
An Inline Detection and Prevention Framework
for Distributed Denial of Service Attacks

Zhongqiang Chen∗

Department of Computer
& Information Science
Polytechnic University
Brooklyn, NY 11201
zchen@milos.poly.edu

Zhongrong Chen
ProMetrics Consulting Inc.

480 American Ave.
King of Prussia, PA 19406

zhongrongchen@prometrics.com

Alex Delis†

Deprt. of Informatics
& Telecommunications
University of Athens

15771, Athens, Greece
ad@di.uoa.gr

July 18, 2006

Abstract

By penetrating into a large number of machines and stealthily installing malicious pieces of code,
a distributed denial of service (DDoS) attack constructs a hierarchical network and uses it to launch
coordinated assaults.DDoSattacks often exhaust the network bandwidth, processing capacity and in-
formation resources of victims, thus, leading to unavailability of computing systems services. Various
defense mechanisms for the detection, mitigation and/or prevention ofDDoS attacks have been sug-
gested including resource redundancy, traceback of attackorigins, and identification of programs with
suspicious behavior. ContemporaryDDoSattacks employ sophisticated techniques including formation
of hierarchical networks, one-way communication channels, encrypted messages, dynamic ports alloca-
tion, and source address spoofing to hide the attackers’ identities; such techniques make both detection
and tracing ofDDoSactivities a challenge and render traditionalDDoSdefense mechanisms ineffective.

In this paper, we propose theDDoS Container, a comprehensive framework that uses network-based
detection methods to overcome the above complex and evasivetypes of attacks; the framework operates
in “inline” mode to inspect and manipulate ongoing traffic inreal-time. By keeping track of connections
established by both potentialDDoSattacks and legitimate applications, the suggestedDDoS Container
carries out stateful inspection on data streams and correlates events among sessions. The framework per-
forms stream re-assembly and dissects the resulting aggregations against protocols followed by various
knownDDoSattacks facilitating their identification. The traffic pattern analysis and data correlation of
the framework further enhance its detection accuracy onDDoStraffic camouflaged with encryption. Ac-
tions available on identifiedDDoS traffic range from simple alerting to message blocking and proactive
session termination. Experimentation with the prototype of our DDoS Containershows its effectiveness
in classifyingDDoStraffic.

Indexing Terms:Distributed Denial of Service (DDoS) attacks,DDoS handlers and agents, flooding
attacks,DDoSdetection, mitigation, and prevention mechanisms

∗Work done while the author was withFortinet Inc., in Sunnyvale, CA.
†Partially supported by Pythagoras grant No.7410 and a Univ.of Athens–Research Foundation grant.

1 Introduction

Distributed Denial of Service (DDoS) attacks exploit host vulnerabilities to initially break into a large num-

ber of systems [26, 40]. A subset of these systems termed secondary victims, function as daemons or agents

and dispatch useless traffic to specific network nodes known as primary victims. The work of agents is coor-

dinated by a core of compromised sites which become the masters or handlers of an assault and are under the

direct control of attackers. In this manner, hierarchical attack networks are formed andDDoSattacks can be

launched [26, 23, 19]. Vulnerabilities exploited byDDoSare mainly due to the ambiguities in network pro-

tocols and flaws in their implementations [55]. For instance, theTargaflooding attack used by manyDDoS
tools crashes primary victims with malformed packets or illegal sequences of messages [55, 40]. Moreover,

logic errors in programs such asechoandchargenservices, system mis-configurations including support of

direct broadcasts, and an enormous number of authentication-unaware applications frequently facilitate the

formation ofDDoSattack networks [9, 32, 43].

In a typicalDDoSattack, high volume of artificial traffic is generated in order to exhaust network band-

width, waste CPU processing, and/or inundate critical information resources, rendering the victim system in-

accessible to its legitimate users [10, 40]. By following the end-to-end design paradigm, the current Internet

architecture places minimum functionality in intermediate switches, routers and gateways to achieve high-

throughput and gives little emphasis to security and accountability of such backbone elements [10, 40, 25].

The Internet’s inherent distributed control makes the defense of a single site irrelevant when it comes to

DDoSattacks [26, 55]. The synergy of multiple autonomous systems, the asymmetric placement of comput-

ing resources and the lack of any intelligence in intermediate nodes make it impractical to impose Internet-

wide security policies that control cross-domain attacks [12, 25]. It is in this context thatDDoSnetworks

can bombard victims with attacks that use IP addresses from unallocated Internet address blocks making

their origin nearly impossible to locate [48, 18].

The availability ofDDoSscripts and their ever improving user-interfaces literally make an attack a click

away [10, 40]. It is noteworthy that variousDDoSattack stages, including discovery of weak Internet links,

penetration of vulnerable sites, installation of malicious codes, and ignition of coordinated attacks, can be

highly automated and performed in a “batch” fashion. It thusbecomes a straightforward task to estab-

lish a largeDDoSattack network with minimal effort [40, 31]. Furthermore, the increasing population of

“always-on-but-unattended” Internet systems substantially contributes to the success of large-scale coordi-

nated attacks that have appeared in dramatically increasing rates since 1999 [45, 31, 55]. Well publicized

attacks targeted popular e-commerce sites includingYahoo, Ebay, andE*trade in 2000 [65]; Microsoft’s

name service was entirely crippled for days in 2001 [16]; while in 2002, thirteen top-level Internet domain

name servers were flooded simultaneously and seven of them were entirely shut down [45]. In order to better

understand the severity and intensity ofDDoSattacks, backscatter analysis was used [42]; it is speculated

that 12,805DDoSattacks occurred in a period of three weeks in 2001 with more than 5,000 distinct victims

belonging to 2,000 different domains. Among them, 90% lasted for one hour or less, 90% were TCP-based,

and approximately 40% were launched with intensity larger than 500 packets per second (pps), with the

maximum rate at around 500,000 pps.

A number of mechanisms have been proposed to prevent, mitigate, and curb the immensely destructive

effects ofDDoSattacks [22, 4]. Preventive measures attempt to eliminate the necessary conditions for the

formation ofDDoSnetworks with the help of vulnerability assessment tools, periodic network penetration

1

tests, and validation mechanisms against malicious piecesof code [58, 31]. By deploying distinct server

pools, load-sharing, traffic policing via shaping, and dynamic network reconfiguration [3, 54], computing

systems try to mitigateDDoSattack effects. Reactive mechanisms initially detect by searching for unique

byte patterns termed telltales [5] and subsequently block malicious activities [22, 5]. Identifying the origins

of attacks is also critical to attack accountability and a number of strategies includingICMP Traceback, IP
TracebackandCenterTrackhave been proposed to this effect [48, 53, 18, 14]. However, the hierarchical na-

ture ofDDoSnetworks which separates control flow from attacking trafficin connection with identity spoof-

ing makes network path tracing extremely difficult effectively shielding the assault instigators [23, 46, 35].

Consequently, traceback systems often lead only to zombiesinstead of intruders, inevitably limiting their

usefulness [6, 57, 48]. Intrusion detection/prevention systems (IDSs/IPSs) also do not fare well asDDoS
attacks camouflage their traffic [10] using one-way channelsnot only between attackers and masters but

also between handlers and daemons; such unidirectional flows make it a challenge for IDSs/IPSs to identify

culprits [40]. The use of strong cryptographic algorithms including the advanced encryption standard (AES)

andBlowfish to obfuscate traffic inDDoS tools renders many IDSs/IPSs ineffective [49, 40]. In addition,

the use of dynamically assigned TCP/UDP ports, covert channels and multiple transport services (e.g., TCP,

UDP, and ICMP) also affects the detection accuracy of most IDSs/IPSs as they typically employ fixed-port

detection mechanisms [47, 5].

In order to counter the above-mentioned evasive and complextechniques, we propose theDDoS Con-
tainer, a network-based detection/prevention framework that functions in “inline” mode, inspects every

passing packet, and therefore blocks anyDDoS traffic in real-time. In order to track suspicious activity,

our framework monitors sessions established amongDDoSattackers, handlers, and zombies as well as le-

gitimate applications, records and maintains state information for the lifetime of each session, and finally

archives such information once sessions terminate to help conduct post-mortem intra-session data fusion and

inter-session correlation. OurDDoS Containerstores encountered packets in every data stream, reassem-

bles them in correct order, and interprets the resulting aggregations against protocols followed byDDoS
tools such asStacheldraht, TFN2K,andTrinoo. This type of message sequencing morphs segmented data

streams into sequences of comprehensiveDDoSmessages, facilitating the analysis and classification of per-

tinent traffic. To further enhance its reliability and detection accuracy, our framework performs application

layer or “deep” inspection by scanning both protocol headers and payloads; theDDoS Containeranalyzes

the syntactic structures and patterns of traffic flows to identify DDoS activities that may use encryption.

As soon as a session has been identified asDDoS traffic, our framework can alert the user, block the flow

and/or even pro-actively terminate the connection. In ascertaining the effectiveness of our approach, we

carry an experimental evaluation with ourDDoS Containerprototype. Our results show that our framework

accurately identifiesDDoScontrol traffic among attackers, masters, and agents, and detects flooding attacks

quickly, therefore delivering its functionality in a robust and efficient way.

The remainder of this paper is organized as follows: Section2 discusses key features manifested byDDoS
attacks. Section 3 presents the functionalities and components of our framework while Section 4 outlines

the operation ofDDoSanalyzers. Results of our experimental evaluation are discussed in Section 5 while

related work and concluding remarks are found in Sections 6 and 7 respectively.

2

2 Key Features of ContemporaryDDoSAttacks

In this section, we outline basic mechanisms used to deploy aDDoSnetwork and discuss its communication

channels, message encryption methods, multiple evasion techniques and diverse attack types. We inter-

changeably use the terms intruder, attacker, orDDoS–client to refer to either the owner of aDDoSattack

network or the program used to control the network; the termshandler or master1 designate the nodes at the

first level of theDDoSattack network that are under direct control of an attacker;similarly, the terms agent,

daemon, zombie, or bcast2 are used to describe entities at the second level of theDDoSnetwork. Moreover,

secondary victimsrefer to handlers and zombies andprimary victimsportray the direct targets of an attack.

2.1 Phases and Organizational Aspects ofDDoSAttacks

A DDoSentails discovery and penetration of vulnerable systems, implantation ofDDoScodes, and attack

launching [40]. In the course of vulnerable site discovery,computers that harbor well-known defects in

network services, vulnerabilities in applications, or mis-configurations in security policies are detected and

recorded [10, 40]. Tools such asnmap, nessusandsscanare typically used to speed up the discovery pro-

cedure and control the volume of scanning traffic in order to avoid detection by firewalls and IDSs/IPSs [9].

System reconnaissance may occur by probing specific, random, or designated sub-networks as well as by

carrying out topological, permutation, or signpost scanning [40]. To go undetected, a cautious intruder

may initially penetrate a few vulnerable sites which are used as launching pads for recruiting of secondary

victims; this process may be recursively repeated.

