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Abstract. Environmental issues and consumer concerns have paved the
way for governments to legislate and help usher into operation alternative-
fueled vehicles and pertinent infrastructures. In the last decade, battery-
powered electric vehicles have been introduced and the service industry
has followed suit and deployed such trucks in their distribution networks.
However, electric vehicles do impose limitations when it comes to their
traveling range. Replenishing the power to the vehicle batteries may en-
tail lengthy charging visits at respective stations. In this paper, we exam-
ine the problem of routing and scheduling a fleet of electric vehicles that
seek to satisfy dynamic pickup and delivery requests in an urban envi-
ronment. We develop a web application to facilitate cooperation between
organizations and individuals involved in urban freight transport. The
application uses geolocation services and mobile devices to help manage
the fleet and make timely decisions. Moreover, we propose three heuris-
tic recharging strategies to ensure that electric vehicles can restore their
energy levels in an effective manner. Through detailed experimentation,
we show that the costs associated with the use of an electric vehicle fleet
concern mainly the size of the fleet. The impact regarding the total route
length traveled is less evident for all our strategies.

Keywords: Urban Cooperative Computing; Online Scheduling for Elec-
tric Vehicle Requests; Power Refueling for an Electric Vehicle Fleet;
GNSS.

1 Introduction

The impact that the transportation industry has on the environment has played
a pivotal role in shifting the attention of governments, commercial actors as
well as consumers to practices collectively known as green logistics. The aim of
green logistics is to not only consider economic factors, but also environmental
and social aspects so that communities can progressively attain production and
distribution of goods in a sustainable way [28]. It is also well established that
the cost for achieving noteworthy reductions in greenhouse effects is by and
large modest, especially if such costs are amortized over time [7]. As central and
regional governments enforce adopted environmental regulations and citizens



call for the embrace of innovative means for transporting goods, companies and
organizations have been responding by becoming early adopters of novel green
practices [I7]. Among all those involved, companies whose main line of business is
in transportation and logistics have shown intense interest and are early adopters
of the wide use of Electric Vehicles (EVs); compliance with environmental state
legislation and pertinent city ordinances is playing a key role. As a matter of
fact, a number of companies in the small-package shipping industry including
DHL, DPD and UPS, have been reportedly using electric vehicles for last-mile
delivery for some time already [16].

Logistics companies do face numerous challenges when it comes to fulfill-
ing their distribution tasks and attempting to meet deadlines. Studies indicate
that freight vehicles represent no more than 15% of total traffic flow in urban
areas [I], but due to their size and frequent stops for deliveries have a more sig-
nificant green-house impact than passenger vehicles. Moreover, diesel-powered
freight vehicles generate emissions that are very harmful to people. The total car-
bon dioxide emitted by all forms of transport in London in 2006 was 9.6 tonnes,
of which an impressive 23% was produced by freight vehicles alone [2]. The signif-
icant threat to public health and safety as well as the negative impact that such
emissions have on climate change could be addressed by using vehicles running
on alternative fuel. A further step would be to ideally cut down on the number
of vehicles traveling about urban areas by possibly increasing the refueling rate
of trucks already set in motion. Moreover, traffic congestion, air pollution and
unnecessary costs could all be reduced by minimizing the total mileage needed
to carry out by the fleet of the vehicles involved in the distribution roster.

The numerous and diverse aspects and tasks entailed in the transportation
and distribution of goods are typically modeled using one of the many gener-
alizations of the classic NP-hard vehicle routing problem (VRP) [6]. The main
concern here is to achieve minimization of the total costs incurred during the
transportation. A well studied flavor of the VRP is the Dynamic Pickup and
Delivery Problem with Time Windows (D-PDPTW) [24]. Advances in Intelli-
gent Transportation Systems (ITSs) including geolocation and object-tracking
have enabled the use of techniques to address the PDPTW problem in real-world
operational settings. This has been the case with companies offering same-day
pickup and delivery of letters and parcels. As devices and tools become amply
available with the introduction of the Internet of Things, the applicability of
the PDPTW-problem is on the rise. Among the applications that seize such op-
portunities for commercial success, UberPool [32] is likely the most prominent
example as it manages a fleet of vehicles serving simultaneously multiple requests
for pickups and deliveries of passengers.

