
c© The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

A Pragmatic Methodology for
Testing Intrusion Prevention Systems

ZHONGQIANG CHEN1 , ALEX DELIS2 AND PETER WEI3

1 Yahoo! Inc., Santa Clara, CA 95054, USA,2 University of Athens, Athens, 15784, Greece,3 Fortinet
Inc., Sunnyvale, CA 94086, USA

Email: zqchen@yahoo-inc.com, ad@di.uoa.gr, shwei@yahoo.com

Intrusion Prevention Systems (IPSs) not only attempt to detect attacks but also block malicious
traffic and pro-actively tear down pertinent network connections. To effectively thwart attacks,
IPSs have to operate both in real-time and inline fashion. This dual mode renders the
design/implementation and more importantly the testing ofIPSs a challenge. In this paper, we
propose an IPS testing framework termedIPS Evaluatorwhich consists of a trace-driven inline
simulator-engine, mechanisms for generating and manipulating test cases, and a comprehensive
series of test procedures. The engine featuresattackerandvictim interfaces which bind to theexternal
and internal ports of an IPS-Under-Testing(IUT). Our engine employs a bi-directional injection
policy to ensure that replayed packets are subject to security inspection by the IUT before they are
forwarded. Furthermore, the send-and-receivemechanism of our engine allows for the correlation
of engine-replayed and IUT-forwarded packets as well as theverification of IUT actions on detected
attacks. Using dynamic addressing and routing techniques,our framework rewrites both source
and destination addresses for every replayed packet on-the-fly. In this way, replayed packets
conform to the specific features of the IUT. We propose algorithms to partition attacker/victim-
emanated packets so that they are subjected to security inspections by the IUT and in addition, we
offer packet manipulation operations to shape replayed traces. We discuss procedures that help
verify the IUT’s detection and prevention accuracy, attackcoverage, and behavior under diverse
traffic patterns. Finally, we evaluate the strengths of our framework by mainly examining the open-
source IPSSnort-Inline. IPS deficiencies revealed during testing help establish the effectiveness of

our approach.

Indexing Terms: Testing of intrusion prevention systems (IPSs), testing methodology, inline
operation, detection and prevention accuracy of IPSs.

Received 20 July 2007; revised 21 May 2008

1. INTRODUCTION

Firewalls, anti-virus systems (AVs), and intrusion detection
systems (IDSs) have become indispensable elements of
the network infrastructure providing protection against
attacks [1, 2, 3]. However, such security devices may
not always be effective against exploits. Firewalls mainly
differentiate traffic on fixed ports and protocol fields and
fail when it comes to attacks on standard services including
HTTP, SMTP, and DNS [4, 5]. Both AVs and firewalls
do not inspect traffic initiated within intranets allowing
compromised internal machines to become spring-boards
for Distributed Denial-of-Service (DDoS)incidents [6, 7,
8, 9]. Although IDSs may perform layer-7 inspection on
traffic originating from both internal and external networks,
they are “passive” in nature and do not prevent attacks
from reaching their destinations [5]. In this context,
Intrusion Prevention Systems(IPSs) attempt to address the
aforementioned weaknesses by working ininline fashion

between internal and external networks. As they examine
every passing packet to prevent malicious attacks inreal-
time, IPSs are consideredactivedevices [10, 3] that function
pro-actively and so they can drop packets containing
attack signatures, selectively disconnect network sessions,
and deny reception of streams from specific sources [3].
These actions ultimately change the traffic characteristics
as additional packets such asICMP destination unreachable
andTCP RESETmessages are finally injected into the traffic
by IPSs [10].

Since IPSs virtually operate as switches/routers, they
often provide packet forwarding, network address transla-
tion (NAT), and proxy services all of which are unavailable
in IDSs [11, 3]. Thestore-and-forwardmechanism of IPSs
and their tight integration with the networking infrastructure
allow for both detection/prevention of evasive attacks and
traffic normalization/scrubbing [12, 13]. As evasive attacks

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

2 Z. CHEN et al.

typically manipulate outgoing traffic so that packets are frag-
mented, overlapped, or shuffled [13], IPSs resort to IP de-
fragmentation andTCP re-assembly to offset such exploits.
IPSs may offer differentiated services based on the traffic
types encountered –such as those generated by instant mes-
saging and peer-to-peer systems– to limit resource consump-
tion and avoid network congestion [10]. IPSs are also con-
sidered superior to IDSs when it comes to identification of
malicious traffic as they can judiciously “interpret” the con-
text in which an attack occurs [10]. For instance, aTCP-
based exploit without the appropriate three-way-handshake
procedure is ineffective even if its packets with malicious
payloads reach their destinations. IPSs are not expected
to forward suchTCP traffic in symmetric routing environ-
ments and therefore do not raise any false alerts. On the
contrary, IDSs generate alarms for such unsuccessful attacks
to avoid packet losses due to their low sniffing rates [14].
IPSs may also feature platform fingerprinting, vulnerability
assessment, traffic correlation, dissection of application pro-
tocols, and abnormal traffic analysis to widen their coverage
on attacks [10, 3].

The dual requirement for IPS real-time and inline
operation in conjunction with their complex services raise
concerns regarding their detection accuracy, successful
blocking rates, and overall performance [10, 15]. For
instance, false positives may induce IPSs to block legitimate
traffic resulting in self-inflictedDoSattacks [14, 16]. Under
extremely heavy traffic andout-of-resourceconditions, the
behavior of IPSs is critical to the viability of the protected
systems. Contrary to thefail-open strategy followed by
firewalls, AVs, and IDSs which all forward traffic without
discrimination in such extreme operating conditions, the
IPS fail-close policy insulates protected networks from
both attackers and legitimate users. In light of the above
IPS requirements and system complexity, it is evident
that testing such devices for their compliance with design
objectives is not only challenging but also of paramount
importance [15, 14]. Methodologies proposed for testing
firewalls, AV systems, and IDSs cannot be directly applied
as IPSs necessitate real-time and inline operation, delivery
of pro-active actions against ongoing traffic, normalization
of traffic flows, switching and routing capabilities, real-
time IP de-fragmentation, andTCP re-assembly [17, 14,
18]. For instance, theuni-directional-feedingmethod used
in IDS testbeds such asTcpreplay to inject packets into
the test environment from a single network interface is
ineffective here as IPSs refuse to forward any packet arriving
at the wrong interface [19, 15]. Similarly, thesend-
without-receivemechanism used by the majority of IDS-
testbeds is not applicable to IPSs as the latter do morph
their traffic [14, 20]. Although the development of IPSs
rapidly progresses to keep pace with the ever-increasing
attack population, work on IPS testing lags behind and
is far from mature [15]. In this context, we propose a
comprehensive methodology to systematically analyze and
establish measurements for anIPS-Under-Testing(IUT)
with respect to its attack coverage, detection and prevention

accuracy, reliability and robustness, and performance under
various types and intensities of traffic and attacks.

Our proposed trace-driven testbed termedIPS Evaluator
establishes an inline working environment in which data
streams frominternalandexternalnetworks are injected into
the IUT from different directions; this constitutes a major
deviation from theuni-directional-feedingstrategy used in
IDS-testbeds [20]. In order to ensure that every replayed
packet is forwarded and subsequently subjected to security
inspection by the IUT, our testbed uses dynamic addressing
and routing techniques to rewrite source and destination
addresses of replayed packets so that they conform to the
test environment. To verify the behavior of an IUT and
its actions imposed on the traffic, our testing framework
also employs asend-and-receivemechanism to capture
packets from the IUT and correlate them to replayed packets.
Furthermore, our testbed integrates its own retransmission
mechanism, traffic re-assembly capability, and logging
facility. We also discuss in detail test case generation, traffic
manipulation, and test procedures.

We demonstrate the effectiveness of our methodology
by mainly applying it to the testing of the open-
source IPSSnort-Inline and versions of the commercial
product FortGate. Our findings show that although
Snort-Inline displays satisfactory attack coverage and
detection/prevention rates, it still generates false positives
and negatives under some conditions and misses attacks
when it is subjected to stress tests. The main contributions
of theIPS Evaluatorare that:
• It offers an inline working environment for IUTs and

injects traffic into IUTs with abi-directional-feeding
mechanism to ensure that packet streams initiated by
attackers and victims flow in different directions.

• It rewrites on-the-fly source and destinationMAC and
IP addresses of replayed packets so that the latter
conform with the test environment. Thus, packets
are forwarded and subjected to appropriate security
inspections by IUTs.

• Its send-and-receivemechanism detects IUT-imposed
actions on underlying traffic including packet dropping
and connection termination. In addition, the indepen-
dent logging mechanism in our engine allows indepen-
dent verification on the consistency between an IUT’s
actual behavior and its record of events.

• Its IP de-fragmentation and network address translation
(NAT) process facilitates the evaluation of IUT’s
resistance to evasion attacks.

• Its integrated traffic partitioning and manipulation
operations help shape the characteristics of the replayed
traffic and automate testing procedures.

The rest of the paper is organized as follows: Section 2
outlines related work and Section 3 discusses our proposed
trace-driven simulation-engine. Section 4 presents algo-
rithms used to partition packets in traces so that the test
procedures can be automated; we also describe our traffic
manipulation operations that help produce test cases with

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 3

desired features. Section 5 discusses our suggested proce-
dure for IPS testing, while Section 6 outlines our experi-
mental evaluation. Concluding remarks and future work are
found in Section 7.

2. RELATED WORK

IPS testing has received limited attention thus far. On
the contrary, a large number of issues pertinent to IDS
testing have been investigated during the last few years [21,
22, 14]. IDS testing typically examines device detection
accuracy, availability and reliability, latency and throughput,
controllability, as well as alert processing and forensic
analysis capabilities [23, 24, 25]. Additional issues in
IDS testing entail automated test case generation [24,
26], test procedures and benchmarking [27, 28, 23], as
well as metrics for IDS effectiveness, coverage, and
performance [29]. The evaluation of such IDS features is
conducted with the help of either simulation or live testbeds.
In simulation-based testbeds, IDSs-under-testing are fed
with either tool-generated test cases or captured traces; in
contrast, live-testbeds directly expose IDSs to real traffic and
attacks [30, 20]. Unfortunately, the existing diversity inIDS
test methodologies makes any attempt for comparing their
effectiveness and test results extremely difficult [17, 18,31].

The nidsbench is an open-source trace-driven IDS test
platform that can simulate certain evasion attacks, protocol
anomalies, and subterfuge activities [20]. Its test cases are
derived from captured traces and are replayed using the
uni-directional-feedingandsend-without-receivepolicies to
the IDS-under-testing. In [22], scripts are used to generate
traffic containing vulnerability exploits so that attacks can
be automatically launched against an IDS-under-testing.
Similarly, in [32], an effort to automate the IDS testing
process is proposed and in whichFTP-based attack-free and
malicious traffic streams are created and used to quantify
attack detection and false positive rates. An off-line
IDS testbed following atraining-then-testingapproach is
presented in [17, 18] requiring a fixed network topology
and not fully validated attacks [33]. A benchmark whose
main objective is to capture the relationship between IDS
performance and the intrinsic regularity in network trafficis
discussed in [34].

A two-stage testing approach for establishing an IDS
baseline behavior is discussed in [30]. In the first phase, the
IDS is tested against simple attacks while during the second
phase, the device is examined under complex and sustained
attacks mixed with various types of synthetic background
traffic. The methodology proposed in [35] follows a similar
two-stage approach but it can use realistic background traffic
derived from live networks. By using 27 common attacks
and their variants created with evasive techniques, the
testbed in [36] reveals that IDSs may detect less than 50%
of malicious activities when the traffic intensity is more than
60% of the network bandwidth. This clearly demonstrates
the necessity of testing IDSs under heavy traffic workloads.
Similarly, evasion techniques are used to manipulate traffic
before injecting into an IDS-under-testing in [13, 37], so that

capabilities on the identification of stealthy attacks can be
measured. The testbed in [14] is mainly designed to evaluate
commercial IDSs for their architectures, ease of installation,
and attack coverage; tests on multiple commercial IDSs
clearly show that detection rates deteriorate dramatically
under heavy traffic workloads or evasive attacks.

All the above approaches and testbeds share in common
the following characteristics: a) uni-directional-feeding
replay method is employed as IDSs are passive devices
that maintain single access points in the network and are
“blind” to the direction of intercepted packets,b) send-
without-receivemechanism is used to handle traffic due
to the fact that IDSs do not intervene and/or change the
underlying traffic, andc) event logs from IDSs are mainly
used to evaluate their behavior. Unfortunately, testing
methodologies based on the above features are infeasible
for IPS evaluation due to a number of reasons: firstly,
packets that have source and destination network addresses
within the same subnet are neither forwarded nor inspected
by IPSs. Secondly, real-time IPS actions on identified
malicious connections may change the characteristics of
ongoing traffic [3]. This calls for testbeds to capture all IPS-
emitted packets so that correlation with replayed packets is
feasible and verification of the correctness of IPS counter-
measures can be established. Lastly, IPS-testbeds should be
able to independently verify the consistency between actions
taken by IPSs and what is actually recorded on their logs.
Discrepancies may reveal problems with IPSs-under-testing.

Recently, a few IDS testbeds have been reworked to help
test IPSs in a meaningful way; for instance,Tcpreplay has
been modified to replay traces bi-directionally by having
both IP and MAC addresses of packets rewritten before
injection into the IUT [19, 20]. Although such extensions
make replayed packets IUT-forwardable, determining the
direction of packet injection is not automated and does
require manual intervention. In addition, extensions still
fail to independently assess the correctness of IPS counter-
actions. The trace-driven IPS testbedTomahawk [15]
statically modifies the content of routing and ARP tables of
the test machine to conform to the environment in which
the trace was captured. Although bi-directional-feeding and
independent logging are in place, the derived test results
entail only simple attack-blocking-rates [15]. We presentthe
main features ofTomahawk andTcpreplay in Appendices A
and B respectively. In [14], an IPS-testbed is introduced in
which IUTs are subject to diverse traffic workloads and are
assessed for reliability, availability, detection and blocking
accuracy, as well as latency; stress-tests show that there
is still a noticeable gap and delay between contemporary
IPS attack coverage and real world attacks [14]. Moreover,
evasion techniques remain effective against some IPSs and
the performance of IPSs under heavy workloads suffers [14].

Penetration or pen tests use tool-generated attack traffic
against targets in an “active” way [38]. A penetration
test typically involves an active analysis phase of the
system under test for potential vulnerabilities that may
result by its mis-configuration, hardware/software flaws, and
operational weaknesses followed by an attack phase [39].

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

4 Z. CHEN et al.

Security vulnerabilities identified during penetration tests
help assess the impact of successful attacks and develop
defense strategies [38]. Tools includingNessus, NMap, and
Metasploit are often used for penetration testing [40, 41, 42].
For instance,Metasploit can launch attacks with various
shellcode payloads, and upon success, payloads are executed
on the targeted systems [42]. Should systems under test
be placed behind an IPS, penetration testing can be used to
verify the effectiveness of the IPS in question. Although
this appears to be a viable proposition, it does suffer from
the drawback that applications under attack have to be also
replicated in the testing environment, clearly, an expensive
and occasionally an infeasible option. Even though attack
tools can be directly used in IPS testbeds, it would be
challenging to manage both intensity and period of the
resulting attack traffic. Lastly, it is unrealistic to expect that
an IPS testbed would feature a complete selection of attack
tools in order to help conduct thorough and nearly complete
tests. In [16], alive IPS-testbed in a production environment
along with measurements for gauging the stability, false
positives, and forensic analysis capabilities of the IUT are
discussed. However, such live-testbeds lack in terms of test
controllability and repeatability especially when it comes to
traffic intensity and network latency. It is nearly impossible
to manipulate attacks in live-testbeds as far as their type,
rate, period and intensity are concerned which is certainly
a weakness. As simulation methods demonstrate excellent
repeatability, controllability and comparability in test-case
generation, evaluation procedure, and performance results,
in this paper, we propose our IPS test framework based
on a trace-driven simulation engine. We should point
out however that trace-driven and live testing systems are
complementary as IPSs should be first thoroughly tested in
simulated testbeds before they move to production settings.

3. THE PROPOSED TESTBED PLATFORM

The IPS requirements for inline operation, switching/routing
functionality, and proactive real-time counter-measureson
traffic necessitate a significant deviation from the design of
conventional IDS-testbeds [20, 15] whose operation is based
onuni-directional-feedingof packets from a singleNIC and
send-without-receivemechanisms [22, 23]. In this section,
we introduce the salient features of our proposed IPS-testbed
termedIPS Evaluator.

3.1. Design Rationale and Architecture for theIPS
Evaluator

To facilitate the inline mode, an IPS has to maintain at least
two network interfaces so that it can splice into a network
path and be able to intercept ongoing data flows as the IPS
testbed model of Figure 1 depicts. For simplicity, we assume
that the IUT has exactly two network interfaces,internal
andexternal; the former connects to the private network(s)
being protected, while the latter connects to the outside
world. Should test-machines 1 and 2 simulate avictim
and anattacker, a valid network path can be established
by attaching the victim and attacker to the internal and

Victim

Network2Network1

Test Machine 2

Attacker

Test Machine1 Network3

 System (IPS)

Intrusion PreventionInternal External

FIGURE 1. Trace-driven IPS testbed model

Network3

Test Machine1

Victim/Attacker

Victim−to−Attacker
 packets

Attacker−to−Victim
 packets

External

 System (IPS)

Intrusion Prevention

Test Machine 2

Network2

Network1

Internal

FIGURE 2. An infeasible IPS testbed model

external interfaces of the IUT respectively. In the resulting
network path, bi-directional traffic may take place with one
data stream traveling from victim to attacker and the second
stream going the opposite direction.