During the implantation phase, the attacker installs malicious codes on compromised systems. This is

accomplished by transporting codes either from a central storage location or from other compromised ma-

chines in the previous phase [28]. The attacker may also remove break-in traces, set up passwords to

safeguard compromised systems from further attacks, or install traps to help detect whether administrators

of the victim systems are aware of the penetrations. SomeDDoStools may rename their executables so that

they are perceived as regular processes; for instance in theStacheldraht DDoSnetwork, the handlers and

agents are namedkswapdandnfsiodand appear as legitimate processes often escaping the administrator’s

attention. While at the attack stage, a culprit specifies thetype, duration, intensity as well as targets for the

attack; such instructions and their parameters are delivered to the handlers of the establishedDDoSnetwork,

further relayed to all zombies, and subsequently executed by zombies. Each handler or zombie may only

have limited information regarding its siblings in aDDoSnetwork. In this respect, even if some nodes of a

DDoSnetwork are detected and eventually recovered by administrators, other nodes may still continue their

malicious work unabated.

In an effectiveDDoS network, each compromised host undertakes a specific role while often forming

the popular multiple-level hierarchical network of Figure1. At the root, attackers, typically through client

programs, directly control all handlers to perform varioustasks, such as launching attacks, stopping on-going

activities and/or collect statistics about the network.DDoS-clients may feature specialized interfaces such

astubby in Stachelhardt, use standard network utilities such astelnetandSSH, and/or consist of customized

code. A number of handlers inDDoS networks are able to control multiple agents and monitor specific

1a compromised system that can penetrate and manage other machines by installing daemons on the latter
2a compromised computer that is implanted with a daemon controlled by DDoS masters and waits for commands to launch

DDoSattacks

3

TCP/UDP ports for instructions from clients as well as responses from zombies. Agents execute commands

on behalf of handlers and generate attack traffic streams that are ultimately dispatched to the primary victims.

As Figure 1 indicates, different handlers can share the samesubset of agents as is the case with handlers 2

and 3; similarly, an agent may accept instructions from multiple handlers as is the case with agentsi and

j. Signaling channels are established between clients and handlers as well as between handlers and agents

Client 1

Handler 1 Handler 2 Handler 3

Agent 1 Agent i

.......

.......

Client N

Handler M

Agent 2 Agent 3 Agent j Agent k Agent p

Victim

Figure 1: HierarchicalDDoS attack network
with Handler/Agent paradigm

......Client 1 Client N

Agent 1 Agent p

Victim

Agent 2 Agent 3 Agent i Agent j Agent k

Internet Relay Chat Network (IRC Net)

Figure 2: AnIRC-instigatedDDoSnetwork

while attack paths are formed between agents and primary victims; in this regard, the two types of channels

can follow different communication formats and utilize different transport services, making tracing handlers

or clients from primary victims or agents a challenge.

To improve their anonymity,DDoSsystems employ additional overlay networks such as Internet Relay

Chat (IRC) or Peer-to-Peer (P2P) channels between handlersand agents making it harder to be detected

by firewalls and IDSs/IPSs [10]. Figure 2 presents an attack network constructed with the help of an IRC

network where agents establish outbound connections to thelegitimate service port 6667, making it difficult

to distinguish communications induced byDDoSnetwork from legitimate traffic. To further enhance their

robustness, attackers frequently deploy channel-hopping, using any given IRC channel for only short periods

of time. Multiple IRC channels can be used to control theDDoSnetwork, the discovery of some agents may

lead no further than the identification of one or more IRC servers and their channel names used in theDDoS
network. However, theDDoSnetwork as an entity still remains intact. ADDoSnetwork can be also formed

using a Peer-to-Peer overlay constructed among compromised hosts as Figure 3 depicts. As soon as a peer

joins in, it announces its presence and becomes aware of the topology of the entire network via its attacking

machine. Information regarding active peers and ongoing activities are continually exchanged among peers

and updated throughout the entire network. In this context,the peer-to-peer UDPDDoS tool (PUD) can

connect compromised nodes over UDP on user-specified ports to form a P2PDDoSnetwork [51].

Furthermore,DDoSnetworks can be constructed based on specific applications such as Web services and

DNSsystems. To this effect, theDistributed DNS Flooder (DDNSF)tool generates a large number ofDNS

queries to overwhelmDNSservers [51], while theWebdevilcan be used to launchDDoSattacks by opening

and keeping alive multiple HTTP connections to a web server simultaneously, ultimately causing server

saturation [51].

4

Peer 2

Peer M

Peer N

Client 1 Client N

Peer 1

Peer 3

Peer I

Victim

Peer J

Figure 3:DDoSnetwork on P2P network

Client 1 Client N

Handler 2 Handler 3 Handler M

Agent 1 Agent i Agent k

Node 1

Victim

DDoS Attack Network

Amplification Network

Handler 1

Agent 2 Agent 3 Agent j Agent p

Node 2 Node T

.......

.......

.......

Figure 4: Amplification often used inDDoS
attacks

2.2 One-Way Communication Channels

In early DDoS attack networks such asTFN, all messages exchanged between handlers and daemons are

camouflaged asICMP Echoreply messages in order to escape detection. Each handler-to-daemon command

or reply is assigned a unique identifier which is included in the protocol fieldicmp id of ICMP messages. By

exchanging such commands, various tasks related toDDoSattacks can be performed. Table 1 describes a

sample communication session between a handler and a daemonin aTFN network. In the first message, the

handler (with IP 192.168.5.143) instructs the daemon (withIP 192.168.5.142) to launch an attack against a

victim (with IP 192.168.5.37) with thefloodmethod. The attack method orflood is indicated by the value of

890 (in decimal) in the protocol fieldicmp id of the ICMP header; while the victim’s IP (i.e., 192.168.5.37)

is sent to the daemon asICMP data. In its reply, as message 2 shows, the daemon indicates that the command

from the handler has been executed successfully as shown in the data section of theICMP message. With

message 3, the handler delivers the instructionstop current floodwith command identifier 567 (in decimal)

to the daemon, and the latter eventually answers with message 4 to confirm that the current flooding attack

is terminated.

Evidently, communications are bidirectional exposing much information to the more sophisticated secu-

rity protection systems and making their detection straightforward as their telltales patterns can be mapped

out to signatures. In addition, the source addresses ofICMP messages inTFN are not spoofed rendering

the discovery of handlers easy once daemons are identified. It is worth pointing out that messages ex-

changed between handlers and daemons inTFN as shown in Table 1 violate the conventional schema of

ICMP Echo replymessages, which requires that distincticmp seqs should be used for different messages

and fieldsicmp id and icmp seqshould be echoed back by recipients. Last but not least, commands and

their respective parameters inTFN appear in clear text, making them easily identifiable by security devices.

TFN2K, the successor ofTFN, establishes one-way channels between handlers and daemons as Table 2

depicts. Messages are transported from a handler with IP address 192.168.5.143 to a daemon with IP

192.168.5.142. In message 1, the handler instructs the daemon to launch aUDP flood attack against the

victim located at 192.168.5.37; in message 2, commandstop the current floodis delivered to the same dae-

5

dir len payload description
protocol: ICMP; handler (denote as H):192.168.5.143; daemon (denote as D): 192.168.5.142

1 H→D 41 IP header (20 bytes):|45 00 00 29 00 00 40 00 ip tos: 0; ip id: 0; ip ttl: 64;
40 01 AE 66 C0 A8 05 8F C0 A8 05 8E| src: 192.168.5.143; dst: 192.168.5.142;
ICMP header (8 bytes):|00 00 C7 54 03 7A 00 00| icmp type: 0 (Echo reply); icmpcode: 0;
ICMP data (13 bytes):|31 39 32 2E 31 36 38 2E icmp check: 0xC754; icmpid: 0x037A (dec. 890);
35 2E 33 37 00| icmp seq: 0; icmpdata: “192.168.5.37”;

2 D→H 53 IP Header (20 bytes):|45 00 00 35 00 00 40 00 ip tos: 0; ip id: 0; ip ttl: 64;
40 01 AE 5A C0 A8 05 8E C0 A8 05 8F| src: 192.168.5.142;
ICMP header (8 bytes):|00 00 CE CA 00 7B 00 00| icmp type: 0 (echo reply); icmpcode: 0;
ICMP data (25 bytes):|55 44 50 20 66 6C 6F 6F 64 icmp check: 0x98B1; icmpid: 0x007B (dec. 123);
3A 20 31 39 32 2E 31 36 38 2E 35 2E 33 37 0A 00| icmp seq: 0; icmpdata: “UDP flood: 192.168.5.37”

3 H→D 30 IP header (20 bytes):|45 00 00 1E 00 00 40 00 ip tos: 0; ip id: 0; ip ttl: 64;
40 01 AE 71 C0 A8 05 8F C0 A8 05 8E| src: 192.168.5.143; dst: 192.168.5.142;
ICMP header (8 bytes):|00 00 CF C8 02 37 00 00| icmp type: 0 (echo reply); icmpcode: 0;
ICMP data (2 bytes):|2E 00| icmp id: 0x0237 (dec. 567); icmpseq: 0;

4 D→H 50 IP Header (20 bytes):|45 00 00 32 00 00 40 00 ip tos: 0; ip id: 0; ip ttl: 64;
40 01 AE 5D C0 A8 05 8E C0 A8 05 8F| src: 192.168.5.142; dst: 192.168.5.143
ICMP header (8 bytes):|00 00 FF 09 00 7B 00 00| icmp type: 0; icmpcode: 0; icmpcheck: 0xFF09;
ICMP data (22 bytes):|55 44 50 20 66 6C 6F 6F icmp id: 0x007B (dec. 123); icmpseq: 0;
64 20 74 65 72 6D 69 6E 61 74 65 64 0A 00| icmp data: “UDP flood terminated”.

Table 1: Handler/daemonTFN messages withICMP

dir len payload description
protocol: ICMP; handler (denote as H):192.168.5.143; daemon (denote as D): 192.168.5.142

1-20 H→D 70 IP header (20 bytes):|45 00 00 46 F7 8E 00 00 ip tos: 0; ip id: 0; ip ttl: 64;
F5 01 DB 59 46 97 E6 00 C0 A8 05 8E| src: 70.151.230.0; dst: 192.168.5.142;
ICMP header (8 bytes):|00 00 A5 96 00 00 4F F7| icmp type: 0 (Echo reply); icmpcode: 0;
ICMP data (42 bytes):|6D 56 37 49 63 43 42 76 4A icmp check: 0xA596; icmpid: 0x0000;
6D 74 47 57 72 6D 68 31 72 2F 49 4F 41 41 41 41 icmp seq: 0x4FF7; cmd: “tfn -P ICMP
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41| -h 192.168.5.142 -c 4 -i 192.168.5.37”; 21 trailing As.

21-40 H→D 55 IP header (20 bytes):|45 00 00 37 6D B1 00 00 ip tos: 0; ip id: 0; ip ttl: 64; src: 35.45.251.0;
FB 01 6D B0 23 2D FB 00 C0 A8 05 8E| dst: 192.168.5.142; icmptype: 0; icmpcode: 0;
ICMP header (8 bytes):|00 00 62 19 37 6E 00 00| icmp check: 0x6219; icmpid: 0x376E;
ICMP data (27 bytes):|77 77 4C 47 6A 2F 43 7A 2F 36 icmp seq: 0x0000; cmd: “tfn -P ICMP
62 6F 2F 79 6D 4D 34 6B 59 64 75 51 41 41 41 41 41| -h 192.168.5.142 -c 0”; 5 trailing As.