Previous approaches on the Dynamic PDPTW ([24125/926|2T20/3] ) predom-
inantly focus on conventional vehicles and do not address the issue of scheduling
refueling stops, as the corresponding time needed is negligible. However, electric
vehicles (EVs) offer limited range which, at the moment, is not sufficient for
the typical delivery tours of logistics and transportation service providers [29].
Consequently, EVs used in such context will require to visit recharging stations
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Fig. 1. Pickup (green) and delivery (red) requests serviced through a fleet of electric
vehicles (orange). Recharging stations (blue) allow vehicles to restore their energy levels
but cost in terms of time and route length. The objective is to assign the requests to
vehicles in an effort to minimize the size of the fleet and the route length.

along their route(s) to replenish their power supply. We should point out that the
recharging times needed by EVs might be fairly significant, if compared to that
of conventional vehicles. The use of a fleet of EVs does evidently add another
dimension to the PDPTW problem, by incorporating the possibility of stopping
for a recharge using an appropriate policy. This is evident in Figure (I, which
illustrates three client requests (pickups and deliveries) and four recharging sta-
tions. If conventional vehicles were used, the problem of routing and scheduling
these requests would be to involve the minimum number of vehicles and assign
the requests to those who minimize the total route length. With the appearance
of EVs and their inherent refueling issues, the logistics problem at hand is cer-
tainly more complicated as we now have to cater for lengthier refueling stops.
Gongalves et al. [I4] approached the issue by considering a mixed fleet of con-
ventional and electric vehicles. However, their model does not consider specific
locations for the recharging stations. Instead, recharges are possible anywhere,
which might not be the case for quite a while into the future.

In this paper, we develop a framework for the effective coordination and mon-
itoring of the parties involved in urban distribution using electric vehicles. We
consider a fleet of EVs equipped with GNSS/GPS receivers that satisfies real-
time customer requests submitted through a REST API. Recharging stations are
positioned in specific locations and EVs may visit them while executing their
schedules to perform needed power refueling. Recharging times depend on the
charging level of vehicles. Furthermore, we formally introduce the Electric Vehi-
cle Dynamic Pickup and Delivery Problem with Time Windows and Recharging
Stations (EV-DPDPTW) and develop an on-line algorithm to find approximate



solutions. We adopt the rolling horizon principle and the drive first waiting
strategy respectively described in [24021], to address the scheduling and routing
of client requests. In addition, we propose three heuristic strategies that help
address the problem of recharging as currently experienced by EVs and examine
both their pros and cons. The Eager Recharging strategy exploits every oppor-
tunity in carrying out a recharge by visiting all stations that are close to client
requests, regardless of the vehicle’s energy level. The Lazy Recharging strategy
awaits until the battery of each vehicle is close to exhaustion before scheduling a
visit to a recharging station. Finally, our proposed Smart Recharging strategy
offers a hybrid of the first two approaches as it schedules visits to nearby service
stations before battery exhaustion, provided that the energy level is below a
preset level. We show that the emerging new dimension of the examined EV-
DPDPTW problem, i.e., the need for lengthy visits to refueling spots, plays a
significant role and does affect the fleet size regardless of the strategy followed.
Through experimentation, we also show that the Smart Recharging strategy
does indeed benefit from the advantages of the Eager and Lazy Recharging
strategies, and outperforms both with regards to both the fleet size and the
route length. Finally, we present results regarding the average energy level at
which each strategy schedules visits to recharging stations, a choice that has an
impact on the lifespan of a vehicle’s battery.

The rest of this paper is organized as follows: Section [2| provides definitions
for the PDPTW problems and requisite notions that are helpful in describing our
approach; the section also offers some background information helpful to better
understand the issues arising from the introduction of the EV fleet. Section
outlines the architecture of our cooperative approach and details our three sug-
gested strategies. We then present our simulation-derived results in Section [4
Finally, we review related work and offer concluding remarks and directions for
future work in Sections [f| and [6] respectively.

2 Preliminaries

In this section, we review some basic definitions that are helpful in introducing
our approach and briefly outline technology aspects related to the deployment
of EV fleets. In particular, we place emphasis on vehicles based on batteries.

2.1 The Pickup and Delivery Problem with Time-Windows

We commence by formally outlining the Static and Dynamic versions of the
PDPTW problem and by furnishing key aspects as defined in [20/21].

