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ABSTRACT
As the proliferation of mobile devices and positioning sys-
tems continues unabated, the need to provide more robust
location-based services becomes more pressing. In this con-
text, we examine the problem of efficiently handling queries
over moving objects and propose a location-aware overlay
network that helps monitoring such objects while traversing
contained geographic extends. We use a triangulation struc-
ture to divide a geographic area using fixed service nodes
as anchors based on their geographic position. Triangula-
tion inherently contains each moving object within an area
designated by three service nodes. We introduce a method
for monitoring moving objects and we present an algorithm
for processing nearest-neighbor queries while restricting the
amount of resources and, subsequently, the volume of trans-
mitted messages. Through simulation, we evaluate the sug-
gested approach and show that our nearest-neighbor query
processing method provides always accurate results while it
uses invariantly a constant number of service nodes. We
finally show that the average physical distance between ser-
vice and roaming nodes remains limited; this yields a signifi-
cant number of physical connections that avoid conventional
Internet routing altogether.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed Applications; H.5.3
[Information Interfaces and Presentations]: Group
and Organization Interfaces
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Overlay networks, Mobile Objects, Location Based Services

1. INTRODUCTION
The widespread availability of diverse wireless communi-

cation options along with GPS-enabled devices has paved
the way for the realization of Location-based Services (LBS)
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whose prime objective is to aid the roaming user in real-
time fashion. Applications including on-demand computer-
generated road and elevation maps as well as navigational
facilities for road-networks are commonplace and are often
embedded in all high-end contemporary mobile devices. Al-
though systems providing LBSs are mostly focused on stor-
ing and processing queries over fixed location points of inter-
est, the next generation of services will enable more collab-
oration and cooperative decision making among the moving
objects within a network. For instance, consider a moni-
toring service that helps manage a taxi-cab fleet in an ur-
ban area predominantly using cooperative means: a poten-
tial passenger in need of a taxi-cab should alert the near-
est available vehicle. The LBS monitoring service should
act in “mostly-localized” fashion and help dispatch the taxi
found closest to the point of request. In doing so, the ser-
vice should avoid centralized action and/or the assistance of
a dispatcher. Other applications that may be similarly real-
ized include community car-pooling, cooperative police-car
actions, sharing of car/bicycle rentals, as well as search-and-
rescue operations [1].

The idea of location-based query processing has its roots
in GeoCast [6] in which the concept of integrating the phys-
ical location into the design of the Internet is proposed. In
the context of the above applications, the issue that is of par-
ticular interest is that of the continuous monitoring of the
roaming nodes. An LBS system must always know if not
the exact, at least the approximate position of the provider
of a service as well as the location of the client who requests
the service. Evidently, the exact position of moving nodes
within a geographic extend is frequently difficult to know for
a number of reasons. In addition, such a system has to pro-
cess nearest-neighbor and top-k type queries both quickly
and accurately. For example, a police patrol-car monitoring
system should inform vehicles that are found closest to the
location of the incident. The system should identify these
patrol cars as quickly as possible and among all candidate
cars only those with the ability to respond in minimum time
should receive the order to intervene.

A common approach in addressing the above problems
is creating and maintaining a centrally-managed location
service, which can be queried and updated by the mobile
devices. A number of efforts have focused on this topic
and proposed algorithms for query processing and perti-
nent systems. For example, [4] describes a way to efficiently
store moving objects and provides algorithms for fast spatial
query processing. A more refined related approach is pre-
sented in [5] where appropriate metrics to represent motion
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are used; the latter take into consideration a number of the
recent location updates of a mobile device as well as its ve-
locity. Nevertheless, centrally-controlled approaches suffer
a number of disadvantages. First of all, the load is concen-
trated on a single point and centralized service may fail as
it might prove unable to tackle sudden surges of hot spots.
Real-time requirements imposed on such a server may ne-
cessitate pricey hardware in order to to keep the query pro-
cessing time short. Moreover, a centralized system does not
exploit the inherent underlying geographic topology as well
as the physical location of the participating and continu-
ously moving objects. In such a centrally-controlled system,
queries are initially received by Wi-Fi networks and hot-
spots and subsequently are routed via ISPs to the Internet
in order reach the service. If a user does not have any access
to the Internet, she is unable to reach the service of this cen-
tralized system at all. This however is not the case if roamers
have only sporadic access to hotspots. To address the above
problems, we adopt a decentralized and self-organizing ap-
proach as our key objective is to opportunistically harness
Wi-Fi access for the provision of LBS -services to users in
motion.

