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Abstract—The emerging Peer-to-Peer (P2P) model has become a very powerful and attractive paradigm for developing Internet-scale

systems for sharing resources, including files and documents. The distributed nature of these systems, where nodes are typically

located across different networks and domains, inherently hinders the efficient retrieval of information. In this paper, we consider the

effects of topologically aware overlay construction techniques on efficient P2P keyword search algorithms. We present the Peer Fusion

(pFusion) architecture that aims to efficiently integrate heterogeneous information that is geographically scattered on peers of different

networks. Our approach builds on work in unstructured P2P systems and uses only local knowledge. Our empirical results, using the

pFusion middleware architecture and data sets from Akamai’s Internet mapping infrastructure (AKAMAI), the Active Measurement

Project (NLANR), and the Text REtrieval Conference (TREC) show that the architecture we propose is both efficient and practical.

Index Terms—Information retrieval, peer-to-peer, overlay construction algorithms.
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1 INTRODUCTION

THE worldwide infrastructure of computers and net-
works creates exciting opportunities for collecting vast

amounts of data and for sharing computers and resources
on an unprecedented scale. In the last few years, the
emerging Peer-to-Peer (P2P) model has become a very
powerful and attractive paradigm for developing Internet-
scale file systems [34], [35], [41] and sharing resources (that
is, CPU cycles, memory, storage space, and network
bandwidth) over large-scale geographical areas. The basic
idea is that an overlay network of nodes (peers) is
constructed on top of heterogeneous operating systems
and networks. Overlays are flexible and deployable
approaches that allow users to perform distributed opera-
tions without modifying the underlying physical network.

The first wave of P2P systems implemented unstructured

P2P overlays in which no global structure or knowledge is

maintained. To search for data or resources, messages are sent

over multiple hops from one peer to another with each peer

responding to queries for information it has stored locally.

Structured P2P overlays [34], [35], [41] implement a distrib-

uted hash table data structure in which every data item can be

located within a small number of hops at the expense of

keeping some state information locally at the nodes.
Unstructured P2P systems [6], [9], [10], [50], [54] are very

effective infrastructures to share and store documents,

because their decentralized nature allows easy additions,
updates, increased storage, and offers fault-tolerant proper-
ties through the use of replication and caching. In addition,
recent efforts based on caching [22] and other heuristics [50]
have significantly improved the query-routing problem in
unstructured P2P systems as well. An important problem
that such systems have not fully considered is how the
heterogeneity of the underlying infrastructure affects the
performance of the information retrieval algorithms im-
plemented on top of these networks. The P2P infrastructure
can encompass resources with different processing and
communication capabilities, located across different geo-
graphical areas. As a result, retrieving documents over such
Internet-scale environments is subject to greater variations
due to unpredictable communication latencies, excessive
resource consumption, and changing resource availability.

In this paper, we focus on techniques for distributed
keyword search, that is, we aim to find the documents that
contain a given set of query terms when the collection of
documents is distributed. Formally, assuming that Du is a
set of documents that are stored on peer u, and each
document d is characterized by a set of keywords, the result
to a query q (itself as a Boolean expression of keywords)
should be the answer set

fðd; uÞju is a peer and q � sðdÞ and d 2 Dug;

where sðdÞ is the (unordered) set of keywords in d. To
motivate our description, we consider two popular applica-
tions, Personal Video Sharing and Citizen Journalism, both of
which currently support keyword searches over centralized
infrastructures. We explain how these services could
optimize their operation through the deployment of
topologically aware P2P networks.

1.1 Personal Video Sharing

Web sites such as Youtube.com [51] and Yahoo Video [49]
allow users to upload, search, browse, and view on demand the
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video clips of other users through a keyword-based search
interface. Such systems typically exploit a centralized
storage and retrieval infrastructure that has a number of
disadvantages and limitations: 1) the service can easily
become a bottleneck during periods of high demand and is
also a single point of failure, 2) the infrastructure is
expensive and requires extensive administration, and
3) the content can be censored. On the contrary, we model
such a service on the premise of an unstructured P2P
system, where each user stores locally its own video clips
and performs the search and retrieval functions through
other participating users in a Gnutella-like fashion [15].

An important point in such Internet-scale applications is
that the large-scale data transfer and retrieval can be
expensive when the network connections among the clients
are arbitrary, due to unpredictable communication laten-
cies, excessive resource consumption, and changing re-
source availability in interdomain routing (see Fig. 1). Thus,
we seek to optimize the overlay by establishing connections
between peers based on the criterion of network proximity. In
particular, peers minimize the network distance from their
neighboring nodes by establishing connections to nodes
that belong to the same domain. For example, a node in the
Rochester, New York, subdomain of the RoadRunner ISP
(rochester.rr.com) tries to establish overlay connections
with other nodes in this same domain. In Section 7, we
will show that such a construction provides tremendous
reductions in resource consumption and offers an improved
user experience. Note that both of these characteristics are
essential in a video-sharing context where huge amounts of
data are communicated over a public infrastructure.

1.2 Citizen Journalism

We are all witnessing the rise in a new form of journalism,
where nonjournalists have an active role in collecting,
analyzing, and generating newswire based on their personal
rules of fairness and objectivity, often also referred to as
Citizen Journalism [27]. The Web site voiceofsandiego.com
establishes half of its content from contributing authors [27],
and this new way of performing journalism has profound
implications on the future of news media. Content in such
applications is currently communicated to users through

centralized Web sites, which suffer from the same disadvan-
tages as the P2P video-sharing application: They require
expensive infrastructures and administration, they can easily
become a bottleneck during periods of high demand, and the
postings can be censored by the site owners. Additionally, in
these applications, the update frequency is significantly high,
as authors are continuously adding new postings. Therefore,
existing techniques such as crawler-based metaservices have
to continuously crawl the given resources which is inefficient.
Finally, it is also difficult to organize the information into
regional or local news if the underlying data does not contain
this information.

Using a topologically aware P2P system, besides that of
overcoming the problems of centralization, would also
enable users to more easily retrieve local or regional
content. For instance, users in Italy might often be
interested in local or regional news. In these cases,
focalizing on content in the “.it” domain might unveil more
relevant and interesting content.

