to the average
zone size. Then, it is known that fmax is �ðlogNÞ with high
probability [3], [4]. Therefore, this could result in a �ðlogNÞ
load imbalance factor in the number of objects even
when nodes have homogeneous capacities. In practice, the

resources of P2P systems are most likely overlaid on top of
peer nodes with extreme heterogeneity in hardware and
software capabilities. Some peers may be large servers with
plenty of computing power and large storage access
through a reliable and high-speed network, whereas other
peers may be handheld devices with wireless connections
that have limited storage, computing power, and unreliable
connections. Although there are approaches that are
effective in partitioning the ID space according to node
capacities [5], these approaches cannot adapt to dynamic
workload changes in real networking conditions.

Therefore, we focus on the virtual server (VS) or
migration-based approach to load balancing in this paper,
which can move portions of the load off an overloaded
physical node dynamically and has already been explored
in a number of studies [6], [7], [8], [9], [10]. A VS looks like a
peer in the original DHT architecture for being responsible
for a zone, but each physical node may be associated with
several VSs. Even though the VS mechanism increases the
path length on the overlay, it offers a vehicle to move a load
from any physical node to any other physical node, which is
crucial for load balancing. Several points are noteworthy in
the VS concept. First, the transfer of a VS from one physical
node to another is equivalent to a leave followed by a join
operation to the underlying DHT and is supported by the
DHT framework. Second, the concept is applicable to many
types of resources such as storage, CPU processing time,
bandwidth, etc. However, we deal with load balancing P2P
systems for storage objects only because this type of
application is important in practice [2], [11], [12] and other
load balance objectives may require completely different
optimization formulations.

Following Rao et al. [6], let tj denote the target load of
physical node j, li denote the current load on VS i, I denote
the set of all VSs, and J denote the set of nodes in the
system. A P2P system is defined to be balanced if the sum of
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the load sj of a physical node j is smaller than or equal to
the target load of the node for every node j 2 J in the
system. That is,

sj ¼
X
i2I

lixij � tj; 8j 2 J: ð1Þ

In (1), the binary variable xij ¼ 1 indicates that VS i is

assigned to node j. A physical node j is called heavy if its

combined load exceeds its target load, sj > tj; otherwise, the

node is called light. When the system is imbalanced, the goal

of a load balancing algorithm is to find a way to move VSs

from heavy nodes to light nodes in a way that minimizes the

total load moved. In [6], [7], [8], [9], and [10], various

heuristic schemes have been proposed and appear to achieve

good performance. In light of the importance of this issue, a

more systematic treatment of the problem is desirable.

Therefore, we opt for an optimization-based approach and

try to leverage the vast amount of research performed for

solving similar problems, in particular, the general assign-

ment problem (GAP) [13], [14], [15], [16], [17], [18], [19], [20].

GAP considers the minimum cost assignment of tasks to

agents such that each task is assigned to one and only one

agent subject to capacity constraints on the agents. A

problem instance has the following inputs: a set of tasks I,

a set of agents J , a set of constants lij denoting the incurred

load when task i 2 I is assigned to agent j 2 J , a set of

parameters cij as the cost incurred when task i is assigned to

agent j, and tj as the capacity of agent j. The constraint is that

each task i can be assigned to exactly one agent j without

exceeding the capacity of the agent. The formulation of the

integer programming GAP is shown as follows:

Minimize fðxÞ ¼
X
i2I

X
j2J

cijxij ð2Þ

s:t:X
i2I

lijxij � tj; 8j 2 J; ð3Þ

X
j2J

xij ¼ 1; 8i 2 I; ð4Þ

xij ¼
1; if task i is assigned to agent j;
0; otherwise:

�
ð5Þ

The objective of GAP is to find a solution that minimizes
the total cost, as defined in (2). Equation (3) enforces the
resource capacity constraints of the agents. Equation (4)
guarantees that each task is assigned to one and only one
agent.

The standard GAP formulation as stated above cannot be
applied to the load balance problem directly. The load
balance problem must start from an infeasible assignment
in which the workload on some nodes exceeds their targets
and find a feasible assignment while minimizing the total
amount of load moved. We will formulate the P2P load
balancing problem in terms of a GAP. Let xij be the decision
variable that indicates if VS i is assigned to node j. Since we
need to represent the system state before movement, a new

state-independent constant yij is introduced, which takes on

a value of 1 if VS i is originally stored on node j in the

starting assignment and 0 otherwise. Note that accessing

this state-independent constant involves a simple memory

reference. Following [6], the cost cij incurred when a VS i is

moved to a node j is defined to be equal to the workload lij
of i when i is not originally on j, that is, yij ¼ 0. However,

cij ¼ 0 in the case i is moved back to node j if i is originally

stored on node j, that is, yij ¼ 1. As moving i to any node

other than its original node incurs the same cost, to simplify

the notation, a new constant li ¼ lij is introduced. Combin-

ing yij and cij gives a concise definition of cost cij:

cij ¼ lið1� yijÞ; 8i 2 I; j 2 J: ð6Þ

The problem of load balancing in a P2P system can then

be transformed into a GAP as follows:

Minimize fðxÞ ¼
X
i2I

X
j2J

lið1� yijÞxij

s:t: ð3Þ; ð4Þ; and ð5Þ holds:

ð7Þ

The first major contribution of this paper is to derive an

effective server reassignment algorithm for the solution of

the load balance problem and address issues such as node

registration policies and the effect of the number of

directories, which are vital to the success of the framework.