We propose a geography-aware service overlay network
for the monitoring and evaluation of queries over moving
objects. We use a triangulation scheme for organizing fixed
location service nodes that exist in our network and we ex-
ploit the properties of the triangulation to monitor large
numbers of roamers in distributed fashion. The main goal of
our approach is to provide answers to nearest moving neigh-
bor queries while restricting the amount of resources and/or
service nodes required to process such queries. By restrict-
ing the geographic extend that we search in, the average
query processing time is reduced. Moreover, the average
workload remains limited since the majority of the service
nodes are idle until a query is submitted by a roaming node
close to them. Our approach also provides a good match to
the underlying geographic topology as it takes into account
the actual geographic position of both service and roaming
nodes. As such, the proposed scheme can be applied over
an existing infrastructure such as a wireless metropolitan
network (WMN). We present pertinent algorithms for node
arrival and departure and through simulation we show that
our approach achieves quality results while it offers a great
match for the underlying geographic topology.

The paper is organized as follows: Sections 2 and 3 outline
background and related work. Section 4 presents all the ele-
ments of our self-organizing triangulation-based service over-
lay network that helps monitor roaming nodes and evaluate
nearest-moving neighbor queries. Section 5 discusses pre-
liminary simulation results and finally, concluding remarks
can be found in Section 6.

2. BACKGROUND
Our proposal is founded on a 2D geographic space trian-

gulation structure. The proposed algorithms are based on
geometric criteria and properties of triangulation. In this
section, we outline fundamental concepts that our approach
exploits.

By definition, the convex hull of a set of points P ∈ <2 is
the intersection of all convex sets containing the points in P
and is denoted as conv(P ). In Figure 1, points A,B,C,D,E
and F constitute the convex hull. Consequently, a triangu-
lation of a set of all points in P ∈ <2 is a set of triangles
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Figure 1: Sample triangulation and use of CCW
predicate: F,A,E turn is counter-clockwise thus,
CCW (F,A,E) > 0

T whose vertices are elements of P . Additionally, the union
of all these triangles equals conv(P ) and the intersection of
any pair of triangles results in one of the following: a) equal
to ∅, b) equal to the common vertex of the two triangles,
or c) equal to their common edge. The outer hull of any
triangulation scheme is always equal to the convex hull of
the set of points the triangulation is applied on.

Various triangulation schemes have been proposed. Each
such scheme is defined by the specific criteria applied when
triangles are formed. For example, the Delaunay triangula-
tion maximizes the minimum angle of all angles in the trian-
gles that ultimately make up the triangulation. In our case,
we use a triangulation scheme that functions in a step-wise
manner and employ no specific geometric constraint when
forming new triangles. The expansion of the triangulation
is incremental as every new point arriving in the network
may form a number of new triangles. If the new point is
inside the convex hull, only three new triangles are formed.
More triangles may be formed if the new point is outside the
convex hull and thus, the triangulation must be expanded;
Section 4 presents our triangulation scheme.

For the realization of our overlay, we exploit the prop-
erties of the Counter-Clockwise (CCW ) orientation predi-
cate. If p0, p1, p2 are points in <2, CCW (p0, p1, p2) desig-
nates whether the direction of the turn defined by the three
points is counter-clockwise; hence, the orientation predi-
cate may be either positive CCW (p0, p1, p2)>0 or negative
CCW (p0, p1, p2)<0. Should we consider points F,A and

E of Fig. 1, the turn indicated by vectors
−→
FA and

−−→
FE is

counter-clockwise, so CCW (F,A,E) > 0. We exploit the
CCW predicate to find whether a node is part of a convex
hull. We also use the CCW predicate to define the Ordered
Finger Table (OFT ), a structure in which each node stores
its neighbors in an ordered manner. We present OFT in
Section 4.1. Finally, CCW is also used to examine whether
a given node exists inside a given triangle.

3. RELATED WORK
The development and use of overlay networks has had

much success in recent years. Chord [11] and CAN [8] are
such P2P representatives that employ distributed (hash) ta-
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bles (DHTs) to efficiently carry out exact queries. Their
main objectives are data partitioning and searching over
multiple sites. However, DHT-based systems are ineffective
when it comes to spatial and/or geography-related queries.