Static PDPTW: Let PT = {17,2%7 ... nT} be a set of pickup locations, and
P~ ={17,27,..,n"} a set of corresponding delivery locations. Pairs (i*,i™),
where 17 € Pt and i~ € P, represent transportation requests for performing
a pickup at location i+ and the associated delivery at location i~. We denote by
d;; the Euclidean distance from location i to location j, by t;; the travel time



from i to j, by s; the service time at location 4, and by [a;, b;] the time window
of a pickup or delivery request i.

The Pickup and Delivery Problem with Time- Windows is about determining
a set of optimal routes and corresponding schedules for a fleet of vehicles in order
to serve these transportation requests with respect to the following constraints:

Each route starts at the corresponding vehicle’s embarking position.

A pickup and its associated delivery are satisfied by the same vehicle.

A pickup is always made before its associated delivery.

All time windows are satisfied.

A vehicle is allowed to wait at its embarking position or at any pickup or
delivery location.

6. The total distance traveled by vehicles is minimized.

Sr Lo

A solution to the PDPTW determines an ordered sequence of locations for each
vehicle route (routing) and the arrival and departure times for all locations of
each route (scheduling). The PDPTW reduces to the Multiple Traveling Sales-
man Problem with Time Windows when the pickup and delivery locations of
every request coincide. The PDPTW is NP-hard, and deciding whether there
exists a feasible solution when the number of vehicles is fixed is NP-complete in
the strong sense [27].

Dynamic PDPTW: The Dynamic version of the PDPTW drops the assump-
tion that all information is available at the time of planning. Instead, the prob-
lem is to schedule delivery requests to vehicles in an online fashion. This setting
more closely reflects real-life situations where service requests are launched dy-
namically and a priori planning of operations is simply infeasible. The real-time
allocation of customers to vehicles yields an array of additional issues when it
comes to scheduling; choices selected by online algorithmic techniques may lead
to a total distance that is longer than the one traveled should all requisite in-
formation were known in advance. Fortunately, heuristic-based approaches are
known to offer good approximate solutions to the D-PDPTW problem [2T120].

2.2 EVs and Battery Development

EVs are divided into three main types: Battery Electric Vehicles (BEVs), (Plug-
in) Hybrid Electric Vehicles (PHEVs, HEVs), and Fuel Cell Electric Vehicles
(FCEVs). The cost of FCEVs is considered prohibitive at this moment [22]. In
this paper, we concentrate on BEVs which display two favorable features: they
do not produce any emissions and cause limited noise while in operation; these
features are due to the fact that such vehicles base their motion and overall
function entirely on batteries. These advantages have led to strong government
support on the development of BEV technology, which in turn is advancing at
an unprecedented pace.

The development of commercially viable battery technology has played a
major role in the widespread use of EVs. Although battery energy densities are
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Fig. 2. Architecture of our approach.

expected to triple by 2030 [8], contemporary batteries are inferior if compared
to gasoline [I5]. This results in noticeably long replenishing times for car bat-
teries and a relatively short driving range [23]. The preferred option for BEVs
is Lithium-Ion batteries, as their energy and power density as well as their bat-
tery lifespan are higher in respect to other alternatives, including Nickel-Metal
Hydride and the inexpensive Lead-Acid batteries [I§].

When it comes to operation and management of EV commercial fleets, the
time needed for re-charging EV batteries is crucial. More specifically, this time
period highly depends on the size of the batteries [33] and the type of facility
used; refueling of batteries may last from 30 minutes to several hours. Achieving a
full capacity battery recharge may call for a very long —if not outright excessive—
period of waiting time at the re-charging station. The latter is due to the fact that
the final phase of a recharge is not linear with respect to time and can itself last
for several hours [4]. Vehicle range and overall battery life are influenced by the
pattern(s) BEVs are charged and discharged. In particular, frequent discharges
to deep levels shorten their lifespan [19]. Similarly, frequently charging close to
the maximum capacity rapidly leads to battery deterioration [3I]. Such usage
patterns do limit the usable battery capacity. BEVs reportedly reach ranges of
150 miles on a single charge, which essentially restricts their usage to urban
areas [I1]. The typical delivery tours for logistics and transportation service
providers do surpass this value [29]. Therefore, visits to recharging stations along
routes are deemed necessary in the course of a business day.