IPS-testbed designs following the IDS-like model of
Figure 2 –where dotted components and/or communication
channels do not really exist but they are provided for
comparison with choices suggested in Figure 1– are
problematic and not a viable testbed option for the following
reason: should the IUT operate as a switch, the IUT
would forward packets according to its MAC-to-interface
table. The latter is initially empty and over time gets
populated by binding the source MAC address of each
received packet with its arrival interface. If attacker-
originated packets are fed into the IUT through its internal
networks, the IUT associates the attackers’ MAC addresses
to its internal interface. Similarly, victims’ MAC addresses
are associated with the IUT’s internal interface as all
victim-to-attacker packets reach the IUT via its internal
interface due to theuni-directional-feedingreplay policy.
The established MAC-to-interface mapping table leads the
IUT of Figure 2 to “believe” that both attackers and victims
reside in the same network segment. Hence, the IUT refuses
to forward subsequent packets and foregoes any further
security inspection. In case that an IPS predominantly
functions as a router, its routing table has to be fully
configured and consequently the IPS is aware of both
internal and external networks. Any time, an attacker-to-
victim packet originates from the internal network, the IUT
is able to identify the incorrect origin with the help of its
routing table and should not forward the packet.

IPS-testbeds should not be “blind” to the direction of
packets. To this effect, packets from traces should be
grouped into two sets, attacker- and victim-initiated packets,

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 5

and be injected into the IUTs from different directions based
on their origin with abi-directional-feedingpolicy. In this
manner, replayed packets can be properly forwarded and be
subjected to security inspection by the IUTs. In addition,
IPS-testbeds are also expected to capture traffic due to:
• pro-active behavior of IPSs: streams containing traits

of attacks may be dropped, malicious connections may
be discontinued and possibly additional messages may
be introduced such asICMP destination unreachableor
TCP RESET.

• traffic normalization: IUTs may remove protocol
anomalies generated by evasion attacks or perform
IP de-fragmentation before forwarding, rendering the
outgoing traffic different from that injected.

• network address translation (NAT): IPSs modify source
IP addresses and ports of packets coming off the
internal network before forwarding; similarly, IPSs
re-map destination IP addresses and ports of packets
arriving at its external port.

• discrepancies between IPS actions and its logged
events: IPS testbeds have to record the IUTs’ actions
that are not actually delivered as claimed in their event
logs to help resolve inconsistency analyses.

For these reasons, IPS-testbeds cannot possibly employ a
send-without-receivepacket replay method used by most
IDS testbeds.

We could establish a viable IPS-testbed by using different
test machines to simulate both attacker and victim following
the blueprint of Figure 1. With the help of partition
techniques that we discuss in Section 4, packets in a trace
can be grouped intoPattacker andPvictim sets based on their
origin; those inPattacker reach the IUT’s external port via
Network2 and may be forwarded toNetwork1 while those in
Pvictim travel in the opposite direction. The effectiveness
of the IUT is evaluated by having the IPS-testbed check
whether the replayed packets are equivalent to those
reaching their destination. To honor the temporal featuresof
the original traffic, the two test machines should coordinate
their actions. This entails maintenance of transmission
order and time gaps between packets as well as establishing
that the IUT correctly forwards replayed packets, properly
normalizes traffic, and finally imposes the specified counter-
measures on identified malicious connections. Additional
communications between the test machines of Figure 1 are
required to carry out the above coordination. The separate
communication linkNetwork3 of Figure 1 helps diminish
interference between replayed traffic and control messages.
Nevertheless, such a dedicated link substantially increases
both the testbed complexity and cost as additionalNICs
are required for each test machine. Furthermore, required
communications among test machines may adversely affect
the testbed scalability especially when it comes to the stress
tests as extra communications slow down traffic injection
speeds and demand more test machines to saturate the IUT’s
bandwidth.

Figure 3 depicts our choice for the design of theIPS
Evaluator-testbed. It avoids the extra link (i.e.,Network3)
and resorts to fast inter-process communications (IPCs) to

192.168.10.1

System (IPS)
Prevention
Intrusion external

interface

192.168.5.1

(MAC for 192.168.5.100 is
MAC−1)

ARP reply(MAC for
192.168.5.100)

ARP request

Packet 1
(src IP: 192.168.10.100,
dst IP: 192.168.5.100)

attacker
interface

(with MAC−2)(with MAC−1)

interface
victim

interface
internal

NIC2NIC1

Test Machine

FIGURE 3. Trace-driven IPS testbed model with co-
located attacker and victim

Receiver

Sender

external
interface

System (IPS)
Prevention
Intrusioninternal

interface

192.168.5.1 192.168.10.1

NAT handlerARP handler

defrag/normalizer

Simulation Scheduler

trace files

Traffic Partitioner

pkt manipulator

Behavior Arbitrator Test Machine

interface
attacker
interface

NIC2NIC1

victim

FIGURE 4. Components of the proposedIPS Evaluator

simulate the communications between victim and attacker
test machines. This proposed design is feasible provided that
the single test machine features two differentNIC interfaces
controlled respectively by the now-co-located attacker(s)
and victim(s).

3.2. A Trace-Driven Simulation-Engine for IPS Testing

The high-levelIPS Evaluatormodel of Figure 3 consists of a
number of distinct modules including aTraffic Partitioner, a
Simulation Scheduler, aSender, aReceiver, and aBehavior
Arbitrator. These modules are shown in Figure 4. In
order to feed a specified traffic trace into the IUT, the
Traffic Partitionerfirst separates packets of the trace into two
groups,Pattacker andPvictim. The former contains packets
initiated by attackers while the latter holds packets from
victims. Subsequently, theSimulation Schedulerconstructs
a replay plan based on the characteristics of the trace
and specifications from tester. With the help ofSender,
packets in groupsPattacker and Pvictim are fed into the
IUT’s external and internal interfaces respectively; IUT-
forwarded packets are captured and stored by the module
Receiver. The Behavior Arbitratormodule observes and
records the behavior of the IUTs and finally delivers the
evaluation report. In addition, theBehavior Arbitratorcan
also discover any discrepancies between the IUT event-
log and the actions taken by the IPS on the underlying

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

6 Z. CHEN et al.

traffic. These differences often emanate from IPS design
and/or implementation defects, occasional malfunctions as
well as out-of-resource and/or heavy workload conditions.
For instance, the IUT may state in its log that an attack has
been blocked, but in fact the traffic containing the attack is
still forwarded by the IUT and reaches its victim. Evidently,
incorrect conclusions may be drawn if the IUT’s own log
records are exclusively used in the evaluation of its behavior.

Should the IUT detect a malicious incoming packet, it
may drop it and log the event; a packet may be also
dropped in light of network malfunctions and/or congestion.
IPS Evaluatormay retransmit lost packets a configurable
number of times using a timer to trigger the retransmission
mechanism. A packet is considered to be dropped by
the IUT and not due to network congestion if it fails all
retransmission attempts. The use of the retransmission
mechanism in the testbed may cause the observation of the
same attack by the IUT multiple times. The IUT may
react differently to exploits delivered with various types
of transportation mechanism. InTCP-based attacks, for
example, a malicious packet and its likely retransmitted
instances share the sameTCP sequence numbers; thus, the
IUTs should be able to recognize all such packets as part
of a single attack instead of several independent exploits.
For UDP and ICMP-based attacks, however, IUTs cannot
distinguish an attack and its retransmissions. Consequently,
the IUT treats the attack and its retransmissions as isolated
incidents. To enhance the flexibility of our testbed,
we provide a user-configurable number of retransmissions
maxretrans for TCP, UDP, andICMP transmissions.

By default,IPS Evaluatorrespects the temporal character-
istics of the trace including packet orders and their time gaps
by adjusting its replay pace according to the timestamps of
packets in the trace. However, our testbed can also be con-
figured to replay a trace with an arbitrary rate (in packets or
bits per second) instead of the original pace. Such a flex-
ibility in replay speed is valuable when it comes to stress-
testing. Clearly, measurements including throughput, aver-
age network latency and maximum number of concurrent
connections reveal the IPSs capabilities under diverse and
stress-related workloads. Although background traffic can
be generated through the execution of attack-free applica-
tions in the testbed, it is very much desired in an IPS-testbed
to have greater freedom when it comes to the traffic com-
position as far as the transport protocols used (TCP, UDP,
and/orICMP) and the intensity of generated traffic streams
are concerned. OurIPS Evaluatorcan create such workloads
in a controlled manner by injecting both attack orforeground
and attack-free orbackgroundtraffic into the IUT through
the mixing of multiple streams each replayed at different
speed and varying ratio with the help of the testbed shown in
Figure 5; here, foreground and background traces, captured
separately and stored in different files, are replayed by using
multiple test machines.

Algorithm 1 depicts the main operations of ourIPS
Evaluator and helps derive test results by replaying a
given traffic trace to an IUT in a bi-directional fashion.
Based on the replay plan created bySimulation Scheduler,

System(IPS)

Intrusion
Prevantion

Switch1 Switch2

Test Machine1 Test Machine2

Interface
Internal

Interface
External

FIGURE 5. IPS Evaluatorwith multiple fore-
ground/background traffic generators

dst: IP 2: port 2

src: IP 1: port 1

payload

payload

src: IP 2: port 2

dst: IP 1: port 1

payload

src: IP 3: port 3

dst: IP 1: port 1

src: IP 1: port 1

payload

dst: IP 3: port 3

mappedorigin
IP 2: port 2 IP 3: port 3

System (IPS)

Intrusion Prevention

Test Machine

Internal
Interface Interface

External

NIC2NIC1 attackervictim

FIGURE 6. An IUT with the functionality of Network Addressing
Translation (NAT)

the Senderdispatches a set of packets using theattacker
interface if the packet under processing is inPattacker or
victim port if the packet belongs toPvictim. Similarly,
the componentReceiverwaits for packets forwarded by
the IUT on either theattacker or victim interface. Our
testbed conserves on communication costs by havingSender
andReceiverexchange information for synchronization and
coordination only via moduleSimulation Scheduler. During
the replay process, theIPS Evaluatormay rewrite certain
protocol fields such as MAC and IP addresses on-the-fly
in order to ensure conformance of the replayed packets
with the IUT settings and the network configuration of the
test environment; this rewriting is performed by function
AddressMap(P)that we discuss in detail in Section 3.3.
The IPS Evaluatormay also create event records when it
detects the IUT’s pro-active countermeasures that terminate
ongoing sessions by dynamically generatingTCP RESETor
ICMP destination unreachablemessages to either or both
ends of the connection. Furthermore, to ensure that a
received packet is indeed identical to what is replayed, the
IPS Evaluatorcan be configured to compare not only packet
header but also packet payload of IUT-forwarded messages
against transmitted packets. To reduce computational
overhead, it is typical to verify packet integrity by checking
packet headers only when it comes to background traffic.
We discuss the procedure for determining packet integrity in
Section 3.4.

Throughout this paper, we use a trace of theNimda attack
whose packets appear in Table 1 as a running example.
This attack exploits security holes in products such as

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 7

Algorithm 1 Operation ofIPS Evaluator
1: traffic trace is partitioned intoPattacker andPvictim by moduleTraffic Partitionerwith Algorithms 5 and 6, which will be described in Section 4;
2: a replay plan is generated by the moduleSimulation Scheduleraccording to test specifications;
3: while (more unprocessed packetP in the replay plan)do
4: port← attackerif P is in Pattacker(P); port← victim otherwise;
5: P is processed with functionAddressMap(P) (see discussion in Section 3.3);P is sent out throughport by componentSenderat mostmaxretrans times;
6: while (there is packetP ′ received by moduleReceiver) do
7: invoke functionPacketIntegrity(P,P ′), which will be described in Section 3.4, a test record is created if P ′ is not identical to any transmitted message so far by comparing

packet header and/or payload;
8: generate test record ifP ′ is TCP RESETOR ICMP unreachable packet that is not in the original trace;
9: end while

10: end while

11: test results are generated by the moduleBehavior Arbitratorbased on the records generated by the IPS-testbed

dir timestamp TCP hdr/pld payload description
protocol: TCP; IP/port for attacker (A): 10.80.8.183/32872; IP/port for victim (V): 10.80.8.221/80

1 A→V 0.000000 40/0 (SYN) request
2 V→A 0.000223 40/0 (SYN|ACK) reply
3 A→V 0.000631 32/0 (ACK) confirm
4 A→V 5.514226 32/64 GET /scripts/..%255c../winnt/system32/cmd.exe? /c+dirHTTP/1.1 attack
5 V→A 5.514313 32/0 (ACK) acknowledge
6 A→V 6.137619 32/2 |0D 0A| attack
7 V→A 6.137692 32/0 (ACK) ack
8 V→A 6.138571 32/191 HTTP/1.1 200 OK|0D 0A|Server: Microsoft-IIS /5.0|0D 0A|Date: Fri, 11 ... reply
9 A→V 6.138814 32/0 (ACK) acknowledge
10 V→A 6.156986 32/36 Directory of c:/inetpub/scripts|OD 0A 0D 0A| directory
11 A→V 6.174736 32/0 (ACK) acknowledge
12 V→A 6.199095 32/40 10/10/2002 02:24p<DIR>. content of dir

TABLE 1. Packets in theNimda attack trace file

Internet Information Service (MS-IIS). Once a machine
is infected,Nimda attempts to replicate itself by probing
other IIS servers through multiple mechanisms including
the Extended Unicode Directory Traversal Vulnerability
discussed in Section 6.1. Here, the attacker is located at
host with IP address 10.80.8.183 andTCPport 32872, while
the victim is a Web server withIP address 10.80.8.221
and TCP port 80. The first 3 packets carry out the
initial TCP three-way-handshake procedure between the
attacker and victim. Packet 4, originating from the attacker
and with TCP payload of 64 bytes (see Column “TCP
hdr/pld”), is anHTTPrequest attempting to activate program
“cmd.exe” on victim’s system. When this packet reaches
the victim Web server, the file name in the request –
substring preceding “?”– is first decoded byIIS based on
UTF-8 format for security inspection. However, a flaw
in IIS mistakenly decodes the filename part again when
the parameter part is handled [43], forcing the execution
of /winnt/system32/cmd.exewith parameter/c dir offering
a backdoor to attackers with full control of the victim
machine.

IPSs typically detectNimda by searching for the telltale
pattern“cmd.exe” in traffic. By configuring an IUT to block
theNimda attack and with the help of Algorithm 1, ourIPS
Evaluatorcan capture the IUT’s behavior. When processing
the trace of Table 1, Algorithm 1 forms two packet groups:
Pattacker = (1, 3, 4, ...) andPvictim = (2, 5, 7, ...). The
Simulation Scheduler’s replay scheme preserves both order
and inter-arrival times of the trace packets. For example, the
IPS Evaluatorrespects the long time-gap between packets 3
and 4. The IUT is deemed effective if packet 4 –that contains
the pattern in question– isSender-transmittedmaxretrans

times and still fails to reach theReceivermodule.

3.3. Addressing and Routing Issues in the Proposed
IPS-Testbed

An IPS may function in eithertransparent(i.e., as a switch)
or routing mode (i.e., as a router). When intransparent
mode, the IPS establishes a map between the source MAC-
address of every incoming packet and its arrival interface,
and forwards the packet based on its destination MAC-
address with the help of the established map. If no pertinent
entry is found in the map, the IPS floods the packet to all
its interfaces except the one at which the arrival occurred.If
the source and destination MAC addresses of an incoming
packet associate with the same interface, the IPS declines to
forward the message and carries out no security inspection.
An IPS in routing mode maintains a routing table based on
protocols such as RIP and ARP that helps map IP to MAC
addresses, and refuses packet forwarding if no route entry is
found.

For a packet to be forwarded correctly by the IUT in an
IPS-testbed, its source/destination IP and MAC addresses
should conform those of the test environment. For instance,
when in routing mode, the IUT internal and external
interfaces should belong to different subnets. Without the
help of other routers, the IPS can only handle one-hop
routing, requiring that the source and destination subnetsof
any incoming packet be the same as its arrival and departure
interfaces on the IPS, respectively. Apparently, the traffic
of Table 1 cannot be forwarded by the IUT in routing mode
if the test environment is configured according to Figure 3;
here, the IUT internal and external interfaces belong to
subnets 192.168.5.0 and 192.168.10.0 respectively, but both
victim and attacker of the trace reside on subnet 10.80.8.0
if netmask 255.255.255.0 is used. Hence, it is necessary to

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

8 Z. CHEN et al.

rewrite MAC and IP addresses of every packet before the
packet is injected into the IUT:

(i) Should a static method be used, MAC and IP addresses
are changed directly in traces, rendering the resulting
traces useless in other testbeds with different network
topologies and configurations. Such a static method
is also time-consuming as separate traces should be
generated for different test modes (switching or rout-
ing) and different network topologies. Consequently in
addition to support static methods, ourIPS Evaluator
can also be configured to employ dynamic addressing
and routing methods.

(ii) In a dynamic addressing scheme, theIPS Evalua-
tor maintains two non-overlapped IP address pools,
Aattacker and Avictim, to store IP addresses exclu-
sively used by the packet groupsPattacker andPvictim;
addresses in these two pools feature the same subnets
to the IUT external and internal interfaces respectively.
Two mapping tables,Mattacker andMvictim, store the
associations between source IP addresses inPattacker

andAattacker , and source IP addresses inPvictim and
Avictim respectively. Any time, the moduleSender
replays a packetP , it first examinesP ’s source IP
addressPsip. If P belongs toPattacker , the Sender
queries tableMattacker regardingPsip. If no such entry
exists, theSenderacquires an IP address, denoted as
A, from Aattacker and inserts the tuple<Psip, A>
into Mattacker. Otherwise, our testbed locates an entry
for Psip in Mattacker, denoted as<Psip, A>. Subse-
quently, theSenderreplacesP ’s source IP withA. The
Senderapplies the same operation to the destination IP
address ofP by usingMvictim andAvictim instead.

In switchingmode, the IUT forwards packets based on
their destination MAC addresses. To ensure that a replayed
packetP is correctly forwarded, our testbed replaces the
source and destination MAC addresses ofP with those of
its attacker and victim interfaces, respectively, ifP is in the
Pattacker group; similar replacement is imposed on packets
in Pvictim as well. In routing mode, the IUT forwards
packets according to their destination IP addresses with
the help of its routing and ARP tables. As IP addresses
of replayed packets are fromAattacker or Avictim and
no physical device assumes such IP addresses in the test
environment, it is obvious that no corresponding entries exist
in the IUT’s routing and ARP tables. Therefore, the IUT
sends out an ARP request for each IP address that has no
entry in its ARP table. In a clear deviation from static
handling, the componentARP Handlerof our IPS Evaluator
creates replies to IUT-issued ARP requests for IP addresses
in Aattacker or Avictim. To this effect, the IUT establishes
its ARP table dynamically.