In this paper, we present the architecture of an Internet-
scale middleware that can be used for efficient content-
based search and retrieval in a variety of contexts. Our
architecture, pFusion, is designed to make keyword search
efficient in unstructured P2P networks that are geographi-
cally diverse. Although the necessity of topologically aware
overlays has been addressed in the context of structured
overlays [8], [33], [48], [56], content-based retrieval in such
systems is a more challenging task [9], [14].

We consider unstructured P2P networks because they
offer a number of important advantages: 1) Unstructured
networks are appropriate for content-based retrieval (for
example, keyword searches) as opposed to object identifiers
utilized in structured overlays [3], [10], [11], [43], [54]. 2) An
unstructured network imposes very small demands on
individual nodes, as it allows nodes to join or leave the
network without significantly affecting the system perfor-
mance. 3) Finally, unstructured networks can easily accom-
modate nodes of varying power. Consequently, they scale
into very large sizes, and they offer a more robust
performance in the presence of node failures and connec-
tion unreliability.

Unstructured P2P systems have been utilized in a
number of file-sharing systems such as Gnutella [15],
Napster [26], and Morpheus [30]. Although the US Supreme
Court had ruled on 26 June 2005, that companies enabling
such file-sharing systems can be held liable for the wide-
spread copyright infringement of their users, it is important
to point out that the P2P technology is not illegal in its own
respect. On the contrary, P2P architectures have been the
enabling technology behind several legitimate Internet-scale
services, including the popular Internet telephony service
Skype [39], the film content distribution network by the
entertainment giant Warner Bros. [47], and several other
services. Thus, P2P services have a viable prospect, given
that these systems are utilized in a legal manner.

This paper builds on our previous work in [55] in which
we evaluate various content-based search and retrieval
algorithms over popular types of overlay networks. In this
paper, we propose an integrated architecture that combines
two major components to efficiently construct and search an
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Fig. 1. A peer in Riverside, California that is connected to five other
peers. In Internet-scale applications, the large-scale data transfer and
retrieval can be expensive when network connections among the clients
are arbitrary due to unpredictable communication latencies, excessive
resource consumption, and changing resource availability in interdomain
routing.



overlay network: the Distributed Domain Name order
(DDNO) protocol, which is an efficient distributed techni-
que for constructing topologically aware overlay networks,
and the Intelligent Search Mechanism (ISM), which is an
efficient distributed technique for keyword query routing.
We perform an extensive experimental evaluation using our
pFusion architecture. Our objective is to improve the latency
while maintaining the accuracy of the results. Our results show
that the use of topologically aware overlays minimizes
network delays while maintaining high recall rates and low
numbers of messages. To evaluate the impact of the overlay,
we construct realistic P2P networks based on node dis-
tributions from the Gnutella network [15] and end-to-end
latency information from the Akamai CDN (Content
Distribution Network) [1] and the Active Measurement Project
at NLANR [18].

2 RELATED WORK

In this section, we describe systems that have similarities
with pFusion in their scope and objectives.

In PlanetP [11], participating nodes build a global
inverted index over the keyword space, which is partially
constructed by each node. The framework is based on
bloom filters [5], which capture the index of some node Pi.
These filters are then randomly gossiped across the rest of
the community so that each peer Pj ðPj 6¼ PiÞ can perform a
membership query on the contents of Pi. Although bloom
filters can efficiently be disseminated in a distributed
environment, due to the small size of the bit vector which
maintains the filter, the high churn rate [9] in P2P systems
makes the maintenance of such structures an endeavor task.
Note that the churn rate defines the number of individual
peers that move into or out of a network over a specific
period, thus, a high rate might translate into a nonconver-
ging maintenance process of the bloom filters. Compared to
our framework, PlanetP can lead user queries to the correct
answers in less time, given that the filters are in synchrony
with the contents of the peers. However, in an Internet-scale
context, this presumption is not easily satisfiable; thus, we
focus on only local knowledge at the price of an increased
cost in getting to the correct answers. We consider the
utilization of bloom filters supplementary to our approach
and appropriate when the churn rate or the size of the
network is limited.

In a different approach, the pSearch [43] system explores
semantic spaces by using advanced techniques from the
Information Retrieval field. It uses the Vector Space Model
(VSM) [17] and Latent Semantic Indexing (LSI) [17] to
generate a semantic space, which is then distributed on
top of a Content-Addressable Network (CAN) [34] struc-
tured P2P overlay. Since pSearch exploits a distributed form
of LSI and VSM, it can support semantic searches handling
cases of synonyms and homonyms. For instance, a search on
“sick” might uncover documents that never mention such a
term but contain terms such as “ill.” The execution of the
core ideas in pSearch require, as with PlanetP, some form of
global knowledge. In particular, in order to compute the
inverse document frequency (IDF) utilized by these methods,
somebody has to either have access to the complete
document collection or has to have means to sample this

collection. In both cases, this is a nonintuitive task given the
unprecedented scale of the environments our work con-
siders. Therefore, we consider this approach supplementary
to our ideas in the case where the P2P environment is small
in size or when the provisioning of semantic queries, rather
than keyword queries, is at premium.

The YouSearch project [3] at IBM Almaden proposes the
deployment of transient peer crawlers to build a search
engine that provides an “always-fresh” content. The main
idea in YouSearch is that each user using the service
contributes its host to become a transient crawler. In effect,
this results in a network of transient crawlers in which each
crawler maintains an “always-fresh” snapshot of a prespeci-
fied list of Web resources. Each crawler also sends a compact
index of its crawl (that is, a bloom filter) to a centralized
component at regular intervals. This helps the system to
redirect user queries to the crawler that has content relevant
to the query rather than flooding the network with queries. As
with PlanetP, this approach might direct the users to the
correct resources in less time, as the bloom filters allow
efficient membership queries. On the other hand, the
deployment of transient Web crawlers is supplementary to
our approach. For instance, in a P2P network of personal
video sharers, each peer might, in the background, also crawl
data from the WWW or other P2P networks and integrate
these new resources in the video-sharing network. In
summary, the main drawback of the YouSearch approach is
the central query resolution engine and the construction and
maintenance of the bloom filters.