3 Overview of our Cooperative Approach for EVs

We present here our framework for the cooperative management of a fleet of
EVs fielding dynamic pickup and delivery requests. Our architecture, depicted
in Figure[2] features a Web Application that employs an on-line algorithm specif-
ically designed for EV-DPDPTW. A REST API handles communication with
vehicles equipped with GNSS/GPS receivers and customers that have access
through desktops, laptops or mobile devices. Information submitted to the Web
Application is persisted to a database.
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We present in Figure [3| part of our REST APIEl Actions listed under ‘Re-
quests’ in Figure [3] enable authenticated customers to submit, edit and view
(their) requests. Submitted requests are passed to the on-line algorithm in order
to be assigned to a vehicle. Additionally, users with administrative privileges
are authorized to monitor the delivery process through the Vehicles actions. In
particular, issuing a GET '/vehicles' or '/vehicles/{id}"' request provides
a view of the status of all vehicles or the one specified with the id parameter,
respectively. We provide illustrations of such views in Figure[5} We can see that
OpenStreetMapEl powered maps report the position of the vehicle at any time,
as well as the customer requests associated with the vehicle. Vehicles are also
enabled to communicate with the Web Application through the REST APL
Their scheduling information can be retrieved through an authenticated GET
'/vehicles/{id}"' requesting JSON content. Moreover, vehicles may update
their current state through a PATCH '/vehicles/{id}' specifying their loca-
tion or list of items. An exemplary response to the first request is illustrated in
Figure [d We can see that the vehicle is scheduled to pickup and deliver 2 items
requests and will visit a recharging station in between.

Scheduling information is derived from our on-line algorithm for the EV-
DPDPTW. We employ the rolling horizon principle and the Drive First waiting
strategy [24l21]. Moreover, we propose heuristics to address the additional issues
that arise due to the use of BEVs, as well as the presence of limited recharg-
ing stations. Algorithm [I| provides pseudo-code for our on-line approach, which
extends the cheapest insertion procedure described in [21] in order to handle
visits to recharging stations as well. Our algorithm awaits for incoming requests

L Our REST API is documented using raml2html.
2 http://www.openstreetmap.org/
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Algorithm 1: On-line algorithm for the EV-DPDPTW.

input : Incoming requests Pt U P~
output : Routing and scheduling information.
1 begin

2 while true do

3 select the eligible unassigned requests;
4 foreach eligible request (i*,i~) do

5 foreach available vehicle do
6

7

8

find the best insertion;
if insertion triggers recharge then
L schedule recharge visit for the vehicle;

9 if there are vehicles that can serve (7,7~ ) then
10 select the best insertion;
11 insert the request in the selected vehicle;
12 else
13 L assign the request to a new vehicle;
14 | update scheduling information;

(line 2). Once a request arrives, we examine all possible pairs of feasible slots in
each route to schedule the request’s pickup and delivery (line 6). Insertions in
these slots may trigger a need for a visit to a recharging station to restore the
charging level of the vehicle’s battery (lines 7-8). If there are vehicles that can
accommodate this request, the algorithm selects the one that minimizes the to-
tal route length (line 10) and inserts the request (line 11). If, however, there are
no vehicles that can handle the request, we extend our fleet with a new vehicle,
and insert the request to it (line 13). Finally, we update the scheduling informa-
tion associated with our fleet (line 14). Lines (lines 7-8) outline the operations
needed to ascertain if a recharge is needed and ensure that the vehicles of the
fleet remain in operational state with regards to their battery charging level. We
note that we consider the uncapacitated version of the problem, that is appli-
cable in cases of carriers transporting small parcels or letters. Our algorithm is
easily extensible to the capacitated version simply by adding a corresponding
constraint.

In what follows, we outline our three heuristic recharging strategies: Eager,
Lazy, and Smart Recharging. They essentially serve as the mechanisms which
help decide when to schedule an EV visit to a service station.

3.1 Eager Recharging

The Eager Recharging strategy requires a vehicle to perform a recharge after
every delivery request it satisfies, given that the delivery location is close to a
recharging station. In particular, having found the best insertion of a request
in a route, we additionally investigate the possibility of scheduling a stop to a



recharging station by estimating the distance between the delivery location and
its closest service station. If this distance is smaller than a predefined limit, we
schedule the recharging stop. A visit to a service station is also scheduled if the
energy level of the vehicle is not sufficient for facilitating further client requests.