Network Address Translation (NAT) may prove to be
critical in the operation of IPSs as it allows for the mapping
between unregistered/private and registered/routable IP
addresses either statically or dynamically [11, 44]. Multiple
unregistered IP addresses can be mapped to different
routable addresses or a single registered IP address but with

different ports as shown in Figure 6. Here, the source
IP and port<IP2:port2> of a victim-originating packet is
rewritten by the IPS as<IP3:port3> before forwarding to
the outside world. Similarly, the destination IP and port
of its reply packet arriving externally is mapped back from
<IP3:port3> to <IP2:port2> with the help of mapping
table built inside the IPS. To handle NAT, theIPS Evaluator
uses a tableMnat to establish the mappings between the
<IP,port> pair assigned to a packet by the IUT and its
corresponding pair assigned by our engine.

FunctionAddressMap(P)of Algorithm 2 outlines the key
points in rewriting the source/destination addresses of a
packetP before this packet is transmitted.AddressMap(P)
is invoked by theSenderin Algorithm 1.

3.4. Handling IP Fragmentation in IPS Evaluator

To normalize traffic and provide stateful inspection service,
IPSs may de-fragment received IP packets before such
fragments are forwarded. This occurs when the size of an
IP packet is larger than themaximum segment size(MSS)
supported by the underlying link, for instance,MSSis 1,518
bytes on an Ethernet network. Nowadays, IP fragmentation
is routinely used by evasion attacks and exploits crafted by
tools such asfragroute [13, 20]. In addition, the generated
IP fragments can be shuffled, overlapped, and/or duplicated
before transmission. To overcome such evasion exploits,
many IPSs temporarily stage all IP fragments with the same
IP identifier (i.e.,IP-ID) before forwarding; once no attack
or protocol anomaly is detected in staged fragments, the
stored IP frames can be forwarded. In actually carrying out
the forwarding, an IPS may just assemble the IP fragments
together and re-fragment them following its own scheme
should aggregate frames be larger in size thanMSS. For
instance, in Figure 7, two IP fragments with the same
IP-ID arrive at the external port of the IUT, but only their
aggregation (i.e., a single complete IP frame) is forwarded
to the IUT internal port. In this context, the functionalityof
de-fragmentation in IPSs may change the characteristics of
injected traffic in terms of packet numbers, sizes, and arrival
times. Furthermore, IP fragmentation also makes it difficult
to verify the integrity of injected packet in order to determine
whether a received fragment is what has been actually sent
out by the testbed as the IUT may re-fragment the IP packet
anew on its own.

A key concern for packet integrity checking is to correctly
demark the first and last fragments of every IP frame in a
traffic trace. For this, ourIPS Evaluatorclusters replayed
IP fragments according to their protocol fieldIP-ID in IP
headers. Once a packet is replayed by theSender, it is
stored and re-assembled with replayed fragments having the
sameIP-ID with the assistance of theDefrag/Normalizer
component. OurIPS Evaluatoruses a hash table and an
interval-tree [45] to organize all IP fragments as depicted
in Figure 8. Similarly, when a packetP is received by
the moduleReceiver, its IP fragment bit in IP header is
checked to determine whether it is fragmented; if not, it is
safe for theIPS Evaluatorto perform integrity inspection

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 9

Algorithm 2 Operation ofAddressMap(P)within our IPS Evaluator
1: Psip andPdip are the source/destination IP addresses ofP ;

Mattacher , initially empty, maintains associations between addresses inAattacker and source addresses ofPattacker ;
Mvictim , initially empty, maintains associations between addresses inAvictim and source addresses ofPvictim ;

2: IPattacker ← Psip andIPvictim ← Pdip if P belongs toPattacker ; otherwise,IPattacker ← Pdip andIPvictim ← Psip;
3: A← (search result inMattacher with keyIPattacker); V ← (search result inMvictim with keyIPvictim);
4: if (A is empty)then
5: A← (next available IP address in poolAattacker); entry (IPattacker , A) is inserted intoMattacker ;
6: end if
7: if (V is empty)then
8: V ← (next available IP address in poolAvictim); entry (IPvictim , V) is inserted intoMvictim ;
9: end if

10: IPattacker andIPvictim of P are replaced withA andV respectively;Pdp is the destination port ofP ;
11: if (P belongs to groupPattacker) AND (pair “V , Pdp” is in Mnat) then
12: let pair “V ′, P ′

dp” be the pair associated with “V , Pdp” in Mnat; replaceV andPdp with V ′ andP ′

dp, respectively;

13: end if

Intrusion

Prevention

System (IPS)

NIC1
victim

NIC2 attacker

Internal External
InterfaceInterface

Test Machine

IP−ID IP−ID
offset = n
payload

offset = 0
payload

IP−ID
offset = 0
payload

FIGURE 7. An IUT with the functionality of ID de-fragmentation

(Splay Tree)
Connections Manager Stream Manager

(Hash Tables)
IP Fragment Manager
(Interval Trees)

IP−ID

3F17

3F17

IP Offset:

[0, 74]

IP Offset:

[75, 95]

IP Offset:

[0, 95]

Sender

Receiver

Sender

Receiver

SIP: 10.80.8.183

DIP −> SIP

SIP −> DIP

PROTO: TCP
DP:80

DIP:10.80.8.22
SP:32872

IP−ID

FIGURE 8. IP fragments organized with hash, binary
tree, and interval tree

at packet level. If the receivedP is indeed a fragment, it
is stored and re-assembled with other received fragments
having the sameIP-ID. The packet integrity inspection is
conducted on the aggregated IP frame instead of individual
IP fragments.

Overlapping fragments make the IP de-fragmentation
process complicated. Two or more IP fragments are
considered overlapping if some of their IP payloads share the
same IP fragment offsets. Ambiguity occurs if overlapped
fragments bear different contents in their overlapping parts.
A number of IPSs use the most recently received fragments
or favor-newin the final aggregation while others use the
earliest arrival packets orfavor-oldpolicy. Our framework
can be configured to perform eitherfavor-newor favor-
old IP de-fragmentation. Algorithm 3 outlines the key
functionalities ofPacketIntegrity(P,P ′) which verifies the
identity of packetsP andP ′ with respect to their protocol
headers and/or contents.

By applying IP fragmentation to the traffic of Table 1 with
the commandip frag 75discussed in Section 4.3, we obtain
an entirely different packet stream shown in Table 2; here,
every original packet with IP payload larger than 75 bytes
has been fragmented into IP frames with smaller payloads.
For instance, packet 4 of Table 1 is split into two pieces: the
first with IP payload 75 bytes and total frame size 109 bytes
(including 14-byte Ethernet header and 20-byte IP header) ,
while the second with IP payload 21 bytes. Packets 4 and 5
of Table 2 reflect the outcome of the IP fragmentation. When
this traffic is replayed by ourIPS Evaluator, theSimulation
Schedulerinstructs theDefrag/Normalizerto conduct the
integrity check only after both packets 4 and 5 of Table 2
have been replayed bySenderand received byReceiver.
Right after packet 5 is received, the data structure maintained
by IPS Evaluatorwith the help of Algorithm 3 has the status
shown in Figure 8. We should clarify that the TCP payload
of packet 4 of Table 1 after its IP fragmentation is divided
into two packets; the first carries the substring uptocmd.e
and the second the remaining command. This attack is
expected to be missed by IPSs that cannot conduct IP de-
fragmentation but simply scan for the patterncmd.exein
every IP packet.

4. TEST-CASE GENERATION AND
MANIPULATION OF TRACES FOR
IPS-TESTING

Traces that can be used in IPS-testing such as those available
from theMIT’s Lincoln Laboratory, are heavily influenced
by network topologies, host-addresses, subnet masks, and
aggregation of streams from different time periods [17]. The
volume of the traces is also significant requiring in excess
of a few hundred MBytes for just one hour traffic. Our
own analysis of these data sets pointed out that networks in
many traces essentially form a mesh topology. Hence, there
is not a single location to deploy an IPS-under-testing that
could observe all communications. Such mesh topologies
that emerge from traces complicate issues pertinent to the
bi-directional replaynature of IPS-testbeds. In addition,
the ever increasing number of reported vulnerabilities –
15,107 upto 2005 according toCommon Vulnerabilities
and Exposures (CVE) [46]– in conjunction with specific
combinations of OSs, services, and applications needed

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

10 Z. CHEN et al.

Algorithm 3 ProcedurePacketIntegrity(P,P ′) invoked byDefrag/Normalizer
1: P is a packet replayed bySenderandP ′ is a packet received byReceiver;

Mnat, initially empty, maintains associations between pairs IP/port assigned by IPS/NAT and our testbed;
Psip/Psp andPdip/Pdp are source and destination IP/port ofP ;
P ′

sip/P ′

sp andP ′

dip/P ′

dp are source and destination IP/port ofP ′;
2: if (P belongs to groupPvictim) AND (tuple formed by pairs “Psip, Psp” and “P ′

sip, P ′

sp” is in Mnat) then
3: replaceP ′

sip andP ′

sp of P ′ with Psip andPsp;
4: else if(P belongs to groupPattacker) AND (tuple formed by pairs “Pdip, Pdp” and “P ′

dip, P ′

dp” is in Mnat) then
5: replaceP ′

dip andP ′

dp of P ′ with Pdip andPdp;
6: end if
7: S is P ’s session returned byConnection Managerof Figure 8 with tuple<Psip, Psp, Pdip, Pdp, Pprotocol>;
8: if (P or P ′ is fragmented packet)then
9: obtain the stream corresponding to “Psip −→ Pdip” with the help ofStream Managerof Figure 8; insertP andP ′ into interval trees associated with their IP-ID byIP

Fragment Managerof Figure 8;
10: returnUNDECIDEDif P is not the last fragment in IP fragments with the sameIP-ID of the given trace;
11: Q← (de-fragmented IP frame formed by all fragments with the same IP-ID asP); Q′← (de-fragmented IP frame formed by all fragments with the same IP-ID asP ′);
12: else
13: Q← P ; Q′← P ′;
14: end if

15: returnDIFFERENTif any specified protocol fields or contents assume differentvalues inQ andQ′; otherwise, returnIDENTICAL;

dir IP-ID TCP hdr/ply payload description
protocol: TCP; IP/port for attacker (A): 10.80.8.183/32872; IP/port for victim (V): 10.80.8.221/80

1 A→V 3F15 40/0 (SYN) attacker request
2 V→A 0000 40/0 (SYN|ACK) victim ack
3 A→V 3F16 32/0 (ACK) attacker confirm
4 A→V 3F17 32/43 GET /scripts/..%252f../winnt/system32/cmd.e first part of attack in URL
5 A→V 3F17 0/21 xe?/c+dir HTTP/1.1 second half of attack in URL
6 V→A 0D65 32/0 (ACK) victim
7 A→V 3F18 32/2 |0D 0A| attacker
8 V→A 0D66 32/0 (ACK) victim
9 V→A 0D67 32/43 HTTP/1.1 200 OK|0D 0A|Server: ... first IP fragment
10 V→A 0D67 0/75 Date: Fri, 11 Oct 2002 19:37:45 GMT ... second IP fragment
11 V→A 0D67 0/41 ...Volume Serial Number is E802-9963 ... third IP fragment
12 A→V 3F19 32/0 (ACK) ack
13 V→A 0D68 32/36 Directory of c:/inetpub/scripts|0D 0A 0D 0A| returned directory
14 A→V 3F1A 32/0 (ACK) ack
15 V→A 0D69 32/40 10/10/2002 02:24p<DIR>. content of directory

TABLE 2. IP fragmented traffic forNimda trace (Table 1)

for exploits to occur make it impractical to generate all
attack traces in a single network environment or testbed.
It is simply too time-consuming to reconstruct every attack
scenario in order to capture the resulting traffic. In addition,
expecting that all attack tools are available for IPS-testing
is not feasible. Lastly, attack tools hardly provide the
flexibility for manipulating the intensity and mixture of
needed traffic streams required for effective IPS testing.
Thus, it is typical for a testbed to obtain traffic traces
captured and/or generated in diverse network topologies
and configurations. Regardless of the origin and type of a
trace, it is imperative that theIPS Evaluatorcan effectively
distinguish traffic coming off attackers and victims. To
achieve this objective, our simulation-engine automatically
partitions packets in a traffic trace into two parts based
on their origin –Pattacker and Pvictim– and dynamically
rewrites MAC and IP addresses as needed when a trace
is replayed. It is also critical that our simulation-engine
provides traffic manipulation operations to shape replayed
traffic so that the resulting data stream possesses desired
characteristics. The above two issues are handled by the
Traffic Partitioner and Packet Manipulatorcomponents of
Figure 4 and are described in detail in the following sections.

4.1. Partitioning Traffic Traces without Constraints
for IPS-Testing

As every packetP in a trace maintains a source and a
destination IP address denoted asPsip andPdip, the trace
can be treated as a graphG(V, E), shouldPsip and Pdip

represent vertices inG(V, E). The edge fromPsip to Pdip

reflects the flow of packets in this direction; the edge’s
weightw can be the number of packets traveling along this
route. In bi–directional traffic, the graph maintains the path
from Pdip to Psip as well. If a trace exclusively consists
of attacker/victim traffic such as that ofNimda in Table 1,
its corresponding graphG(V, E) should be bipartite and its
vertices could be covered with two colors. If we use a
Depth-First-Search (DFS) method to color the bipartite [45],
the algorithmic complexity isO(|V | + |E|), where |V |
and |E| are the numbers of vertices and edges inG. If
G turns out to be non-bipartite, then some packets are
exchanged among attackers (or victims) only and clearly are
not IUT-forwardable. To reduce the number of such un-
forwardable packets so that the IUT is forced to perform
security inspections on as many packets as possible, we
try to bipartiteG by removing a minimum number of its
edges. In particular, for an undirected graphG(V, E) with
weight functionw: E→N , whereN is a set of natural
numbers, a two-color assignmentc of G is defined asc:
V →(red,black). Given that an edge is “monochromatic”

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 11

if its two end points have the same color, we seek a color
assignmentc with the minimum weight of monochromatic
edges

∑
(v1,v2)∈E:c(v1)=c(v2)

w(v1, v2). The problem at
hand is a special case of theminimum edge deletionK-
partition problem withK=2 and is known to be not only
NP-complete, but also very difficult to find a polynomial
time approximation scheme with approximation accuracy
guarantee [47, 48].

The straight-forward method to tackle the problem at hand
is to enumerate all possible bi-partitions of vertices in the
given graph, compute the number of monochromatic edges
for each partition, and find the partitions with minimum
number of monochromatic edges. Algorithm 4 depicts such
a brute-force method. Suppose that the number of vertices in
the specified graphG(V, E) is |V | = n and the vertices are
grouped intoGred andGblack with sizes of|Gred| = nr and
|Gblack| = nb, respectively. Clearly, the number of vertices
nr in groupGred can be 1, 2, ..., (n - 1), and for a particular
nr (1 ≤ nr < n), the number of all possible combinations
of nr from n is Cn

nr
. It can be derived that the total number

of partitions is
∑(n−1)

nr=1 (Cn
nr

) =
∑n

nr=0(C
n
nr

) - 2 = 2n - 2.
Therefore, the computational complexity of Algorithm 4 is
O(2n).

As the G(V, E) corresponding to theNimda attack of
Table 1 has only two vertices, it is trivial to obtain its
two partitions with Algorithm 4, (red: 10.80.8.183, black:
10.80.8.221) or (red: 10.80.8.221, black: 10.80.8.183).
Table 3 shows a partial trace of traffic with more complicated
network topology being generated by theCyberkit attack
tool, which integrates network services includingping,
traceroute, finger, and whois and helps in conducting
network reconnaissance [49]. For instance, by probing
a network withCyberkit-createdICMP ECHO REQUEST
messages, an attacker can “fingerprint” whether the targeted
system or network are mis-configured and/or expose
vulnerabilities [46]. IPSs may identify theICMP ECHO
REQUESTmessages in question by detecting a long string
of characters|AA | in the payload of such messages. The
latter is feasible for example through the use ofSnort-Inline
signaturesid-483which exploits such a telltale pattern. For
each pair ofPsip and Pdip, Table 3 shows the number
of packets traveling and indicates whether an attack is
contained. Figure 9 depicts the undirected graph constructed
from the table in question; every node corresponds to an IP
address and the weight over the edge is the total number
of packets exchanged between the two end-nodes regardless
of their directions. In this regard, the weight of the edge
between 67.115.180.150 and 67.117.243.205 is 18 (i.e.,
10+8). The existence of cycles with odd number of edges
renders the graph of Figure 9 non-bipartite. One such cycle
is formed by nodes 67.117.243.205, 67.115.180.150, and
67.117.243.204.

By applying Algorithm 4 to the graph of Figure 9, we can
obtain that, among all possible bi-partitioning schemes of
the graph, four partitions achieve the minimum weighted
sum of monochromatic edges (i.e., 6 packets); two of them
are (red: 67.117.243.201, 67.117.243.205, 67.117.44.225;

[ht]

4

2

4 2

18

2 7

2

15

2

3
67.117.243.207 67.117.243.201 67.116.219.220

67.117.14.14667.117.243.20567.115.180.150

67.117.243.204 67.119.190.203 67.117.44.225

FIGURE 9. Cyberkit trace graph-representation

67.116.219.220

3

4 18

15

4

2

72

67.119.190.203

67.117.14.146

67.115.180.150

67.117.243.207

67.117.243.204

black setred set

67.117.44.225

67.117.243.205

67.117.243.201

FIGURE 10. Bipartite of Figure 9 with minimum
monochromatic edges

black: 67.117.243.207, 67.116.219.220, 67.115.180.150,
67.119.190.203, 67.117.243.204, 67.117.14.146) shown
in Figure 10 and (red: 67.117.243.201, 67.117.243.205;
black: 67.117.243.207, 67.116.219.220, 67.115.180.150,
67.119.190.203, 67.117.44.225, 67.117.243.204,
67.117.14.146); two more partitions can be material-
ized by exchanging the roles of colors. Due to the fact that
minimizing the weighted sum of monochromatic edges is
equivalent to maximizing the weighted sum of bichromatic
edges, we derive the maximum weight of bichromatic edges
to be 55 (in packets) in the above optimal conditions.