It is important to highlight that all the aforementioned
systems do not take into account the underlying network
characteristics making them inappropriate for systems that
rely on a wide-area packet routing. pFusion, on the other
hand, alleviates the burden imposed on the underlying
physical network by directing the bulk of the traffic to
topologically close-by nodes.

In Foreseer [6], the authors propose the deployment of
distributed bloom filters, which are explicitly updated on
changes or additions in the network. Clearly, such an
approach has advantages and disadvantages compared to
ours: more data is transmitted in the network, which results
in more resource use but potentially better performance. We
take the view that only query or query-reply messages
should be transmitted, and we attempt to maximize the use
of the information thus dissipated.

In Remindin’ [44], a query-routing technique is proposed
to find peers based on social metaphors. In [21], a peer
sampling service is proposed to be employed by gossip-
based protocols. Additionally, Ruj et al. [32] uses small-
world peer networks for distributed Web search. However,
both approaches establish connections to remote peers
based on their query/queryhit patterns, whereas we
additionally concentrate on selecting peers based on their
topological properties. Finally, an alternative approach for
publish/subscribe systems based on structured P2P sys-
tems appeared in [16].

Other systems with similar objectives to pFusion include
the InfoBeacons [10], PIER [19], and Odissea [42] projects.
Note that when each distributed peer returns its own locally
highest ranked answers, then, we need to deploy a distributed
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ranking algorithm that combines the results from the different
peers [23], [57]. If such an operation is too expensive, then
somebody can focus on thekhighest ranked answers for some
user-defined parameter k using well-established distributed
top-k query processing algorithms [7].

The remainder of the paper is organized as follows: In
Section 3, we provide an overview of the pFusion archi-
tecture. Section 4 presents the overlay construction module
of our architecture, which organizes nodes by taking into
account the underlying physical network. In Section 5, we
introduce the query-routing algorithms utilized by the
pFusion architecture. Section 6 describes our experimental
methodology, and Section 7 presents the results of our
evaluation. Finally, Section 8 concludes the paper.

3 THE PFUSION ARCHITECTURE

In this section, we provide an overview of the pFusion
Architecture. pFusion is completely decentralized as there is
no centralized component that assists in the network
construction, maintenance, or search process. The architec-
ture of each pFusion node (see Fig. 2) comprises three basic
components:

1. The DDNO Module (described in Section 4) is a
distributed overlay construction module utilized to
cluster topologically close-by nodes together. This is
achieved by having each node connect to d=2 random
neighbors and d=2 other nodes in the same domain
(siblings), where d denotes the number of neighbors.
Sibling nodes are efficiently discovered by the
deployment of distributed lookup messages and local
ZoneCaches, which contain information on which
domains are reachable in an r-hop radius.

2. The ISM is a keyword search mechanism used by
each pFusion node (described in Section 5). ISM
consists of the following two subcomponents: 1) a
Profile Mechanism, which a peer uses to build a
profile for each of its neighboring peers (that is, the
query/queryhit pairs), and 2) RelevanceRank (RR),
which is a peer-ranking mechanism that uses the
local profiles to select the neighbors that will lead a
query to the most relevant answers.

3. The Local Information Retrieval Engine (LIRE) is a
local index utilized by each node in order to
efficiently access its local data repository. Specifi-
cally, LIRE organizes local information into disk-
based indexes, which allow the efficient execution of
a wide range of queries (such as Boolean, wild card,
fuzzy, and range searches). Note that the indexes in
our setting are incrementally updated as new
information arrives in the local repository. The
merging of query results is performed at the
querying node, which ranks results on their local
score returned by the source. LIRE can also use an
external data fetcher for retrieving and storing
content pertinent to the interests of the node owner.
For example, a node participating in a pFusion
newspaper network may decide to act as a WWW
proxy, similar to that in [3] and [10], by crawling
semistructured newswire located on regional news-
paper Web sites or Really Simple Syndication (RSS)
[36] feeds, which are already available by most major
news agencies. The LIRE component is out of the
scope of this work.

In designing our architecture, we have the following

desiderata:

. We focus on unstructured P2P networks, which have
been shown to work well for content-based retrieval
[3], [10], [11], [43], [54]. Although structured P2P
networks have their own important advantages,
unstructured networks impose very small demands
on individual nodes and can easily accommodate
nodes of varying power. Thus, they are compatible
with our philosophy of minimizing the requirements
that the technique imposes on individual peers.

. We focus on fully distributed and autonomous
operation for the peers. We try to minimize main-
taining any global state or structures that require the
active cooperation between peers. Consequently, we
try to use only local knowledge when we have to
decide how a query will be forwarded or where a
peer will connect to the network.

. We leverage previous work [22], [50] that shows
how past queries in the P2P system can be cached
locally and used to guide future searches and
improve performance. Thus, we avoid using me-
chanisms that have peers exchange information
describing their contents, again, in accordance with
our philosophy of minimizing the dependence of the
system to the collaboration of the peers.

. Our objective is to build overlays that can minimize
the time and resource requirements for answering
keyword queries in unstructured P2P networks.
Nevertheless, the overall recall and precision are
still important and should not suffer for the sake of
efficiency.

4 THE OVERLAY MODULE IN PFUSION

The overlay construction technique that is used by pFusion

must be entirely distributed and able to scale well both with

the number of nodes and with the rate that nodes join or leave

the network.
To achieve our desiderata, we create an overlay network

where the nodes are well connected to the other nodes in
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Fig. 2. The pFusion architecture combines two novel components to
efficiently search the network: DDNO, which is an efficient distributed
technique for creating topologically aware overlay networks, and ISM,
which is an efficient and accurate distributed technique for keyword
query routing.



the same domain by making a fixed fraction (one-half in the
experiments) of the node connections sibling connections,
whereas the remaining are connections to random nodes.
The two sets of connections serve different purposes: The
sibling connections are likely to be low-latency connections
since they connect nodes in the same domain, so they
improve overall efficiency by making local searches very
quick. The random connections help to maintain a con-
nected graph. Additionally, these connections enable
queries with a small Time To Live (TTL) to reach a large
fraction of the network graph.