Our second major contribution is to systematically investi-

gate the effect of forms of heterogeneity on the difficulty of

the server reassignment problem. Work in P2P load

balancing increasingly employs heavy-tailed distributions

such as power-law, Zipf’s law, and Pareto distributions [21],

[22] to characterize workload and node capacity in their

studies because these distributions are considered to

represent the essence of heterogeneity and are hard to deal

with due to their high variability [6], [7], [8], [9]. For

example, in [6], the power-law exponent � ¼ 3 is used,

where the variance is infinite. The authors mentioned that

this setting is a particularly bad case for load balancing. In

[9], the Zipf parameter range values between 0.8 � 2.4 are

used to investigate the effect of workload skew on system

performance, corresponding to power-law exponents 2.25 �
1.42. In [8], power-law exponent values from 1.5 to 3.5 are

used in their simulation studies. These and other works

consider distributions with infinite variance to represent the

hardest cases to solve and focus on a workload exhibiting

such characteristics. However, we found that such settings

are not the most difficult ones. Our investigations provide

some results on the hardness of the server reassignment

problem in general. Therefore, the second major contribu-

tion of this paper is a systematic evaluation of our and other

related algorithms in a wide range of settings to understand

their performance as the degree of heterogeneity varies.
The remainder of this paper is structured as follows: In

Section 2, related works in GAP and structured P2P systems

are briefly discussed. Our proposed algorithms are presented

in Section 3. Results from an extensive set of experiments to

compare our proposals with others are presented in Section 4.

Finally, Section 5 concludes the paper.
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2 RELATED WORKS

The load balance problem for heterogeneous overlay net-
works has attracted much attention in the research com-
munity only recently. This paper focuses on proposals
based on the notion of VSs [2], whose explicit definition and
use for load balance were first proposed by Rao et al. [6]. In
[6], the authors also introduced several load balancing
algorithms, including many-to-many with dislodge (called
M2M in this paper) and M2M without dislodge (called
DM2M), based on the assistance of a new type of peer node,
called directory. Load balance actions are executed by VS
reassignment algorithms executed on directory nodes. The
performance of M2M is shown to be superior to DM2M.
Both algorithms are intuitively appealing, but there are
several important issues with the general M2M approach.
First, the algorithms may not be able to find feasible
assignments in certain very simple situations. The problem
is that, starting from a set of VSs S, the M2M strategy
searches only in the direction of decreasing total load in S.
Presumably, this strategy guarantees algorithm termina-
tion. Second, a number of design issues, such as how nodes
should register with directory nodes, are not adequately
addressed. Later, in [8], a clustered VS scheme is presented
that can be viewed as an optimization of the basic VS
framework to reduce the overhead involved in the VS
framework. However, VSs cannot be moved and, therefore,
the scheme cannot respond to dynamic changes in network
conditions.

We next briefly describe related work in GAP. Sahni and
Gonzalez [23] proved that the problem of deciding if there
exists a feasible solution is NP-hard. Later, Fisher et al. [14]
proved that the generalized assignment problem is NP-
complete. Notable existing approaches for solving GAP
include [15], [16], [17], [18], [19], and [20]. Of particular
interest to us is the work done by Lourenco and Serra [20],
who proposed a general framework with basic elements
extracted from previous works [24], [25]. Lourenco and
Serra’s general strategy is also adopted in our algorithm,
albeit with much modification due to the much larger
search space for our problem.

The general strategy in the GAP proposals is the creation
of a solution and local searching in the “vicinity” of the
created solution before moving on to the next iteration.
Therefore, the notions of neighborhoods and moves for
conducting a local search with respect to a created solution
are needed. With respect to a solution, a shift move consists
of removing a task (VS in our case) from one agent (node)
and assigning it to another, whereas a shift neighborhood is
a set of such moves. Similarly, an ejection-chain move is a
compound sequence of one or more shift moves. The length
of an ejection-chain move is the number of shift moves in
the sequence. An ejection-chain move of length 2 (two shift
moves) is illustrated diagrammatically in Fig. 1. The figure
illustrates the action of removing a task i from an agent j,

assigning i to a different agent j0 and then removing a task i0

from agent j0, assigning i0 to an agent j00.
Clearly, each move leads from one solution to the

creation of another by changes in the selected VS assign-
ment to nodes. Fig. 1 includes the special cases single-step
shift moves when i0 is not removed and swap operations
when j00 is again equal to node j. A collection of ejection-
chain moves is called a neighborhood.

We note several features in the neighborhood search

strategies employed in [20]. First, Lourenco and Serra

employed both a simple shift neighborhood and a restricted

ejection chain of length 2 neighborhood. Both neighbor-

hoods are searched using a single cost function, making no

distinction between feasible and infeasible solutions. The

fundamental insight of this paper is that a more focused

definition of the neighborhood search spaces for the local

search is needed. When the goal is to make an infeasible

solution satisfy the capacity constraints, a large number of

the neighbors can be ruled out quite simply by considering

moves that lessen the violated capacity constraints. Simi-

larly, when the goal is to reduce the cost of an already

feasible solution, those moves not conducive to cost

reduction do not need to be considered. We propose to

classify the search spaces into two types and develop a

corresponding search strategy as an effective approach to

tackle the problem. The details are explained next.

3 PROPOSED ALGORITHM

The overall algorithm we propose is called dual-space local

search (DSLS) and is based on the framework by Lourenco

and Serra [20]. DSLS is an iterative procedure with three

main steps performed in each iteration. First, an initial

solution is generated using the ant system heuristic (ASH)

algorithm. The solution is then improved as much as

possible to reach its local minima using the descent local

search (DLS) algorithm. The pheromone variables are then

updated and the overall procedure is executed again.
The rationale for the design is that, even though ASH is

an effective randomized restart procedure that can con-

struct a good initial solution in a reinforcement style of

learning using the pheromone trails, it is not as effective for

finding nearby local optima solutions several steps away

from the generated solution. A local search algorithm must

be used to improve the constructed solution to enhance the

search in terms of earlier detection of high-quality solutions.