Although Algorithm 4 is only viable for small graphs, we
use it as a baseline for comparison with the approximate
algorithm that we introduce later to limit the number of
monochromatic edges. Our heuristic algorithm works as
follows: once we ensure that a graph is non-bipartite, we
sort vertices ofG by decreasing order of their degrees (i.e.,
number of edges incident to a vertex) and place them into a
queueQ. Initially, all vertices ofG are set toUNCOLORED;
ultimately, they are to be marked asRED or BLACK. For
each vertexu in Q, we assign it an unused color if such
a color is available. Otherwise, its neighbors –vertices
with edges tou– are examined and two weighted sumssr

andsb are computed as:sr =
∑

((u,v)∈E: c(v)=red) w(u, v),

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

12 Z. CHEN et al.

Algorithm 4 Brute-force method to partition vertices of a graph/traceG(V, E) into two groups
1: Wmax is the maximum weight among the partitions forG(V, E) so far and is initially zero;Smax holds all partitions with weight ofWmax ;
2: Mred is the number of vertices with colorred and is initialized to be 1;
3: while (Mred is less than|V |) do
4: compute all possible combinations ofMred from |V | (i.e.,Cn

k wheren = |V | andk = |Mred|); results are stored in SetC;
5: while (C is not empty)do
6: remove head element ofC and put it intoGred; Gblack← (V - Gred);
7: computew =

∑
(vr∈Gred, vb∈Gblack)

w(vr, vb) ;

8: if (w > Wmax) then
9: Wmax ←w; Smax← (Gred, Gblack);

10: else if(w = Wmax) then
11: insert (Gred, Gblack) into Smax;
12: end if
13: end while
14: Mred← (Mred + 1);
15: end while

16: all partitions inSmax have maximum bichromatic edges ofWmax ;

Psip Pdip num pkts attacks Psip Pdip num pkts attacks
67.117.243.201 67.117.243.207 3 67.117.243.205 67.117.243.207 4
67.116.219.220 67.117.243.205 1 67.117.243.205 67.116.219.220 1
67.115.180.150 67.117.243.205 10 yes 67.117.243.205 67.115.180.150 8
67.119.190.203 67.117.243.205 2 67.117.243.205 67.119.190.203 2
67.117.44.225 67.117.243.205 1 67.117.243.205 67.117.44.225 1
67.119.190.203 67.117.243.204 1 67.117.243.204 67.119.190.203 1 yes
67.117.44.225 67.117.243.204 1 67.117.243.204 67.117.44.225 1
67.115.180.150 67.117.243.204 1 67.117.243.204 67.115.180.150 1
67.117.14.146 67.117.243.205 7 67.117.243.205 67.117.14.146 8
67.117.243.204 67.117.243.205 4 67.117.243.205 67.117.243.204 3

TABLE 3. Cyberkit-generated traffic exploiting network vulnerabilities

sb =
∑

((u,v)∈E: c(v)=black) w(u, v). Vertexu gets aRED
color if sr < sb, and BLACK otherwise. Such a color
assignment strategy attempts to generate minimum number
of monochromatic edges in the neighborhood of vertexu.
Once all vertices have been processed, we split them up
in RED and BLACK groups; one group is designated as
the attackersand the other as thevictims. Algorithm 5
outlines our approach for partitioning a trace using a two
coloring scheme. The overall complexity of Algorithm 5
is O(|V | log(|V |) + |E|) with the sorting operation having
complexity O(|V | log(|V |) and the rest of the operations
O(|V | + |E|).

By applying Algorithm 5 to the graph of Figure 9,
we obtain that nodes 67.117.243.201, 67.117.243.205, and
67.117.243.204 form one group while the rest are in
the second group as depicted in Figure 12. The sum
of the monochromatic edges in the resulting partition
is 7 (in packets). The bichromatic edges can be
computed to be 54 (in packets), which is within 2%
of the optimal value (i.e., 55 packets found by brute-
force method in Algorithm 4). With this partitioning in
place, packets between 67.117.243.205 and 67.117.243.204
are not replayed by our engine as both vertices are
within the same partition. In contrast, communications
between 67.115.180.150 and 67.117.243.205 as well
as 67.119.190.203 and 67.117.243.204, which contain
malicious attacks, are injected into the IUT. It is worth
pointing out that although node 67.117.243.207 shares the
same subnet with nodes 67.117.243.201, 67.117.243.204
and 67.117.243.205 if subnet mask 255.255.255.0 is in use,
they fall into different groups and so their traffic is injected
into the IUT from different directions. If the IUT operates
in routing mode including NAT,Psip andPdip are rewritten

[ht]

4192.168.5.100

192.168.5.101

192.168.5.102

Red Set Black Set

192.168.10.105

192.168.10.104

192.168.10.103

192.168.10.102

192.168.10.101

192.168.10.100
3

18

15

4

2

7
2

FIGURE 11. The address table generated by our testbed if
we use the test environment configuration of Figure 3

Black SetRed Set

67.117.14.146

67.117.243.207

67.115.180.150

67.117.243.205

3

4

18

15

4

2

2
2

2

2

67.117.243.201

67.117.243.204

67.119.190.203

67.116.219.220

67.117.44.225

FIGURE 12. Bipartite graph for trace in Figure 9 generated
by Algorithm 5

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 13

Algorithm 5 Partitioning vertices of a graph/traceG(V, E) into two groups
1: vertices ofG are sorted according to their non-increasing orders of degrees and the results are put into setA;
2: for (each elementu in A) do
3: visit[u]← UNVISITED; partition[u]← UNCOLORED;
4: end for
5: put the first elementu of A into a queueQ; visit[u]← VISITING; partition[u]← RED;
6: while (Q is not empty)do
7: remove first elementu from Q; two weighted sumssr andsb are initialized to be zero;
8: for (each neighborv of vertexu) do
9: sr += (weight of edge (u, v)) if (partition[v] = RED); sb += (weight of edge (u, v)) if (partition[v] = BLACK);

10: if (visit[v] is UNVISITED) then
11: visit[v]← VISITING and pushv into queueQ;
12: end if
13: end for
14: if (partition[u] = UNCOLORED)then
15: partition[u]← RED if (sr < sb) and partition[u]← BLACK otherwise; visit[u]← VISITED;
16: end if
17: end while

18: V of G(V, E) are split into groupsredandblackwith color RED and BLACK respectively;

with addresses that conform with the test environment. In
this regard, if the test environment is configured according
to Figure 3,IPS Evaluatormaintains the address mapping
table shown in Figure 11.

4.2. Partitioning Traffic Traces with Constraints for
IPS-Testing

It is often required that packets containing attacks are fed
into IUT so that false negatives are not generated. To
avoid such negatives, testers should be able to impose
constraints on packet partitioning in order to warrant that
specific packets are ultimately replayed. TheIPS Evaluator
does not honor subnet masking in traffic traces by default
as demonstrated in Figure 12, where node 67.117.243.207
falls into different group from nodes 67.117.243.201,
67.117.243.204, and 67.117.243.205 even though they share
the same prefix 67.117.243. Obviously, the resulting traffic
partitioning may not be desirable. For instance, testers may
know that a number of subnet or host addresses belong to
the internal systems and should be assigned in the same
group (e.g.,red). Testers may also refrain from replaying
packets due to ARP requests/replies, some types ofICMP
packets, orDNS messages, simply because such packets
are not only irrelevant to the ongoing testing but also may
require services outside the testbed and interfere with thetest
process. Therefore, constraints often emanated from human
expertise or manual analyses of traces can be integrated into
our IPS Evaluator.

Algorithm 6 fulfills stated constraints as follows: if
specific subnets, IP addresses, or packets are not to be
replayed, their corresponding vertices and/or edges are
simply omitted when graphG is constructed. For any other
constraints in forms of subnets, IP addresses, or packets,
we commence by constructing a new graphG′(V ′, E′) in
which V ′ andE′ include all vertices and edges appearing
in the constraints; clearly,V ′⊂V andE′⊂E. If G′ is non-
bipartite, then conflicts exist in the stated constraints which
are thus impossible to satisfy simultaneously. Testers should
refine their constraints to eliminate such inconsistencies. If
G′ is bipartite, then a 2-coloring schemec′ for G′ can be
generated with the help of DFS. Vertices inG then inherit

their color assignments fromc′ if such vertices also appear
in G′. We sort all vertices ofG according to their non-
increasing degree order and store the results in a queueQ.
When processing a vertexu in Q, we assign it an unused
color if available; otherwise, we determine the color ofu
with the help of two weighted sumssr andsb formed byu’s
neighbors in a fashion similar to Algorithm 5. Algorithm 6
shows our heuristic method for partitioning a trace graphG
with constraints.

While partitioning with Algorithm 5, nodes
67.117.243.204 and 67.117.243.205 are assigned the same
color (i.e.,red), and communications between the two nodes
are not visible to IUT. By specifying the constraint that pack-
ets exchanged between 67.117.243.204 and 67.117.243.205
of Table 3 must be included in the resulting partition, we can
obtain with the help of Algorithm 6 one such partition: the
red group contains nodes 67.117.243.201, 67.117.243.205,
and 67.117.44.225, while theblack group consists of
nodes 67.117.243.207, 67.116.219.220, 67.115.180.150,
67.119.190.203, 67.117.243.204, and 67.117.14.146; which
happens to be one of the optimal partitions generated
by Algorithm 4. Clearly, vertices 67.117.243.204 and
67.117.243.205 are assigned to different partitions, forc-
ing their communications to be replayed by the simulation
engine to IUT in different directions and therefore inspected
by the IUT.

4.3. Manipulation Operations for Shaping Traffic

In testing IPSs, it is imperative that we can shape the
replayed traffic to possess desired properties such as
background/foreground traffic mixture and attack intensity.
To this effect, traffic might selectively include specific attack
types and/or simulate the behavior of particular applications.
Moreover, we should be able to test the IUT for its ability of
carrying out protocolnormalizationor scrubbing[13, 12].
Traffic scrubbing is a required and important feature of IPSs
as protocol inconsistencies and ambiguities resulting from
different protocol implementations are often exploited by
intruders[13]. Testing for normalization is feasible only
if traffic contains overlapping IP or TCP fragments, out-
of-order packets as well as packets with invalid sequence

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

14 Z. CHEN et al.

Algorithm 6 Partitioning vertices of a graph/traceG(V, E) into two groups with constraints
1: constructG′ using vertices and edges specified in constraints; exit ifG′ is not a bipartite;
2: G′ is colored with RED and BLACK:Cred groups vertices with color RED whileCblack for vertices with color BLACK;
3: vertices ofG are sorted according to their non-increasing orders of degrees and the results are put into setA;
4: for (each vertexu of A) do
5: visit[u]← UNVISITED;
6: vertex partition[u]← RED if u is in Cred; partition[u]← BLACK if u is in Cblack; otherwise, partition[u]← UNCOLORED;
7: end for
8: u← (first element ofA); visit[u]← VISITING; partition[u]← RED; putu into queryQ;
9: while (Q is not empty)do

10: remove first elementu from Q; two weighted sumssr andsb are initialized to be zero;
11: for (each neighborv of vertexu) do
12: sr += (weight of edge (u, v)) if (partition[v] = RED); sb += (weight of edge (u, v)) if (partition[v] = BLACK);
13: if (visit[v] is UNVISITED) then
14: visit[v]← VISITING and pushv into queueQ;
15: end if
16: end for
17: if (partition[u] = UNCOLORED)then
18: partition[u]← RED if (sr < sb) and partition[u]← BLACK otherwise; visit[u]← VISITED;
19: end if
20: end while

21: V of G(V, E) are split into groupsredandblackcontaining vertices with color RED and BLACK respectively;

numbers and unexpected protocol headers. Although the
fragroute tool can be used to carry out some of the above
manipulations, its scope is limited as its operations are
applied to individual packets only [13, 20].

To provide flexible and comprehensive traffic manipu-
lation operations, we design multiple traffic operators by
extendingfragroute’s repertoire. Typically, these operations
are specified in a script processed by theSimulation Sched-
uler component of ourIPS Evaluatorin Figure 4 and are
applied to traces before replay. Along with the baseline set
of fragroute-like instructions that includesip frag, tcp seg,
order, drop, dup, ip chaff, ip opt, ip ttl, ip tos, tcp chaff and
tcp opt to manipulate packets [20], we offer a range of addi-
tional operations some of which are presented in Table 4. We
use the notation(.)+ to indicate that items within the paren-
thesis may be repeated multiple times. This enhanced set of
traffic shaping commands allows us to easily replace content
of packets, segment/merge, duplicate, insert, delete, reshuf-
fle, set specific order for packets, modify protocol fields in
TCP, UDP, ICMP, and IP headers, and generate temporal
properties of traffic including delay and retransmission.

We only outline the function oftcp load and tcp scatter
for brevity as most of the operators in Table 4 are self-
explanatory. Withtcp load, we replace the payload of all
TCP packets originating from source portport-num with
the content of a file designated byfile-name. Multiple
pairs ofport-numandfile-namecan be used to change the
payloads of multiple traffic streams. Clearly,tcp load is
a stream-based instead of packet-oriented operator. The
commandtcp scatter partitions a TCP packetindex into
smaller segments whose size are specified with thesizes
option. If multiple values are specified insizes, the resulting
segments assume the corresponding sizes in the provided
order.

5. IPS TEST PROCEDURES

The inline and real-time operation of IPSs calls for new
test procedures that can efficiently verify their effectiveness,
attack coverage, and overall performance. The multiple

options which IPSs offer for handling attacks raise new
issues for testing as it is no longer valid to examine the
IUT’s behavior exclusively based on its event log; the
latter may differ from what actually occurs. Moreover,
the continual appearance of new attack variants and
vulnerabilities further exacerbate matters when it comes
to IPS testing. With intrusion techniques becoming both
versatile and divergent, it is increasingly challenging, if
not unrealistic, for IPS testbeds to generate all possible
exploits in an exhaustive and enumeration-based testing
scheme. Therefore, we predominantly resort to group-based
testing strategy. We focus on a number of widely-recognized
attack families with each family represented by a set of test
cases [46, 43, 50, 51]. It is generally accepted that such
attack classifications offer an equally-effective alternative to
enumeration-based testing for IPSs [14, 15]. In our group-
based testing approach, attacks are first classified into groups
systematically so that species within the same group possess
similar characteristics. Representatives are then selected
from each attack group and their corresponding traffic traces
are used to evaluate IPSs. An IPS is considered to be able
to identify all attacks in a group if it successfully detectsthe
selected attacks; otherwise, the IPS is further tested by using
every attack in the group. Clearly, the effectiveness of group-
based testing heavily depends on the attack classification
scheme employed. In Appendix C, we discuss conditions
under which group-based testing methods are more efficient
in terms of the test cases used than traditional enumeration-
based counterparts.

5.1. Classifying Attack Traffic and Generating Testing
Workloads

Classification of computer attacks is a multi-faceted task
that entails considerations and evaluations on attack objec-
tives, intrusion techniques involved, system vulnerabilities
exploited, and damages caused. The objective of an attack
may range from reconnaissance to penetration and denial
of services (DoS). The intrusion genre includes viruses,

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 15

command format description
Payload manipulation

tcp load (port-num file-name)+ Payload of packets fromport-numare replaced with respective content fromfile-name
tcp replace index filename [size] Content of packetindexis replaced with that infilename
tcp scatter index (size)+ Packetindexis segmented into several packets with size ofsize
tcp sign index length string Packetindexis changed to have sizelengthand contentstring

Order manipulation
tcp split index (size)+ TCP packetindexis split into segments with sizes insize
chop insert from to size [checksum] A new packet derived from packetfrom is generated withsize

andchecksumand inserted after packetto
dup insert from to A new packet, clone offrom (identical payload and header), is created and inserted after packetto

Protocol field manipulation
ip field index (name value)+ Value innamefield of packetindexis changed tovalue
icmp field index (name value)+ Value innamefield of packetindexis changed tovalue
udp field index (name value)+ Value innamefield of packetindexis changed tovalue
tcp flag (index flags)+ Flag field in TCP header of packetindexis changed toflags
tcp port (from-port to-port)+ from-portappeared in all packets is changed toto-port
tcp field index (name value)+ Value innamefield of packetindexis changed tovalue

TABLE 4. Format and description of traffic manipulation commands applied by IPS Evaluatorto traces

service description num. pct examples
1 WEB vulnerabilities in Web related services includingHTTP, HTML, CGI, and PHP 9,171 60.71 CVE-2000-0010
2 SQL vulnerabilities in products based on SQL such as ORACLE and INFORMIX 1,736 11.49 CVE-2001-0326
3 MAIL vulnerabilities on mail services such as SMTP, IMAP, POP, and MIME 1,728 11.44 CVE-2001-0143
4 FTP security loopholes in File Transfer Protocols 727 4.81 CVE-1999-0017
5 CVS concurrent version systems such as CVS, SUBVERSION 250 1.65 CVE-2000-0338
6 DNS flaws in Domain Name Services such as BIND 247 1.64 CVE-2004-0150
7 SunRPC exploits targeting services based on SUN RPC, NIS, NFS 224 1.48 CVE-2001-0662
8 SSL Secure Socket Layer 160 1.06 CVE-1999-0428
9 SSH Secure Shell related attacks 152 1.01 CVE-2002-1024
10 TELNET Telnet related exploits 147 0.97 CVE-1999-0073
11 DECRPC exploits based on SMB, MS RPC, NETBIOS, SAMBA 140 0.93 CVE-2002-1104
12 SNMP Simple Network Management Protocols 110 0.73 CVE-1999-0472
13 LDAP Light-weight Directory Access Protocols 94 0.62 CVE-1999-0895
14 Total 15,107 100.00

TABLE 5. The service-based classification of vulnerabilities

worms, Trojans, or Backdoors that exploit system vulner-
abilities existing on operating systems, network protocols,
and applications. Organizations such as theCommon Vulner-
abilities and Exposures (CVE) andBugtraq uniquely name
every known vulnerability or attack without attempting to
offer a classification scheme [46, 43].Snort-Inline[51] and
X-Force [50] group attacks mainly based on exploited ser-
vices; the former uses a flat classification structure while
the latter forms a mesh in its categorization scheme. The
above classification schemes may be inflexible in practice
as they are inherently non-hierarchical and ambiguous. To
overcome this limitation, we developed our own classifica-
tion scheme by clustering attacks and their corresponding
traces hierarchically with multiple features such as intrusion
types, exploited services, and severity levels of vulnerabil-
ity. To facilitate the classification of attack traces, we first
establish the associations between attack traces and theCVE
database, then develop classifier to categorize automatically
theCVE database with different taxonomic features to pro-
duce diverse classifications. For instance, Table 5 shows a
service-based vulnerability classification resulting from our
scheme. Here, web-related services are the most frequently
exploited applications as they harbor about 61% of known
loopholes;SQL, Mail, andFTP services constitute the next
most favorite targets. Columnnumof Table 5 indicates the
number of distinct attacks in theCVE database involved in
each service class. The classification scheme of Table 5 is
non-mutually-exclusive as a singleCVE-entry may describe
multiple service vulnerabilities and exposures. Evidently, a

single attack may simultaneously target multiple loopholes
on more than one services, consequently, an attack trace may
be assigned to multiple groups.