4.1 Alternative Techniques for Topologically Aware
Overlays

It is important to note that the construction of an optimal
overlay is known to be NP-complete [13], [24], [33]. Below,
we provide a brief description of previously proposed
topologically aware overlay construction techniques.

4.1.1 Binning Short-Long (SL) Algorithm (BinSL)

The SL topologically aware algorithm was proposed in [33]
and operates in the following way: Each vertex vi selects its
d neighbors by picking the d=2 nodes in the system that have
the shortest latency to itself (these connections are called short
links) and then selects another d=2 vertices at random (these
connections are called long links). Therefore, SL is a
centralized algorithm as it requires the n� n IP-latency in
order to find the latencies between the various node pairs.
BinSL is a distributed version of the SL algorithm proposed in
[33]. Since the adjacency matrix of IP latencies is not available
in a distributed environment, BinSL deploys the notion of
distributed binning [34] in order to approximate these latencies.
More specifically, each node uses the round-trip time (RTT)
from itself and k well-known landmarks fl1; l2; . . . ; lkg on the
Internet, and each latency is classified into level ranges. The
numeric ordering of the latencies concatenated by the level
values represents the “bin” the node belongs to.

4.1.2 Other Techniques

Recently, an approach to create resilient unstructured
overlays with small diameters was proposed in [46]. In
the proposed algorithm, a node selects from a set of k nodes,
r nodes at random and then finds from the rest of the f ¼
k� r nodes the ones that have the largest degree. The
algorithm results in networks with power-law distributions
of node degrees differentiating it therefore from BinSL and
DDNO in which we have a uniform distribution. Topolo-
gically aware overlays have also been addressed in the
context of Structured P2P overlays in [8], [33], [48], and [56].
Systems such as Vivaldi [12] assign synthetic coordinates to
hosts so that the euclidean distance between them estimates
the actual network latency. However, the coordinates have
to be reevaluated on an ongoing basis as opposed to DDNO
in which sibling nodes are located only during initialization.

Note that the requirement of an efficient overlay is
essential in many different types of networks such as
content distribution networks (CDNs) [1], sensor networks
[20], [38], and mobile ad hoc networks [29], [40]. For
instance, the Akamai [1] CDN offers SureRoute, which
enables users to perform application-layer packet routing
through a virtual overlay network in order to guarantee the

delivery and to improve the performance in wide-area
applications. In the context of Sensor Networks, Data Centric
Routing [20] establishes low-latency paths between the sink
and the sensors in order to minimize the consumption of
energy. Moreover, in Data Centric Storage [38], data with the
same name (for example, humidity readings) are stored at
the same sensor in the network, offering therefore efficient
location and retrieval. Finally, in mobile ad hoc networks,
PeopleNet [29] presents a simple, inexpensive, and low-
complexity architecture for a P2P wireless virtual social
network. PeopleNet exploits the natural mobility of people
and their interactions to propagate the queries among
neighboring nodes. Additionally, the work in [40] studies
contact patterns among students in a university campus.
The study shows how small intercontact times between
users can be exploited in order to design efficient aggrega-
tion algorithms involving only a small number of nodes.

4.2 Distributed Domain Name Order (DDNO)

In this section, we describe the DDNO algorithm [53], which
clusters nodes belonging to the same domain together
without the need of a centralized component. The motiva-
tion behind DDNO is to provide a way to find close
neighbors without the use of any global infrastructure. We
observe that the use of landmarks in the BinSL algorithm,
although useful for providing distances between peers, is
also restricting since such landmarks have to be identified
and maintained.

Our work aims in extending the work in [33] so that
comparable results can be achieved without using any
landmarks. Clearly, the key to this is providing a
completely distributed way for identifying peers that are
likely to be close to a peer that is attempting to join the
network. Our approach uses domain names and is
motivated by our earlier study on the network traffic of
the Gnutella network in [52]. In our study, we found that
58 percent of the nodes in a set of 244,000 IPs belong to only
20 ISPs. Therefore, most nodes have a good probability of
finding other sibling nodes, which makes our scheme
beneficial for the largest portion of the network.

Following the work in [33], our technique tries to find, for a
new peer, d neighbor peers such that the latency in the
resulting overlay is low (assuming shortest path routing). The
value of d is an input to the technique. We assume that,
although peers can join or leave the network, the number of
active peers remains relatively constant; so, the required
average degree that is required to keep the graph connected
can be estimated. Note that our technique is usingd=2 random
connections per peer; this makes the network resilient to peer
failures [46], [4]. Recent work in [46] can offer alternative
techniques for choosing the value of d, but typically, this
requires additional knowledge on the structure of the net-
work. For example, in [46], nodes find the neighbors of their
potential neighbors before choosing their connections.

4.2.1 Peer Domain Names

Each node participating in a DDNO topology has some
Domain Name ðdnÞ, which is a string that conforms to the
syntax rules of Request for Comments (RFC) 1035 [28]. Such a
string, which is case insensitive, can be expressed with the
regular expression dn ¼ labelð:subdomainÞþ, where label and
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subdomain are some strings with certain restrictions such as
length and allowed characters. To determine whether the two
domain names dn1 and dn2 belong to the same domain, we
introduce two functions: 1) Split Hash, which allows us to
efficiently encode URLs and 2) dnMatch, which determines
whether two domain names dn1 and dn2 belong to the same
domain or not. The split-hash function is a hashing function
that splits a domain name dn into k hashes, where k is the
number of subdomain strings in dn ðk ¼ jsubdomainðdnÞjÞ. A
hash function hashðm; subdomaindn½j�Þ is used to hash the
subdomaindn½j� using m bits. We chose to use hashcodes
instead of raw domain names because, in our technique,
domain names will be propagated in the network, and we
want to reduce the size of messages. Two nodes dn1 and dn2

have a dnMatchðdn1; dn2Þ if the individual hashes match on
each subdomain.