Our DLS algorithm is the local search component that finds

the local optima solution in the neighborhood of a given

initial solution. In addition, we distinguish between the

search spaces by the purpose they are to achieve and thus

can search in significantly smaller search spaces. The DSLS

procedure is given as follows:

. Construction. The algorithm invokes the ASH
algorithm to construct an initial solution x for the
current iteration.

. Improvement. The algorithm then invokes the DLS
procedure to derive a local minimum solution based
on the initial solution. DLS is another iterative loop
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comprising two main phases for searching in the two
ejection-chain neighborhoods:

– First, if the initial solution generated in the first
step is not a feasible solution, the algorithm
performs a local search procedure in a feasi-
bility-improving ejection-chain neighborhood
NðxÞ to adjust the solution to a feasible one x0.

– Second, based on the feasible x0, the algorithm
performs another local search in a cost-reducing
ejection-chain neighborhood N 0ðxÞ to adjust x0 to
a lower cost one x00.

. Pheromone trail update. The current best solution
will be replaced by x00 if it is better than the current
best solution. The pheromone trails will be updated
to reflect the effect of x00.

3.1 The Ant System Heuristic

ASH is an instance of the Ant Colony Optimization
approach [26]. The input parameters are the pheromone
trail variable �ij, denoting the intensity of the desire to
assign task i to node j. Following the proven design in [24],
our ASH assigns VSs or tasks in GAP terminology to nodes
in decreasing order of the VS load. Let i be the task to be
assigned:

. With probability p0, task i is assigned to the node j�

with sufficient residual capacity and has a maximal
value of �ij.

. With probability 1� p0, task i is assigned to a node
with sufficient residual capacity according the
following probability function:

pij ¼
�ijP

j02J
�ij0

; 8j 2 J: ð8Þ

. If all nodes are fully occupied, the assignment is
random.

The parameter p0 controls the degree of exploitation and

exploration of an ant. Exploitation causes the system to

make use of its current achievement, whereas exploration

forces the system find a new and better solution. The trade-

off between exploration and exploitation is a key issue of an

ant system. The ant exploits the path with a maximal value

of �ij with probability p0; otherwise, it explores other paths

according to (8). With a high value of p0, the best possible

choice is made most often. If the probability p0 ¼ 1, the ant

will always choose the best possible path and will not

perform any exploration. The probability p0 must be

designed to balance exploitation and exploration. The

definition for the probability p0 in our algorithm is defined

to be p0 ¼ jIj � jJ jð Þ=jIjð Þ � 0:8 [24], which has proven to be

robust for GAPs.

Following Lourenco and Serra’s experiments [20] for

GAP, the pheromone trail variables �ij of our ASH are

initialized as �ij ¼ 1=cij if cij 6¼ 0. Due to the special

properties of load balancing for a P2P system, no cost will

be incurred if a VS is assigned to the originally stored node.

In this case, the value of 1=cij would be infinite, so we let �ij

be �max if cij ¼ 0, where �max is the maximum intensity of the

pheromone on a trail. Moreover, we limit the minimum and

maximum of the intensity of the pheromone trail to �min ¼
0:1�min8i;j;cij 6¼0ð1=cijÞ and �max ¼ jIj �max8i;j;cij 6¼0ð1=cijÞ for

updating pheromone falls inside the interval.

3.2 Two-Stage Descent Local Search Procedure

DLS is itself an iterative loop whose body consists of two
main phases for searching in two ejection-chain neighbor-
hood search spaces. First, a feasibility-improving neighbor-
hood NðxÞ is generated to search for a feasible solution in
the vicinity of x. Second, a cost-reducing neighborhood
N 0ðxÞ is generated to find lower cost solutions in the vicinity
of a feasible solution. We next present the two ejection-
chain neighborhoods and their search strategies.

3.3 Dual Neighborhood Search Spaces

The simple overflow function f 0ðxÞ, as shown in (9), is used
to define the search spaces. The definitions of i, j, I, J , tj, lij,
and xij are the same as those in (2), (3), (4), and (5). This
function measures the extent of capacity violation and is
zero for a solution x if it is feasible:

f 0ðxÞ ¼
X
j2J

max 0;
X
i2I

lijxij � tj

 !
: ð9Þ

If an initial solution x is not feasible, that is, f 0ðxÞ > 0, the
feasibility-improving ejection-chain neighborhood NðxÞ is
defined to be the tuples or moves ði; j; i0; j0; j00Þ:

NðxÞ ¼ ði; j; i0; j0; j00Þ xij ¼ 1; xi0j0 ¼ 1; sj > tj;
sj0 < tj0 ; i 6¼ i0; j 6¼ j0
����

� �
; ð10Þ

where sj ¼
P

i002I xi00j, sj0 ¼
P

i002I xi00j0 , i, i
0 2 I, and j, j0,

j00 2 J .
Referring to Fig. 1 again, each tuple ði; j; i0; j0; j00Þ denotes

the condition in which VS i is on node j, VS i0 is on node j0,
node j is overloaded ðsj > tjÞ, and node j0 is not ðsj0 < tj0 Þ.
Each tuple denotes a potential useful move, moving a VS i
from an overflowing node j to another node j0 with spare
capacity and moving a VS i0 from the node j0 to any other
node j00. Two local search strategies are investigated:

. The first strategy is an exhaustive approach where
all moves in NðxÞ are evaluated.

. The second strategy is a greedy approach that
essentially keeps reducing the load of the currently
most loaded node among all heavy nodes by shifting
its lightest VS appropriately. Focusing on shifting
the lightest VS reduces the total amount of load
moved.