To counter the aforementioned issue, a number of efforts
have focused in the development of geographic location-
aware overlays. Such a system is the Geographic Hash Table
(GHT) [9] which stores nodes according to their geograph-
ical location. GHT hashes keys into geographical coordi-
nates. Then, GHT stores a key-value pair at a node in the
vicinity of the location to which the key of that node hashes.
Other overlays that have been proposed use a different struc-
ture to organize their nodes. Geopeer [2] uses a Delaunay
triangulation scheme to divide the 2D space into triangles.
Each node is responsible only for points inside the Delaunay-
triangle in which it participates. The above efforts although
successful in handling spatial data and spatial queries over
fixed-location objects, they make no provisions for managing
moving objects and their respective dynamic behavior.

To the best of our knowledge, Geogrid [12] is a prior effort
that is very related to our proposal. Geogrid is a decentral-
ized and geographic-location-aware overlay network that di-
vides two-dimensional extends into a number of rectangular
regions. Each overlay node is assigned with a region and is
responsible to process all requests mapped to this particu-
lar region. Additionally, the overlay node monitors all the
roaming nodes inside its assigned region. In contrast, our
proposal exploits triangles as they are formed by the existing
fixed nodes of the underlying stationary network. We also
take into account the actual position of overlay nodes some-
thing which Geogrid does not. Another interesting approach
is Mobieyes [3] which is a distributed and scalable solution
to continuously process queries over moving objects. Mo-
bieyes uses a server to monitor the mobile devices while the
devices are responsible for processing spatial queries them-
selves, thus, transferring a significant portion of the required
computations on the mobile node. In contrast, our approach
avoid imposing heavy overhead on mobile devices with com-
putations and attempts to exploit the computational capa-
bilities of the fixed nodes of the overlay.

4. OVERLAY NETWORK STRUCTURE
In this section, we present our overlay structure. Our

system consists of two levels of nodes: the first-level is the
actual overlay and all the nodes in this level are mainly static
nodes with fixed location. These nodes provide the means
for the cooperation among roamers and they can appear
and disappear as they are envisaged to be part of a WMN.
First-level nodes are organized according to our triangula-
tion scheme (Section 4.2). A vertex in the triangulation
corresponds to a static node with fixed geographic location
that ultimately assists roamers to locate service provided
by nearby fellow travellers. Users in motion constitute the
second-level nodes of our approach. Every edge in the trian-
gulation represents a network connection between two first-
level overlay nodes. Such connection can be either provided
by either direct line-of-sight radio couplings as is frequently
the case in WMNs or direct connections through Internet.
We term the first-level nodes as Fixed-location Coordinating
Nodes or FCN s.

FCNs are responsible for handling the mobile nodes of the
second-level. Each FCN is responsible for a number of mo-
bile nodes that move within its vicinity. Each roamer has
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Figure 2: Triangulation enabling the overlay: SX
are FCNs and MX represent nodes in motion.

to be within a triangle in which its “parent” or responsible
FCN is vertex of. We assume that if a mobile node exists
inside a triangle then its closest FCN is one of three vertices
of the triangle in question. In rare occasions, this assump-
tion does not apply. However, for maintaining simplicity in
our protocol, we elect not to take into consideration such
cases. In the triangulation of Fig. 2, nodes S1 to S8 are the
FCNs of the first-level and the remaining nodes M1 to M11
correspond to users in motion.

4.1 Ordered Finger Table (OFT)
Each FCN maintains an Ordered Finger Table (OFT) that

features all adjacent first-level nodes. OFT is a key compo-
nent of our proposal and is designed to be an ordered cyclic
list where all pertinent entries are sorted with the assistance
of the CCW predicate. This sorting ensures that the orien-
tation formed by any entry i of OFT table, the proprietor
of this table along with the next OFT entry i+1 is counter-
clockwise. For example, consider the instance of our layout
in Fig. 2. S4 is an FCN that does not belong to the convex
hull. The OFT of S4 contains entries referring to nodes S1,
S8, S7, S5 and S2 in a cyclic oder. Thus, every pair of
two consecutive OFT -entries form a triangle along with S4.
This observation leads to the following definition.

Definition 1. For every FCN node n located within the
convex hull, all pairs of consecutive OFT entries in conjunc-
tion with n form adjacent triangles.