Figure illustrates a route formed after following the Eager Recharging
strategy. Our online algorithm schedules visits to recharging stops after two of
the three deliveries that are assigned to a particular vehicle. This is because the
distance of the corresponding stations from delivery locations is small. The third
delivery location does not have a nearby recharging station and the energy level
of the vehicle is sufficient to accommodate new requests.

The intuition behind the Eager Recharging strategy is that long recharging
stops may have a negative impact on the number of vehicles required to satisfy
the customer requests. Recharging of a battery is (up to a point) linear with
respect to time [4], and thus, vehicles that fully wind up their batteries need
to spend more time in recharging stations. Given the current range of electric
vehicles, we expect them to require visits to recharging stations along their
routes. Therefore, allowing vehicles to exhaust their energy levels is likely to
lead to multiple vehicles being incapacitated simultaneously, and, inevitably,
this may lead to an unnecessary expansion of the fleet.

Furthermore, the Eager Recharging strategy favors the dispersion of vehi-
cles in different locations of an area in a way similar to the waiting strategy
of Mitrovié-Mini¢ and Laporte [2I] by extending their stay close to recharg-
ing stations. As the case is with the waiting strategy, we expect that this will
have a negative impact on the size of the fleet, but may result to better vehicle
assignments for specific clients with pickups close to a recharging station.

The main drawback of the Eager Recharging strategy is that it does not
facilitate intense reordering of pending requests. As new clients arrive, our al-
gorithm examines the possibility of serving them in between requests that have
already been scheduled, as long as the time windows are not violated. The Eager
Recharging strategy leads to multiple short visits to recharging stops which es-
sentially limit the opportunities of re-evaluating scheduling decisions.

3.2 Lazy Recharging

The Lazy Recharging strategy requires a vehicle to perform a recharge only in
cases when the battery charging level is not enough to service any more incoming
requests. As there is a risk of exhausting the battery of a vehicle before ever
reaching a station, this strategy follows a more proactive approach. In Lazy
Recharging, a visit to a recharging station is scheduled at the end of every
current route but it only gets consolidated if there is no eligible request that can
feasibly be serviced before the scheduled recharging stop. Until then, every time
a new request is placed in the end of the route, the visit is re-scheduled after it.

Figure[5b| depicts the impact the Lazy Recharging strategy has. We see that
although the vehicle is scheduled to pass nearby recharging station locations, it
is not scheduled to visit one of them. A visit to a recharging station occurs only
when the battery of the vehicle is close to being exhausted, even though there



might not be a recharging station close by. Moreover, we observe that the order
in which both pickups and deliveries occur is slightly different than with the
Eager Recharging strategy. This is due to the fact that there were no delays
due to recharges early on, and thus, alternative routing choices were examined
and a better route was eventually realized.

There are several reasons that make the Lazy Recharging strategy promis-
ing: 1) allowing vehicles to exhaust their batteries enables the scheduling policy
to consider alternative plans for a longer time. This maximizes the probability
that client requests that would be best served together, i.e., nearby client re-
quests, are actually assigned to the same vehicle, 2) visiting recharging stations
only when it is absolutely necessary limits the number of total visits, as some
vehicles may avoid the need for a recharge along their route. This limits the total
route length, as each visit to a recharging station is associated with a distance
cost. 3) exploiting the full battery capacity of each vehicle limits the probability
that a second visit to a recharging station is needed for the same vehicle, which
limits the total route length as well.

On the downside, Lazy Recharging does not consider proximity when sche-
duling visits to recharging stations. This can lead to routes that schedule visits
to recharging stations after deliveries that are located faraway from any available
recharging station. Hence, vehicles may have to traverse long distances before
they can replenish their batteries.

3.3 Smart Recharging

Our last strategy, termed Smart Recharging combines the strengths of both
Eager and Lazy Recharging, aiming to capitalize on the advantages of both. In
particular, this strategy attempts to exploit the capacity of the vehicle’s battery
and the proximity of delivery requests to recharging stations. To this end, the
Smart Recharging strategy schedules proximity-driven visits to recharging sta-
tions. However, decisions based on proximity are only taken when a significant
part of a vehicle’s battery capacity is exhausted. That is, the Smart Recharging
strategy examines the possibility of visiting a recharging station, even though the
energy level of the vehicle’s battery allows for subsequent requests, if the charg-
ing level is below 35%E| As the case is with both Eager and Lazy Recharging, a
visit to a service station is scheduled when the battery is close to being exhausted
in the Smart Recharging strategy as well.