The greedy procedure is given as follows in more detail,
as illustrated in Fig. 2. Let the current heaviest node be j
and i be the lightest VS on j. We try to find a pair of
ejection-chain destinations ðj0; j00Þ in decreasing order of
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their residual or unused capacity that can be used to reduce
the load on j. If j0 has enough residual capacity to accept i, i
is simply shifted to j0. Otherwise, an extended ejection-
chain move is performed, which shifts i to j0 and shifts the
smallest set S0 of VSs on j0, whose combined load is smaller
than i and whose removal would make j0 light without
overloading j00. This multistep move is equivalent to
multiple ejection-chain moves that deal with single VSs
but is more efficient because it does not require multiple
outer loop iterations.

We next define the cost-reducing neighborhood N 0ðxÞ,
which is a very particular type of neighborhood, as defined
in (11). Essentially, N 0ðxÞ only considers moving VSs back
to their original nodes if possible. Note that this type of
move will always result in a reduction of the total load
moved for any given solution. Clearly, there are other more
elaborate neighborhood search spaces for cost reduction.
However, more elaborate search spaces also mean more
computation time required for searching:

N 0ðxÞ ¼ ði; j; i0; j0; j00Þ xij ¼ 1; xi0j0 ¼ 1; yij ¼ 0;
yij0 ¼ 1; i 6¼ i0; j 6¼ j0
����

� �
; ð11Þ

where i, i0 2 I, and j, j0, j00 2 J .
Each tuple in (11) denotes the action of moving a VS i to

its original node j0 and moving a VS i0 from the node j0 to
another node j00. Searching in N 0ðxÞ is done in a manner
similar to searching in NðxÞ with an exhaustive or a greedy
approach.

3.4 Update the Current Best Solution and
Pheromone Trail Variables

The current best solution x� so far will be replaced by the
solution x produced in this iteration if it is found to be
better. A solution is considered to be better if it satisfies one
of the following two conditions:

. f 0ðxÞ ¼ 0, f 0ðx�Þ ¼ 0, and fðxÞ < fðx�Þ: Both the new
solution x and the current best solution x� are
feasible ðf 0ðxÞ ¼ 0; f 0ðx�Þ ¼ 0Þ and the cost of the
new solution is lower than that of the current best
solution.

. f 0ðxÞ < f 0ðx�Þ: The overflow amount in the new
solution is smaller than that of current best solution.

Finally, the pheromone trail variables will be updated
using the following:

�newij ¼ max �min;minð�max; ��
old
ij þ � � �max � x0ijÞ

� �
;

8i 2 I; j 2 J:
ð12Þ

The parameter �, 0 � � < 1, is the ratio of the persistent

pheromone trails and is set to � ¼ 0:75. That is, �oldij ð1� �Þ of

the pheromone evaporates in each iteration. The amount of

pheromone is increased by the current local optimal

solution by � � �max � x0ij, where � ¼ 0:05 if x is a feasible

solution; otherwise, � ¼ 0:01, with the restriction that

�min � �ij � �max. In other words, if the solution is feasible,

the relevant pheromone trail variables get a bigger incre-

ment, making these trails be preferentially considered in the

future. Again, these values for � follow the recommenda-

tions in [24]. In general, the termination condition of the

loop in DSLS is a fixed number of iterations. However, we

also find that the performance improvement for a further

search in terms of both the success ratio and the moving

cost is quite small after failing to find a better solution in an

iteration. Therefore, we also terminate the search at the first

time a solution cannot be improved.

4 PERFORMANCE EVALUATION

In this section, we present the results from an extensive set
of experiments to investigate the performance of the
proposed DSLS algorithm in comparison with the static
M2M algorithm [6] and DM2M [7] across a wide spectrum
of distribution parameter values for VS load and node
capacity. DM2M is the same as M2M except that the first
stage of the main loop of the M2M algorithm is executed
only once and the second stage of the algorithm is omitted.
Exclusion of the second stage may be justified in situations
where a slightly higher node utilization level is acceptable,
to be reduced by later rounds of algorithm execution in a
dynamic environment.

The performance evaluation experiments are presented
in the following order: First, we focus on characterizing the
performance in a static single-directory setting, where all
possible degrees of heterogeneity at the VS workload and
node capacity level are explored. Second, multiple-directory
experiments in a static setting are presented. Finally, we
characterize the performance in a dynamic storage-oriented
dynamic setting patterned after the same application setting
in [7]. Static experiments study the impact of all possible
snapshots of heterogeneity conditions on algorithm perfor-
mance and do not imply actual implementation sugges-
tions. Single-directory experiments are useful because they
help understand the multidirectory case. In the dynamic
experiments, storage objects arrive and depart, resulting in
the workloads on the VSs. Note that nodes do not
experience churn. Besides being interesting in their own
right, the dynamic experiments serve to verify the results in
the static experiments.

To create the whole spectrum of settings from extreme
heterogeneity to homogeneity in our experiments, the
workloads and node capacities are both modeled by the
Pareto distribution. Recall that an infinite variance occurs
when the shape parameter value is 2 for the Pareto
distribution and that the variance of capacities decreases
as the shape value increases. To generate the distribution
with a variance from 1 to 0, the shape parameters � of the
Pareto distribution are set in the range between a minimum
of 2 and a maximum of1. To maintain a fixed mean �, the
scale parameter � values are then calculated according to
the Pareto distribution’s formula � ¼ ��=ð�� 1Þ [27]. To
improve the clarity of presentation, we shall avoid using
Pareto-specific jargon such as “as variance increases” or,
equivalently, “as shape value decreases.” We will instead
use expressions such as “as the degree of heterogeneity
becomes more heterogeneous” or “as it becomes more
heterogeneous.” Similar comments apply to the homoge-
neous case.