The same condition also applies for nodes on the con-
vex hull except one case. Since the oriented finger table is
a cyclic list, then for a node on the convex hull, the next
and the previous on the convex hull are neighboring entries.
These two nodes cannot be connected to each other. For
all other neighboring entries in the oriented finger table of
a node, Definition 1 must always apply. In Figure 2, FCN
S6 is on the convex hull and its OFT consists of nodes S3,
S8 and S1. Although S3 and S8 are consecutive entries
in the table, the nodes are not directly connected to each
other. Notice though that both S3 and S8 are part of the
convex hull. In general, we can use this fact in order to find
out whether an FCN exists on the convex hull. If there are
three or less nodes in the network, then all of them make up
the convex hull. When more than three FCNs are present,
the following definition applies:
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Definition 2. Let n0 be a first-level node in the over-
lay and p0 its geographic location. If there are more than
three FCNs in the network and there exists a pair ni, ni+1

of consecutive entries in the OFT table of n0 having respec-
tive pi, pi+1 locations with CCW (p0, pi, pi+1)<0, then n0 is
a node on the convex hull of the triangulation structure.

These two definitions are of key importance, as they help
us maintain the triangulation with minimum cost. In the
following two subsection, we discuss how entries for FCNs
are either added or removed from OFT s. Such operations
are necessitated by the dynamic behavior that our first-level
nodes demonstrate and is commonplace in WMNs.

4.2 FCN Node Arrival
FCN nodes may join (or depart) at any time. The main

challenge is to contain all relevant update operations to a
small portion of the network and keep the number of ex-
isting FCNs involved in at a minimum. Using a complex
triangulation scheme would require costly maintenance op-
erations and the notification of many existing FCN s. In-
stead, we opted for a simpler scheme that restricts the num-
ber of FCN s currently in operation that have to be notified
when a new FCN arrives. Our approach requires only the
notification of nodes that are geographically close to the
newly-arrived node.

The process that takes place when a new node arrives
and tries to join the network is the following: the arriving
node can either broadcast a message to neighboring or those
found in-line-of-sight nodes declaring its intention to join the
network. The broadcasted message arrives only to FCN s
geographically-close whereas first-level nodes far away are
never involved. Here, the responding FCN s either contain
the joining node in one of the triangles they are a vertex of,
or they can infer that the new node is outside the convex-
hull structure. Should the broadcast proves to be futile, a
bootstrap node for the incoming FCN has to be notified.
In this case, the bootstrap node indicates an existing FCN
that must be contacted by the joining node so that the join
procedure may commence.

An existing FCN selected to handle the join process adds
the incoming FCN in its OFT and asks the new node to
reciprocate. The new FCN can either be located inside a
triangle or outside the convex hull. In the first case, the ex-
isting FCN notifies its other two counterparts in the triangle
to add the incoming node to their respective OFT s. In the
second case, the newly-arrived node has to connect with all
FCN s on the convex hull that are visible. For every k new
connections the arriving FCN establishes, k−1 new triangles
are formed and the convex hull is expanded. Once the han-
dling FCN has added the incoming node into its OFT table,
it forwards the request to its neighbors that are part of the
convex hull. A connection between two nodes is established
if both have the other’s identifier and geographic location
stored in their respective OFT s. Algorithm 1 outlines the
above process.

It is worth pointing out that existing FCN s that are ge-
ographically closest to an incoming node are not always se-
lected for carrying out the joining process. This occurs due
to the fact that our approach does not warrant that a han-
dling FCN cannot always be the one physically closest to
the new node. Nevertheless, this choice offers a pragmatic
way in readily maintaining the triangulation at all times.

Algorithm 1 New Node Arrival(FCN node: nnew)

BEGIN
nnew broadcasts a join request
handler ← findSuitableNode(nnew)
connect nnew with handler
if nnew is outside triangulation then

connect nnew with all visible nodes
else

find all nodes-vertices of the triangle nnew is in
connect nnew with all these nodes

end if
END

4.3 FCN Node Departure
When an FCN departs from the network, the triangula-

tion may not remain intact. If the departing node is not
a part of the convex hull, after its departure a polygon is
formed by the FCN s found in the finger table of the depart-
ing node. On the other hand, if the departing FCN belongs
to the convex hull, then it is likely that the resulting hull
is not convex any more. The latter has to be properly ad-
dressed. In any case, it is clear that before disconnecting,
a node needs to ensure that the triangulation structure re-
mains intact after its departure.