4.2.2 Joining a DDNO Topology

Let n denote a node that wants to join an overlay network
N . We assume that an out-of-band discovery service (a
hostcache or a local cache that stores nodes to which n was
connected in some past session) is able to provide n with a
random list of active hosts L ¼ fn1; n2; . . . ; nkg, for some
constant k � d

2 , where d denotes the number of neighbors
that n maintains. It is important to notice that the individual
hostcaches do not have global knowledge and therefore
cannot be used for disseminating some precomputed
overlay structure or the distances between all node pairs
to the peers.

After n obtains the list L, it first attempts to establish a
connection to d=2 random nodes, where d is the degree of n.
It is quite possible that some or all of the nodes ni in L are
not able to accept any new incoming connections. This
might either happen because ni reached its maximum
degree or because ni went offline. In this case, n will need to
obtain an additional list L from the hostcache. The next step
is to find d=2 sibling connections (nodes that have a
dnMatch with n). This is achieved by sending a Domain
Name lookupDN message (described next) to one of the
existing (random) neighbors.

4.2.3 Domain-Name Lookup in a DDNO Topology

We now focus our attention on the lookupDN procedure that
is used by some node n in order to discover other sibling
nodes in N . We model the lookupDN message (denoted as
‘) as a multicast walker. The goal of the multicast walker ‘ is
to reach some node m that can guide it to the destination

(that is, a sibling of n). Note that before reaching m, ‘ may

need to traverse a number of randomly selected neighbors.

This can be viewed in Fig. 3, in which ‘ takes the random

itinerary ½a; b; e; c; b; d�. At d, however, ‘ is allowed to make

an informed decision on which neighbor to follow next (in

this example, node f).
This is achieved by using a special structure, coined

ZoneCache, that contains information on which domains are

reachable in an r-hop radius (it will be discussed next). At

the end of this procedure, ‘ is expected to reach some

node m, which is a sibling of n. m then issues a broadcast

message to all of its own siblings. Each of the receiving

nodes, including m, will respond with a LookupOK message

(denoted as ‘0) if they are willing to accept new connections.

Therefore, node n will end up receiving several answers out

of which it will attempt to establish a connection to

d=2 nodes; these will be n’s siblings.
One important problem with this approach is that ‘

might get locked in a cycle (for example, loop b! e! c in

Fig. 3). To avoid this scenario, we incorporate state

information in ‘ as this also serves as an implicit mechanism

to populate the ZoneCaches along ‘’s path. The state

information included in ‘ includes the split hash h on the

domain name of each node that ‘ traversed (that is,

state‘ ¼ fhðvnÞ; . . . ; hðvmÞg).

4.2.4 ZoneCache

This is a caching structure, which is deployed locally at each

node, and its functionality is to guide ‘ messages to their

sibling nodes. In Table 1, we present a snapshot of the

ZoneCache structure. The first column includes the hash of

some domain name, and this information is extracted from

traversing ‘messages. The second column indicates the peer

connection that will lead a future search (denoted as ‘2) to the

corresponding destination, and the third column indicates

the respective cost in hops. Finally, ZoneCache uses a time

stamp parameter (fourth column) in order to limit the number

of entries in the structure to a total size of C. Once the

repository of some node becomes full, the node uses the Least

Recently Used (LRU) policy to invalidate old entries.
The cache stores only the hashcodes of the nodes that are

located within an r-hop radius in order to limit both its size

and accuracy. Although neighboring ZoneCaches could

actively exchange routing updates at regular intervals, like

Border Gateway Protocol (BGP) [31], our passive caching

scheme reduces significantly the amount of transmitted

messages and works well in dynamic environments.
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Fig. 3. Domain-name lookup in a DDNO topology. Each lookupDN

message retains path information to populate the ZoneCaches of other

nodes. The list appends shown on the lookupDN message illustrate the

accumulated path in ‘.

TABLE 1
The ZoneCache Structure

It caches domain topological structure information from lookupDN
messages that traverse a given node.



4.2.5 DDNO Topology Maintenance

When a node disconnects from the DDNO topology, it does
not need to send any a priori notification to the other nodes.
However, if some random neighbor of n leaves N , then n
will either attempt to reestablish the dropped connection or
find another node from the discovery service outlined
before. On the other hand, if some sibling of n disconnects,
then n consults its ZoneCache in order to send the new
lookupDN message toward a current sibling. It is expected
that n will discover another sibling in only 2 hops (as a node
already maintains ðd2 � 1Þ siblings).

5 QUERY ROUTING IN PFUSION

In this section, we describe the query-routing algorithms
that can be used to perform content-based searches in
pFusion. The techniques do not use any global knowledge;
thus, they are completely decentralized and scale well with
the size of the network.

5.1 Alternative Query-Routing Techniques

Below, we provide a brief description of alternative query-
routing techniques evaluated in this paper. Breadth First
Search (BFS) is a technique widely used in P2P file-sharing
applications such as Gnutella [15]. It works by recursively
forwarding the query on each node to all neighbors (except
the sender). In order to avoid flooding, the network with
queries, as the network might be arbitrarily large, each
query is associated with a TTL field, which determines the
maximum number of hops that a given query should be
forwarded. In [22], we propose and evaluate the Random
Breadth-First-Search (RBFS) technique. RBFS improves over
the naive BFS approach by allowing each node to forward
the search request to only a fraction (0.5 in the experiments)
of its peers.

Yang and Garcia-Molina [50] present a technique where
each node forwards a query to some of its peers based on
aggregated statistics. They compare a number of query-
routing heuristics and show that the Most Results in Past
ð> RESÞ heuristic has the best performance. In > RES, a
peer u forwards a search message to the k peers, which
returned the most results in the last 10 queries.

5.2 The Intelligent Search Mechanism (ISM)

Keys to improving the speed and efficiency of the
information retrieval mechanism is to minimize the com-
munication costs, that is, the number of messages sent
between the peers and to minimize the number of peers that
are queried for each search request. In [22], we propose the
ISM, which is a fast and efficient mechanism for informa-
tion retrieval in unstructured P2P networks. ISM achieves
reduced messaging by having each peer to profile the
query/queryhit activity of its neighboring nodes. It then
uses this knowledge to forward queries to the neighbors
that are most likely going to reply to a given query. ISM
consists of two components that run locally in each peer:

1. Profile mechanism. Each node maintains in a
repository the T most recent queries and the
corresponding queryhits along with the number of
results. Once the repository is full, the node uses the

LRU replacement policy to keep the most recent
queries.