41-60 H→D 59 IP header (20 bytes):|45 00 00 3B 3D D8 00 00 ip tos: 0; ip id: 0; ip ttl: 64;
F1 01 C7 BB 84 F7 79 00 C0 A8 05 8E| src: 132.247.121.0; dst: 192.168.5.142;
ICMP header (8 bytes):|00 00 EB 60 00 00 00 00| icmp type: 0; icmpcode: 0; icmpcheck: 0xEB60;
ICMP data (31 bytes):|4E 30 53 36 6E 4D 57 66 icmp id: 0x0000; icmpseq: 0x0000;
79 39 6D 71 71 4F 61 54 34 65 36 54 cmd: “tfn -P ICMP -h 192.168.5.142
43 77 41 41 41 41 41 41 41 41 41| -c 3 -i 1024”; 9 trailing As.

Table 2: Handler/daemonTFN2K Messages withICMP

mon. Clearly, inTFN2K, commands are no longer transferred in protocol fieldicmp id of theICMP header;

instead, they are embedded in the data section ofICMP messages with fieldsicmp id and icmp seqtaking

random values (or zero). The source IPs ofICMP messages are also randomized (i.e., spoofed), effectively

hiding the identity of the handler; for instance, in message1 of Table 2, the source IP is 70.151.230.0 and

then becomes 35.45.251.0 in message 2. The lack of any daemonfeedback makes it impossible for a han-

dler to ensure proper command dispatch and execution. To enhance the chances of their success, handlers

transport each of their commands multiple times, 20 by default, as Table 2 shows.

The one-way communication option can be also established with the help of TCP/UDP transport. Table 3

shows partial UDP uni-directional traffic emanating from aTFN2K handler. In this scenario, instruction for

aUDP attackagainst the victim located at 192.168.5.37 is delivered from the handler with IP 192.168.5.143

to the daemon at IP 192.168.5.142. For brevity, we present the UDP header and payload for the first message

while UDP headers only for other messages of Table 3 as all messages have the same UDP payload to

message 1. Although Table 3 essentially delivers the same command as the first message shown in Table 2,

6

UDP messages inTFN2K have spoofed source IP addresses, source ports, and destination ports, implying

that the daemon should work in raw mode in order to monitor allincoming UDP traffic. Similar observations

can be drawn from TCP-based communication channels. It is finally worth noting that checksums of the

dir len spoofed src IP UDP header description
protocol: UDP; handler (denote as H):192.168.5.143; daemon (denote as D): 192.168.5.142

1 H→D 70 157.253.87.0 UDP header:|86 9F ED 7C 00 35 81 71| udp sp: 34463; udpdp: 60796; udpcheck: 0x8171;
UDP data:|6D 56 37 49 63 43 42 76 cmd: “tfn -P UDP -h 192.168.5.142 -c 4
4A 6D 74 47 57 72 6D 68 31 72 2F 49 -i 192.168.5.37”;
4F 41 41 41 41 41 41 41 41 41 41 41 total 21 ’A’.
41 41 41 41 41 41 41 41 41 41|

2 H→D 70 157.253.87.0 |3A 5C EC 32 00 35 CE FE| udp sp: 14940; udpdp: 60466; udpcheck: 0xCEFE;
3 H→D 70 157.253.87.0 |F0 6F A8 9A 00 35 5C 83| udp sp: 61551; udpdp: 43162; udpcheck: 0x5C83;
4 H→D 70 157.253.87.0 |3B 7E 75 73 00 35 44 9C| udp sp: 15230; udpdp: 30067; udpcheck: 0x449C;
5 H→D 70 157.253.87.0 |13 FB 1C 71 00 35 C5 21| udp sp: 5115; udpdp: 7281; udpcheck: 0xC521;
6 H→D 70 157.253.87.0 |43 D6 ED C7 00 35 C3 EF| udp sp: 17366; udpdp: 60871; udpcheck: 0xC3EF;
7 H→D 70 157.253.87.0 |7E C1 C8 03 00 35 AE C8| udp sp: 32449; udpdp: 51203; udpcheck: 0xAEC8;
8 H→D 70 157.253.87.0 |A6 11 14 F2 00 35 3A 8A| udp sp: 42513; udpdp: 5362; udpcheck: 0x3A8A;
9 H→D 70 157.253.87.0 |D3 A9 D4 52 00 35 4D 91| udp sp: 54185; udpdp: 54354; udpcheck: 0x4D91;
10 H→D 70 157.253.87.0 |84 6D 7B A1 00 35 F5 7E| udp sp: 33901; udpdp: 31649; udpcheck: 0xF57E;

Table 3: UDP messages from handler to daemon inTFN2K

UDP packets created byTFN2K (i.e. field udp check) are incorrectly calculated as the required pseudo-

header is not included in the checksum computation. The 12-byte pseudo-header consists of fieldssource IP

(4 bytes),destination IP(4 bytes),reserved(1 byte and should be zero),protocol (1 byte) andtotal length

(2 bytes). The same design flaw also exists in TCP-basedTFN2K messages and can be used as a metric to

identify such traffic.

2.3 Encryption of Communication Messages

Another enhancement thatTFN2K maintains over its predecessor is the use of cryptographic methods in-

cluding the advanced encryption standard (AES), the international data encryption algorithm (IDEA), and

variants of CAST algorithms [49]. The obfuscation followedby TFN2K initially involves a message en-

cryption stage with the 16-byte block-oriented CAST-256 algorithm (along with the needed padding at the

end of the message), followed by an encoding stage using a base-64 scheme so that the output content is in

the printable range [A-Z, a-z, 0-9, +/]. The procedure used by TFN2K to encrypt and encode messages is

presented in Algorithm 1. It can be observed that the size of the encrypted messageelengenerated by the

encryption stage is different from the size of the input,clen, to the encoder. Given thatplen represents the

length of the original text, clearlyclen>elenasclen=plen+16; elencan be eitherplenor plen+(16-plen%16)

depending on whether or not the condition (plen%16=0) is satisfied. During the encoding stage, the input

is padded with(clen-elen)zeros whose content is ultimately turned into “A”s through the 64-base encoding

scheme; this yields an artifact at the end of the encoded cipher text that we could exploit to identifyTFN2K
traffic. For example, in message 1 of Table 2 there are 21 trailing characters “A” while in messages 2 and 3

there are 5 and 9 “A”s at the end of theICMP payload. The difference(clen-elen)essentially determines the

number of the trailing “A”s and takes values in the [1, 16] range. The base-64 encoding essentially transfers

every three bytes into sequences of four bytes and at the end of this stage the difference is in the range

[1,21]. We can overall compute the number of trailing “A”s based on the size of an encoded and encrypted

TFN2K message3. It is in general futile to attempt to recover original traffic without the encryption keys

3We discuss how we take advantage of this in our Algorithm 8

7

Algorithm 1 Encryption Procedure in theTFN2K DDoStool
1: Input: vector (plain, plen) whereplain is the plain text to be encrypted, andplen is its length
2: elen← plen, which is the real length of cipher text
3: if (plen is not a multiplier of 16)then
4: rem = plen mod 16;elen = plen + rem; plain is padded withrem zeros;
5: end if
6: plain is divided into 16-byte blocks;cipher is used to store encrypted version ofplain and initially set to be empty
7: for (each 16-byte blockB in plain) do
8: encryptB with CAST-256 algorithm; resulting cipher text is appendedto cipher;
9: end for

10: variableclen is the size ofcipher andclen = plen + 16;
11: if (clen is larger thanelen) then
12: rem = clen - plen; cipher is padded withrem zeros;
13: end if
14: cipher is divided into 3-byte blocks; the last block may contain 0, 1, or 2 bytes;out encode is set to empty and its lengthblen

is set to zero;
15: for (each 3-byte blockB in cipher) do
16: encodeB with base-64 algorithm; resulting block, 4-byte long, is appended toout encode; blen = blen + 4;
17: end for
18: if (the last block contains 1 byte)then
19: the single byte in the block is encoded into two bytes and appended toout encode; blen = blen + 2;
20: else if(the last block contains 2 byte)then
21: the two bytes in the block is encoded into three bytes and appended toout encode; blen = blen + 3;
22: end if
23: Output: (out encode, blen)

used [1, 29, 49], and thus, it is rather pragmatic to identifytraffic based on its message sizes, handshake

procedures and unique traffic patterns instead of its syntax.

In a similar fashion,Stacheldrahtmessages are encrypted using the Blowfish secret-key block cipher al-

gorithm that iterates a simple encryption function 16 timeswith the help of a Feistel network [49]. Using

64 bits block size and 448 bits keys, the algorithm features an expansion phase where a given key is con-

verted into several subkey arrays totaling 4,168 bytes and adata encryption phase where a 16-round Feistel

network is carried out [49]. Provided that the only possibleway to break Blowfish is a keyspace exhaustive

search [49], the only realistic option that remains for traffic identification is to extract specific characteristics

and/or patterns of messages and their exchange procedure. In Stacheldraht, attacker-handler connections are

password protected with attacker commands, handler responses, and passwords being Blowfish-encrypted.

The encryption keys are specified when theDDoS codes are compiled and may be changed whenDDoS
codes are installed by attackers in compromised machines; this process makes any clear text unavailable and

thus renders the search for telltales impossible. Algorithm 2 outlines theStacheldrahtencryption procedure

for communications between its attackers and handlers and reveals a few artifacts that may help us identify

pertinent traffic. First,Stacheldrahtuses a fixed length of 1024 bytes for its messages and consequently,

short messages may be padded with zeros before transmission. In most instances, the encrypted part of

the message is typically less than 100 bytes, leaving a very long string of zeros at the end. Second, the

handler-employedecho-backmechanism for processing the attacker password may also help detectStachel-
drahttraffic through correlation and/or sequence matching of information flows in both directions. Finally,

handler-banner features presented to the attacker can be exploited as well; among the four banner lines, two

have identical content. Although the two identical strings“***...**** |0A|” are encrypted, encoded, and

transferred with different keys at different times, they are obfuscated with the same key within the same

connection, clearly offering an opportunity for detection.

8

Algorithm 2 StacheldrahtHandler Encryption Procedure
1: Input: a TCP connection from the attacker
2: get password from the attacker; the password is encryptedwith Blowfish, encoded with base-64 scheme, and padded to 1024

bytes with zeros; decrypt the received password;
3: if (entered password is incorrect)then
4: echo back the incorrect and decrypted password to the attacker; close the connection and exit;
5: end if
6: echo back the encrypted and base-64 encoded password to the attacker (padded with zeros to 1024 bytes); present the attacker

with the following banner:
“****************************** |0A|”
“ welcome to stacheldraht|0A|”
“****************************** |0A|”
“type .help if you are lame|0A 0A|”;
each line of such greeting is encrypted with Blowfish and encoded with base-64 individually, padded to be 1024 bytes with
zeros, and flushed to the connection;

7: for (each command entered by the attacker)do
8: execute the requested command; the result of the command is encrypted with blowfish and encoded with base-64, padded

with zeros to 1024 bytes, and send back to the attacker;
9: close the connection and exit if the command is “.quit”;

10: end for

Table 4 shows a segment of traffic between aStacheldrahtclient and its handler using TCP transport

mechanism. Once the attacker-to-handler connection is established –not shown for brevity– the attacker

dispatches its Blowfish-encrypted and base-64 scheme encoded password padded with zeros at the end as

message 1 depicts. Due to their base-64 encoding, TCP message payloads are in the range [./, 0-9, a-z, A-Z]

followed by trailing zeros. Padding is a must for most messages asStacheldrahtfollows a fixed-size format.