Firstly, let us consider the case in which the departing
FCN is not a part of the convex hull and consequently,
the OFT entries of the departing node form a polygon.
The departing FCN needs to execute a polygon triangu-
lation algorithm and compute the new edges that have to
be introduced. Subsequently, the departing FCN notifies
its counterpart to establish proper connections in pairs; this
will form the missing edges. Finally, the departing node is
purged from the respective OFT s of the FCN s it was con-
nected with so far.

The situation is different when the departing FCN is on
the convex hull. Here, the departing node has to compute
the lower hull of its neighbors as this will guarantee con-
vexity of the produced hull. After this procedure, inter-
nal polygons may be also formed. For each one of these
polygons, the departing FCN needs to compute the missing
edges. Finally, before the node ceases operation it notifies
all the involved FCN s to properly update their respective
OFT s. In both above cases, the exit routine is executed by
the departing node.

4.4 FCN Node Failure
Occasionally, there are instances in which FCN s fail and

forcefully disconnect from the network. Thus, a failing FCN
is unable to maintain the triangulation structure and the
polygon that is left behind must be rectified. In such a
case, FCN s that are vertices of the polygon have to “realize”
that their neighbor is down and self-adjust the incurring
situation.

The first step in restoring the triangulation scheme is to
identify the failing node. To achieve thus, every FCN in the
network must periodically send messages to its neighbors to
check whether they remain alive. Also, an FCN can become
aware that one of its neighbors is down when it sends-out
a message related to the arrival/departure of node. In any
case, when a failure is discovered, a restoration process must
first take place before any other operation occurs.

When a failure occurs and has been identified, each of its

34



neighbors may know up to three entries of the OFT table
in the failing node. If we designate the failing node as k in
a neighbor’s OFT, entries k-1 and k+1 correspond to FCN s
that will have to be directly connected. Nevertheless such
a coupling is only feasible provided that it does not violate
the triangulation constraint. If the connection is established
successfully then all FCN s involved purge the failing node
from their respective OFT s.

The above recovery operation can never be performed by
nodes in the convex hull as this might yield connections that
do not comply with the triangulation constraint. As we
have messages to check the liveliness of nodes referenced in
OFT s, it is safe to assume that, at a certain point in time,
all adjacent FCN s will either discover or be notified about
the failure. The nodes will undertake incremental corrective
action in the same order they discovered the failure. Sub-
sequently, after a period of time, the triangulation will be
restored successfully.

4.5 Mobile Node Management
When a mobile node enters the network, it must locate

an FCN that will handle its request. This process is similar
to the one described in Section 4.2. The suitable node is
an FCN that contains the newly arrived mobile node in one
of its triangles. If the mobile node finds itself outside the
triangulated area, the suitable FCN is part of the convex
hull which is also able to identify the mobile node as located
outside the hull.

As soon as the FCN that will handle the join request is
determined, the respective process commences. If the mo-
bile node exists inside one of the triangles of the FCN in
question, then the handling node checks which vertex of the
triangle is closest to the geographic location from which the
join request was launched. Hence, the roamer is connected
to its closest FCN and the latter becomes the “parent” of
the mobile node. If the roamer is outside the triangula-
tion structure, then it must be connected to its closest FCN
node on the convex hull. Thus, the handler of the join re-
quest, decides whether to forward the request to one of its
two neighbors on the convex hull by comparing respective
distances from the mobile node; the final recipient of the for-
warding is the FCN which maintains the shortest distance
from the mobile incoming node. In this way, only a small
portion of the convex hull is checked until the geographically
closest node can be located.

The departure of a mobile node from the network requires
that the roamer only contacts its parent and requests its own
deletion; it then can disconnect safely as the is no structure
and/or additional information to be maintained.

Except for arrival and departure of a mobile node, there
is an additional process that ensures the continuous moni-
toring of the moving nodes. As a mobile node changes its
location, it has to keep its parent continuously updated on
its new location. Therefore, it becomes evident that at some
point in time, the mobile node may move outside of all the
triangles that its parent node is a vertex of, find itself located
outside the convex hull or move from outside the convex hull
inside a triangle. In any case, all these location updates are
monitored and the overlay reacts accordingly.