To provide additional flexibility in our group-based
testing, theIPS Evaluatorcan also classify attacks according
to their malware type(i.e., intrusion type) such as Virus,
Worm, Trojan, and Backdoor. Along the above lines, the
IPS Evaluatorcan also organize attacks hierarchically based
on malware type, service types as well as severity levels,
offering a multi-level classification scheme. For instance, by
classifying attacks first on malware type and then on services
exploited, we haveNimda first fall into theWormcategory
and then within theWeb service sub-group. Moreover,
Nimda can be labeled as highly severe due to its potent
nature. Clearly, by adjusting the granularity of the hierarchy
for the attack classification scheme, we can readily create the
required number of attack groups and therefore the number
of test cases.

The workload traffic characteristics of the test cases
generated significantly impact the performance of the
IPS-under-testing [14]. These features include the ratio
with which the TCP/UDP/ICMP protocols partake in the
testing workload, the average packet size, the ratio of
packet overhead to payload, and the packet generation
rates [52]. In addition, the mixture of foreground and
background traffic, types of exploits, attack intensity, and
various evasion methods all play an important role in
the evaluation of the IUT behavior. These features help
produce diverse types of traffic that may force IPSs to

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

16 Z. CHEN et al.

analyze the protocol headers of all packets and/or inspect
packet-payloads usinglayer-7analysis. Traffic with desired
characteristics could be generated and captured in real-
world network environments, stored in testbeds, and then
directly used in IPS test procedures. However, the often
voluminous storage requirements for such traces impose
significant constraints on testbed resources. For instance, to
capture the traffic in a network with bandwidth of 100 Mbit/s
for one hour requires upto 45 GBytes. Such volumes can
readily force the testbeds to reach out-of-resources state
while in stress testing. Therefore, in the test procedures
of our IPS Evaluator, we predominantly use a subset of
real-world attacks as templates and derive various traffic
streams on-the-fly with designated features. The latter is
accomplished with the help of traffic manipulation operators
of Section 4.3.

5.2. Tests on Prevention Effectiveness and Attack
Coverage

Similar to IDSs, it is important that an IPS provides
a good coverage for exploits under a wide range of
foreground/background traffic intensities. However, the
most critical aspect in assessing an IPS on its prevention
effectiveness is the consistency between what is log-
recorded in the unit and what actually occurs during testing.
The inconsistency between an IPS’s event log and the actions
it takes on the underlying traffic may reveal defects on
system design, flaws in system implementation, and system
mis-configurations. For instance, many security devices
including the open-source peer-to-peer detection/prevention
IPP2Psystem and earlySnort-Inlineversions assume that
TCP packets with flagsSYN, FIN, or RESETshould not
contain any payload and hence, they simply forward such
packets without any security inspection. This is obviously
a poor choice that a testing framework should expose.
Moreover, in a number of open-source IPSs such asSnort-
Inline and Bro, the functionalities of attack detection
and delivery of countermeasure actions are performed by
different subsystems or even external-to-IPS programs.
Evidently, such choices may lead to inconsistencies between
what is recorded in the IPS event-log and the actions taken
on the ongoing traffic.

Upon detecting an attack, an IPS may forward, shape,
block or carry protective actions on the traffic. While
forwarding, an IPS lets an attack pass through but creates an
alert record on its event log for subsequent forensic analysis.
Through shaping, an IPS attempts to limit the bandwidth
consumption by streams typically generated by applications
such as instant messaging or peer-to-peer systems. When
operating in blocking, an IPS drops malicious packets;
discards all subsequent packets from the same session,
refuses attempted connections from the same source host
and/or subnet, or even blocks all traffic for a period of time.
In pro-active protection mode, an IPS actually tears down a
bad connection by dispatchingTCP RESETpackets orICMP
destination unreachablemessages to either or both ends of
the session.

We build our procedure for testing IPS prevention
effectiveness and attack coverage by first considering a
group-based classification scheme (e.g., a sample scheme is
depicted in Table 5). We form a representative set of attacks
A –typically several dozens– based on their popularity,
scope of distribution, complexity, severity and propagation
mechanism. For instance,A may includeDeepThroat and
Back Orifice from the Trojans group, Tribe Flood Network
2000 (TFN2K) andStacheldraht from theDoS Attacksclass,
as well asNimda, Slammer, andSasser of theWormgroup.
To help automate the generation of the attack setA, our
framework can be instructed to sample different attack types
with specified mixture ratio. The attack sampling process
is controlled by a seed so that repeatability is guaranteed.
At first, we partitionA into setsPattacker andPvictim with
the help of Algorithm 5. We could also use Algorithm 6
instead, should we have to accommodate additional tester-
imposed constraints. The packets ofPattacker andPvictim

are then injected into the IUT via its external and internal
interfaces respectively and using the IUT’s log as well as
the recording mechanism of ourIPS Evaluator, we seek to
establish the IUT baseline behavior. By swapping the roles
of attacker and victim so that setsPattacker and Pvictim

are fed to the IUT through its corresponding internal and
external interfaces, we can verify whether the IUT detects
attacks originated from both internal and external networks.

We subsequently create a set of variant attacksV
similar to those found inA. We accomplish this by
employing different versions of attacks, attacks that use
different exploits for the same vulnerability, attacks that
target different operating systems, and finally attacks in
A that feature different yet valid protocols fields. We
should point out that most variant attacks inV can be
generated with the help of our shaping operations in Table 4.
For instance, various versions of theDeepThroat Trojan
uses slightly different banners, which are typically used as
telltale patterns by IPSs to detectDeepThroat traffic. The
banner used inDeepThroat version 1.0 is–Ahhhhhhhhhh
My Mouth Is Open SHEEP, where SHEEP is the host
name of the victim’s machine. Based on the traffic of
DeepThroat version 1.0, we can easily simulateDeepThroat
communications for versions 2.0, 3.0, and 3.1 by changing
the banner toSHEEP - Ahhhhh My Mouth Is Open (v2),
SHEEP - Ahhhhh My Mouth Is Open (v3.0), and SHEEP
- Ahhhh My Mouth Is Open (v3.1)with the help of traffic
operatorudp replace, which is similar totcp replace of
Table 4.3. Then, all attacks inV are fed into the IUT
whose reaction is recorded with the help of theIPS Evaluator
componentBehavior Arbitrator. Based on the behavior that
the IUT exhibits under bothA andV , we can evaluate its
attack coverage by computing the ratio of detected attacks
by the IUT over the total attacks in bothA andV . Suppose
thatSnort-Inlineis fed with the traffic ofDeepThroat version
1.0 in A and traffic simulating versions 2.0, 3.0, and 3.1 in
V , it only raises alerts forDeepThroat versions 1.0 and 3.1
with the help of its signature database, but fails to recognize
connections created byDeepThroat version 2.0 and 3.0,
therefore achieving attack coverage of 50%.

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 17

To assess the prevention effectiveness of an IUT, we
use background or benevolent application trafficB in
conjunction with the above setA (or V). B consists
of TCP and UDP traffic and is mixed with foreground
traffic in A in a ratio α (in attacks per packet and by
default, 80% is background traffic and 20% foreground
traffic). Similar to attack-setA, background traffic set
B can be created automatically with specified mixture of
application types such asHTTP, FTP, and SMTP. In this
way, a number of distinct experiments are formulated in
which the average packet size inB may ranges from 64 to
1,518 bytes, the connection creation rate is between 1,000 to
250,000 connections per second and the average life-time
of connections is set between 10 to 60,000 milliseconds.
Initially, the IUT is configured to forward all detected attacks
fed fromA and during the experiments, theIPS Evaluator
records all actions to help us ensure that the IUT is capable
of identifying all malicious events. We repeat the above
process for each IPS reaction option includingblocking,
shaping, andpro-activeprotection and collect appropriate
statistics. To finally determine the consistency of the IUT’s
external behavior, we correlate the IUT event-logs with what
has been recorded by our testbed. We may repeat the
above process while mixing attack traffic inA (or V) and
background traffic inB with various ratiosα and random
orders to more accurately map the prevention effectiveness
of the IUT in light of diverse traffic streams. Similar to attack
coverage, the attack prevention consistency can be computed
as the ratio of attacks successfully blocked by the IUT over
the total reported attacks in IUT’s event-log.

5.3. False Positives and Negatives in IPS-testing

The IUT attack detection accuracy is a key aspect that has to
be evaluated and in this regard, we use the notions of attack
detection and prevention rates. The former is defined as
the ratio of the number of attacks detected over the number
of attacks contained in IPS-injected traffic and the latter
is the ratio of blocked attacks over the number of attacks
launched. A false positive is an IPS-generated alert for
attack-free traffic deemed malicious, while a false negative
occurs when an IPS fails to detect/prevent a real attack
and treats it as legitimate traffic. It is worth pointing out
that false positives/negatives can be defined with respect
to attacker, victim, and security device [53]. In the
victim-centric definition, false positives not only refer to
events during which attacks were detected yet they did not
actually took place, but also include attacks reported by
the security device that did not have any effect on victim
systems. In this context, theSnort-Inline-reported alert
WEB-FRONTPAGE /vti bin/ accessis considered to be a
false positive in anApacheweb server environment as such
an attack is only effective toIIS [54]. In the view point
of the attacker, this action may be deemed successful if
the intent were to fingerprint a web server. Clearly, the
intention of the attackers are not measurable and/or testable
by IPSs. Moreover, as the features of end-systems may vary
greatly, their “views” on false positives/negatives may also

be very diverse. Consequently, we adopt more IPS-centric
definitions in this paper: a false positive is an event raised
incorrectly by an IPS with respect to the IPS’s configuration.
A false negative refers to an event that is expected to
generate an alert according to the IPS’s configuration but the
IPS fails to do so [53].

There exist close relationships and therefore trade-offs
among attack coverage, attack detection rate, and false
positives/negatives. For example, to achieve better attack
coverage, an IPS may use a large signature base and relax
checking conditions for some attack types; this may result in
false positives since some normal traffic may be mistakenly
identified as malicious. In addition, IPSs may generate
false positives if they do not perform stateful inspection.
For instance, a successfulTCP-based attack should perform
the normal three-way-handshakeprocess before the real
attack can proceed; otherwise, it is ineffective even if its
malicious traffic reaches the target system, and IPSs without
stateful inspections may still raise alarms for such ineffective
attacks. However, to conduct stateful inspection, IPSs have
to track every session. With a finite session table, IPSs may
begin to drop new sessions or evict old connections under
heavy traffic loads causing a self-inflicted denial of service.
Therefore, the following aspects are critical as far as IPS-
testing is concerned:

• Attack detection and prevention accuracy: we focus on
whether the IUT blocks legitimate traffic.

• Stateful inspection capability: we aim at verifying
whether the IUT maintains state information for
sessions even under heavy traffic loads.

• Signature quality: we examine the quality of signatures
used by the IUT. Fixed-port signatures can miss attacks
that successfully target other ports. Real-world attacks
typically target services instead of fixed ports and
services can be provided on dynamic ports in addition
to default ports [55]. For instance, about 2% of web
servers provide services through non-standard ports
(i.e., other thanTCP-80). Thus, fixed-port signatures
are expected to generate significant false negative
rates [55].

To accomplish the above objectives in quantifying false
positives and negatives as well as IUT detection and
prevention rates, we use setsA andB of Section 5.2 and
proceed in a four-phase procedure:

(i) By randomizing or reshuffling the order of attacks in
A and then replaying the traffic, we can observe and
record in our testbed the baseline behavior of the IUT.
This step is repeated several times (20 times by default)
with A being re-shuffled before replay; the goal here
is to ensure that detection/prevention accuracy and
stateful inspection of the IUT are not affected by the
order of attacks.

(ii) We then generate artificial/ineffective attacks as
follows: for eachTCP-based attack inA, we remove
the three-way-handshakeprocess making it a fake
attack. Similarly, for each buffer-overflow attack, we
modify its payload with operationstcp load, tcp sign,

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

18 Z. CHEN et al.

and tcp replace so that the payload is less than the
size of the target buffer, making the attack invalid.
We further change the fixed-port attacks to target
alternative ports with operationstcp port andudp field.
The resulting traffic is injected into the IUT and the
step is repeated multiple times using reshuffling. Using
ineffective attacks, we seek to quantify the IUT’s false
positive rate.

(iii) Subsequently, we create variant, yet effective attacks
from A by using shaping operations including
dup insert to reorder packets,chop insert to fragment
and retransmit packets, andtcp port to change target-
ing ports. The resulting set is fed into the IUT multiple
times using reshuffling and in this way, we compute the
IUT’s false negative rate.

(iv) In the final phase, we repeat the above three phases
but we add background traffic fromB in various
intensities. Our objective here is to determine whether
the IUT mis-classifies attacks or blocks legitimate
traffic by mistake.

5.4. Testing IPS’s Resistance to Evasion Techniques

To avoid being detected, some attacks resort to evasion
techniques including exploitation ofTCP/IP protocol
ambiguities, URL obfuscation, and service-oriented evasion
mechanisms [13, 14].TCP/IP protocol anomalies occur
when an outgoing packet is split into multiple small
fragments, some of which may present overlapping
sequence number and different payloads. This is the case
with traffic of Table 2 which is obtained by fragmenting
the IP packets of Table 1 using theip frag 75 command of
Section 4.3. Uniform Resource Locator (URL) obfuscation
techniques manipulate URL strings so that embedded
malicious messages change their appearance to evade
detection. For example,Nimda uses various character
encoding schemes such as UTF-8 and hex codes to transform
its malicious commands by rewriting a number of characters
in URLs. As URLs can be encoded in a multitude of ways,
an IPS should have the capability of recognizing all possible
encoding schemes to defeat URL evasion attacks.

A number of URL obfuscation attacks also exploit
ambiguities in Web protocols and inconsistencies in their
implementations as manifested by tools such asWhisker
and SideStep [56, 57]; Table 6 depicts a number of
such obfuscation techniques; here, we denote the original
URI with org URI and the randomly generated string with
rand str. While some URL obfuscation techniques such as
self-reference andTABfor delimiter are straightforward and
require little effort by IPSs to identify, others includingfake
parameterand HTTP request pipelining demand complex
decoding and/or deep inspection. Service-oriented evasion
mechanisms exploit loopholes in applications protocols
and/or their implementations such asFTP, RPC, SNMP,
and DNS. For example, by inserting data flows of telnet
option negotiations intoFTP control traffic, attackers may
evade IPS detection if the latter does not performFTP
and Telnet protocol analysis [57]. Similarly, by using

fragmentedSunRPCrecords, attackers can split anRPC-
based attack into multipleRPCfragments which can be still
effective if reaching the victim but may not be detected
by IPSs withoutRPC de-fragmentation functionality [57].
Furthermore, chunked encoding inHTTPservices and rarely
used message types inDNS are also exploited by evasion
techniques [37].

To investigate the IPS resistance to the aforementioned
evasion attacks in the context of our testbed, we use both
attack setA and background traffic setB constructed
in Section 5.2, but we mainly focus on attacks targeting
HTTP, FTP, DNS, SMB, and SunRPC. Attacks in A are
replayed to the IUT to establish the IPS baseline behavior.
Then, for each attack inA, we create multiple variants by
using the above evasive techniques. More specifically, the
IPS Evaluatorcan generate most of theTCP/IP protocol
anomalies through traffic manipulation operations such as
ip frag, tcp seg, ip field, tcp field, udp field, and icmp field
of Table 4. URL obfuscation and service-oriented attacks
can be created by commandstcp load, tcp replace, and
tcp sign to rewrite the payload ofTCP packets. All
variants of attacks are injected into the IUT along with
background traffic fromB in various intensities. Based
on the observed log-based IUT behavior in the above tests,
our IPS Evaluatorcan evaluate the IUT’s capability on
evasion attack detection/prevention by computing the ratio
of detected attacks over total evasive attacks generated. It is
clear that withoutTCP/IP reassembly functionality, an IPS
fails to identify any TCP/IP protocol anomaly; similarly, the
IPS misses URL obfuscation and service-oriented evasion
attacks without deep security inspection and application
protocol dissection (i.e., layer-7 analysis).

5.5. Testing IPSs for Performance

The deployment of IPSs either in switching or routing mode
should not affect network performance noticeably. To this
end, a number of IPSs opt for generating only a single
alert for all identical attacks occurring in a row to save
both CPU cycles and disk space. Similarly, for a session
containing multiple attacks, IPSs may selectively record
the first occurrence of exploits and skip the rest. The
objective of our performance-specific testing procedure isto
reveal the above peculiarity of IPSs, establish repeatability
of experiments, and quantify IPS throughput, latency, and
detection rates under typical, load-intensive, and even out-
of-resource settings. We resort to interleavedUDP/TCP
and signature-based attacks so that IUTs are forced to
scan every packet payload to detect all incidents requiring
significant resource commitment. By increasing the number
of concurrent attacks, we examine the behavior of IUTs as
far as their session management is concerned. Every session
contains a single type of malicious activity so that traffic
workloads yield comparable results among different IPSs. In
addition by increasing the life-span of injected connections,
the IPS Evaluatorforces the IUT to track more concurrent
sessions and work under out-of-resource condition. Hence,

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 19

URL evasion technique content manipulation descriptions
prepend long random string concatenation ofrand str andorg URI random string prepended to original URI
random case sensitivity randomly choose characters inorg URI and flip their cases change case for some bytes in URI
directory self-reference all character ‘/’ inorg URI is replaced by string “/./” change all / to “./”
windows directory separator all character ‘/’ oforg URI is replaced with double-backslash use backslash instead of slash in URI
non-UTF8 URI encoding randomly choose characters inorg URI and replace with hex change randomly select byte by its hex
fake parameter /rand str1 . html%3Frand str2=/../org URI fake parameter “html?rand str2=”,

which is removed by “/../”.
premature URL ending /%20HTTP /1.1%0D%0AAccept%3A%20rand/../..org URI fake URL end “%20HTTP /1.1%0D%0A”,

which is removed by “../..”
TAB as requested spacer replace all whitespace inorg URI with tablet key change empty space to tab
request pipelining GET / HTTP/1.1|0D 0A|Host: fortinet.com ...|0D 0A 0D 0A| more than one HTTP requests within a

GET /cgi bin%2Fph%66 HTTP/1.1|0D 0A 0D 0A| TCP packet, some chars are encoded in hex
POST instead of GET POST / HTTP/1.1|0D 0A| ... parameters in data section of the request

TABLE 6. Some URL obfuscation techniques

the IUT may drop new sessions or evict old connections
causing deterioration in performance.