In this respect, the length of the encrypted/encoded password in message 1 is 24 bytes requiring 1,000 bytes

of zeros for padding. The handler in message 2 echoes back thesame encrypted/encoded password to the

attacker once authentication process completes. Obviously, the Blowfish-encrypted password and its echo-

back instance are identical. In messages 3, 4 and beyond, thehandler transfers to the attacker its 4-line

dir IP:TCP:data TCP payload description
protocol: TCP; client (denote as C):192.168.5.143:58712;handler (denote as H): 192.168.5.142:65512

1 C→H 20:32:1024 |5A 54 74 72 4B 30 30 63 30 31 61 30 31 66 attacker enters password encrypted with
58 30 69 31 62 73 65 46 66 30 00 00 ...| blowfish; length: 24; padded with (1024 - 24)|00|;

2 H→C 20:32:1024 |5A 54 74 72 4B 30 30 63 30 31 61 30 31 66 handler echoes back the password;
58 30 69 31 62 73 65 46 66 30 00 00 ... 00| encrypted with blowfish; padded with (1024 - 24) zeros;

3 H→C 20:32:1024 |44 64 4F 51 48 31 32 4B 59 50 4D 30 handler presents banner to attacker;
44 64 4F 51 48 31 32 4B 59 50 4D 30 first, string (encrypted with blowfish):
44 64 4F 51 48 31 32 4B 59 50 4D 30 “****************************** |0A|”;
37 71 65 7A 46 2E 74 4A 44 6D 49 2F 00 00 ...| encrypted len: 48 bytes; padding (1024 - 48) zeros;

4 H→C 20:32:1448 |6F 73 4F 45 52 31 4A 51 41 77 6E 2F then, string (encrypted with blowfish):
4D 35 63 74 71 2E 69 69 50 43 37 30 “ welcome to stacheldraht|0A|”;
71 41 78 37 73 2E 45 78 62 4A 4C 2E encrypted len: 48 bytes; padding
6B 65 2E 4E 6A 31 4A 6B 4D 46 56 2F 00 00 ...| (1024 - 48) bytes zeros; string (encrypted with blowfish):
|44 64 4F 51 48 31 32 4B 59 50 4D 30 “****************************** |0A|”
44 64 4F 51 48 31 32 4B 59 50 4D 30 encrypted len: 48 bytes; pad (1024 - 48) zeros;
44 64 4F 51 48 31 32 4B 59 50 4D 30 cipher text is the same as that in previous
37 71 65 7A 46 2E 74 4A 44 6D 49 2F 00 ... 00| message; padded data continue to next msg;

5 H→C 1500 |00 00 ...|
|73 72 65 6C 79 2E 34 2F 49 78 73 30 blowfish encrypted string:
38 39 72 72 65 2F 4A 54 39 69 4B 2F “type .help if you are lame|0A 0A|”;
76 33 30 2E 73 30 75 56 4B 46 54 2E
58 46 66 53 58 2F 66 4D 47 50 44 31 00 00 ...|

Table 4: Messages between client and handler with TCP inStacheldraht

greeting message in encrypted/encoded form which gets displayed to the attacker by the client program

9

after decryption/decoding. Clearly, the TCP transport service may violate application message boundaries

by packing multipleStacheldrahtmessages into a single TCP packet, even though such messagesare handed

to the TCP/IP stack separately. For instance, the message-line “welcome to ...” and part of the following

line “*** ... ” are merged into a single TCP packet as message 4 shows; the remaining of the “*** ... ”

appears in the subsequent TCP packet (not shown). Hence, boundary inconsistencies between TCP packets

and application messages lead to the fact that TCP stream reassembly is required to identify boundaries of

application messages and then possibly search for patterns.

2.4 Evasive Techniques ofDDoSAttacks

Decoy packets and/or use of dynamic ports are frequently employed byDDoSattackers to avoid detection by

firewalls and IDSs/IPSs. In this regard,TFN2K is capable of transmitting an arbitrary number of decoy pack-

ets for every “real” packet obscuring the actualDDoSattack elements, such as launching points and attack

targets. Table 5 presents a segment of traffic generated by TCP-TFN2K where for every real packet a decoy

is created. Here, a handler dispatches the commandsstart UDP flood attackandstop current flood attack

through messages 1 and 3 while messages 2 and 4 are the respective decoys. Nearly all TCP header fields of

len payload description
protocol: TCP; handler (denote as H):192.168.5.143; daemon (denote as D): 192.168.5.142; direction: H→D

1 82 IP header (20 bytes):|45 00 00 52 65 F3 00 00 ip tos: 0; ip id: 0; ip ttl: 64;
CC 06 86 55 3F 26 FD 00 C0 A8 05 8E| src: 63.38.253.0; dst: 192.168.5.142;
TCP header (20 bytes):|33 1D 35 F1 00 00 00 00 tcp sp: 0x331D; tcpdp: 0x35F1; tcpseq: 0;
00 0C B6 F8 00 12 7D 75 FC D5 00 00| tcp ack: 0x000CB6F8; tcpoff: 0; tcp flags: ACK|SYN;
TCP data (42 bytes):|4B 4B 39 6B 68 6D 68 71 79 66 33 42 tcp win: 0x7D75; tcpcheck: 0xFCD5;
4A 64 76 2B 5A 52 47 6B 74 77 41 41 41 41 41 ...

2 82 IP header (20 bytes):|45 00 00 52 52 8D 00 00 D3 06 B4 51 ip tos: 0; ip id: 0; ip ttl: 64; src: 63.38.253.0;
3F 26 FD 00 0D A0 97 00| dst: 13.160.151.0; tcpsp: 0xF5A6; tcpdp: 0x276E;
TCP header (20 bytes):|F5 A6 27 6E 00 0B B3 D0 00 00 00 00 tcp seq: 0x000BB3D0; tcpoff: 0; tcp win: 0x377A;
00 12 37 7A 91 F3 00 00| TCP data (42 bytes): (same as # 1) tcp ack: 0; tcpcheck: 0x91F3; tcpflags: ACK|SYN;

3 67 IP header (20 bytes):|45 00 00 43 6C 5C 00 00 E1 06 84 60 ip tos: 0; ip id: 0; ip ttl: 64; src: 10.194.24.0;
0A C2 18 00 C0 A8 05 8E| dst: 192.168.5.142; tcpsp: 0xFF29; tcpdp: 0x78EF;
TCP header (20 bytes):|FF 29 78 EF 00 E7 F9 51 00 07 06 29 tcp seq: 0x00E7F951; tcpoff: 0;
00 10 C1 52 87 1B 00 00|; TCP data (27 bytes):|45 38 74 39 61 42 tcp ack: 0x00070629; tcpflags: ACK;
76 71 6C 54 6D 4C 78 38 78 6F 71 52 48 6A 66 51 41 41 41 41 41tcp win: 0xC152; tcpcheck: 0x871B;

4 67 IP header (20 bytes):|45 00 00 43 A6 62 00 00 D0 06 DF 54 ip tos: 0; ip id: 0; ip ttl: 64; src: 10.194.24.0;
0A C2 18 00 45 3B FD 00| dst: 69.59.253.0; tcpsp: 0x7A8E; tcpdp: 0x002E;
TCP header (20 bytes):|7A 8E 00 2E 00 00 00 00 00 00 00 00 tcp seq: 0; tcpack: 0; tcpoff: 0; tcp flags: ACK;
00 10 00 00 46 34 00 00| TCP data (27 bytes): (same as # 3) tcp win: 0; tcp check: 0x4634;

Table 5:TFN2K handler/daemon TCP messages

handler-originated messages are spoofed with random or zero values; as expected, the source IP addresses

in IP headers are also fake. While the destination IP addresses of “real” messages are set to be the true

daemon IP values, respective addresses are spoofed in decoypackets. More specifically, the destination of

the commandstart UDP flood attackin message 1 displays the true 192.168.5.142 daemon IP; thisis not the

case with message 2 where the destination IP address has beenrandomly assigned the value 13.160.151.0.

It is worth noting that the fieldtcp off of the TCP header in all messages is zero; in regular circumstances,

this field indicates the starting point of TCP data and shouldbe at least five reflecting the minimum size of

a legitimate TCP header without any TCP option (i.e., 20 bytes, or 5 32-bits). This abnormality may create

problems to some network devices if they fail to handle such unexpected messages, or may escape from the

detection by security systems if the latter do not perform protocol anomaly analysis. The values of the field

tcp checkin TCP headers are also incorrectly calculated since in allTFN2K-generated TCP messages the

10

required pseudo-header is not included in the checksum calculation. It is finally noteworthy that the content

of decoy packets is identical to the real packets; this can bereadily identified, should a protection system

features deep-inspection or full-content scanning.

The use of dynamic ports for both handlers and agents is another common technique to evade detection.

For instance, by default,Mstreamhandlers listen to TCP port 6723 for attacker/client commands and they

monitor UDP port 9325 for daemon-originating information;changing these ports is rather straightforward.

Similar observations can be drawn for agents inMstreamand handlers/agents in otherDDoSattack tools.

Although IP addresses are generally randomized, (i.e., spoofed), they can take any values specified by

attackers in order to elude detection by ingress/egress filtering mechanisms4.

In the course of an attack, agents dispatch streams of packets to primary victims in either constant or

variable rate. After the onset of an attack, agents frequently generate packets as fast as their resources

permit. However, abrupt increases in traffic volume can easily raise suspicion. By adjusting attack rates of

individual agents so that only small traffic volumes are generated, detection by security mechanisms may

be avoided. Even under such light volumes, the resulting traffic may be intensive enough to bring a victim

down if the number of agents is very large. In addition,DDoSattacks vary values in protocol header fields to

evade fixed traffic patterns whose signatures can be detectedby security devices. The use of different agents

in different attacks reduces the probability for identification as well. DDoS attack tools also use the self-

updating characteristic in order to change their communication patterns and enhance their functionality;

to this effect, theStacheldrahtcommand.distro can be used by an attacker to instruct and coordinate all

handlers and agents to install new versions of their code. Similarly in TFN2K, the same objective is attained

through the use of commandremote command execution(i.e., command code 10 of Table 14) that allows

the execution of arbitrary shell commands on allDDoSentities.

2.5 Diverse Types ofDDoSAttacks

The UDP flooding attacks exploit the fact that for every incoming UDP packet, the recipient sends back an

ICMP destination unreachable message if the destination port is closed; otherwise, wasteful processing of

junk-packets occurs. InTCP SYNflood attacks, steady bogus connection requests fill up TCP connection

tables of victim systems; should victims attempt to sendTCP-RST-packets to connection initiators that have

provided spoofed addresses, further network congestion isgenerated. The timeout mechanism associated

with a pending connection proves ineffective if an attackercontinues to generate IP-spoofed packets faster

than the rate with which the victim’s pending connections expire. TheICMP echo request/replyattacks

dispatch requests to specified targets with fake source IP addresses, forcing the victims to generate an equal

number of replies. VariousTargaattacks create packets with malformed or abnormal values atdifferent

protocol fields, transmit them to specified targets, and in this manner cause the victims to crash, freeze,

or manifest unexpected behavior. In amplifier or reflector attacks such as those instigated bySmurf and

Fraggle, traffic with the primary victim IP as its source is created and transferred to networks supporting

direct broadcast; each host of the networks then generates replies to the primary victim congesting the

network [40]. Figure 4 shows aSmurf attack on a hierarchicalDDoS network; every host creates replies

to messages originated in theDDoSnetwork but disguised as coming from the primary victim. With every

packet of the attack being repeated by every host, the amplifying effect may become grave. Clearly, such

4For example inTFN2K, this can be done for packets between handlers and agents if the option-S is specified when these
components are activated.