In some experiment settings, problem instances may

not have feasible solutions. In addition to evaluating the
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performance of the algorithm on all the instances, it is

desirable to evaluate them when only feasible instances are

considered. However, deciding if an instance has any

feasible solutions is NP-hard, as mentioned before. There-

fore, we define the following necessary conditions. We call

the instances satisfying these conditions to be admissible

instances. Clearly, instances that have feasible solutions

must be admissible but not vice versa:

. The total workload should be smaller than or equal
to the total capacity,

P
i2I li �

P
j2J tj.

. The maximum workload of the VSs should be

smaller than or equal to the maximum capacity of

the nodes, maxi2IðliÞ � maxj2JðtjÞ, to ensure that at
least one node capable of storing the largest VS

exists.

The following are the main performance metrics used in

this paper:

. The admissible property under all workload and node
capacity heterogeneity settings. This property gives a
basic understanding of the impact of heterogeneity
on the problem space.

. The success ratio of problem instances solved among
admissible or all problem instances. These experiments
characterize the problem-solving abilities of the
algorithms.

. The 99.9th percentile node utilization among all
problem instances. The 99.9th percentile node utili-
zation is the maximum over all simulated times of
the 99.9th percentile of the utilizations among the
nodes.

. The total workload moved as a fraction of the total system
workload among all problem instances. These experi-
ments characterize the overhead required to achieve
load balancing.

For the static experiments, unless stated otherwise, the

parameter values for workloads on VSs and capacities for

nodes are as in Table 1. Values for dynamic experiments

will be shown later.
Symbols �w and �w denote shape and scale parameters

for the workload, whereas �c and �c are for capacities. We

first fix the mean of the per-VS workload at 1. When there

are five VSs on a node, the mean of the capacity per node is

calculated to be 6.25 to obtain the fixed 0.8 system-level

utilization. To generate the heterogeneity for both work-
loads for VSs and node capacities, their shape values � are
varied from 2 to1 so that their variance varies from1 to 0.
For each � value, a corresponding � is calculated to
maintain the fixed mean.

4.1 Impact of Capacity and Load Heterogeneity on
Admissibility in a Static Environment

The overall impact of heterogeneity on the problem space
itself is evaluated first by examining the admissibility
property of the problem instances. Intuitively, when the
workload exhibits more heterogeneity, it may be hard to fit
them into nodes whose capacities are relatively homoge-
neous. In those cases, feasible solutions may exist less
frequently. Fig. 3 confirms the intuition.

The x-axis represents the degrees of node capacity
heterogeneity, which becomes progressively more homo-
geneous toward the right. Each curve depicts the percen-
tage of admissible instances with a fixed degree of
workload heterogeneity. For a fixed capacity �c value, there
are fewer admissible instances as the workload becomes
more heterogeneous, as demonstrated from the topmost
curve to the bottommost curve. When the node capacity
exhibits extreme heterogeneity, many feasible solutions
exist and the success ratio is important for algorithm
performance evaluation. On the other hand, when the node
capacity exhibits extreme homogeneity, node utilization is a
more appropriate metric. A previous study of M2M
concentrated on evaluating node utilizations in the extreme
heterogeneous node capacity case [7].

When �w ¼ 1, the admissible percentage appears to be
100 percent across the spectrum of all node capacity shape
values in Fig. 3. This is counterintuitive because it seems
impossible for all the nodes to be large enough to hold the
homogeneous workloads when the node capacity is highly
heterogeneous. This is because, in a Pareto distribution, all
samples generated are larger than the scale parameter
value. For �c � 5 and the mean of the node capacity fixed at
6.25, the corresponding scale parameter values �c are larger
than or equal to 5. Thus, the node capacities generated can
hold all the VS workloads, whose combined total workload
is exactly 5.
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TABLE 1
Parameters for Performance under Capacity and
Load Heterogeneity for the Static Experiments

Fig. 3. The admissible property of the problem instances.



4.2 Single-Directory Success Ratio Performance in
a Static Environment

The success ratio performance of DSLS and M2M for all
instances is depicted in Figs. 4 and 5, respectively. Clearly,
DSLS performs better than M2M. To gain a better insight
into the result, it is easier to examine the performance when
only admissible instances are considered.

Figs. 6 and 7 depict their performance for admissible
instances only. Note that both algorithms exhibit the same
general trend as the degree of heterogeneity in capacity
varies, achieving the best performance at the two extreme
end points on the x-axis. Consistent with the findings in
Fig. 3, both algorithms find the most difficulty when the
workload becomes more heterogeneous, as illustrated by
the curves from the top to the bottom. Again, when �w ¼ 1,
the topmost curve is completely flat at 100 percent beyond
�c � 5 because all generated instances are automatically
feasible due to the definition of a Pareto distribution.

At the extreme left on the x-axis in both figures, both
algorithms achieve the highest success ratios. This is
because, in this setting, all light nodes have very large
capacities and all heavy nodes have very small capacities.
Any strategy that simply moves the VSs from heavy nodes
to light nodes would be effective for solving the problem.

Toward the center of the x-axis, the success ratios of both

algorithms decrease. This is because there are fewer nodes

with extremely large capacities, and the problem becomes a

true generalized assignment problem. The situation is

particularly severe for M2M, whose success ratio can

plunge to as low as 20 percent for some combination of

capacity and workload shape values. This is because M2M

essentially just moves the VSs from heavy nodes to light

nodes, and the second stage of the M2M algorithm is

ineffective. The rightmost end of the horizontal axis

corresponds to the homogeneous capacity case, which

appears to be relatively easy to deal with among admissible

instances.
For admissible problem instances, capacity homogeneity

does not necessarily imply difficulty for the algorithms. The

particular �c ¼ 10 seems to be the hardest scenario to solve

and will be called the most difficult scenario and used as a

stress test in various later experiments.