In our IPS performance testing, we mainly manipulate
two parameters: attack density and traffic intensity, the
former defines the mixture of foreground and background
traffic while the latter control the total traffic bandwidth.
To facilitate the creation of attack with specified intensities,
we first select all single-attack traces ofA constructed in
Section 5.2. We then further decomposeA into a UDP-
based attack portionAudp and aTCP-based subsetAtcp.
For instance, theAudp may contain theSlammer attack
with a single packet of 376 bytes, whileAtcp could contain
the 16 Nimda packets of which only four have payload
as Table 1 shows. Given the attack densityα (in attacks
per packet and 0< α < 1), the IPS Evaluatorcomputes
the number of packetsN in A and extracts (1/α - 1)N
packets from the background traffic setB to form the
traffic mixture, which hasN/α packets in total. For each
specified traffic intensityβ (in packets per second), which is
typically proportional to the IUT rated or nominal speed, the
IPS Evaluatordetermines the replay speed and timestamps
for each packet with the help of theSimulation Scheduler
component. Clearly, the replay procedure lastsN/(αβ)
seconds and by adjusting the number of attacks selected
from A and therefore the number of packetsN in selected
attack traces, we can control the feeding period.

By configuring theIPS Evaluatorto takeblockingaction
on all identified attacks, our testbed with settings shown
in Figure 5 randomly interleaves packets from attack sets
Audp andAtcp as well as background traffic setB before
feeding them into the IUT according to Algorithm 1 with the
specified rateβ packets per second. In the above tests, we
monitor the IUT throughput and measure network latency
in addition to detection/prevention rates. IUT throughput
is the ratio of total traffic in terms of packets encountered
over the duration of observation and latency is the average
time gap between a packet leaving its source and reaching
its destination for all packets in the replayed traffic. By
specifying different traffic intensities in the range of theIUT-
rated speed and even larger than the IUT nominal rate if
needed, we can obtain the maximum IUT throughput; this
is the highest replayed traffic intensity that does not cause
either blocking of legitimate traffic or forwarding of attack
streams.

To test IPSs in the presence of massive concurrent
connections, under heavy workloads and/or out-of-resources
settings, we configure the IUT to takeblocking action so
we can readily identify instances of no-detection. Then
with the help of our shaping operationstcp scatter, ip frag
or tcp seg, we split every attack trace inAtcp into two or
more IP-fragments. In this manner, we create two new
traffic sets:A′tcp andA′′tcp; the former consists of the prime
IP-fragments of all attacks inAtcp and the latter contains
all the remaining fragments. Subsequently, we replay
A′tcp followed by near the IPS-stated-maximum number
of concurrent connections from background setB for a
specified period of time typically ranging from 0.30 to 60
seconds. Finally, the second part of attacksA′′tcp is replayed.
The rationale of the above test procedure is to force the
IUT to operate in the out-of-resource state so that the IUT
exhausts its session table and may start dropping sessions.
Our IPS Evaluatorevaluates the IUT performance based on
its action against attacks inA′tcp and traffic inB. Obviously,
the performance of IUT may actually degrade if the IPS
forwards attacks or blocks legitimate traffic due to session
management problems and/or out-of-resource situations.

6. EXPERIMENTAL EVALUATION OF IPSS USING
THE TESTBED

We implemented theIPS Evaluatorin C and Perl and
used our testing methodology to examine a number of
IPSs in order to investigate their features and performance
aspects. For brevity, we outline key aspects of our
experimentation withSnort-Inlineand FortiGate 2.80[58,
51]. Snort-Inline is a lightweight IPS based on the
IPtables/Netfilter, a packet-filtering utility to intercept and
manipulate packets andlibnet, a library that helps send out
TCP RESETand ICMP destination unreachablemessages.
By performing pattern matching and analyzing traffic flow
characteristics,Snort-Inlinecan detect and prevent various
incidents such as buffer overflows, portscans, and protocol
anomalies.Snort-Inlinemay take configurable actions on the
malicious packets including alerting, dropping, or tearing
down connections; limited stateful inspection capabilityand
service-specific inspections are also provided. Figure 13
shows the various components of a test machine on which
Snort-Inline is deployed as an IPS.Snort-Inline functions
atop theIPtables/Netfilter and libnet modules and generates

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

20 Z. CHEN et al.

two types of verdicts: NF DROP for malicious traffic
or NF ACCEPT for normal data streams based on rules
specified in the configuration filesnort.conf. Through
the command“iptables -A INPUT -p ALL -j QUEUE”, one
may have theIPtables/Netfilter module receive all the
streams from all network interfaces. The command“snort-
inline -c snort.conf -Q”helps configureSnort-Inlineto fetch
packets from theIPtables/Netfilter module while generates
NF DROP/NF ACCEPTverdicts.

In our experimentation we usedSnort-Inlinev.2.3.2along
with its 4,637 rules that are enabled by default. To
pro-actively terminate attack connections,Snort-Inlinemay
generate extra messages such asTCP RESETor ICMP
destination unreachabletransmitted vialibnet. We should
point out that non-routable packets are dropped by the
Router/Bridge module of Figure 13. As a result, they are
not delivered toSnort-Inlineand consequently they are not
subject to security inspection. Hence, we use Algorithms 5
and 6 in our testbed to partition traffic traces so that replayed
packets are IPS-routable.

FortiGate is an IPS/anti-virus product that detects and
prevents attacks using multiple techniques including pattern
matching, anomaly analysis, traffic correlation, and layer-7
protocol dissection. Machines in our testbed are equipped
with Intel 1.80 GHz, 512 MBytes of main memory, and
80 GBytes disk storage running eitherRed Hat Linux
Kernel 2.4.7or Windows 2000. All machines maintain
two network cards and are connected via 100/1,000Mbit/s
switches. Here, we also use the out-of-boxFortiGate
configuration with respective signatures enabled. Results
reported here pertain the default behavior of the IUTs. In
case that a false positive/negative is generated by an IUT,
we analyze whether it can be corrected by manipulating
the IUT’s configurable parameters without any update on
attack signatures or executables and present corresponding
correcting measures if available. The traces used in our
experiments are mainly captured or synthesized by the
Threat Analysis Center (TAC)of Fortinet [59]. The set of
traffic traces used covers most vulnerabilities presented in
Table 5.

6.1. Attack Coverage and Prevention Effectiveness

Initially in this set of experiments, we form a set of
attacksA that includesNimda andSlammer according to the
guidelines of Section 5.2. We serially inject this set into the
IPSs under testing (IUTs) to determine the baseline behavior
of Snort-InlineandFortiGatefor their attack coverage and
prevention effectiveness. We group packets ofA into two
setsPattacker andPvictim and feed them into IUT’s external
and internal interfaces in both possible ways. For most
traces, the automatic traffic partitioning schemes generated
by Algorithm 5 are valid and therefore can be used directly;
only a few test cases with mesh network topologies or
special IP addresses require tester intervention to specify
constraints for Algorithm 6. For instance, this is the case
when theDoSattack toolStacheldraht is used. It generates
messages with sourceIP address 3.3.3.3 — a pattern often

libnet

configuration packet logs

rule sets event logs

Router/Bridge

Snort−Inline

verdictspackets
ICMP DST UNREACH.

TCP RESET

eth0 eth1

externalinternal

NF_Queue

IPtables/Netfilter

IPS Under Testing (IUT)

FIGURE 13. Components ofSnort-Inline–based
IPS system

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 m
 :
 N

u
m

b
e

r
o

f
R

E
S

E
T

 R
e

p
lie

s

 n : Number of Unique IPs

Sensitivity of Snort-Inline to Portscans

No-Alert
Alert

FIGURE 14. Snort-Inlinesensitivity to portscans

used by IPSs to detect attacks. Here, we craft constraints to
avoid rewriting theIP address 3.3.3.3. Our testing shows
that both Snort-Inline and FortiGate successfully detect
and prevent all attacks inA initiated either internally or
externally.

IUTs may generate multiple alerts for a single attack due
to overlapping coverage of non-orthogonal signatures. For
instance,Snort-InlineidentifiesNimda by searching for pat-
tern“cmd.exe” in traffic – this telltale appears in the payload
of packet 4 of Table 1. The signature for detectingNimda
in Snort-Inline is defined asalert tcp $EXTERNALNET
any → $HTTP SERVERS$HTTP PORTS (msg:“WEB-
IIS cmd.exe access”; flow:toserver,established; uricon-
tent:“cmd.exe”; nocase; classtype:web-application-attack;
sid:1002; rev:8;). In the out-of-box configuration ofSnort-
Inline, both $EXTERNALNET and $HTTP SERVERSare
set to “any” indicating that every incoming packet should be

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 21

matched against the signature. In addition to pattern match-
ing, Snort-Inlinealso subjectsNimda traffic to HTTP pro-
tocol dissection. Thus,Snort-Inlinegenerates two alerts:
the first alertWEB-IIS cmd.exe accessis due to the afore-
mentioned signaturesid-1002and the second alert is due
to the detection ofDouble Decoding Attackin payload
“..%255c..” by Snort-Inline’s HTTP inspector. In compar-
ison,FortiGateassigns a severity level (e.g., high, medium,
low, and informational) to each signature and can be con-
figured to report the alarm with the highest severity when
multiple rules are satisfied by a session. In what follows, we
consider that an IPS successfully detects an attack as long as
one of the invoked alarms is relevant.

In the next phase of this set of experiments, we generate
variants of each attack inA with the help of the shaping
operators of Table 4. For instance in the context of
Nimda, we generate variants by changing the payload of
packet 4 with commandtcp replace. Table 7 shows the
payloads for some such rewritten packets using various URL
encoding mechanisms including hex-encoding (payload 2),
unicode scheme (payload 5), and invalid string (payload 6).
We also create variants with the help of the evasion
techniques of Table 6. For instance, payload 7 employs hex-
encoding to transform the telltalecmd.exeto cmd%2Eexe,
effectively hiding the malicious content.Snort-Inlineraises
the alarmDouble Decoding Attackbut occasionally does
not produce the alertWEB-IIS cmd.exe accessindicating
that some URLs with evasive techniques are not decoded
appropriately. In contrast, the out-of-box configuration of
FortiGategeneratesWEB-IIS cmd.exe accessalerts for all
Nimda variants indicating the correct behavior of itsHTTP
protocol analyzer.

In the last phase of this set of experiments, we investigate
the coverage of IUTs for non-content-based incidents such
as portscans. We use our testbed to simulate activities of
network scanners such asNmap andHping [41, 60]; both are
consideredattack toolsin our categorization scheme and are
typically launched by network scanners to fingerprint OSs
and services of victims.Snort-Inlinefeatures a dedicated
module portscan to detect both horizontal and vertical
portscans [51, 61].Snort-Inlineidentifies a vertical portscan
mainly by checking the condition that a few hosts contact a
small set of destination hosts but the numbers of unique ports
and invalid responses (e.g.,TCP RESETs) from destination
hosts are significant. Similarly, a horizontal portscan is also
reported if an attacker attempts to connect simultaneouslyto
many hosts on a small number of unique destination ports
but the number of invalid responses from destinations is
relatively high (i.e., more than 5).

Our testbed can simulate various types of portscans. For
example to generate an horizontal portscan, we can extract
the first two packets from theNimda attack of Table 1 and
manipulate them as follows: the first packet containing a
TCP SYNmessage is duplicatedn times and the destination
IPs of the resulting packets are randomized1. The second

1Most IPSs includingSnort-Inlinedetect portscans based on statistical
characteristics of traffic, therefore, randomization and sequentialization
have the same effect.

extracted packet containing aTCP SYN|ACKmessage is also
clonedm times with aTCP RSTbit added to each replicated
packet. The first half of Table 8 presents the resulting traffic
stream withn=m=5. Vertical portscan can be simulated
similarly by manipulating ports instead of IPs and an sample
is depicted at the second half of Table 8 withn=m=5.
We should point out thatn andm are not necessarily the
same and by varying these two parameters, we can test
the sensitivity of IPSs to portscans, which is defined as the
lowest traffic intensity triggering IPS alerts. We varyn and
m in range [2, 15] to simulate horizontal portscans and feed
the resulting traffic intoSnort-Inline, which generates the
alert “(portscan) TCP Portsweep,” if the replayed traffic is
considered to be a horizontal portscan. Figure 14 depicts
the outcomes of all the experiments that results from the
different values ofn and m. We differentiate between
test cases yieldingSnort-Inline alerts from those that do
not. Evidently, Snort-Inline raises alarms for horizontal
portscans only when the number ofTCP RESETpackets
from scanned hosts is larger than5. Port-scan activities
triggering low responses slipSnort-Inline’s detection. In this
regard, the first half of the trace in Table 8 is the horizontal
portscan with the lightest traffic intensity detected bySnort-
Inline. Similarly, the second half of Table 8 provides the
minimum set of packets that causesSnort-Inlineto identify
as vertical portscan and raise the “(portscan) TCP Portscan”
alert. We should point out thatSnort-Inline computes
statistical characteristics of portscan traffic with a sliding
time-window, therefore, the replay speed of traffic traces
also determines whether a portscan alert is raised.

6.2. Testing for False Positives and Negatives

Exposing possible weaknesses of IUTs regarding their false
negatives/positives is of vital importance to the overall IPS
testing procedure. To this end, we follow the four-phase
procedure described in Section 5.2 by constructing an attack
set A and background traffic setB. The setA typically
contains 80 attack traces and consists of TCP-basedAtcp

and UDP-orientedAudp attacks; the ratio betweenAtcp

and Audp is configurable with a default value of 80:20.
To better facilitate and automate the testing procedure, we
define about 40 template scripts with the help of the Table 4
traffic operators and apply these scripts to traces inA to
generate upto 3,000 attack variants. Table 9 shows a portion
of such scripts applied to theNimda trace of Table 1 and the
respective outcomes for bothSnort-InlineandFortiGate.

In particular, scriptno-handshakecreates an ineffective
Nimda attack without the normal TCP three-way-handshake
procedure by removing the first three packets in the trace
of Table 1. BothSnort-InlineandFortiGateraise no alarm
for the traffic as the connection statusESTABLISHEDis
one of the conditions triggering an alert for theNimda
attack. Although the “Double Decoding Attack” alert is
still generated bySnort-Inline, we consider it acceptable as
such an alert is typically used as auxiliary information only
by system administrators. Similarly, scriptnormal-retrans
simulates a normal retransmission by duplicatingNimda’s

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

22 Z. CHEN et al.

no payload description Snort-Inline FortiGate
1 GET /scripts/..%252f../winnt/system32/cmd.exe?/c+dirHTTP/1.1 original payload As Expected As Expected
2 GET /scripts/..%%35%63../winnt/system32/cmd.exe?/c+dir HTTP/1.1 “%252f” to “%%35%63” As Expected As Expected
3 GET /scripts/..%%35%63../..%%35%63../..%%35%63.. “%252f” to “%%35%63” As Expected As Expected

/winnt/system32/cmd.exe?/c+dir HTTP/1.1 repeat 3 times
4 GET /scripts/..%255C../winnt/system32/cmd.exe?/c+dirHTTP/1.1 “%252f” to “%255C” As Expected As Expected
5 GET /scripts/..%C0%AF../winnt/system32/cmd.exe?/c+dir HTTP/1.1 “%252f” to “%C0%AF” As Expected As Expected
6 GET /scripts/..%C0%9V../winnt/system32/cmd.exe?/c+dir HTTP/1.1 “%252f” to “%C0%9V” As Expected As Expected
7 GET /scripts/..%252f../winnt/system32/cmd%2Eexe?/c+dir HTTP/1.1 cmd.exe: cmd%2Eexe As Expected As Expected
8 GET /scripts/..%252f../winnt/system32/cmd%252eexe?/c+dir cmd.exe: cmd%252eexe As Expected As Expected
9 GET /scripts/..%252f../winnt/system32/cmd%32%65exe?/c+dir cmd.exe: cmd%32%65exe As Expected As Expected
10 GET /scripts/..%252f../winnt/system32/cmd%U002Eexe?/c+dir cmd.exe: cmd%U002Eexe As Expected As Expected
11 GET /%20HTTP /1.1%0D%0AAccept%3A%20rand/../.. premature URL and As Expected As Expected

/scripts/..%252f../winnt/system32/cmd%2Eexe?/c+dir HTTP/1.1 cmd.exe to cmd%2Eexe

TABLE 7. Payloads of variantNimda attacks

timestamp src IP src port dst IP dst port pkt len TCP hdr/pld TCP flag description
Horizontal portscan

1 0.000000 10.80.8.183 32872 10.80.8.221 80 74 40/0 SYN request
2 0.000100 10.80.8.221 80 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
3 0.000200 10.80.8.183 32872 10.80.8.222 80 74 40/0 SYN request
4 0.000300 10.80.8.222 80 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
5 0.000400 10.80.8.183 32872 10.80.8.223 80 74 40/0 SYN request
6 0.000500 10.80.8.223 80 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
7 0.000600 10.80.8.183 32872 10.80.8.224 80 74 40/0 SYN request
8 0.000700 10.80.8.224 80 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
9 0.000800 10.80.8.183 32872 10.80.8.225 80 74 40/0 SYN request
10 0.000900 10.80.8.225 80 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt

Vertical portscan
1 0.000000 10.80.8.183 32872 10.80.8.221 80 74 40/0 SYN request
2 0.000100 10.80.8.221 80 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
3 0.000200 10.80.8.183 32872 10.80.8.221 81 74 40/0 SYN request
4 0.000300 10.80.8.221 81 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
5 0.000400 10.80.8.183 32872 10.80.8.221 82 74 40/0 SYN request
6 0.000500 10.80.8.221 82 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
7 0.000600 10.80.8.183 32872 10.80.8.221 83 74 40/0 SYN request
8 0.000700 10.80.8.221 83 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt
9 0.000800 10.80.8.183 32872 10.80.8.221 84 74 40/0 SYN request
10 0.000900 10.80.8.221 84 10.80.8.183 32872 74 40/0 SYN|ACK|RST reply RESET pkt

TABLE 8. Horizontal and vertical portscans simulated in our testbed

packet 4 which forcesSnort-Inlineto produce a false alarm
as it regards the traffic to be evasive retransmission by its
TCP protocol dissector. Although such an alarm can be
turned off,Snort-Inline’s ability to detect evasion attacks is
also disabled as a result. In contrast,FortiGaterecognizes
the retransmission. The scriptdiff-checksumsyields two
TCP packets with the same sequence number and packet
size but different payloads and checksums; the first packet
is attack-free while the second contains malicious content.
In using this script, we sought to establish whether the
IUT considers the second packet as a simple retransmission.
Both systems successfully detect the attack and mark it as
an evasive-retransmission. The test casesame-checksum
features two packets with the same sequence number,
payload size, and checksums with the first packet being
attack-free and the second malicious.Snort-Inlinegenerates
a false negative as it only compares checksums to determine
the identity of the original packet and its retransmitted clone.
The logic to determine the identity of packets is hard-coded
in theTCPprotocol dissector ofSnort-Inlineand thus, it is
not configurable by testers.