11

IP-direct-broadcast packets should be blocked at LAN borders.

Table 6 presentsTFN2K-daemon generated traffic using a mixed attack strategy where packets are created

based on ICMP, TCP, and UDP protocols with ratio 1:1:1. A number of unique artifacts emerge: firstly, the

IP header fieldip flagsof every attack packet is set to zero regardless of the transport protocol used; this

implies that thedon’t fragmentbit is not set byTFN2K. Secondly, thetime-to-live (ipttl) field of ICMP

packets has zero value; this causes the packet to be dropped by any router along the attack path if agents

are not co-located in the subnet of victims. Thirdly, all TCP-generated attack packets feature zero values

in their tcp off fields rendering them malformed. Finally, checksums for TCP/UDP packets are incorrect as

pro len payload description
daemon (denote as D):192.168.5.142; victim (denote as V): 192.168.5.37

1 ICMP 92 IP header (20 bytes):|45 00 00 5C 28 09 00 00 ip flags: 0; ipttl: 0;
00 01 FD D0 CE FA 00 00 C0 A8 05 25| ip src: 206.250.0.0; ipdst: 192.168.5.37;
ICMP header (8 bytes):|08 00 F7 FF 00 00 00 00| icmp type: 8 (Echo request); icmpcode: 0;
ICMP data (64 bytes):|00 00 ... 00| icmp check: 0xF7FF; icmpid: 0; icmp seq: 0;

2 TCP 40 IP Header (20 bytes):|45 00 00 28 AB 69 00 00 ip flags: 0; ipttl: 232;
E8 06 F8 21 1A 77 4F 00 C0 A8 05 25| ip src: 26.119.79.0; ipdst: 192.168.5.37;
TCP header (20 bytes):|69 D8 3D 55 00 0A DB 7F tcp sp: 0x69D8; tcpdp: 0x3D55; tcpseq: 0x000ADB7F;
12 3B 00 00 00 22 15 9D 26 85 1F 13| tcp ack: 0x123B0000; tcpoff: 0; tcp flags: 0x22;

3 UDP 29 IP header (20 bytes):|45 00 00 1D 60 18 00 00 ip flags: 0; ipttl: 206;
CE 11 F1 42 D1 A7 04 00 C0 A8 05 25| ip src: 209.167.4.0; ipdst: 192.168.5.37;
UDP header (8 bytes):|FF FE 00 02 00 09 FF F5| udp sp: 0xFFFE; udpdp: 2; udplen: 9;
UDP data (1 bytes):|00| udp check: 0xFFF5; udpdata:|00|.

Table 6: Mixed attack created byTFN2K DDoSattack tool

pseudo-headers are not included in their computation.

By examining both packet header and payload and taking into account the targeted protocols and applica-

tions at a site, we may be able to derive specific characteristics of an attack. Table 7 showsTFN2K-agent-

generated traffic usingTargaattack type. All packets have zero-value in theirtime-to-live (i.e., ipttl) field,

some have invalid values in theirprotocolfield (e.g., 0x94 is an invalid protocol identifier in message6), and

others may show random values in theip flagsfield (i.e., 0x2 in message 4). In addition, a number of pack-

ets may have non-zero values in theirfragmentoffsetfield as message 5 shows. The above discrepancies

render the packets malformed and readily identifiable through protocol analysis. AsTFN2K attack packets

do not conform with ICMP, TCP and UDP specifications, values in some protocol fields are abnormal and all

TCP/UDP packets have incorrect checksums. Last but not least, a number of techniques used in traditional

denial-of-service attacks can be used inDDoSattacks as well including theland, teardropandping-of-death

methods. In thelandattack, the victim is bombarded by packets having identicalsource and destination IPs.

The teardropattack exploits known weaknesses in the IP defragmentationof the TCP/IP implementation;

by creating a series of IP fragments with overlapping offsets, teardropcauses a victim to crash if it is unable

to properly handle this overlapping problem. Theping-of-deathcrafts fragmented ICMP messages larger

than the allowed maximum IP frame size of 65,536 bytes, causing some systems to either freeze or crash.

3 A Framework for Containing DDoSAttacks

To address the aforementioned deficiencies of available systems, we proposed an extensible frame-

work termedDDoS Container, which functions in “in-line” manner and employs network-based detec-

tion/prevention methods to reliably identify and manipulate DDoS traffic in real-time. Our framework

12

pro len payload description
daemon (denote as D):192.168.5.142; victim (denote as V): 192.168.5.37

1 IP 449 IP header (20 bytes):|45 00 01 C1 0F 23 00 00 ip flags: 0x0; ipttl: 0; proto: 0xFF;
00 FF D2 4B 53 02 BE 00 C0 A8 05 25| ip src: 83.2.190.0; ipdst: 192.168.5.37;
IP data (429 bytes):|D1 0D 6F 33 65 0E 4D cE 9C 14 ...|

2 IGMP 430 IP header (20 bytes):|45 00 01 AE 72 67 00 00 ip flags: 0; ipttl: 0; proto: 0x02 (IGMP)
00 02 B4 80 E6 98 E6 00 C0 A8 05 25| ip src: 230.152.230.0; ipdst: 192.168.5.37;
IGMP payload (410 bytes):|EF 4F 5D F7 76 40 E4 31 ...|

3 IDP 228 IP header (20 bytes):|45 00 00 E4 7F 33 00 A3 ip flags: 0; offset: 1304; ipttl: 0; proto: 0x16;
00 16 BD 65 C5 FA F1 00 C0 A8 05 25| ip src: 197.250.241.0; ipdst: 192.168.5.37;
IDP payload (208 bytes):|A8 13 D4 E2 C4 46 D5 F5 ...|

4 ICMP 286 IP header (20 bytes):|45 00 01 1E 9C 0E 20 00 ip flags: 0x2; ipttl: 0; proto: 0x1 (ICMP);
00 01 98 09 7C FA 23 00 C0 A8 05 25| ip src: 124.250.35.0; ipdst: 192.168.5.37;
ICMP header (8 bytes):|8A 76 4F D1 E2 FE 7B 09| icmp type: 138; icmpcode: 118; icmpcheck: 0x4FD1;
ICMP data (258 bytes):|23 0D 8D 0C 46 3D 03 82 94 24 ...| random content;

5 TCP 158 IP header (20 bytes):|45 00 00 9E D9 C5 00 01 ip flags: 0; ipfrag: 8; ip ttl: 0;
00 06 15 27 97 9F 6E 00 C0 A8 05 25| ip src: 151.159.110.0; ipdst: 192.168.5.37;
IP payload (138 bytes):|D7 16 95 6F BA 83 38 57 ...| random content;

6 IP 194 IP header (20 bytes):|45 00 00 C2 2B E7 00 00 ip flags: 0; ipfrag: 0; ip ttl: 0; proto: 0x94;
00 94 1C 5B 2F 99 7C 00 C0 A8 05 25| ip src: 47.153.124.0; ipdst: 192.168.5.37;
IP payload (174 bytes):|7F 46 C6 09 8E 73 A3 35 ...| random content;

Table 7:Targaattack created byTFN2K DDoSattack tool

monitors the progress of all connections initiated by either normal applications orDDoS tools, conducts

data correlation among different sessions or messages in the same traffic, and performs stateful and layer-7

inspection. For any identifiedDDoSsession, multiple action options can be specified to manipulate it, such

as packet dropping, session termination, or connection blocking. In this section, we outline the proposed

extensible framework and discuss its components.

3.1 The Architecture of the ProposedDDoS Container

The main transport mechanisms used to communicate among clients, handlers, and agents in aDDoSnet-

work are TCP, UDP and ICMP. In the context of ourDDoS Containersuch traffic has to be uniformly

represented so that we can effectively process packets and/or message streams established in variousDDoS
sessions. We represent TCP, UDP, and ICMP connections as follows:

• TCP sessions are delimited by their distinct connection anddisconnection phases. The connection

involves a three-way handshake procedure in which a client initiates a connection with TCP-SYN

packet, the recipient or server responds with a TCP-SYN-ACKpacket that finally incurs a TCP-

ACK packet from the initiating client. The disconnection procedure typically involves a four-message

exchange with each side dispatching a TCP-FIN packet and corresponding acknowledgments for re-

ceipts of the other end’s TCP-FIN message[15]. Therefore, aTCP connection can be uniquely identi-

fied by the tuple:<client-IP,client-port,server-IP,server-port,TCP>.

• UDP sessions can be similarly identified with this five-element tuple<client-IP,client-port,server-

IP,server-port,UDP>. However, there is no specific connection or disconnection procedure for a

UDP session, we use a timer to control the lifetime of a UDP session.

• ICMP sessions also comply with the above format, should we replace the elements ofclient-portand

server-portwith the concatenation of fieldsicmp typeand icmp codeand fieldicmp id respectively.

The tuple now has the format:<client-IP,icmptype+icmpcode,server-IP, icmpid,ICMP>.

TCP/UDP sessions establish bi-directional data streams between clients and servers while ICMP sessions

create only uni-directional streams from the originator (client) to recipient (server). Each such data stream

13

can be identified with a four element tuple:< IPs, PORTs, IPd, PORTd>, whereIPs andPORTs are

the IP address and port number for the source of the stream andIPd and PORTd are their destination

counterparts. Messages exchanged amongDDoS clients, handlers, and agents are generated according to

their own syntax rules and specific semantics; the three underlying transport services may destroy applica-

tion message boundaries and thus demarcation discrepancies betweenDDoSmessage borders and transport

packet inevitably occur. In addition, TCP may deliver duplicate or out-of-order packets, which are reassem-

bled to obtain the original data stream at the destination. In general, we expect that multiple concurrent

sessions exist among the elements ofDDoSattacks at any specific time and coexist with sessions of regular

applications.

The “in-line” operation mode for ourDDoS Containerrenders it an indispensable component of the

network infrastructure that effectively intercepts and inspects packets. Our framework dissects every packet

according to the TCP/IP suite to locate anomalous or evasivetraffic based on manipulation of protocol

fields. OurDDoS Containerkeeps state records for all established connections and this information remains

accessible beyond the lifetime of a session for correlationanalyses that lead toDDoS traffic detection. The

ability to track the state of all active sessions facilitates stateful inspection, intra-session data fusion, and

inter-session correlation forDDoS-traffic. By correlating data streams within a single session, we determine

the success of an attacker’s operation. With the help of information from different sessions, we can associate

an attacker’s control and data channels.

To remap a sequence of packets to possibleDDoSmessages, ourContainerre-assembles (or sequences)

all stored packets in their correct orders and interprets the resulting aggregations based on syntax, charac-

teristics, and semantics ofDDoS systems. The message sequencing helps restore message demarcations

imposed by the application layer; without it,DDoSsessions may go undetected if their messages span over

multiple packets or multiple messages are packed in a singlepacket. The large number of existingDDoS
systems and their variety of underlying protocols essentially leads the design of ourDDoS Containerin
using multiple techniques to classify data streams that include fine-tuned signatures, traffic correlation, pro-

tocol dissection, anomaly analysis, and stateful inspections. To this effect and as Figure 5 shows, ourDDoS
Containerintegrates a number of needed modules including TCP/IPProtocol Decoder, Behavior Police,

Session Correlator, Message Sequencer, Traffic Distinguisher, andTraffic Arbitrator.