Figure [5c| shows a route formed after following the Smart Recharging strat-
egy. We observe that this strategy led to a route that resembles the route formed
with the Lazy Recharging strategy in its first part, and the route formed with
the Eager Recharging strategy in its second part. In particular, the recharging
station close to the first delivery location was ignored, as the energy level of the
vehicle was more than half full. This allowed for the better routing that occurred

3 This value is derived through extensive exploratory experimentation and works well
consistently throughout our experiments.



Fig. 5. Routing of a vehicle using Eager , Lazy , and Smart Recharging
strategies, as depicted in our Web Application. Smart Recharging allows room for
better routing decisions, while also favoring the avoidance of costly visits to faraway
recharging stations that necessarily occur when the battery of a vehicle is exhausted.

with Lazy Recharging. The recharging station close to the second delivery lo-
cation is, however, visited, as the energy level at that stage is lower than 35%.
This recharge restores the energy level of the vehicle, and a costly visit to a
recharging station after the third delivery is avoided, as the case is with Eager
Recharging as well.

4 Experimental Evaluation

We first present the experimental environment, the dataset and pertinent set-
tings that we applied in order to to evaluate our on-line approach. Then, we
proceed with the evaluation of all our proposed recharging strategies by answer-
ing the following questions:



— How many vehicles does each strategy require for the benchmark instances
of our dataset?

— How close to the solution that does not consider the need for visits to recharg-
ing stations is each one of our strategies with regard to the total mileage of
the fleet?

— What is the average level of battery that each strategy opts to perform a
visit to a recharging station at?

— How many visits to recharging stations does each strategy schedule?

4.1 Experimental Setting

We implemented and ran our on-line algorithm and the associated recharging
strategies using Java 8. The experiments were carried out on a computer with an
Intel® Core™ i5-4590, with a CPU frequency of 3.30GHz, a 6MB L3 cache and
a total of 16GB DDR3 1600MHz RAM and the Linux Xubuntu 14.04.03 (Trusty
Tahr) x86 64 OS. The dataset that was used for the experiments comprises
the 10-hour benchmark instances of Mitrovi¢-Mini¢ et al. [20] and is publicly
availableﬁ For each benchmark instance, we simulated the client pickup and
delivery requests by issuing the corresponding HTTP requests to our REST
API. The produced schedules were retrieved from the log files created during
execution. Our dataset contains 10 benchmark instances for each of the following
amount of client requests: 100, 300, 500, and 1,000. The service area is 60 x
60 km?, with few delivery locations (around 6%) outside this area. The vehicle
speed is 60 km/h. The vehicle fleet is empty at the beginning of the algorithm
execution and vehicles are added as client requests arrive. The initial point of
each vehicle (depot) is set to be (20,30), as in [20], to ensure that all requests
are serviced.

Given one of these instances, we determine the locations of seven recharging
stations by placing one in the depot and the other six in two quadrants of the
service area, in a random manner. The latter, serves the purpose of consider-
ing areas that do not provide access to recharging stations, which is expected
in real-life situations. The maximum distance of a recharging station from a
delivery location, at which the Eager and Smart Recharging strategies allow
visits before battery exhaustion is set to 2.0 km. This value, was experimentally
found to consistently allow more but not excessive recharges when compared to
the Lazy Recharging strategy. For the parameters associated with the batter-
ies of electric vehicles we adopt the criteria specified by Schneider et al. [29].
In particular, we set the battery capacity to the maximum of the following two
values: 1) the charge needed to travel 60% of the average route length of the so-
lution using our algorithm without energy constraints, and 2) twice the amount
of battery charge needed to travel between a customer location and a station.
Thus, we ensure that some vehicles will require a visit to a recharging station.
Table [1| depicts the average values used for our dataset, expressed in terms of

4 http://www.sfu.ca/~snezanam/personal/PDPTW/TestInstances/Rnd6_
1h-2h-4h-6h-7h-Req/|
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Table 1. Vehicle range and route length comparison. We report the average value of

each set of client requests.