Every time a location update event is received by the par-
ent, the corresponding FCN consults with an appropriate
daemon that indicates whether is still the most suitable par-
ent. This is possible as the parent know its FCN counter-

Algorithm 2 Mobile Node Arrival(MobileNode mnnew)

BEGIN
mobile node mnnew broadcast a join request
fcnpar ← findSuitableServiceNode(mnnew)
if fcnpar is in convex hull then

check neighbors of fcnpar on the convex hull
if ∃ fcnn in convex hull AND geographically closer to
mnnew then

forward the request to fcnn

else
connect with mnnew

end if
else

check the vertices of the triangle mnnew is in
if ∃ vertex fcnn geographically closer to mnnew then

forward the request to fcnn,
else

connect with mnnew

end if
end if
END

parts of triangle in which the roamer is. The performed
checks are similar to those deployed when searching for the
parent node upon a new mobile node arrival. As soon as a
change-of-parent decision has been made, the original FCN
hands over the care of the mobile node to the new parent.
Since the location updates arrive constantly and likely with
high frequency, there is only a small number of hops required
for parent-switch operation to take place. In this way, we en-
sure that the distance between a moving node and its parent
is always kept minimum.

4.6 Nearest–Moving Neighbor Queries
Two mobile nodes are nearest-moving neighbors if they

maintain the shortest geographic distance among all partic-
ipating mobile nodes. The distance between two roamers is
computed using their geographic coordinates provided dur-
ing each node’s most recent location update. The actual
current location of a mobile node though may not match the
coordinates that will be used to calculate its distance from
another roamer. An accurate computation of the nearest-
moving neighbor cannot be guaranteed, unless additional in-
formation related to the roamer’s motion pattern is exploited
[5]. As our proposal gives priority on performance over accu-
racy, our algorithm attempts to find a solution quickly, by
utilizing only a small, usually constant, number of nodes.
We do not provide any guarantees that the answer to a
query will be the optimal solution. Yet, in Section 5, we
will show that our approach finds the optimal solution very
frequently and that in general, it presents a good trade-off
between quick response and accurate results.

A mobile node, submits the query to its parent FCN along
with its current geographic location. The first step is to en-
sure that the query will be processed by the most suitable
FCN in the neighborhood. Thus, a change-of-parent proce-
dure may take place before commencing the query evalua-
tion at the appropriate FCN. In our approach, we check at
least three FCN s in order to find a solution. If the mobile
node is located inside a triangle, the query is processed by
the respective parent node at the time and its counterparts
of the triangle. Otherwise, we conclude that the parent of
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Algorithm 3 Nearest-moving neighbor(MobileNode mn)

BEGIN
fcnpar ← current parent FCN of mn
if fcnpar is not the most suitable parent of mn then

initiate parent-switch procedure
forward request to the possible parent and STOP

end if
if m is inside one of the triangles of fcnpar then

cand← set of mobile node entries of the FCN s that
constitute the triangle mn is in.

else
// fcn is on the convex hull.
cand← set of mobile node entries of the FCN s that

are neighbors on the convex hull
end if
mclosest ← node in cand closest to mn
if mclosest has been set then

return mclosest and STOP
end if
fcnnext ← closest FCN that hasn’t processed the request
forward request to fcnnext

END

the mobile node is part of the convex hull. The query is
then processed by the parent as well as the next and the
previous FCN s on the convex hull. The answer to the query
is the roaming node which is the closest to the coordinates
the query originated from, among all the mobile nodes mon-
itored by the FCN s involved. If a solution is not found
among the three selected FCN s, the query is forwarded in-
crementally to other close-by nodes. This is a step-by-step
procedure and when a solution is found it stops immediately.
Finally, the solution is directly dispatched to the requesting
mobile node by the last FCN node that was involved. The
exact procedure for answering a nearest-moving neighbor
query is presented in Algorithm 3

Consider again the instance of our layout in Fig. 2. Let
M8 be the node that submits a nearest-moving neighbor
query on its parent S7. The FCN nodes that will be checked
in order are: S7, S8 and S4. S4 –the last node to be check–
will be able to produce the solution M10; the latter will
be dispatched to M8. On the other hand, if the node that
submits the query is M2, the FCN nodes that will be utilized
are in order the following: S6, S3, S1 and S4. S1, which is
the last node of the triangle that will be checked. Up to this
point, there is no solution to return. Thus S1 forwards the
query to S4, which finds the closest neighbor M4 and sends
the solution directly to node M8. The query was forwarded
to an additional node as no FCN among the vertices of the
triangle M2 finds itself in, could provide an answer.