Snort-Inline behaves as expected in scriptsacked-
retrans and forward-overlap; the former represents the
retransmission of an acknowledged packet, while in the
latter, packet 4 is first duplicated and then the original packet
is split into two segments of sizes 20 and 44 bytes with
the copy being rewritten with random content. Although

Snort-Inline correctly identifies overlapping packets and
proceeds to normalize traffic using thefavor newpolicy,
it does forward the overlapping packets intact, providing
an opportunity for evasion attacks. In bothacked-retrans
andforward-overlapcases, theIPS Evaluatorhelps establish
thatFortiGateproduces no false positives/negatives. In the
acked-part-retranscase, we initially split packet 4 into two
segments of sizes 20 and 44, then replicate the first segment
and place it after packet 6. Hence, a portion of the original
packet 4 is retransmitted once the entire packet has been
acknowledged, forcingSnort-Inlineto produce an alert of
window violationwhich is a false positive; instead,FortiGate
treats the traffic as normal and produces no alert.

When the IUT mis-classifies incoming traffic and
analyzes it with incorrect protocols, false positives can be
produced. The scriptsport-alteris such an example in which
the client of theHTTPconnection happens to use 32771 as
its source port. This port is registered by theRPCservices.
Snort-Inline treats this test as anRPC incomplete record
attack, obviously a false positive. In scriptdport-alter, we
change the Web-server port from 80 to other popularHTTP
ports such as 8080 and bothSnort-InlineandFortiGatefail to
identify Nimda under their default configurations. This may
not be considered to be a false negative in the viewpoint of
IPSs asSnort-InlineandFortiGateonly detect Web specific
attacks against servers listening onTCPport 80 by default.
However, IPSs may be expected to raise alarm for script

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 23

no name cmd sequence description Snort-Inline FortiGate
0 no-handshake drop 0, 1, 2 conn. without 3way handshake As Expected As Expected
1 normal-retrans dup insert 4 4 normal pkt retransmission False Positive As Expected
2 diff-checksums chop insert 4 3 0 pkt retrans with different checksums As Expected As Expected
3 same-checksum chop insert 4 4 0 0 pkt retrans. with same checksum False Negative As Expected
4 acked-retrans dup insert 4 5 retransmit acknowledged packet As Expected As Expected
5 acked-part-retrans tcp split 4 20 44;dup insert 4 6 split pkt 4 and insert first behind pkt 6 False Positive As Expected
6 forward-overlap dup insert 4 4; tcp split 4 20 44; pkt 4 is duplicated then split As Expected As Expected

tcp replace 6 file 64 into two, pkt 6 is replaced
7 sport-alter tcp port 32872 32771 change port 32872 to 32771 (RPC) False Positive As Expected
8 dport-alter tcp port 80 8080 port 80 changes to 8080 As Expected As Expected
9 ip-fragment ip frag 75 IP payload splits into 75-byte pieces As Expected As Expected
10 method-type tcp replace GET, PUT HTTP method from GET to PUT False Positive As Expected
11 alt-exploit tcp replace scripts msadc exploit other vulnerability As Expected As Expected

TABLE 9. Scripts that help expose false positives/negatives forSnort-InlineandFortiGate

dport-alterif IISweb servers indeed provide services on port
8080. By addingTCPport 8080 as one of Web service ports
recognized by theirHTTPprotocol analyzers, both IUTs can
detect the attack. The evasive attack generated by the script
ip-fragment is successfully detected by bothSnort-Inline
andFortiGateeven though the telltale pattern is spread over
multiple IP fragments. Similarly, scriptalt-exploitexploits
the fact that directory traversal vulnerability is independent
of the root directories, and changes the directory name from
scripts to msadc; the resulting attack variant, which is still
effective, is recognized by bothSnort-InlineandFortiGate.
The two IPSs while operating inIPS Evaluatorbehave
differently in the traffic created by scriptmethod-type, which
creates an ineffective attack by changingHTTPmethod from
GET to PUT. Snort-Inline raises an alert, indicating that
HTTP methods such asGET andPUT are not a triggering
condition for itsNimda signature.

All the above results along with many other experiments
we carried out point to the fact thatSnort-Inlinegenerates
multiple false positives/negatives indicating loopholesin
its attack detection mechanisms, protocol analysis, and
signature crafting; by comparison,FortiGate delivers
improved attack detection accuracy.

6.3. Testing IPSs for Performance

The IPS Evaluatorhelps us carry out stateful inspection and
examine resistance to evasion attacks of IPSs under intense
concurrent foreground and background traffic. By using
the approach outlined in Section 5.5, we generate an attack
setA as well as a background setB using predominantly
two parameters: attack densityα and traffic intensityβ.
While attempting to best ascertain the IUT’s counter-evasion
capability, we manipulate the traffic traces inA with the
help of scriptip-fragmentdefined in Table 9. For instance,
by applying the commandip frag 75 of script ip-fragment
to the Nimda traffic in A, we obtain an evasive variant
of the Nimda attack shown in Table 2; here, the telltale
cmd.exeis fragmented between packets 4 and 5 containing
stringscmd.eandxe respectively. In general, we apply IP
fragmentation for all packets inA with the rationale that
signatures exploited by IUTs for attack detection are split
in multiple IP fragments. Consequently, IPSs should feature
IP-defragmentation to actually identify evasive attacks.With
each attack densityα in the range of [0, 0.80] and traffic

intensityβ proportional to the IUT’s pro-rated speed (e.g.,
[10%, 75%]), theIPS Evaluatorcomputes the number of
packetsN in A, randomly selects (1/α - 1)N packets
from background setB, and replays the resulting traffic
mixture to bothSnort-InlineandFortiGatewith the specified
traffic intensity (i.e.,β packets per second). The two IPSs
successfully detect such attacks in various combinations of
α andβ and in this way we verify their IP de-fragmentation
functionality.

To test the IUT’s management of session information for
long-lasting streams, we proceed as follows: we split attacks
into two partsA′tcp andA′′tcp as we outline in Section 5.5;
for Nimda in particular, packets 1–4 become part ofA′tcp

and packets 5–15 as well as TCP termination procedure (not
shown in the table) are grouped inA′′tcp. After feeding the
IUT with A′tcp, we generate 10,000 concurrent background
sessions forSnort-Inline and 250,000 forFortiGateeach
lasting upto 60 seconds by using as many as 10 test
machines; finally, we inject theA′′tcp part of the traffic. Both
Snort-InlineandFortiGatecan identify the involved attacks
demonstrating reliable session tracking capabilities; for
Snort-Inlinehowever, this is only attained for much fewer
concurrent connections –10,000– and only if the background
sessions last upto 30 seconds. When the background traffic
features longer connections,Snort-Inline starts dropping
sessions with the longest inactive time; thissession pruning
yields false negatives.

Following the test procedure of Section 5.5 and generating
IPS traffic with intensity ranging between 10 to 600 Mbit/s
with up to ten test machines, we establish that the maximum
throughput achieved bySnort-Inline before any false
positives/negatives appear is only 17 Mbits; forFortiGate,
this rate is at approximately 600 Mbit/s with the equipment
vendor-rated at 400 Mbit/s. Actually, the same conclusion
has been independently reached by theNSS-Lab[14]. Under
the maximum throughput, the latency achieved bySnort-
Inline is 300µs and by FortiGate is 200µs, while the
average response time for backgroundHTTP sessions is
220ms for Snort-Inline and 200ms forFortiGate. It is
also worth pointing out that due to inexpensive interprocess
communications used in our framework, each test machine
can readily generate upto 90 Mbit/s traffic out when the
network interface cards are at 100 Mbit/s. If the IUTs
are equipped with 1000 Mbit/s NICs, test machines can
comfortably flood a network segment with 600 Mbit/s traffic.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

24 Z. CHEN et al.

Consequently in order to test IUTs with rated networks of 1-
4 Gbit/s bandwidth, our framework requires only a handful
of machines to form the necessary testbed (of Figure 5).
Our experiments also indicate that the bottleneck when high-
volume traffic is involved –easily generated by repeating a
small trace such as that of Table 1– appears to be the network
driver within the OS. This occurs due to excessive memory-
to-memory copying between kernel and user space taking
place during stress-tests that involve voluminous traffic.
Such a bottleneck in stress-test, which is also observed by
other testbeds such astcpreplay[19], could be mitigated by
allocating much more memory to the network driver.

To further investigate the relationship between traffic
intensity and the capability of an IPS on detecting attacks,
we use the traffic trace labeled as“1999 train set, week
one, Wednesday”from MIT’s Lincoln Laboratory[62]. By
configuringSnort-Inlineto work in bridge mode so that it
forwards all traffic and by feeding it with the 351.5MB
MIT trace with various replay speeds in the range of [1,
25] Mbit/s, we record the number of alerts generated by
Snort-Inline and its processing (wall) time. Figures 15
and 16 show the respective results. When the trace is
replayed with its original speed,Snort-Inline generates
73,989 alerts. The change in replay speed may distort the
temporal characteristics of the original traffic and therefore
may affect the number of alerts generated by IPSs. However,
the noticeable drop on the number of alerts after 17 Mbit/s
is attributed to the fact thatSnort-Inlinecannot effectively
deal with the intensive traffic streams. As the replay
speed increases, the observed wall time gets diminished as
Figure 16 depicts, indicating the accuracy with which our
testbed controls the trace-feeding rate.

Overall, FortiGate demonstrates good attack detection
accuracy and offers a broader attack coverage if compared
to Snort-Inline; also, FortiGateallows upto a half million
concurrent connections, provides lower network latency and
handles better long-lived sessions. Through our testing,
we also established thatSnort-Inlineoccasionally generated
multiple different alerts for a single attack exposing a
problem with overlapping coverage by different signatures.
In addition, service-oriented evasion attacks targetingSSH
and SSL were missed revealing problems in the deep
inspection capabilities ofSnort-Inline. We have also used
the IPS Evaluatorto benchmark a handful of available
IPSs including products fromJuniper, SonicWall, and
TippingPoint. There are a number of issues shared by most
IPSs that we have used in our evaluation which briefly are:

• Multiple alerts may be raised for a single attack due to
the complexity of vulnerabilities and/or exploits as well
as the overlapping coverage of different signatures used
by IPSs.

• Trade-offs exist among false positives/negatives, attack
coverage and performance. A better attack coverage
requires a larger signature base which often adversely
affects the IPS performance.

• Incomplete coverage on possible attack vectors does
influence the prevention capabilities of IPSs. As it is

 73860

 73880

 73900

 73920

 73940

 73960

 73980

 74000

 0 5 10 15 20 25

N
u

m
b

e
r

o
f
A

le
rt

s

Replay Speed (Mbit/s)

Snort-Inline Generated Alerts

alerts

FIGURE 15. Alerts generated bySnort-Inlinefor the Lincoln
trace “1999 Train Week1 Wednesday”

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25

W
a

ll
T

im
e

 (
S

e
co

n
d

s)

Replay Speed (Mbit/s)

Snort-Inline Processing Time

running time

FIGURE 16. Snort-Inlineprocessing time for the trace “1999
Train Week1 Wednesday”

desired to apply preventive actions on specific groups
of attacks, we found that it is extremely difficult for
many IPSs to entirely prevent all types of say instant
messaging and/or peer-to-peer communications from
occurring.

• Inconsistencies between event-logs and actions taken
by the IUT on underlying traffic are predominantly
due to defects in IPS design, implementation, and
configuration. Delegation of preventive actions to
different subsystems or even physical devices is
often the source for out-of-synchronization conditions
among different IPS components.

7. CONCLUSIONS AND FUTURE WORK

Diverse attacks and exploits attempt to gain unauthorized
access, reduce the availability of system resources and/or
entirely compromise targeted computing systems. Intrusion
Prevention Systems (IPSs) are deployed to detect and block
such malicious activities in real-time; their inline mode
of operation and delivery of real-time countermeasures

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 25

make IPS development and more importantly IPS testing a
challenge. In this paper, we propose a methodology for IPS
testing built around a trace-driven testbed termed theIPS
Evaluator. The proposed testbed offers an inline working
environment for IPSs-under-testing (IUTs) in which IUTs
constitute the splicing points between attacker and victim
interfaces of test machines. The key objectives of our testing
are to help thoroughly investigate attack coverage, verify
attack detection/prevention rates, and finally determine the
behavior of IUTs under various traffic loads.

Our IPS Evaluator framework features a number of
novel characteristics that include abi-directional-feeding
mechanism to inject traffic into the IUTs, dynamic rewriting
of source and destination MAC and IP addresses for replayed
traffic, use of asend-and-receivemechanism to allow
for the effective correlation of replayed and forwarded
packets, incorporation of IP de-fragmentation and NAT, and
finally integration of an independent logging mechanism
to distinguish packet losses due to network malfunctions
from IUT’s blocking actions. To maximize the number of
replayed packets that are forwarded and subjected to security
inspection by IUTs, our testbed partitions packets in traces
into two groups: packets originated from the attacker(s)
and those from the victim(s). Our testbed is capable of
taking into account user-specified conditions to yield more
constrained partitioning. We also offer a number of traffic
manipulation operations that help shape replayed flows.

We used our proposed methodology to evaluate con-
temporary IPSs including theSnort-Inline, an open source
IPS, andFortiGate, an anti-virus/IPS device. Our test-
ing demonstrated both strengths and weaknesses forSnort-
Inline; although it offers satisfactory attack coverage and
detection rates,Snort-Inline generates false positives and
negatives under a number of conditions and misses attacks
when subject to volumes of heavy traffic. Our approach
also helped us locate weaknesses of IPSs related to deep
inspection and occasional inconsistency between event logs
and actions taking place. We intend to extend our work by
providing an automatic attack classification mechanism so
that newly discovered attacks can be easily included in our
testing; establishing benchmarks and measurements to help
compare test results from different IPS testbeds; and inte-
grating our methodology with others to facilitate testing of
multi-functional security systems.

ACKNOWLEDGMENT

We are very grateful to the anonymous reviewers for their
valuable comments that helped us significantly improve the
presentation of our work. We are also indebted to Minya
Chen and Shiyan Hu for discussions on algorithmic aspects
and to Joe Zhu, Hong Huang, Ping Wu, and Chi Zhang of
Fortinet for providing traffic traces and many comments on
our testing methodology.

FUNDING

This work was partially supported by a European Social
Funds and National Resources Pythagoras Grant and the
Univ. of Athens Research Foundation.

REFERENCES

[1] Cheswick, W., Bellovin, S., and Rubin, A. (2003)Firewalls
and Internet Security, second edition. Addison-Wesley,
Professional Computing Series, Boston, MA.

[2] Shieh, S.-P. and Gligor, V. (1997) On a Pattern-Oriented
Model for Intrusion Detection. IEEE Transactions on
Knowledge and Data Engineering, 9, 661–667.

[3] Xinidis, K., Charitakis, I., Antonatos, S., Anagnostakis,
K. G., and Markatos, E. P. (2006) An Active Splitter
Architecture for Intrusion Detection and Prevention.IEEE
Transactions on Dependable and Secure Computing, 3, 31–
44.

[4] Valeur, F., Vigna, G., Kruegel, C., and Kemmerer, R. A.
(2004) A Comprehensive Approach to Intrusion Detection
Alert Correlation. IEEE Transactions on Dependable and
Secure Computing, 1, 146–169.

[5] Bass, T. (2000) Intrusion Detection Systems and Multisensor
Data Fusion: Creating Cyberspace Situational Awareness.
Communications of the ACM, 43, 99–105.

[6] Kiam, Y., Lau, W. C., Chuah, M. C., and Chao, H. J.
(2006) PacketScore: A Statistics-Based Packet Filtering
Scheme against Distributed Denial-of-Service Attacks.IEEE
Transactions on Dependable and Secure Computing, 3, 141–
155.

[7] Mirkovic, J. and Reiher, P. (2005) D-WARD: A Source-End
Defense against Flooding Denial-of-Service Attacks.IEEE
Transactions on Dependable and Secure Computing, 2, 216–
232.

[8] Yuan, J. and Mills, K. (2005) Monitoring the Macroscopic
Effect of DDoS Flooding Attacks. IEEE Transactions on
Dependable and Secure Computing, 2, 324–335.

[9] Wang, H., Zhang, D., and Shin, K. G. (2004) Change-
Point Monitoring for the Detection of DoS Attacks.IEEE
Transactions on Dependable and Secure Computing, 1, 193–
208.