4.3 The 99.9th Percentile Node Utilization
Performance for All Instances

The 99.9th percentile node utilization experiment charac-

terizes the overload situation when all instances are
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Fig. 4. The success ratios of DSLS versus the shape of capacities for all

instances.

Fig. 5. The success ratios of M2M versus the shape of capacities for all

instances.

Fig. 6. The success ratios of DSLS versus capacity heterogeneity for

admissible instances.

Fig. 7. The success ratios of M2M versus capacity heterogeneity for

admissible instances.



considered. Figs. 8 and 9 depict the node utilization result

for DSLS and M2M.
When the workloads are relatively homogeneous

ð�w � 3Þ, the 99.9th percentile utilization of both algorithms
stays close to or under 1, implying that feasible solutions are

found for most of the instances. When workloads become
heterogeneous, the 99.9th percentile utilizations of both
algorithms are more than 1. DSLS does a better job in
moving the VSs so that the 99.9th percentile utilization is

smaller across the whole spectrum of heterogeneity,
especially when capacities are more homogeneous.

4.4 Moving Load Performance

Fig. 10 depicts the total load moved fraction result for DSLS
for all instances, whereas the ratio of the total excess
workload to the total system load is shown in Fig. 11. The
total excess workload is the total amount of workload

exceeding the node capacity for all nodes in the system.
Fig. 10 shows that the total load moved fraction decreases
quickly as the node capacity becomes more homogeneous.
This is because, when the node capacity is highly hetero-

geneous, there are many small-capacity nodes, which are
highly likely to be overloaded and need to have their VSs

moved. Figs. 10 and 11 in combination demonstrate that
DSLS moves very little more than what must be moved and
is therefore a very effective algorithm.

4.5 Performance at Varying Levels of System
Utilization in a Static Environment

The success ratio performance at various levels of system
utilization is evaluated for admissible instances. System
utilization is the ratio of the mean of the total VS workloads
relative to the mean of the total node capacities. The system
utilization examined varies from 0.5 to 0.95. We only
examine the performance of the algorithms under the most
difficult scenario. The results are shown in Fig. 12. Not
surprisingly, as the system utilization increases, the success
ratio of the algorithms decreases, since increasing system
utilization results in harder-to-solve problem instances. It is
clear that DSLS holds a significant advantage over other
algorithms.

4.6 Performance under Varying Numbers of VSs

In real environments, the number of VSs on each node may
change in response to changes in the workload. We have
observed from the dynamics of M2M that the number of
VSs on each node is generally proportional to its capacity,
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Fig. 8. DSLS 99.9th percentile node utilization performance for all

problem instances.

Fig. 9. M2M 99.9th percentile node utilization performance for all

problem instances.

Fig. 10. Moving load ratio versus the shape of capacities for all problem

instances.

Fig. 11. Excess workload ratio over node capacities for all problem

instances.



whereas, in k-choices [9], the number of VSs on each node is

relatively constant. To understand the impact, the perfor-

mance of the algorithms is evaluated under two types of

association of the number of VSs to nodes: uniform and

proportional. In uniform association, every node is assigned

the same number of VSs, whereas, in proportional associa-

tion, the number of VSs assigned to a node is proportional

to its capacity. The algorithms are then evaluated under the

most difficult scenario. The total number of VSs is varied

from two to 10 times the number of nodes in the system. In

Fig. 13, we plot the success ratio performance for admissible

instances because it appropriately characterizes the impact

of varying the number of VSs.
Fig. 13 shows that the success ratios increase as the

number of VSs per node increases, under both uniform and

proportional VS assignments. This is because the average

VS size decreases as the number of VSs increases, allowing

more possibilities for VS swapping for load balance actions.

The different association schemes do not have a large

impact for each algorithm. In addition, as long as a

sufficient number of VSs is employed, for example, four

VSs per node on the average, increasing the number of VSs

has a minimal impact on the success ratio as well. These

observations are consistent with the findings in previous

studies [9].

4.7 Performance in a Multidirectory Static
Environment

More than one directory node must be employed in order to

lessen the burden on a single directory and speed up the

load balancing process [6]. Two fundamental questions

must be addressed with regard to the directory mechanism.

First, there is a trade-off in the number of directory nodes

employed. Employing more directory nodes reduces the

computation overhead per directory, but the number

cannot be too many to make the search space for possible

exchange of VSs too limited. The second question is the

manner for nodes to register with directory nodes. This

issue is important because, for example, when nodes exhibit

high capacity heterogeneity, there are only few nodes with

very large capacities. If the few large-capacity nodes all

register with the same directory node, there is no way to

balance the system load. The following registration policies

are considered in this paper:

. Random registration policy. A physical node selects a
random directory node with which to register. This
is the policy employed in the M2M scheme.

. Uniform-share registration policy. The share value of a
node is defined to be the ratio of the total workload
relative to the capacity of the node. Under this
policy, the nodes are assigned to directory nodes in
such a way that the total share value registered with
each directory node is approximately equal. We first
sort the share value of all physical nodes in
decreasing order and then assign the physical nodes
to the directories by starting from the one with the
largest share value and then in the reverse order
when the last one is reached.

In the following experiments, we only examine the

performance when node capacity �c ¼ 10, as in the most

difficult scenario. The number of directories is varied from

one to 20. The total number of nodes is 1,280, so that when

the number of directory nodes is 10, the results from

previous experiments can be compared. We first character-

ize the admissibility property in this setting. Figs. 14 and 15

depict the percentage of admissible problem instances

when nodes register under the random and uniform-share

policies, respectively.
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Fig. 12. Success ratio versus utilization for admissible instances.

Fig. 13. The success ratios versus varying numbers of VSs in a uniform

and a proportional distribution.

Fig. 14. The admissibility property under the random registration policy.