No. of
clients

Range

Unlimited
Battery

Eager
Recharging

Lazy
Recharging

Smart
Recharging

100

146.78 km

2,780.94 km

3,694.72 km

3,677.31 km

3,677.31 km

300

165.03 km

6,907.15 km

8,806.8 km

8,770.21 km

8,756.77 km

500

183.63 km

10, 408.55 km

12,987.84 km

12,797.54 km

12,783.14 km

1,000

199.54 km

17,895.83 km

22,454.87 km

22,055.74 km

22,016.45 km

vehicle range (km). The consumption rate of the vehicles is set to 1.0. Finally,
we consider batteries that recharge linearly with time and set the time needed
for a complete recharge to be equal to three times the average customer service
time of the respective instance.

4.2 Fleet Size Comparison

We commence our evaluation by investigating the impact of all proposed strate-
gies on the minimization of the fleet size. We observe in Figure [6a] that all three
strategies which consider visits to recharging stations require significantly more
vehicles to serve the customer requests than what would be needed if the bat-
tery capacity was not a concern. In particular, using vehicles that do not require
recharging along their routes, we would need a fleet of approximately 45% less
vehicles for the instances of all client request sizes.

Figure [6a] also depicts that the Eager Recharging strategy requires the
largest fleet in most cases. This indicates that attempting to reduce the fleet size
by recharging sooner, and thus, performing more but smaller visits to recharging
stations is not a good strategy in the long term. The Lazy Recharging strat-
egy is more competitive, offering mild improvements over Eager Recharging.
However, Smart Recharging proved to be the most successful strategy with re-
gards to the fleet size, by outperforming Lazy Recharging in all cases, with the
exception of the 100 client request instances, where there was a tie.

4.3 Route Length Comparison

We proceed by examining the impact of our strategies on the minimization of
the route length. Table [I| shows the total mileage required for each of our three
strategies, as well as the case of using battery with unlimited capacity, to service
the client requests of our dataset. We observe that the increase inflicted upon
the total route length due to visits to recharging stations is not as significant
as the increase in the size of the fleet. This shows that all three strategies are
still able to limit the total mileage spent; the time vehicles spend in recharging
stations to restore their energy levels is more costly than the time needed to
actually visit a recharging station.
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Fig. 6. Comparison of the fleet size needed , the energy level of vehicles ,
and the average number of recharges performed when using our three proposed
strategies and a strategy without battery constraints. We report the average value of
each set of client requests. We observe that the impact of visiting recharging stations
is significant, and that the Smart Recharging strategy stands out by outperforming
Eager and Lazy recharging.

The Smart Recharging strategy again stands out and outperforms both
Eager and Lazy recharging. Therefore, we observe that Smart Recharging ex-
hibits the best performance with respect to both the fleet size and the route
length. This confirms our intuition that Smart Recharging benefits from the
positive aspects of both Eager and Lazy recharging.

4.4 Battery Level & Total Recharges Comparison

The lifespan of batteries is susceptible to frequent discharges to deep levels [19].
Therefore, when maintaining an electric vehicle fleet it is important to adopt
policies that slow down the reduction of usable battery capacity to extend the
battery life and preserve the vehicle range. Figure [6D] depicts the average per-
centage of the energy level of vehicles just before they visited a service station.
The results regarding the Lazy Recharging strategy are alarming. There were
cases when this strategy led to critically low energy levels (below 2%) before
scheduling recharges. This indicates that although the Lazy Recharging strat-
egy is very competitive, it may have a negative impact on the lifespan of the
batteries of vehicles. The Eager and Smart Recharging strategies maintained
a higher average energy level than Lazy Recharging. Therefore, they both may
contribute to the reduction of the fleet’s maintenance costs in the long term.

For completeness, we also present in Figure the total number of visits
to recharging stations the vehicles performed when following each of the three
strategies, for all the instances of our dataset. As was expected, we observe that
the Eager Recharging strategy led to more visits than the Smart Recharging
strategy, which in turn, led to slightly more visits than the Lazy Recharging
strategy.



5 Related Work

Problems related to transportation, such as traffic congestion and air pollution,
are increasingly troubling city and state authorities. This has led to the de-
velopment of urban shared-economy solutions that benefit from both the cloud-
computing and the use of mobile devices to offer cooperative information systems
minimizing transportation cost [30/13].