5. EXPERIMENTAL EVALUATION
We evaluate our proposed system through simulation and

provide preliminary results in this section. We use SIC-
SIM [7], a discrete event-based simulator that can model the
salient properties of the underlying network including net-
work latency and bandwidth of links. SICSIM also provides
us with an abstract layer in which we can define the gener-
alized functions a node must implement. By extending this
abstract layer, we have implemented geographic location-
aware nodes and all their required operations. In addition,

we have defined an operation that it is being invoked pe-
riodically and it is used to realize the mobile nodes that
dispatch frequent updates about their location to their re-
spective parent nodes. SICSIM also provides a monitor-
ing system mechanism that enabled us to take snapshots of
the network. This function is used for finding the actual
geographically-closest neighbor of a given mobile node at a
certain point of time.

To model the movement of the nodes, we implemented
two events in the simulator: a location change event and a
location update event. In the location change event, the po-
sition of the roaming node changes but its parent node is not
notified. The notification occurs only at a location-update
event. We designate the ratio of a location change event
to a location update event as 10:1. In this way, we model
the movement of roaming nodes and get discrete updates on
their location while simulating their continuous movement.

In order to have a comparison reference using SICSIM,
we implemented two additional systems that are evaluated
along with our proposed overlay network. The first is based
on a fully-centralized architecture. There is only one service
node that monitors all mobile nodes and is also responsible
for answering queries. The key characteristic of this sys-
tem is that only two hops are required to answer a query.
The mobile node sends the query to the server, the server
processes it and answers back with the result. In this exper-
iment, we don’t take into consideration the processing time
in the central server and we only focus on the time required
for each hop. The second system we implement is a vari-
ation of the Egoist overlay [10]. Each Egoist-node selects
a set of k neighbors by using a strategy that minimizes a
local cost function. In the variation we employed, we define
the cost function as the geographic distance between two
nodes. The selfish neighbor selection that is used by Egoist,
makes the particular variation match the behavioral pattern
of a WMN. In our implementation, we suggest that when a
new fixed location overlay node arrives, it connects with its
3 closest neighbors. We chose k = 3 in order to make the
system as similar to ours as possible. When a mobile node
arrives, it selects its closest service node and connects to it.
The same happens when a location update event occurs, so
that the mobile node is always connected to its closest FCN
node. As for query processing, if the parent of a mobile node
can answer then it does. Otherwise, the query is forwarded
to the closest, to the mobile node, FCN node. Notice that
a query is always forwarded to one service node at a time,
similarly to our system. In this section, we shall refer to this
system as Egoist(3).

5.1 Cost Metrics
The cost metrics that we have incorporated in our system

are the following:

• Hops per query: the average number of transmitted
messages from one node to another, in order to answer
a query. A hop can be a message sent from a roaming
node to a service node and vice versa, or a message
sent from a FCN node to another one.

• STU per query: the average simulation time units
that the system needs to evaluate a nearest neighbor
query. Although we cannot relate simulation time to
real time, we use STUs as a comparison metric among
simulated configurations.
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Figure 3: Visualization of the average measurements of the experimental results for 20 simulation executions.

• Hit rate: as we already mentioned, there are cases
when the system provides an answer to a nearest neigh-
bor query that is not the actual closest neighbor. Hit
rate shows success rate of each system in finding the
actual nearest neighbor at the moment the result is
returned. We can find the actual closest mobile node
by taking a snapshot of the network, as the simulator
we use provides such function.

• Physical Connections: we assume that the static nodes
are Wi-Fi hotspots, thus, allowing direct connections
between FCN s and mobile nodes. This metric counts
the number of connections between nodes that they
could be physical. This may happen if a mobile node is
within the range of the service node. We set the range
of a service node to be equal to the range of an average
omni-directional Wi-Fi antenna (around 800 meters).
Moreover, due to the movement of the mobile nodes,
the number of possible physical connections does not
remain constant. Thus, the results we present show the
average number of the possible physical connection in
the network during the execution of a simulation.

It is worth mentioning that the hops can be also used to
measure the resource utilization in each system. Since we
ensure in the two overlays that a query is always forwarded
to one service node at a time and cannot be forwarded to
the same node twice, the following always applies.

Definition 3. If the number of hops required to process
a query q is n, the number of overlay nodes utilized in order
to process q is always equal to n-1.