It can be seen that employing multiple-directory nodes

have a dramatic impact on the admissibility property. As

the node capacities are relatively homogeneous in this most

difficult scenario, any amount of heterogeneity in the

workload, �w < 4, decreases the admissible percentage

significantly as the number of directories increases. The

uniform-share policy can assign a VS to nodes so they

match better, yet beyond �w ¼ 4, even the uniform-share

policy cannot improve the admissibility situation. For

example, when �w ¼ 2:5, comparing Figs. 3 and 14, almost

51 percent of the instances are admissible in the single-

directory case, whereas almost none of the instances are

admissible in the multiple-directory case.
We have evaluated the success ratio performance of

DSLS for all instances when nodes register under the

random and uniform-share policies. The results look quite

similar to Figs. 14 and 15. Therefore, we present its

performance for admissible instances instead. Figs. 16 and

17 plot DSLS’s performance for admissible instances

under random and uniform-share policies, respectively. It

achieves better performance under the uniform-share

registration policy than under random policy. The perfor-

mance gap may be quite significant. For example, when the

workload shape value is 4.0 and the number of directory

nodes is 20, DSLS can achieve a near-100-percent success

ratio under the uniform-share policy yet can only achieve a
78 percent success ratio under the random policy.

In Fig. 6, the success ratio is close to 100 percent under a

single directory when �w � 3 and �c ¼ 10. However, in

Fig. 17, the success ratio is close to 58 percent when �w ¼ 3.

The reason is twofold. First, Fig. 17 depicts network-level

success ratios, which means feasible solutions must be

found for all directory nodes. Chances for network-level

success are significantly smaller. Second, the admissible

conditions are checked with respect to problem instances. It

may happen that an admissible instance may not be feasible

at a directory level after VSs are assigned to directory

nodes. In contrast to previous studies that concluded that

the number of directories employed has no influence on

algorithm performance, our results show that the number of

directories employed has a significant impact.

4.8 Execution Time in a Static Environment

The scalability property of DSLS under the greedy and the

exhaustive local search procedures is evaluated in terms of

their execution time. On a Pentium 4 2.93-GHz machine, the

execution time performance is shown in Fig. 18.
The greedy local search outperforms the generic ex-

haustive local search by more than three orders of
magnitude for larger network configurations. DSLS using
a greedy local search takes less than 1 second to execute for
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Fig. 15. The admissibility property under the uniform-share registration

policy.

Fig. 16. Network-level success ratio performance for admissible

instances under the random registration policy.

Fig. 17. Network-level success ratios for admissible instances under the

uniform-share registration policy.

Fig. 18. DSLS computing time (in milliseconds) under varying numbers

of nodes.



a directory containing 4,096 nodes. It is practical for systems
that require relatively frequent load balancing.

4.9 Performance in a Dynamic Environment

The algorithms are also evaluated in a dynamic storage-
oriented environment similar to the one in [7], in which
objects arrive at and leave the system according to the
Poisson process, but physical nodes do not. The parameters
used in the experiments are shown in Table 2. Note that the
object shape parameter is denoted by symbol �o. As the
object size distribution is Pareto, the workload of a VS is the
sum of Pareto random variables. Nonexplicit expressions
for such sums can be found in [5]. It suffices for our purpose
to know that the distribution of sums of Pareto variables
behaves like a Pareto distribution in the tail.

We first characterize the admissibility region in a
dynamic environment in terms of the percentage of time
instants when the problem instances are found to satisfy the

necessary conditions among all instants. The examined time

instants are chosen to be right before each scheduled load

balance action, after nodes have registered with the

directory nodes. Note that the results are dependent on

the specific registration policy employed.
The results, shown in Fig. 19, look similar to those in the

static case. However, at more homogeneous capacity shape

values, �c � 10, the admissible percentages are smaller than

those in Fig. 3. For �c � 15, there are almost no admissible

instances at all. This result is because of the �ðlogNÞ
imbalance in VS zone sizes. Using the expression in [3], fmax

is found to be between 7 and 17 with a probability of 0.999.

Therefore, the largest VS holds many more objects than

average ones, resulting in lower admissible percentages

when �c � 10. Again, in [6] and [7], the particular capacity

shape value chosen is 2, so the easier scenarios were

studied.
Fig. 20 depicts the success ratio result for all instances.

Again, it is more insightful to examine the success ratio for

admissible instances, which is plotted in Fig. 21.
Fig. 21 shows that the dynamic case is consistent with the

multidirectory static case, exhibited in Fig. 17, in that higher
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TABLE 2
Parameters under Capacity and Load

Heterogeneity in a Dynamic Environment

Fig. 19. The admissible instance percentage in a dynamic environment.

Fig. 20. DSLS network-level success ratio performance for all instances

under the uniform-share policy.

Fig. 21. DSLS network-level success ratio performance for admissible

instances under the uniform-share policy.



success ratios occur when capacities are more heteroge-
neous and workloads are more homogeneous. However, for
a wide range of node capacity shape values, �c � 10, the
success ratios are very high. Examining the variance in VS
sizes reveals that this is a direct result of the fact that
the variances are quite small, producing relatively easy
problem instances. Beyond �c � 13, the success ratios are
still higher than those when the number of directory nodes
is 10 in Fig. 17, again for the same reason. Similar
observations can be made with respect to the results for
the 99.9th percentile node utilization, which is plotted in
Fig. 22.