2. RR. This is a function used by a node Pl to perform
an online ranking of its neighbors in order to
determine to which ones to forward a query q. To
compute the ranking of each peer Pi, Pl compares q
to all queries in the profiling structure, for which
there is a queryhit, and calculates RRPlðPi; qÞ as
follows:

RRPlðPi; qÞ ¼
X

j¼}Queryhits by Pi}

Qsimðqj; qÞ� � SðPi; qjÞ;

where the deployed distance metric Qsim is the
cosine similarity [2], and SðPi; qjÞ is the number of
results returned by Pi for query qj. RR allows us to
rank higher the peers that returned more results. �
allows us to add more weight to the most similar
queries. For example, when � is large, then the query
with the largest similarity Qsimðqj; qÞ dominates the
formula. If we set � ¼ 1, all queries are equally
counted, whereas setting � ¼ 0 allows us to count
only the number of results returned by each peer.
Note that other numeric similarity metrics such as
the Jaccard coefficient, the dice coefficient, and the
inner product (listed in [37]) are also appropriate in
our setting since these can again be computed
locally.

ISM works well in environments that exhibit strong
degrees of query locality and where peers hold some
specialized knowledge. Our study on the Gnutella network
shows that this characteristic is a reasonable assumption [52].
Although we propose the ISM mechanism for keyword-
based searches, the basic mechanism can also be used for
content-based retrieval of audio, image, or video features as
long as a similarity function between the queries can be
provided. Finally, in [22] and [54], we have conducted an
analytical study of the RBFS search mechanism.

5.3 ISM over DDNO

The existence of sibling and random links in the
DDNO topology can be further exploited in query
routing. If a query is likely to generate query hits in the
local domain, then the peer can use the ISM mechanism to
send the query only to the most likely sibling nodes. We
call this mode the “short” query mode. In this situation,
the query is only propagated along sibling connections
and, specifically, the ones chosen as the most relevant by
ISM (see Fig. 4).

If the query results are not satisfactory, the query node
can then reissue the query using both sibling and random
nodes. However, the “short” query mode can be very useful
in many situations. Since all messages are sent to sibling
nodes (in the same domain), it is very likely to terminate
very quickly, especially since it likely needs a small number
of hops to explore the domain. In addition, if there is
locality of interests, local peers are more likely to have good
results. Such a case can easily come up in our distributed
newspaper example: most queries are likely to be about
local news.
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6 EXPERIMENTAL EVALUATION METHODOLOGY

To validate that it is possible to obtain the benefits of a
topologically aware overlay using only local knowledge,
our experimental evaluation focuses on the following three
parameters: 1) the Aggregate Tree Delay (�T ), which is a
metric of network efficiency for a given query that spans in
the subgraph G0, 2) the Recall Rate, that is, the fraction of
documents each of the search mechanisms retrieves, and
3) the number of Messages consumed in order to find the
results.

To describe the Aggregate Tree Delay, let G ¼ ðV ;EÞ
denote an overlay graph with a vertex set V ¼ f1; 2; . . . ; ng
and an edge set E. Queries posted in G, create a spanning
tree T , which spans over the subgraph G0 ðG0 � GÞ.
Intuitively, an efficient overlay network can improve the
query latency by minimizing the sum of latencies along the
explored edges. More formally, the goal of our overlay
construction technique is to minimize �T ¼

P
8�2T wð�Þ,

where w is the latency associated with edge � in the tree T . It
is important to notice that the delay cost associated with
each edge might be different for each direction between two
nodes vi and vj (that is, delayðvi; vjÞ 6¼ delayðvj; viÞÞ. This
happens because packets on the Internet follow different
paths or because the upstream and downstream bandwidth
of a node is different (for example, Cable/ADSL Modem
Users).

For the Recall Rate, we use as the baseline of comparison
the results retrieved by querying the collection in a
centralized setting (that is, as a corpus of documents),
which therefore returns all relevant documents. We chose to
implement the algorithms that require only local knowledge
(that is, BFS, RBFS, > RES, and ISM) over Random, BinSL,
and DDNO topologies of the same size and degree.

6.1 Data Set Description

We use two series of experiments based on the Text
REtrieval Conference (TREC)-LATimes [45] data set, a
document collection of randomly selected articles that
appeared on the LA Times newswire from 1989 to 1990.
The size of this data set is 470 Mbytes, and it contains
approximately 132,000 articles. These articles were hor-
izontally partitioned into 1,000 XML documents, each
subsequently indexed using the Lucene [25] IR API.
These indexes, which are disk based, allow the efficient
querying of text-based sources using many IR features.

We then generate Random, BinSL, and DDNO topologies
of 1,000 peers in which each peer shares one or more of
the 1,000 documents. We use this scheme in order to
provide some degree of article replication (see Fig. 5a).

For the evaluation of the TREC-LATimes corpus, we will
use, as indicated by the US National Institute of Standards
and Technology (NIST), the TREC “topics” 300-450. One
problem with the 150 queries provided is that the query term
frequency is very low and most terms are presented only
once. This is not a realistic assumption since studies on real
P2P networks (for example, [52]) indicate that there is a high
locality of query terms. Therefore, we used the 150 queries to
derive the TREC50x2 data set, which consists of a set a ¼ “50
randomly sampled queries out of the initial 150 topics.” We
then generated a list b of another 50 queries, which are
randomly sampled out of a. TREC50x2 is then the queries in a
and b randomly shuffled, and the distribution of query terms
can be viewed in Fig. 5b.

6.2 Simulating Network Distances

Evaluating distances in network topologies requires a data
set in which the IP latencies are not synthetic. Therefore, we
base our experiments on traceroute data from NLANR [18]
and ping data from the Akamai Internet mapping infra-
structure [1] (AKAMAI):

1. NLANR. This data set contains traceroutes between
117 monitors of hosts on the Internet2 backbone. The
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Fig. 4. Searching in a P2P network using ISM. The profiling structure at

each node routes queries to nodes with relevant content.