The ever-increasing interest of companies in green logistics practices has
driven carriers to an accelerating use of EVs. As typical delivery trips often
surpass the vehicle’s range and EV recharging time remains significant, schedu-
ling policies must be capable of effectively handling visits to service stations.
Gongalves et al. [14] make a first attempt towards the investigation of the ad-
ditional constraints imposed in a vehicle routing problem when BEVs are taken
into account. While focusing on the PDPTW, [14] considers a mixed fleet of
battery-powered EVs and conventional vehicles and assumes a limited driving
range and a realistic charging time for vehicles. However, the proposed model
allows BEVs to recharge anywhere, i.e., the locations of the recharging stations
are not specified.

Erdogan and Miller-Hooks [10] propose the Green VRP (G-VRP) that fo-
cuses on alternative fuel-powered vehicle fleets and study the effects of limited
vehicle driving ranges in conjunction with limited refueling infrastructure. The
G-VRP is formulated as a mixed integer linear program and features two con-
struction heuristics: the Modified Clarke & Wright Savings heuristic as well as
the Density-Based clustering algorithm. In addition to this, a customized im-
provement technique involving inter-tour vertex exchange and within-tour two-
vertex interchange and reordering is applied, in an effort to reduce the total
distance. However, as the G-VRP emphasizes on alternative fuel vehicles and
not specifically on BEVs, the charging delays of EVs are not considered.

Conrad and Figliozzi [5] introduced the Recharging Vehicle Routing Problem
(RVRP). Vehicles are assumed to have short range and charging times are taken
into consideration. However, recharging can only occur at certain customer lo-
cations. Schneider et al. [29] examine the electric vehicle routing problem with
time windows and recharging stations. The assumptions are similar to those pre-
sented in [5]. However, the recharging stations of [29] are not located at customer
locations. The proposed approach combines a variable search neighborhood algo-
rithm with a tabu search heuristic. Regarding the recharging stations, [29] uses a
new problem-specific neighborhood operator, called stationInRe, that performs
insertions and removals of recharging stations.

To the best of our knowledge, this is the first work to consider dynamic
pickups and deliveries that are serviced with the help of an EV fleet. The under-
lying assumption is that vehicles require visits to recharging stations dispersed
in a urban area. We address the problem by proposing three novel strategies,
namely Eager, Lazy, and Smart Recharging for managing the way vehicle re-
act to delivery requests arriving on demand and while the traveling of EVs has
commenced.



6 Conclusion and Future Work

In this paper, we focus on urban distribution of goods using electric vehicles
and develop a cooperative information system for the scheduling, coordination
and monitoring of the different parties involved. In compliance with introduced
policies for green logistics and for economic reasons, transportation and logistics
companies intend on deploying —or have already introduced— EVs in their pickup
and delivery fleets. A fleet made up entirely of EVs adds several new dimensions
to the classic vehicle routing problems. To this end, vehicles portray limited
traveling range and call for power recharges along their routes to designated sta-
tions or service centers. The expected average charging time for replenishing the
power supply to a vehicle may last up to several hours. Also, recharging stations
are far less common than gas stations and this is not expected to change soon.
Therefore, routing and scheduling an EV fleet to satisfy dynamic transportation
requests is far from trivial.

We build a system that enables communication with both customers and
vehicles and propose three heuristic recharging strategies to tackle this prob-
lem. The first two, namely Eager and Lazy Recharging reflect two extreme
situations: eagerly seeking nearby recharging stations to avoid lengthy visits to
faraway stations as well as exhausting the full battery capacity of vehicles before
scheduling a recharge. Our proposed third strategy termed Smart Recharging,
combines advantages from both Eager and Lazy Recharging, and manages to
outperform them in terms of both size of the fleet and total route length. We also
study the impact that our proposed strategies have on the lifespan of batteries,
and verify our intuition that Lazy Recharging may indeed speed up battery
deterioration; the other two strategies are however likely to extend the lifetime
of batteries.

Our plans for future work are in at least two areas: 1) explore the potential
of our three scheduling techniques in conjunction with the concurrent use of
tabu-search heuristics [12]. We could for instance perform a tabu-search once
the cheapest insertion has occurred and the benefits of all three policies have to
be ascertained, and 2) investigate the incorporation of deviations from customer
time-windows that frequently occur in pragmatic settings. We could potentially
handle such cases by incorporating a penalty proportional to these deviations in
our objective function.
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