Frequency Table

Defunct Sessions

Free Session Pool

Active Sessions

Hash−Tables

Incoming Packet

Protocol Decoder (PD)

Container for Distributed Denial of Service Attacks

Traffic Arbitrator (TA)

Traffic Distinguisher (TD)

Outgoing Packet

white list/black list

Message Sequencer (MS)Session Correlator (SC)

Behavior Police (BP)

Figure 5:DDoS ContainerArchitecture

DNS Analyzer

Traffic Dissectors

TFN Analyzer

TFN2K Analyzer

Stacheldracht Analyzer

Mstream Analyzer

Trinoo Analyzer

Traffic Manager

Kaiten Analyzer

Knight Analyzer

P2P DDOS Analyzer

Other

from Message Sequencer

to Traffic Arbitrator

Figure 6:Traffic Distinguisher (TD)Components

14

When a packetP arrives at ourDDoS Container, theProtocol Decoder (PD)initially dissects it according

to the TCP/IP-suite, and violations of the standard specifications are identified leading to the immediate

dropping ofP . To detect traffic generated by TCP/UDP/ICMP flooding attacks, theBehavior Police (BP)

attempts to correlateP with different existing traffic flows and evaluates the behavior of the aggregated

data streams. For instance, if the total number of packets, includingP , to the same target machine exceeds

a specified threshold (e.g., 100 pps),P is flagged as part of an ongoing flooding attack. Once processed

by BP, packetP is then forwarded to moduleSession Correlator (SC)which determines the sessionS for

packetP ; if no such session exists, a new one is created. Based onS and correlation results with other

sessions, theDDoS Containermay be able to determine whetherP belongs to aDDoSsession. Next,P is

handed to moduleMessage Sequencer (MS)along with its session informationS; here,P is re-assembled

with other packets of the same stream to form a sequence of packets or asuper-packet. This super-packet is

surrendered toTraffic Distinguisher (TD)that essentially certifies that the application type of the session is

either regular or generated by anDDoS tool. Finally, theTraffic Arbitrator (TA)module storesP , updates

information ofS according toP and may create alerts ifS is part of aDDoSsession. It is worth pointing

out that ourDDoS Containeroffers a fast processing option for certain origins of traffic which we certainly

know are either trusted or untrusted. Trusted origins are specified in awhite-listand their traffic is forwarded

without any inspection as Figure 5 shows. Untrusted points make up ablack-listand traffic originated from

such nodes is blocked. If ourDDoS Containercannot keep up with the ongoing network traffic, it can

be configured to use either a “fail-open” or “fail-close” policy; the former forwards packets without any

inspection while the latter simply drops all packets.

3.2 Protocol Decoder (PD)

It is often the case thatDDoS tools use raw sockets to fan out packets as quickly as possible, bypassing

normal traffic procedures including retransmission, finite-state-machine inspections, and congestion control.

This essentially means that attackers should fill every protocol field for their crafted packets including IP,

TCP, UDP and ICMP headers. To speed matters up,DDoStools usually insert constant values for the same

protocol fields for all packets generating artifacts in traffic flows. For instance, TCP-flood attack packets

generated byStacheldrahtalways assume the same sequence number (i.e., 0x28374839) and bits don’t

fragmentandmore fragmentin field ip flagsof their IP headers are not set in clear violation of the TCP/IP

specifications. The control traffic amongDDoSattack entities shows similar characteristics. For example

messages sent from clients to handlers over TCP inTFN2K always have value of zero in theirtcp off field

creating a zero-size TCP header, an evident sign of malformed packet. In addition, the incorrect checksums

for all TFN2K TCP/UDP packets reveal inconsistencies with the TCP/IP standards.

Algorithm 3 shows the main functions of thePD module whose objective is to decode every incoming

packetP according to TCP/IP specifications and detect existing anomalies. Initially, PD decodes the IP

header ofP , inspects its checksum, and dropsP if its checksum is in error. Then,PD decodesP ’s transport

protocol header based on its fieldprotocol (i.e., ICMP, TCP, or UDP). PacketP may be dropped according

to the configuration by the system administrator if it contains any protocol anomaly. Finally,PD invokes

all relevantDDoStool analyzers that identifyDDoSsession exclusively based on irregularities presented in

protocol fields ofP . To speed up this examination,DDoSanalyzers register withPD their handlers used to

perform protocol anomaly verification. IfP is detected as part ofDDoStraffic streams, thePD bypasses all

other components and handsP to Traffic Arbitrator for alerting, blocking and/or disconnection action.

15

Algorithm 3 Skeleton for theTCP/IP Protocol Decoder (PD)
1: P ← newly arrival packet
2: IP-checksum-org← original IP checksum ofP ; IP-checksum-new← computed checksum ofP based on IP header ofP ;
3: dropP and exit ifIP-checksum-newis not the same asIP-checksum-new;
4: decode other IP protocol fields ofP , includingtime-to-live, prot, ip flags, ip id, ip off, and option;
5: if (prot is TCP)then
6: tcp-checksum-org← original TCP checksum ofP ; tcp-checksum-new← computed checksum ofP based on its TCP header

and pseudo-header; dropP and exit iftcp-checksum-newis not the same astcp-checksum-new;
7: analyze other TCP protocol fields ofP , includingtcp sp, tcp dp, tcp seq, andtcp ack.
8: else if(prot is UDP)then
9: check its checksum just like TCP; analyze other UDP protocol fields ofP , includingudp sp, udp dp, udp len.

10: else if(prot is ICMP) then
11: check its checksum just like TCP; analyze other ICMP protocol fields ofP , including icmp type, icmp code, icmp id, and

icmp seq.
12: end if
13: for (each registered analyzerA for aDDoS in the framework)do
14: invoke the protocol anomaly handler ofA with P ; if the return code for invocation ofA is negative dropP and exit;
15: end for
16: P is handed over toBehavior Police (BP)

3.3 Behavior Police (BP)

The objective of this module is to identify illegitimate activities, especially various flooding attacks, using

heuristics such as thresholding, statistics as well as rules and profiling. To accomplish its overseeing work,

BPmaintains aFREQUENCYTABLE that records occurrences and timestamps of traffic groups designated

with the help of flow templates; these templates specify the protocol fields to be checked, including protocol

types, source and destination IPs, as well as source and destination ports. In addition, flow templates can de-

fine relationships among different protocol fields or packets in the same traffic group. For instance by using

the tcp seqfield, we can specify that all packets in the traffic group should have the same or monotonically

increasing sequence. Similarly, the sourcetcp sp and destinationtcp dp TCP ports can be used to group

packets that satisfy the conditiontcp sp+tcp dp=constant.

By defining a flow template as “all packets with the same destination IP”, we can identify single-target

flood attacks. For the traffic of Table 6,BPcreates aFREQUENCYTABLE entry for traffic group “destina-

tion IP=192.168.5.37” also indicating 3 observed packets for the flow in question. A similar traffic group can

be designated with template “destination IP=192.168.5.37” for the traffic of Table 7 and the corresponding

FREQUENCYTABLE entry maintains 6 observed packets. If both the above streams occur simultaneously,

only one traffic group with template “destination IP address= 192.168.5.37” is formed with 9 encountered

packets. In order to reduce the memory consumption by theFREQUENCYTABLE, we use the sliding

window mechanism for each traffic group; here, only those data within the current time window –typically

one second– are stored.

Using the FREQUENCYTABLE, BP computes various metrics and compares them against

administrator-set thresholds to detect traffic anomalies.One such metric is the flow intensity and is de-

fined as the number of observed packets per second (pps) within a specific traffic group. ShouldBP be

monitoring theTrinoo UDP-flood attack of Table 8 using the template “destination IP=192.168.5.37” and

a threshold of 1,000 pps, it can compute the flow intensity by recording the timestamp of every arriving

packet; an intensity value of 26,820 UDP pps would certainlypoint to an ongoing attack. Similarly,BP

may monitor traffic originating from specific IP addresses, ports or services. By defining the flow template

16

timestamp sport dport size payload description
protocol: UDP; daemon (D): 192.168.5.141; victim (V): 192.168.5.37;

1 38.280830 32770 41577 4 |00 00 00 00| begin the UDP flood byTrinoo
2 38.280834 32770 40361 4 |00 00 00 00| same src port but different dst port
3 38.280839 32770 52178 4 |00 00 00 00|
4 38.280980 32770 41786 4 |00 00 00 00| attack rate is not constant
5 38.281024 32770 6756 4 |00 00 00 00| packet size always the same
6 38.281068 32770 11412 4 |00 00 00 00| payload is set to be zero
7 38.281111 32770 50010 4 |00 00 00 00|
8 38.281155 32770 10055 4 |00 00 00 00| dst port is random
9 38.281199 32770 10262 4 |00 00 00 00|
10 38.281243 32770 61703 4 |00 00 00 00|
11 38.281288 32770 4461 4 |00 00 00 00|
12 38.281298 32770 14226 4 |00 00 00 00|
13 38.281302 32770 35838 4 |00 00 00 00|
14 38.281352 32770 6760 4 |00 00 00 00| attack intensity: 14/(38.281352 - 38.280830) = 26820 (pps)

Table 8: UDP flooding created byTrinoo

“traffic from the same IP and the same UDP-port”, a traffic group for “192.168.5.141:32770” can be created

for the traffic of Table 8 and the corresponding intensity rate can be computed.

3.4 Session Correlator (SC)

The purpose of this module is to maintainDDoS Containersession-wide information; each connection is

represented with thesessionstructure depicted in Table 9. As mentioned in Section 3.1, asession is uniquely

identified by the first five fields of Table 9 or tuple<SIP, SPORT, DIP, DPORT, PROTO>. TYPE indicates the

session application type such asTrinoo, Mstream,or TFN2K; TYPE is set tobypassif the application

type has not been determined after inspecting a certain amount of traffic or the session belong to a regular

application.CONFIRM indicates whetherTYPE is determined using correlation of both streams of a single

session, through association with other active or defunct sessions, or simply set using different messages in

uni-directional traffic. Correlation of different messages within the same data stream is valuable in situations

where asymmetric routing occurs and the two traffic streams in a connection take different network paths

with only one of the paths being visible to ourDDoS Container. START andLAST represent a session’s

creation and most recent access time. The messages originated from the initiator of the session and the

corresponding ones from the recipient are stored inCLIENT andSERVERrespectively and the utility of

these two lists is discussed in Section 3.5.

To offer efficient operations on sessions and facilitate intra- and inter-session correlations,

we employ a two-staged approach in organizing pertinent data. We first use a hash func-

tion H(IPs,PORTs,IPd,PORTd,PROTO)5 to “scatter” sessions in space. Next, a splay treeT anchored off

each entry of the hash table helps organize all sessions thatpresent the same hash value. Each node ofT rep-

resents a session as described bysession(of Table 9) and the tuple< IPs, PORTs, IPd, PORTd, PROTO>

acts as the key for accessingT . The advantage of splay trees is that more frequently accessed items move

closer to the root amortizing future look-up costs [52]. Thecall session-find(P) performs hash table lookup

and followed by retrieval of the corresponding splay tree and information about the session in whichP be-

longs to. Information about recently terminated or defunctsessions are helpful to determine the application

5ourH() is based onh=((IPsxorPORTs)xor(IPdxorPORTd)xorPROTO) and is defined in a similar to Linux Kernel manner
[36] asH()=(hxor(h >>16)xor(h >>8))mod(h size-1) where “>>” is the right-shift operation, andh sizeis the size of the hash
table.