5 CONCLUSIONS AND FUTURE WORK

This paper studied the VS framework for solving the load
balance problem in a structured P2P system. The first main
contribution is an effective and efficient DSLS algorithm,
which leverages work in GAP. The second contribution is
an in-depth analysis of the effect of capacity and workload
heterogeneity on algorithm performance in both static and
dynamic environments and the qualitative relationship
between static and dynamic environments. We plan to
investigate the following important issues in the future: We
intend to explore other cost-reducing neighborhoods to
further improve the DSLS algorithm. As the variance of a
VS workload has a significant impact on the success ratio
performance, we plan to investigate VS merging and
splitting strategies to enhance the performance of the
algorithms. We also plan to investigate distributed proto-
cols to implement the proposed node registration policies.
Previous work in the parallel balanced allocation problem
[28], [29] seems to be closely related to our problem. We also
plan to perform a more in-depth study of issues in the
dynamic scenario in which a node joins and leaves the
system.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM ’01, pp. 149-160, 2001.

[2] F. Dabek, M. Kaashoek, D. Karger, D. Morris, and I. Stoica, “Wide-
Area Cooperative Storage with CFS,” Proc. 18th ACM Symp.
Operating Systems Principles (SOSP ’01), pp. 202-215, Oct. 2001.

[3] X. Wang and D. Loguinov, “Load-Balancing Performance of
Consistent Hashing: Asymptotic Analysis of Random Node Join,”
IEEE/ACM Trans. Networking, vol. 15, no. 5, Oct. 2007.

[4] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R.
Panigrahy, “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web,” Proc. 29th Ann. ACM Symp. Theory of Computing (STOC ’97),
pp. 654-663, 1997.

[5] C. Ramsay, “The Distribution of Sums of Certain I.I.D. Pareto
Variates,” Comm. in Statistics—Theory and Methods, vol. 35, pp. 395-
405, 2006.

[6] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS ’03), Feb. 2003.

[7] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Proc. IEEE INFOCOM, 2004.

[8] P.B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” Proc. IEEE INFOCOM, 2005.

[9] J. Ledlie and M. Seltzer, “Distributed, Secure Load Balancing with
Skew, Heterogeneity, and Churn,” Proc. IEEE INFOCOM, 2005.

[10] X. Wang, Y. Zhang, X. Li, and D. Loguinov, “On Zone-Balancing
of Peer-to-Peer Networks: Analysis of Random Node Join,” Proc.
ACM SIGMETRICS ’04, pp. 211-222, June 2004.

[11] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M.F. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient Replica
Maintenance for Distributed Storage Systems,” Proc. Third Symp.
Networked System Design and Implementation (NSDI ’06), May
2006.

[12] H. Weatherspoon, “Design and Evaluation of Distributed Wide-
Area On-Line Archival Storage Systems,” PhD dissertation,
Electrical Eng. and Computer Sciences (EECS) Dept., Univ. of
California, Berkeley, Oct. 2006.

[13] M. Laguna, J.P. Kelly, J.L. Gonzalez Velarde, and F. Glover, “Tabu
Search for the Multilevel Generalized Assignment Problem,”
European J. Operational Research, vol. 82, pp. 176-189, 1995.

[14] M.L. Fisher, R. Jaikumar, and L.N. Van Wassenhove, “A
Multiplier Adjustment Method for the Generalized Assignment
Problem,” Management Science, vol. 32, no. 9, pp. 1095-1103,
1986.

[15] G.T. Ross and R.M. Soland, “A Branch and Bound Algorithm for
the Generalized Assignment Problem,” Math. Programming, vol. 8,
no. 1, pp. 91-103, 1975.

[16] M.G. Narciso and L.A.N. Lorena, “Lagrangean/Surrogate Relaxa-
tions for the Generalized Assignment Problems,” European
J. Operational Research, vol. 114, no. 1, pp. 165-177, 1999.

[17] J.A. Diaz and E. Fernandez, “A Tabu Search Heuristic for the
Generalized Assignment Problem,” European J. Operational Re-
search, vol. 132, pp. 22-38, 2001.

[18] P.C.H. Chu and J.E. Beasley, “A Genetic Algorithm for the
Generalised Assignment Problem,” Computers and Operations
Research, vol. 24, pp. 17-23, 1997.

[19] M. Yagiura, T. Yamaguchi, and T. Ibaraki, “A Variable Depth
Search Algorithm for the Generalized Assignment Problem,”
Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, S. Vosß, S. Martello, I.H. Osman, and C. Roucairol,
eds., Kluwer Academic Publishers, pp. 459-471, 1999.

[20] H.R. Lourenco and D. Serra, “Adaptive Search Heuristics for the
Generalized Assignment Problem,” Mathware and Soft Computing,
vol. 9, pp. 209-234, 2002.

[21] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. ACM SIGCOMM
’99, pp. 251-262, 1999.

[22] L.A. Adamic, Zipf, Power-Laws, and Pareto—A Ranking Tutorial,
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.
html, 2000.

[23] S. Sahni and T. Gonzalez, “P-Complete Approximation Pro-
blems,” J. ACM, vol. 23, no. 3, pp. 555-565, July 1976.

[24] T. Stutzle and H. Hoos, “The Max-Min Ant System and Local
Search for Combinatorial Optimization Problems,” Meta-Heuris-
tics: Advances and Trends in Local Search Paradigms for Optimization,
S. Vosß, S. Martello, I.H. Osman, and C. Roucairol, eds., Kluwer
Academic Publishers, pp. 313-329, 1999.

CHEN AND TSAI: THE SERVER REASSIGNMENT PROBLEM FOR LOAD BALANCING IN STRUCTURED P2P SYSTEMS 245

Fig. 22. DSLS network-level 99.9th percentile node utilization for all

problem instances under the uniform-share policy.



[25] M.G.C. Resende and C.C. Ribeiro, “Greedy Randomized Adaptive
Search Procedures,” State-of-the-Art Handbook of Metaheuristics,
F. Glover and G. Kochenberger, eds., Kluwer Academic Publish-
ers, 2002.
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