Fig. 5. (a) Document Replication of the TREC-LATimes data set.

(b) Query Term distribution for the TREC50x2 queryset.



trace snapshot that we used was obtained in January
2003 and had a raw size of 1.8 Gbytes. From the
initial set of 117 monitors, we extracted the 89 moni-
tors, which could be a reversed Domain Name
System (DNS)—that is, given their IP, we obtained a
DNS name. We then construct the n� n IP-latency
matrix (for all n ¼ 89 physical nodes) that contains
the latency among all monitors. Since all 89 hosts are
located at different domains, we randomly and
uniformly replicate nodes within each domain,
providing therefore some degree of host replication
per domain.

2. AKAMAI. This data set contains latency measure-
ments obtained in August 2004 from a very large
number of “well-positioned” servers to DNS servers
on the Internet. In order to obtain an n� n IP-latency
matrix among all DNS servers, we use the triangle
inequality to lower bound the desired distances. More
formally, let s be a server that pings n DNS servers in
the set D. This creates a set of n edges, each with an
associated distanceðs; dÞ ðd 2 D; 8dÞ. The triangle in-
equality implies that distanceðd1; d2Þ 	 minðdistance
ðs; d1Þ þ distanceðs; d2ÞÞ.

Since the name of each DNS servers was anonymized in
our data set, we utilize a real set of 244,000 domain names
that we obtained by crawling the Gnutella Network in [52].
More specifically, we uniformly sample, out of our initial
set of 244,000 IP addresses, 1,000 unique addresses and then
assign these names to the anonymized DNS servers. Note
that the distribution of our sample preserves the initial
distribution closely (see Table 2). Using this setting, nodes
in different domains have latencies found in the Internet,
whereas nodes in the same domain are randomly assigned
latencies in the range ½10 . . . 50� ms.

6.3 The pFusion Simulation Infrastructure

In order to benchmark the efficiency of the various informa-
tion retrieval algorithms over various overlay topologies, we
have implemented pFusion, using our open-source Peerware
system.1 We use pFusion to build a decentralized newspaper
network, which is organized as a network of 1,000 nodes. Our
experiments are performed on a network of 75 workstations
(each hosting a number of nodes), each of which has an AMD
Athlon 800-MHz-1.4-GHz processor with memories varying
from 256 Mbytes to 1 Gbyte of RAM running Mandrake Linux
8.0 (kernel 2.4.3-20) all interconnected with a 10/100 LAN.
pFusion is written entirely in Java and comes along with an
extensive set of Unix shell scripts that allow the easy

deployment and administration of the system. It consists of
13,500 lines of code with 6,500 lines devoted to the core
protocol implementation, 5,000 lines to the pFusion node, and
2,000 lines to topology generators and other supplementary
I/O components.

Our experimental testbed consists of three components:
1) graphGen, which precompiles network topologies and
configuration files for the various nodes participating in a
given experiment, 2) the pFusion client, which is able to
answer queries from its local XML repository using the
Lucene [25] IR Engine, and 3) searchPeer, which is a P2P client
that performs queries and harvests answers back from a
pFusion network. Launching a network of 1,000 nodes can be
done in approximately 10-20 seconds, whereas querying the
same network can be performed in around 250-1,500 ms.

7 EXPERIMENTAL EVALUATION

In this section, we describe a series of experiments that
investigate the effect of the Random, BinSL, and DDNO
overlay topology structure on the recall rate and the
messaging of the various information retrieval search
algorithms discussed in this paper. We focus on investigating
if the DDNO topology can significantly minimize the
aggregate network delay without sacrificing the recall rate.

Since the possible number of system executions can be
very large, due to varying link latencies and the fact that
queries might take different paths at the overlay, we present
averages over 10 runs. In order to present the statistical
significance of our results, we additionally present the mean
and the 95 percent confidence intervals2 for Figs. 7 and 8 in
Tables 3 and 4, respectively.

7.1 Comparing DDNO with Other Techniques

In the first experiment, we evaluate the performance of the
DDNO topology and compare it to the BinSL and Random
algorithms using the 1) NLANR and 2) AKAMAI data sets.
We evaluate the impact of the number of landmarks on the
performance of the BinSL topology. By using more land-
marks, the number of false positives decreases. This happens
because we get fewer collisions in the landmark codes of
hosts that are not topologically close to each other. We use
the centralized SL algorithm as a benchmark to compare
against.

In Fig. 6, we calculate the sum of the delays w associated
with all edges in the respective graphs G (1,000 peers each
with an average degree of 6). This sum is more formally
defined as �G ¼

P
8�2G wð�Þ, where w is the latency of each

edge � in the graph G. We use this metric, instead of the
Aggregate Delay �T , as it is independent of the deployed
search technique. In BinSL, we first randomly sample out of
the original network the set of landmarks. Note that in a real
setting, peers would have a predefined list of landmarks (that
is, globally spread HTTP or DNS servers). The figures
indicate that by using no landmarks, the BinSL topology is
essentially a random topology. This happens because a node
selects all its connections at random, which makes �G of the
Random and BinSL topologies identical. The figure shows
that by adding a few landmarks (that is, 1-10), �G for the
BinSL topology decreases substantially, but after a point �G

decreases at a lower rate. Therefore, selecting an arbitrary
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1. Available at http://www.cs.ucr.edu/~csyiazti/peerware.html.
2. The 95 percent confidence interval indicates that there is a

0.95 probability in any measurement to be within the given interval.

TABLE 2
Domain Distribution of the Top-10 Domains in a

Data Set of 244,000 IPs Found in Gnutella



large number of landmarks may not be very efficient as each
landmark probing comes with an additional network cost
and because the �G parameter of the graph does not
significantly drop. Fig. 6 also shows that the lower bound
provided bySL is less than what other topologies achieve, but
SL is not feasible in practice as it requires global knowledge
(that is, the fulln� nmatrix). In the experiments presented in
Sections 7.2 and 7.3, we set the number of landmarks to 20.
The reason why the graphs based on the NLANR latencies
have a lower �G that those in the AKAMAI latencies is that
NLANR measurements are between Internet2 hosts among
which the latency is very low. An extensive experimental
comparison of DDNO, BinSL, and Random, which includes
scalability, failure, and bootstrapping experiments, can be
found in [53].