17

field name size description
bytes

SIP 4 IP address of the host at one end of the connection
DIP 4 IP address of the host at the other end of the connection
SPORT 4 port number (TCP or UDP) of the host with IP addressSIP; or (icmp type | icmp code) for ICMP.
DPORT 4 port number of the host with IP addressDIP; or (icmp id) for ICMP.
PROTO 1 protocol utilized by the session (TCP, UDP, or ICMP)
TYPE 4 identify traffic type, such asTrinoo, Mstream, Stacheldraht; can be “bypass”
CONFIRM 4 TYPE is drawn from uni-or bi-directional streams, intra- or inter-session correlations
START 4 creation time of the session
LAST 4 last active time of the session in either direction (i.e., transmission of packet)
SERVER 4 pointer to serverstreamdata structure
CLIENT 4 pointer to clientstreamdata structure

Table 9: Key fields used in thesessionstructure

type of currently active sessions. Defunct sessions are maintained in a similar manner as active ones, but

in separate hash table and splay trees. To reduce resource consumption, we only maintain the TCP/UDP

ports and ICMP type/code for defunctDDoSsessions. Once a new session is activated, the information on

defunct sessions are consulted in hope that via data-correlation we can determine the application type of the

session in question. We base this correlation on the premisethat services at specific IP addresses and ports

may not frequently change; for example, they remain bound for periods of less than 5 minutes.

SC helps monitor unsolicited traffic including ICMP-echo replies without corresponding requests,

TCP SYN|ACK packets without correspondingSYN packets in place, and DNS replies without

matching requests; all these may revealDDoS attacks in formation. For example, when Mes-

sage 1 of Table 1 is inspected,SC determines that it is an ICMP-echo reply and the tuple

< 192.168.5.142, 192.168.5.143, 0x0800, 0x037A, ICMP> is formed. Here, string 0x0800 in the concate-

nation of theicmp typeandicmp codefields (0x08 and 0x00), while 0x037A is theicmp id of the message.

The tuple assists in accessing the session structure and corresponding ICMP-echo request elements, if ex-

ists. As an ICMP-echo request is never created and transmitted in Table 1, the result of look-up is negative;

subsequently,SCidentifies Message 1 as unsolicited and may drop it accordingto an administrator-set con-

figuration. Lastly, flows into the un-populated IP-space andunexpected TCP/UDP ports as well as inactive

services are detected by theSCmodule as well.

3.5 Message Sequencer (MS)

TheMessage Sequencer (MS)facilitates packet re-assembly, traffic normalization, and enables stream state

tracking. We use the structurestreamwhose key elements are shown in Table 10 to organize packets of

a traffic stream within a session. For TCP streams, the fieldstatetracks the originator’s connection state

which can beSYN-SENT, SYN-RCVD, ESTABLISHED, or CLOSE; fields next-seq, last-ack, andwindow-size
maintain the next expected sequence number, acknowledged sequence number by the stream recipient, and

the amount of transmitted data without acknowledgment. Thedatafield is a pointer to aninterval tree[17]

used to organize all encountered packets in a single stream.Eachinterval treenode represents a packetP in

the stream; the search key for the tree is in the range [SSNp, ESNp] where SSNp and ESNp are the start- and

end-sequence numbers of the packetP in the node. SSNp takes its value directly from thetcp seqfield in

the TCP-header ofP , while ESNp is computed as (ip total-(ip hlen+tcp off)≪2), whereip total is the total

length of packetP , ip hlen is the size of the IP-header ofP , andtcp off is the size of the TCP-header ofP .

We use the second part of thestreamstructure of Table 10 to handle UDP/ICMP streams. The pertinent

18

interval treeis anchored atdataand fieldsdata-sizeandtotal-sizeindicate the bytes stored in the tree and

total number of bytes transferred in the stream. Based on this information,MS attempts to determine the

type of a session; if more than a configurable amount of traffic–typically set to 5 KBytes–for a data stream

of a session has been inconclusively inspected, the sessiontype is declaredbypass; no further analysis is

carried out on the session’s subsequent data. On the other hand, as soon as a session’s type is determined,

all its stored packets are flushed out and any forthcoming packets are not stored to achieve lower memory

consumption and network latency. For each tree-stored UDP/ICMP packetP , its SSNp and ESNp values

are assigned as follows: SSNp is the current value of variabletotal-size, which is initialized to zero for every

newly established session; ESNp is the sum oftotal-sizeand the size of the UDP-payload inP . Upon storing

a packetP , thetotal-sizeis updated appropriately.

field name size description
bytes

TCP stream
state 4 state of the stream such asCLOSED, LISTEN, SYNSENT, SYNRCVD, ESTABLISHED
next-seq 4 next sequence number expected, computed based on information of sender
last-ack 4 most recently acknowledged sequence number based on information of receiver
win-size 4 size of window advertised by receiver
data 4 pointer to ainterval treestoring all packets of the stream, flush out periodically or after acknowledgment

UDP or ICMP stream
total-size 4 total size of data transferred in the stream so far
data 4 pointer to aninterval treestoring packets of the stream, periodically flushed out
data-size 4 number of bytes stored in theinterval tree

Table 10: Key fields of thestreamdata structure

We define relationships between two intervals based on theirstart- and end-sequence numbers. For any

two intervals [SSNx, ESNx] and [SSNy, ESNy], the former is less than the latter if ESNx is smaller than

SSNy; similarly, the former is larger than the latter if the SSNx is higher than ESNy. The two intervals

duplicate each other if their SSNs and ESNs are exactly the same; they overlap if they share a common

sequence range and each has its own distinguished sequence range as well; or are contained if one’s interval

is a true subset of the other. Given that we deal with a packetP and an interval treeI, we use the above

relationships in our interval-tree operations as follows:

• interval-insert(I, P): inserts a node for packetP into I.

• interval-delete(I, P): removes the node for packetP from I.

• interval-retrieve(I, P): finds the set of nodes inI that may duplicate, overlap, or contain packetP .

• packet-build(I, Tstart, Tend): creates a super-packetO from I; the sequence number interval ofO is

[Tstart, Tend].

• interval-traversal(I): performs an in-order walk of treeI and lists all packets according to their non-

decreasing SSN orders; this helps in writing the stream intopermanent storage.

• session-find(P): locates the sessionS of a packetP .

• stream-find(S, P): finds the stream that a packetP of a sessionS belongs to.
Algorithm 4 shows the stream re-assembly process thatMS carries out. For an arriving packetP , MS

retrieves information on its sessionS and data streamI with the help of callssession-find()andstream-
find(). Through theinterval-retrieve(I, P) call, MS checks the relationship betweenP and any received

packet in the same streamI while ensuring that there is no protocol anomaly inI. If the outcome ofinterval-
retrieve(I, P) is empty, thenP is a new packet as evidently no packet retransmission occurs; otherwise, the

common parts ofP and those packet(s) produced byinterval-retrieveshould have the same content; this is

the case whereP is a result of a TCP retransmission. Should the content comparison reveal differences,

19

Algorithm 4 Message SequencerAlgorithm
1: P ← incoming packet;
2: S ← session-find(P)
3: if (TYPEandCONFIRMof S are set)then
4: P is part ofDDoSsession; hand it over toTraffic Arbitrator (TA);exit;
5: end if
6: I ← stream-find(S, P); Q← interval-retrieve(I , P);
7: if (Q is empty)then
8: P is a brand new packet and functioninterval-insert(I , P) is invoked to addP into I ;
9: else

10: check whether or not the common parts ofP and any packet inQ have the same contents; if not, generate alerts andexit;
11: end if
12: ts← initial sequence number ofI ; te← SSNR+MAX SIZE (defaultMAX SIZE=5 KB); O← packet-build(I , ts, te);
13: O is handed over toTraffic Distinguisher (TD)

P is part of evasive traffic produced by tools such asfragroute; the packet should be dropped (by default)

and its corresponding connection be either terminated or manipulated and normalized with “favor-old” or

“favor-new” policy which is configurable. If no suspicious evidence is found forP and its traffic streamI,

P is inserted intoI with the help ofinterval-insert(I, P). MSusespacket-build()to re-assemble received

packets from streamI into super-packetO passed along withP to theTraffic Distinguisher (TD)module.

One of the key tasks ofMS is to establish boundaries forDDoSmessages. For example, theStacheldraht
TCP-generated attacker-handler traffic of Table 4 violatesboundaries ofDDoS messages as packets 3, 4,

and 5 points out.MSaggregates these packets together and helps restore theDDoSmessage boundaries.

3.6 Traffic Distinguisher (TD)

As individualDDoSattack systems follow their own protocols, we designDDoSspecific analyzers to carry

out application-oriented inspection and improve detection accuracy. Figure 6 depicts the elements ofTraffic

Distinguisher (TD)with the Traffic Managerplaying the role of a scheduler which in turn invokes the

analyzers for variousDDoS tools if the application type of the session for the incomingpacketP has not

yet been determined. For each incoming packetP , TD obtained information on the sessionS of P , its

traffic streamI, and the re-assembled super-packetO. If both TYPEandCONFIRMfields ofS are set,P is

forwarded directly intoTraffic Arbitrator for additional processing; otherwise,Traffic Manageris invoked

and Algorithm 5 identifies the application type ofS as well asP . To improve performance, we restrict an

upper limit to the total amount of transport data (TCP, UDP, or ICMP) examined in each traffic stream of a

session before a decision on the application type of the session is made. Our experience shows that 5 KBytes

of inspected traffic data in each direction of a session is very satisfactory. Should the application type of a

session be un-determined yet after inspecting such amount of traffic, the session is pronouncedbypassand

no further processing occurs in its subsequent data transmissions.

The individual analyzers account for all elementary operations used by individualDDoSattacks as far as

transport services, messages exchanged among clients, handlers, and agents as well as use of cryptographic

algorithms, decoys and dynamic ports are concerned. InStacheldrahtfor instance, TCP-based channels are

used between clients and handlers, ICMP-based covert channels are used for exchanges between handlers

and agents, while TCP/UDP/ICMP packets make up the actual attack traffic; moreover,Stacheldrahtuses

Blowfish to encrypt its messages. In the next section, we discuss in depth the analyzers forStacheldraht,
TFN2K andDNSamplification attacks.