If a centralized structure is used, the number of hops is
always equal to 2 (request/response). In the case of the
overlay networks the number of hops varies. In our system,
the minimum number of hops is 4 and occurs if a solution is
found by using exclusively the vertices of the triangle within
which the mobile node launched its query. In Egoist(3), the
minimum number of hops is 2 and happens when the query is
answered by the parent node of the mobile node submitting
the query. Finally, in both overlays the maximum number
of hops that may be required is n+1, where n is the number
of FCN nodes in the network.

5.2 Experimental Results
In our experimentation, we compared our system with the

two systems described above. For the two overlays, we cre-
ated a set of 20 fixed location service nodes distributed uni-
formly inside the designated area. We evaluated the 3 sys-
tems in 3 different scenarios, for 200, 500 and 1, 000 roaming
nodes which are also distributed uniformly. These numbers
signify how crowded the designated area is. We executed
20 simulation runs for each scenario, in which random mo-
bile nodes submit a total of 4, 000 nearest-neighbor queries,
and we computed the average values for all the metrics men-
tioned above. Fig. 3 depicts the outcomes of our experimen-
tation.

Fig. 3(a) and (b) show the average hops per query and
the average execution time per query for the three examined
configurations. The centralized structure is clearly ahead as
only two hops are required for processing a query. In con-
trast our approach and Egoist(3) require more hops. The
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average number of hops per query shows us the FCN node
utilization for answering queries. Of course, in the central-
ized system there is only one service node and so the utiliza-
tion is always 100%. But on our system and Egoist(3) that
is not the case. The average amount of hops in our system is
around 4. This means our system processed the majority of
the queries submitted during the simulation process, by uti-
lizing only three nodes. In other words, almost all queries
in all scenarios were processed while the service node uti-
lization was the minimum. For 500 and 1, 000 mobile nodes,
the behavior of Egoist(3) is similar, but for 200 nodes, the
service node utilization increases significantly. This leads us
to the conclusion that our system behaves better than the
Egoist(3) in less crowded environments.

Fig. 3(c) show the average hit rate that each of the three
implemented systems achieve. The centralized structure
achieves clearly a better hit rate than the two overlays. Our
structure also achieves a high hit rate overcoming easily the
Egoist(3) overlay and approaching the centralized structure,
especially when the environment in which the system works
is crowded. On the other hand the Egoist(3) overlay does
not manage to achieve a high hit rate even though the geo-
graphic proximity between the nodes is strictly ensured.

Finally, Fig. 3(d) depicts the average number of possible
physical connections in each case. In Egoist(3), due to the
fact that each mobile node always chooses to connect with
its closest service node, the number of possible physical con-
nections is the largest possible. Our system follows closely in
terms of possible physical connections, while the centralized
structure is way behind. Due to the nature and the orga-
nization of our approach and, since we do not use a strict
triangulation scheme, it is not always possible for a roaming
node to be connected with its closest FCN node. Yet, our
system is proved to be a good match with the geographic
topology of the participating service and mobile nodes.

In terms of hops, our system approaches the performance
of a centralized system and the number of hops per query
remains constant. We manage to achieve a high hit rate
as our system finds the best possible solution three out of
four times. Moreover, our structure provides a good match
with the underlying topology since the number of physical
connections approaches the highest possible value.

6. CONCLUSION AND FUTURE WORK
We introduced a geography-aware service overlay net-

work for monitoring moving objects and evaluating nearest-
moving neighbor queries. Our paper makes three contribu-
tions as it: a) presents a strategy for managing moving ob-
jects by exploiting the capabilities of a self-organizing and
self-maintained structured overlay network, b) provides a
nearest-neighbor query processing algorithms that, in the
majority of cases, requires constant time to be executed
and c) proves that the organization of the proposed sys-
tem matches to a good degree the underlying geographic
topology by exploiting the exact location of the overlay
nodes. Our approach can support any application that re-
quires monitoring and query processing over moving objects
in wireless metropolitan networks or similar operating envi-
ronments. When used over an existing infrastructure, our
approach does exploit the network capabilities of the under-
lying topology.

We plan to extend our work by pursuing a number of di-
rections: firstly, we will seek ways to improve the accuracy of

our nearest-moving neighbor algorithm and enable efficient
range queries. Secondly, we plan to investigate effective ap-
proaches for providing fault tolerance and rapid recovery.
Finally, we intend on realizing a full-fledged implementation
of our overlay and experiment in larger scale.
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