7.2 Minimizing Network Delays

In our second experiment, we investigate if pFusion can
succeed in minimizing the Aggregate Delay �T of a query,
whereas in Section 7.3, we will show that this does not affect
the recall rate, and it also does not increase messaging.

In the top row of Fig. 7, we compare the following cases:

1. a random topology with BFS query routing (essen-
tially the Gnutella scenario),

2. a random topology with an efficient query mechan-
ism (we experiment with ISM, > RES, and RBFS),

3. a DDNO topology with BFS query routing, and
4. the pFusion architecture that combines a DDNO

topology and efficient query routing using the
AKAMAI data set to create the network and
answering the TREC50x2 query set.

In the BFS case, we configure each query message with a
TTL parameter of five since this technique is consuming
extraordinary amounts of messages. With this setting, query
messages are able to reach 859 out of the 1,000 nodes.3

Therefore, it was expected that BFS’s recall rate would be
less than the recall rate obtained by evaluating the whole
data set in a centralized setting. The rest techniques (that is,
RBFS, ISM, and > RES), use a TTL of 6 as they offer reduced
messaging, which allows us to explore the network graph
deeper while maintaining low messaging. Finally, the
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TABLE 4
The Mean � and the 95 Percent Confidence Interval for the Plots of Fig. 8

Fig. 6. Aggregate Graph Delay ð�GÞ for the (a) NLANR and (b) AKAMAI data set using four different overlay topologies.

3. With a TTL of 6 and 7, we would be able to reach 998 and 1,000 nodes
at a cost of 8,500 and 10,500 messages/query, respectively.

TABLE 3
The Mean and the 95 Percent Confidence Interval for the Plots of Fig. 7



average time to perform a query for the BFS case is in the
order of 1.5 seconds, but results start streaming back to the
query node within the first few milliseconds. Comparing
Fig. 7a with Fig. 7b can reduce the �T parameter by a factor
of three. Fig. 7c with Fig. 7d shows that DDNO also has
significant benefits against BinSL. The figures also indicate
that the improved search techniques ISM, > RES, and RBFS
have significant savings over the naive BFS approach.

7.3 Maintaining High Recall Rates and Low
Messaging

So far, we have seen that by using a DDNO topology, we
are able to reduce the �T parameter. However, this single
parameter is not enough in the context of information
retrieval applications, as these applications are required to
return the most relevant documents. Furthermore, if some
search technique always explored the shortest latency
neighbors, then the �T parameter would be minimal, but
the query would, with very high probability, get locked in
some region and would not explore the larger part of the
network graph. This would consequently reduce the recall
rate, which is not desirable. In Fig. 8, we plot the recall rate
required by the different search algorithms. The figures

indicate that we can maintain high levels of recall rate while

keeping the �T parameter low (as shown in Section 7.3).
In the same figures, we can also observe the effectiveness

of each search technique. More specifically, BFS requires
almost 2.5 times more messages than the other techniques.
The ISM search technique, on the other hand, learns from its
profiling structure and guides the queries to the network
segments that contain the most relevant documents. On the
other hand, both RBFS’s and > RES’s recall rates fluctuate,
which indicates that > RES may behave as bad as RBFS if
the queries do not follow some repetitive pattern.

Finally, we note that random topologies with BFS require
slightly more messages (
 10 percent) and, consequently,
are able to score slightly higher recall rates (in our
experiments, 
 0-5 percent) using the same parameter
settings because fewer query paths are short circuited. A
query q is short circuited if its TTL parameter has not
reached zero, but it is discarded because the same query
with a larger TTL already passed from a given node. Note
that such a query could explore some additional network
segment with its remaining TTL value. However, in the
pFusion approach (DDNO and ISM), the recall rate is not
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Fig. 7. Aggregate Tree Delay for the evaluation of the TREC50x2 queries. In the top row, we compare (a) Random and (b) DDNO topologies using

the AKAMAI data set. In the bottom row, we compare (c) BinSL and (d) DDNO topologies using the NLANR data set.



affected because ISM tries to both explore the largest and
most relevant segments of the network. This happens
because short-circuited areas are penalized by RR and
explored less frequently.

In addition to the TREC50x2 data set, we also
experimented with two other query sets: TREC100, a set
of 100 randomly sampled queries out of the initial
150 TREC queries, and TREC10x10, a set of 10 randomly
sampled queries, which are executed 10 times consecu-
tively. In both cases, we observe a similar behavior, and
therefore, omit these results for brevity. Note that the
TREC100 contains a low locality of reference in its
queries, but this does not seem to affect significantly
the learning process of the ISM search algorithm.

Finally, we observe that in all curves of Figs. 7 and 8, the
standard deviation within the 95 percent confidence is, in
most cases, 4-7 percent.

Our experimental results show that random overlay
topologies make information retrieval algorithms, proposed
in recent literature, significantly more resource demanding
and slow. In particular, the Aggregate Tree Delay graphs in
Fig. 7 show that random topologies are twice as expensive,
in terms of delay along the query path, as the optimized
DDNO topology. On the contrary, the minimization of
delay that is achieved by DDNO does not affect the recall
rate in such systems, as this is shown in Fig. 8.

8 CONCLUSIONS

We considered and evaluated the impact of the use of
topologically aware overlay networks on the performance
of fully distributed P2P information retrieval techniques.
Specifically, we show that it is possible to efficiently
organize the overlay network using only local information
in order to significantly improve the query latency. We
also show how to take advantage of this organization
when routing the queries in the network. Our experi-
mental results demonstrate that our approach optimizes
many desirable properties such as aggregate delays, recall
rates, and the number of messages. We believe that our
techniques are simple to enable seamless integration into
existing overlay systems, with minimal changes.
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