[10] Yee, A. (2003) Network Intrusions: From Detection to
Prevention.Information Security Bulletin, 8, 11–16.

[11] RFC1631 (1994)The IP Network Address Translator (NAT).
Internet Engineering Task Force. Tokyo, Japan.

[12] Malan, G. R., Watson, D., Jahanian, F., and Howell, P. (2000)
Transport and Application Protocol Scrubbing.Proceedings
of the INFOCOM Conference, Tel Aviv, Israel, March, pp.
1381–1390. IEEE.

[13] Ptacek, T. and Newsham, T. (1998) Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection.
Technical report. Secure Networks, Inc., Alberta, Calgary,
Canada.

[14] Group, T. N. (2008). Intrusion Prevention System (IPS)
Group Test. http://www.nss.co.uk.

[15] http://tomahawk.sourceforge.net (2007)A Methodol-
ogy and Toolset for Evaluating Network Based Intru-
sion Prevention Systems. TippingPoint Technologies.
http://www.tomahawktesttool.org/resources.html.

[16] Snyder, J., Newman, D., and Thayer, R. (2004) In the Wild:
IPS Tested on a Live Production Network.Network World

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

26 Z. CHEN et al.

Fusion. Network World, Inc., http://www.networkworld.com.
http://www.nwfusion.com/reviews/2004/0216ipsintro.html.

[17] Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Cun-
ningham, K., and Zissman, M. A. (2000) Evaluating Intru-
sion Detection Systems: The 1998 DARPA Off-line Intrusion
Detection Evaluation.Proceedings of the DARPA Informa-
tion Survivability Conference and Exposition: DISCEX-2000,
Los Alamitos, CA, January, pp. 12–26. IEEE Computer Soci-
ety.

[18] Haines, J. A., Rossey, L. M., Lippmann, R. P., and
Cunningham, R. K. (2001) Extending the DARPA Off-
Line Intrusion Detection Evaluations.Proceedings of the
DARPA Information Survivability Conference and Exposition
(DISCEX-01), Anaheim, CA, January, pp. 35–45. IEEE
Computer Society.

[19] Turner, A. (2007). Tcpreplay: Pcap editing and replay tools
for UNIX. http://tcpreplay.synfin.net.

[20] Song, D., Shaffer, G., and Undy, M. (1999) Nidsbench – A
Network Intrusion Detection Test Suite.2nd Int. Workshop
on Recent Advances in Intrusion Detection (RAID 1999),
West Lafayette, IN, September, pp. 1–21. Anzen Computing.

[21] Puketza, N. J., Zhang, K., Chung, M., Mukherjee, B.,
and Olsson, R. A. (1996) A Methodology for Testing
Intrusion Detection Systems.IEEE Transactions on Software
Engineering, 22, 719–729.

[22] Puketza, N., Chung, M., Olsson, R. A., and Mukherjee, B.
(1997) A Software Platform for Testing Intrusion Detection
Systems.IEEE Software, 14, 43–51.

[23] Antonatos, S., Anagnostakis, K. G., and Markatos, E. P.
(2004) Generating Realistic Workloads for Network Intru-
sion Detection Systems.Proceedings of the 4rth Interna-
tional Workshop on Software and Performance (WOSP’04),
Redwood Shores, CA, January, pp. 207–215. ACM.

[24] Dawson, S. and Jahanian, F. (1995) Probing and Fault
Injection of Protocol Implementations. Proceedings of
the 15th IEEE International Conference on Distributed
Computing Systems, Vancouver, BC, Canada, May/June, pp.
351–359. IEEE.

[25] Hall, M. and Wiley, K. (2002) Capacity Verification for
High Speed Network Intrusion Detection Systems.Fifth
International Symposium on Recent Advances in Intrusion
Detection (RAID 2002), Zurich, Switzerland, October, pp.
239–251. Springer Berlin/Heidelberg.

[26] Chang, S., Shieh, S.-P., and Jong, C. (2000) A Security
Testing System for Vulnerability Detection. Journal of
Computers, 12, 7–21.

[27] Athanasiades, N., Abler, R., Levine, J., Owen, H., and Riley,
G. (2003) Intrusion Detection Testing and Benchmarking
Methodologies.Proceedings of the First IEEE International
Workshop on Information Assurance, Darmstadt, Germany,
March, pp. 63–72. IEEE.

[28] Robert, D., Terrence, C., Brian, W., Eric, M., and Luigi, S.
(1999) Testing and Evaluating Computer Intrusion Detection
Systems.Communications of the ACM, 42, 53–61.

[29] Schaelicke, L., Slabach, T., Moore, B., and Freeland, C.
(2003) Characterizing the Performance of Network Intrusion
Detection Sensors. Proceedings of the 6th International
Symposium on Recent Advances in Intrusion Detection (RAID
2003), Berlin-Heidelberg, New York, September, pp. 155–
172. Springer-Verlag.

[30] MTR-97W096 (1997)Intrusion Detection Fly-Off: Implica-
tions for the United States Navy. McLean, VA.

[31] Maxion, R. (1998) Measuring Intrusion Detection Systems.
The First International Workshop on Recent Advances in
Intrusion Detection (RAID-98), Louvain-la-Neuve, Belgium,
September, pp. 1–41. ACM.

[32] Debar, H. and Wespi, A. (1998) Reference Audit Information
Generation for Intrusion Detection Systems.Proc. of the 14th
International Information Security Conference IFIP SEC’98,
Vienna, Austria, September, pp. 405–417. IFIP.

[33] Mchugh, J. (2000) Testing Intrusion Detection Systems: A
Critique of the 1998 and 1999 DARPA Intrusion Detection
System Evaluations as Performed by Lincoln Laboratory.
ACM Transactions on Infromation and System Security, 3,
262–294.

[34] Maxion, R. A. and Tan, K. M. C. (2000) Benchmarking
Anomaly-Based Detection Systems. 1st International
Conference on Dependable Systems and Networks, New York,
NY, June, pp. 623–630. IEEE.

[35] Mueller, P. and Shipley, G. (2001) Dragon Claws its Way to
the Top. Network Computing, www.networkcomputing.com,
August, pp. 45–67. United Business Media LLC.

[36] Yocom, B. and Brown, K. (2001) Intru-
sion Battleground Evolves. Network World
Fusion, http://www.networkworld.com, Octo-
ber, pp. 53–62. Network World, Inc.
http://www.nwfusion.com/reviews/2004/0216ipsintro.html.

[37] Vigna, G., Kemmerer, R. A., and Blix, P. (2001) Designing
a Web of Highly-Configurable Intrusion Detection Sensors.
Proceedings of the 4th International Symposium on Recent
Advances in Intrusion Detection (RAID 2001), Davis, CA,
October, pp. 69–84. Springer-Verlag.

[38] Geer, D. and Harthorne, J. (2002) Penetration testing:a duet.
Proceedings of the 18th Annual Conference on Computer
Security Applications, Las Vegas, NV, December, pp. 185–
195. IEEE Computer Society.

[39] Arkin, B., Stender, S., and Mcgraw, G. (2005) Software
Penetration Testing.IEEE Security & Privacy, 3, 84–87.

[40] Security, T. N. (2008). Nessus: The Network Vulnerability
Scanner. http://www.nessus.org.

[41] Fyodor (2008). Nmap: A Security Scanner.
http://www.insecure.org.

[42] LLC, M. (2008). The Metasploit Project.
http://www.netasploit.org.

[43] Focus, S. (2004). BugTraq Vulnerability Database.
http://www.securityfocus.com.

[44] Shieh, S.-P., Ho, F., Huang, Y., and Luo, J. (2000) Network
Address Translators: Effects on Security Protocols and
Applications in the TCP/IP Stack.IEEE Internet Computing,
4, 42–49.

[45] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1997)
Introduction to Algorithms. The MIT Press, Cambridge, MA.

[46] MITRE Organization (2005). Common Vulnerabilities and
Exposures. http://cve.mitre.org/.

[47] Sahni, S. K. and Gonzales, T. F. (1976) P-Complete
Approximation Problems.Journal of the ACM, 23, 555–565.

[48] Kann, V., Khanna, S., Lagergren, J., and Panconesi, A.
(1997) Hardness of Approximating MAX K-CUT and Its
Dual. Chicago Journal of Theoretical Computer Science,
1997, 1–18.

[49] Neijens, L. (2008). The Cyberkit Network Utility.
http://www.gknw.net/cyberkit.

[50] Systems, I. S. (2004). X-Force Security Center.
http://xforce.iss.net/securitycenter.

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

A PRAGMATIC METHODOLOGY FORTESTING IPSS 27

[51] Roesch, M. (1999) Snort – Lightweight Intrusion Detection
for Networks. USENIX 13-th Systems Administration
Conference – LISA’99, Seattle, Washington, USA, November,
pp. 229–238. The USENIX Assoication.

[52] Willigner, W., Taqqu, M. S., and Erramilli, A. (1996) A Bib-
liographical Guide to Self-Similar Traffic and Performance
Modeling for Modern High-Speed Networks.Stochastic Net-
works: Theory and Applications (Eds. F. P. Kelly and S.
Zachary and I. Ziedins), 4, 339–366.

[53] InSecure (2008). On the Definition of False Positive.
http://seclists.org/focus-ids/2005/Oct/0102.html.

[54] Afonso, J., Monteiro, E., and Costa, V. (2006) Development
of an Integrated Solution for Intrusion Detection: A Model
Based on Data Correlation.Proceedings of the International
Conference on Networking and Services, Silicon Valley, CA,
July 37. IEEE Computer Society.

[55] Dreger, H., Feldmann, A., Mai, M., Paxson, V., and Sommer,
R. (2006) Dynamic Application-Layer Protocol Analysis for
Network Intrusion Detection. Proceedings of the 15th
USENIX Security Symposium, Vancouver, BC, Canada, July-
August, pp. 257–272. USENIX.

[56] The Whisker Project (2004). Libwhisker: a Perl Module for
HTTP Testing. http://sourceforge.net/projects/whisker.

[57] Tool, T. S. (2004). SideStep: IDS Evasion Tool.
http://www.robertgraham.com/tmp/sidestep.html.

[58] Inc., F. (2007). FortiGate: an Anti-Virus and Intrusion
Prevention System. http://www.fortinet.com.

[59] Chen, Z., Wei, P., and Delis, A. (2008) Catching Remote
Administration Trojans.Software – Practice & Experience,
38, 667–703.

[60] Sanfilippo, S. (2008). Hping: An Active Network Security
Tool. http://www.hping.org.

[61] Staniford, S., Hoagland, J. A., and Mcalemey, J. M. (2002)
Practical Automated Detection of Stealthy Portscans.Journal
of Computer Security, 10, 105–136.

[62] MIT Lincoln Laboratory (2008). DARPA
Intrusion Detection Evaluation Data Sets.
http://www.ll.mit.edu/mission/communications/
ist/corpora/ideval/data/index.html.

APPENDIX A: TOMAHAWK

Tomahawk is a command-line IPS testing tool for network and
security performance evaluation [15]. Each test machine in
Tomahawk is equipped with three NICs: two cards (eth0and
eth1) connect to the internal and external ports of the IUT
while the third NIC acts as management and control channel.
Tomahawk employs a trace-driven method to conduct IPS
tests that honors packet orders in traces during the feeding
process. To determine the injection direction for a packet,
Tomahawk divides trace packets into those initiated by the
internal network and the rest originating from the external
network; the former is replayed via NICeth0while the latter
via eth1. Packets are parsed by theTomahawk sequentially and
partitioned exclusively based on their appearance order in
traffic traces. An IP address is considered to be external if
it acts as an source address in its very first appearance in
a trace. Similarly, an IP is treated as an internal address,
if it is first encountered as a destination address in a trace.
Tomahawk re-transmits a packet after a default 0.2 seconds
timeout period elapses in order to deal with packet-loss due

to actions taken by the IUT. To ensure that injected packets
are forwarded and subject to security inspection by IUTs,
Tomahawk rewrites the MAC addresses of replayed packets
on-the-fly. Moreover, each packet’s source/destination IP
addresses are also rewritten and the packet’s checksum is
updated accordingly. Tomahawk uses either pipelining or
parallel replay to generate high volume traffic when IPS
stress-testing takes place. It also provides mechanisms to
accurately control the bandwidth consumed by each test
machine and concurrent connections.

Tomahawk offers a testbed that helps conduct basic tests
for IPS performance evaluation. However,Tomahawk cannot
test IPS functionalities when the IUT function in routing
mode as it provides no address resolution capability on
MAC and IP associations. Its simplistic traffic partitioning
method tends to generate packets that are un-forwardable
to IUTs. Suppose that the first three packets of the
Cyberkit in Table 3 is (67.117.243.204, 67.117.44.225),
(67.119.190.203, 67.117.243.205), and (67.117.243.204,
67.119.190.203). Here, IP address pair (IPsrc, IPdst)
represents a packet fromIPsrc to IPdst. After processing
the first two packets,Tomahawk establishes that both IP
addresses 67.117.243.204 and 67.119.190.203 belong to
the internal network. When replaying packet 3,Tomahawk

rewrites it to have identical source and destination MAC
addresses simply due to the fact that both its source and
destination IP addresses are bound to the internal network.
Hence, the IUT declines to forward packet 3 and imposes no
security inspection on it causing a false negative. Moreover,
Tomahawk features no IP de-fragmentation mechanism
and consequently it cannot evaluate the capabilities of
IPSs with respect to traffic normalization and evasion
resistance. Finally, theTomahawk provides no capabilities for
manipulating replayed packets so that the ensued traffic can
be shaped to display characteristics such as specific traffic
intensity, protocol mixture, and attack density.

APPENDIX B: TCPREPLAY

Tcpreplay is a suite of utilities that help in the testing of
network devices such as IDSs/IPSs [19]. Following a trace-
driven methodology,Tcpreplay injects a captured trace to
devices under testing through either one or two NICs. In dual
NIC replay mode, packets in a trace are classified into client
or server initiated according to their origin. Before replay,
some protocol fields at data-link, network, and transport
layers can be rewritten so that the resulting data streams are
forwarded and inspected by the IUT. The main utilities of
Tcpreplay suite include: a)tcpprep: a tool that determines the
origin of a packet and classifies packets into two groups —
client- and server-initiated, b)tcprewrite: an editor for traffic
traces that can rewrite some protocol fields in TCP/IP packet
headers, and c)tcpreplay: a utility that feeds IUTs with
traffic traces via the two NICs at arbitrary speeds. Utility
tcpreplayalso takes into account the manipulation effects
on the packet streams by other tools such astcpprepand
tcprewrite.

To ensure that client-initiated traffic indeed goes through
the IUT in one direction while server-originated traffic

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

28 Z. CHEN et al.

traverses the opposite, thetcpprep resorts to heuristic
rules. For a replayed packet to be processed correctly and
subject to security inspection by the IUT, it has to be IUT-
forwardable. tcprewrite helps in this direction as it can
change the source and destination MAC addresses of packets
in traces. Furthermore,tcprewrite also allows to map IP
addresses from one subnet to another subnet. The utility
tcprewritesupports limited TCP/UDP editing as far as ports,
packet sizes, and checksums are concerned. With the help of
tcpprepand tcprewrite, tcpreplaymay replay the rewritten
trace with a specified speed. The trace can be injected as
quickly as the network infrastructure of the test environment
permits, at fixed pace (packets or bits per second), or at rates
proportional to its original speed. To control the replayed
period,tcpreplaycan be instructed to replay the same trace
multiple times.

Compared to theTomahawk, the packet partitioning method
of Tcpreplay may generate more viable packet classifications
and yields more packets that are IUT-forwardable. In
addition, Tcpreplay may rewrite some protocol fields before
a packet is replayed. However,Tcpreplay employs “send-
without-receive” replay policy and provides no mechanism
to record the security performance of IUTs. Thus, it cannot
accurately evaluate attack coverage, detection/prevention
accuracy, and traffic normalization of IUTs without heavy
manual intervention. Similar toTomahawk, the Tcpreplay does
not perform IP de-fragmentation and NAT. This lack in
capability rendersTcpreplay ineffective when it comes to
testing the resistance of IUTs to evasive attacks.Tcpreplay

cannot derive test cases or attack variants based on existing
traffic traces. This puts a burden on testers who have to
manually generate and capture all test-cases in real-world
environments. Finally,Tcpreplay can only test IUTs when the
latter work in switching mode as it does not have any address
resolution functionality.

APPENDIX C: GROUP-BASED TESTING

The population of attacks and their variants expands
exponentially every year. For instance,CVE dictionary
contains 15,107 vulnerabilities and exposures in 2005, but
increases to 30,000 in 2007. Similarly, the number of attack
signatures employed inSnort-Inlinealso enlarges steadily
and it is 4,637 in versionv.2.3.2. In our testbed, we attempt
to use group-based testing method to generate test cases
instead of the traditional enumeration-based method as the
latter has become impractical. By classifying attacks into
groups and testing IPSs with representative attacks selected
from each group rather than the entire attack repertoire, we
expect to reduce the number of test cases and consequently
improve testing efficiency. In the group-based testing, then
attacks are first classified intok groups with each groupn/k
attacks; an attack is selected from each group and used to
test the IPS. If it successfully detects the attack, the IPS is
considered to be able to identify other attacks in the group.
In case that the IPS fails to detect the selected attack, it is
further tested by using every attack in the group.

To compute the number of test casesN generated in the
group-based testing method, we assume that the IPS can

detect a given attack with probabilityp. We further assume
that each attack trace is usedX times on average, thenX is a
random variable with probability distributionq: q = p when
X = k/n andq = 1−p whenX = (n+k)/n. The expectation
of X is E(X) = pk/n + (1 − p)(n + k)/n = 1 − p + k/n,
therefore,N = nE(X) = (1 − p)n + k. When enumeration-
based testing method is employed, the number of test cases
is n as each attack is used for once. The group-based
method is more efficient than enumeration-based method
whenN < n, which can be easily manipulated intok < pn.
For instance, whenp = 0.9 andn = 15,107, group-based
testing method generates fewer test cases as long as attacks
are classified into less than 13,597 groups. In our testbed,
the number of groupsk can be adjusted with the help of
our proposed hierarchical classification scheme for attack
categorization.

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2008