20

Algorithm 5 Traffic ManagerAlgorithm
1: P ← arriving packet;S, I ← session and traffic stream thatP belongs to;O← super-packet re-assembled with help ofI ;
2: if (TYPEandCONFIRMof S are set)then
3: P is part of an identifiedDDoSsession and is handed over toTraffic Arbitrator (TA); exit;
4: end if
5: tI ← initial sequence number ofI , tP ← start sequence number ofP ,

if (tI -tP) ≥MAX SIZE (defaultMAX SIZE=5KB) thenS is marked asbypass; exit;
6: for (eachDDoSanalyzerDA implemented in the framework)do
7: invokeDA with P , S, I , andO;
8: break from the loop ifCONFIRMof S has been set byDA;
9: end for

10: P is handed over toTraffic Arbitrator (TA)along with itsS andI

3.7 Traffic Arbitrator (TA)

The task of theTraffic Arbitrator (TA)is to examine the application type of sessionS that the arriving packet

P belong to, and take the prescribed actions onP andS. Should fieldsTYPEandCONFIRMof S not be

set,TA simply forwardsP to the next hop en route to its destination; otherwise, theTA proceeds according

to policies set. Such policies include alert generation, logging ofP as well as its data stream and session,

blocking of subsequent messages from the same session, or even taking-overS by havingTAact as aDDoS
element such as a handler or agent. TheTA also updates session information forS of Table 9 based onP

so that subsequent re-assembly operations are facilitatedand accuracy is enhanced. The module can log

session, application type, creation time, all packets in the session, and session transmission statistics of a

DDoSsession for future forensic analyses. Algorithm 6 outlinesthe functionality of theTA which guides

our DDoS Containerdeal with traffic.TA can also take over an identifiedDDoSsession by playing the role

Algorithm 6 Outline for the operation ofTraffic Arbitrator (TA)
1: Input: P ← incoming packet;S, I ← P ’s session and data stream
2: update information ofS andI based onP
3: if (CONFIRMof S is not set)then
4: application type ofS has not been determined,P is forwarded, and current procedure stops
5: end if
6: if needed, generate an event log for the identifiedDDoS session along with information onS and I ; and invokeinterval-

traversal(I) to dump all packets ofI into permanent storage
7: if (action forTYPEof S is “proactive”) then
8: P is dropped, pertinent command is sent to theDDoShandlers or agents
9: else if(action forTYPEof S is “take-over”)then

10: P is dropped and fake reply is sent to the initiator ofS

11: else if(action forTYPEof S is “terminating”) then
12: P is dropped and TCP RESET or ICMP “destination unreachable” packets are sent accordingly
13: else if(action forTYPEof S is “blocking”) then
14: P is dropped and all subsequent messages fromS is dropped
15: else if(action forTYPEof S is “dropping”) then
16: P is dropped; however, subsequent messages fromS may be forwarded it they do not contain malicious activities
17: else if(action forTYPEof S is “forwarding”) then
18: P is forwarded
19: end if

of a DDoS handler in reference to the attacking client6. To this effect, theTA dispatches either anTCP

RESETpacket or anICMP destination unreachablemessage to the handler; subsequently, theTA may craft

6To avoid legal issues, such a feature is disabled in product versions. In addition, onlyDDoSsessions without encryption are
taken over

21

fake replies to attacker-initiated commands, collecting valuable forensic information regarding the attack.

TheTAcan be more proactive as it can disable attacks by purging allDDoS-related components from victim

systems. This is assisted byDDoS tools themselves as they feature commands instructing handlers and

agents to terminate activity and/or entirely remove themselves from compromised systems. For example,

the Stacheldrahtrepertoire includes commandmdiewhich terminates agents and commandmsremwhich

removes handlers.

4 Protocol Analyzers forDDoSTools

In this section, we provide detailed discussion for the analyzers of two very common contemporaryDDoS
networks namely,StacheldrahtandTFN2K as well as theDNS amplification attacks. We have also devel-

oped analyzers for all components in Figure 6 and present them in [13].

4.1 Stacheldraht

TheDDoSnetworkStacheldraht, German for barbed-wire, consists of agents, handlers and clients imple-

mented with filestd.c, mserv.candclient.crespectively. A client’s interface performstelnet-like operations

and uses a password protected channel for attacker–handlercommunications; messages in such sessions are

Blowfish-encrypted. By default, handlers listen to TCP port65512 for client instructions; each such handler

may serve a configurable number of clients (default 200) and control a certain set of agents (default 6000).

Agents monitor all incoming ICMP-echo reply messages awaiting for commands from handlers, at the same

time, agents also listen to TCP port 65513 –also configurable– in order to exchangekeep-alivemessages

with handlers. The attacker-provided password is initially DES-encrypted using a two character salt string

whose default value iszA. The resulting 13-byte ASCII string is then Blowfish-encrypted using a pass-phrase

hard-coded in theclient.c and set toauthenticationby default; the encrypted password is padded to 1024

bytes before dispatched to handler. The handler reciprocates the above operation to verify the password

as Algorithm 2 shows. Table 4 shows an client/handler session protected with passwordiamnobody. The

string zAGOe46FrqqVkis the result of theiamnobodyDES-encryption using salt stringzA; Blowfish then

uses pass-phraseauthenticationand pads the outcome with zeros for the trailing bytes of the message. All

messages of Table 4 are similarly Blowfish-encrypted. Once an attacker provides the correct password, the

handler displays the numbers of both active and inactive agents along with respective greeting messages and

may accept commands on behalf of the client.

Stacheldrahthandlers manage an attack network through a rich repertoireas Table 11 depicts. Commands

are dot-prefixed and accept arguments. In particular, commands .msremand .msaddhelp adjust the size

of the attack network;.micmp, .msyn, and.mudplaunch ICMP, TCP, and UDP flood-attacks, respectively;

while .setisize, .setusize, .sprange, and.mtimerspecify the size of attack packets, range of source ports for

spoofing, and attack duration. Automatic agent updates are attained through command.distro user server

issued by an attacker/client and delivered to all agents viahandlers; the command instructs all agents to

obtain and run a new version ofStacheldrahtcode from a host specified with theserverparameter by using

a copy facility such asrcp and an account indicated with theuserparameter. For instance, upon receiving

command.distro user server, a Linux–based agent executes in order shell commandsrm -rf agent, rcp

user@server:linux.bin agent, andnohup ./agentwith agentbeing the name of theStacheldrahtexecutable

22

cmd from client parameters cmd to agent description
.distro user server DISTROIT (6662) Instruct agent to install and run a new version of system
.quit Exit from the program.
.madd ip1[:ip2[:ipN]] Add IP addresses to list of attack victims.
.mdie DIEREQ (6663) Sends die request to all agents.
.mping ICMP echo request Pings all agents (bcasts) to see if they are alive.
.msadd IP address ADDMSERVER (5555) Adds a new master server (handler) to the list of available servers.
.msrem IP address REMMSERVER (5501) Removes a master server (handler) from list of available servers.
.mstop ip1:ip2:ipN or all STOPIT (3) Stop attacking specific IP addresses, or all.
.mtimer seconds TIMESET (9011) Set timer for attack duration.
.micmp ip1[:ip2[:ipN]] ICMP (1155) Begin ICMP flood attack against specified hosts.
.msyn ip1:ip2:ipN SENDSYN (9) Begin SYN flood attack against specified hosts.
.mudp ip1:ip2:ipN SENDUDP (6) Begin UDP flood attack against specified hosts.
.setisize size SETISIZE (9010) Sets size of ICMP packets for flooding. (max:1024, default:1024).
.setusize size SETUSIZE (8009) Sets size of UDP packets for flooding (max:1024, default:1024).
.sprange lowport highport SETPRANGE (8008) Sets port range for SYN flooding (defaults to [0, 140]).

Table 11: Clients to handlersStacheldrahtcommands

daemon;rm purges the old version of the agent,rcp obtains a new copy of the agent from hostserverand

finally nohupinvokes the new code. AllStacheldrahtmessages are well-formed as Table 4 shows; however,

due to the fact that client/handler messages are Blowfish-encrypted, their pertinent traffic-data appear to be

random sequences. Thus, we resort to the communication behavior between clients and handlers in order to

identify their traffic.

Algorithm 7 outlines our analyzer for interactions betweenclients and handlers and exploits two key

Stacheldrahttraffic characteristics. First, each message is Blowfish encrypted, encoded with a base-64

Algorithm 7 Analyzer forStacheldrahttraffic between clients and handlers
1: Input: packetP , its sessionS, streamI, and the assembled messageO

2: if (field CONFIRMof S has been set)then
3: P is handed over toTraffic Arbitrator module and exit;
4: end if
5: if (P is a TCP packet)then
6: check payload size ofO, if O is less than 1024 bytes, then exit from the procedure due to short of data;
7: verify thatO consists of two parts: one containing characters in [./, 0-9, a-z, A-Z] only; the other containing sequence of zeros only(may be

empty). Otherwise, clean corresponding bits in “TYPE” andCONFIRMas it cannot beStacheldrahtsession;
8: if (P is from client to handler)then
9: set bit inTYPEcorresponding toStacheldraht; store the non-zero part ofO;

10: else
11: set bit inCONFIRMcorresponding toStacheldrahtif the non-zero part ofO is the same as that stored in the session
12: end if
13: else if (P is a ICMP packet)then
14: check itsicmp id and payload ofP with the help of Table 12; set fieldsTYPEandCONFIRMof S accordingly
15: end if

scheme, and padded with zero to 1024 bytes before transmitted to its recipient; this yields a message con-

sisting of a series of characters in the [./, 0-9, a-z, A-Z] range followed only byNULL characters. Provided

that passwords, commands and handler-replies are short (typically less than 100 Bytes) and Blowfish does

not change their size, the padding part of a message is extremely long offering a reliable traffic pattern. Sec-

ond, the handler always echoes back the password in encrypted-form back, forcing the first message in both

directions to have the same payload. Our analyzer takes advantage of this effective two-message correlation

to identify Stacheldrahtclient/handler traffic. Clearly, the same correlation technique can be used on differ-

ent messages within the same stream in anticipation of enhanced accuracy in traffic identification. In this

regard, greeting messages from handlers to clients may be viable candidates for data correlation. Our exper-

imental evaluation demonstrates that the correlation of the first message in each direction is for all practical

23

purposes very effective. With attacker/handler connections established through the TCP/IP stack,Stachel-
drahtmessage boundaries are not always respected as Table 4 points out. Algorithm 7 uses the TCP-stream

reassembly of theMessage Sequencer (MS)module to reconstruct messages out of TCP packets.

All client-originated commands “staged” at handlers are ultimately forwarded to agents via ICMP mes-

sages; theicmp id field of these messages contains the command identifiers while all relevant parameters are

placed in the ICMP payload. Columncmd to agentof Table 11 presents some command identifiers and their

default values inStacheldraht. All ICMP-delivered commands and parameters between handlers and agents

are neither encrypted nor recipient-authenticated. For example, the client-issued commandmudp ip1:ip2is

delivered via a handler to an agent with an ICMP-echo reply whoseicmp id field is set to SENDUDP (6

by default) and the payload contains the integer representation for ip1 and ip2. In addition, handlers and

agents exchange additional messages for maintenance tasksshown in Table 12. Once an agent becomes

cmd dir size type icmp id payload description check?
Agent is denoted as A; Handler is denoted as H

spoofing probe A− >H 112 8 0 agent’s IP test spoofing level, src IP address is 3.3.3.3yes
spoofing probe reply H− >A 1044 0 1016 spoofworks reply to spoofing probe yes
agent ping A− >H 1044 0 666 skillz test availability of handler yes
agent pong H− >A 1044 0 667 ficken reply to ping yes
handler ping H− >A 1044 0 668 gesundheit! test availability of agent yes
handler pong A− >H 1044 0 669 sicken|0A| response to handler ping yes
kill agent H− >A 1044 0 666 skillz kill agent, src IP address set to 3.3.3.3 yes
kill reply A− >H 1044 0 1000 spoofworks reply to kill agent yes
stop attack H− >A 1044 0 9015 niggahbitch stop any ongoing attack yes

Table 12:Stacheldrahthandler/agent messages transported via ICMP

operational, it tries to locate handlers by examining a Blowfish-encrypted7 file named.ms. The agent may

also try to connect to handlers hard-coded in its source to achieve the same goal. To determine handler avail-

ability, an agent sends ICMP-echo reply messages to candidates with fieldicmp id set to 666 and payload

containing stringskillz. An active handler replies with an ICMP-echo reply whoseicmp id is 667 and the

payload contains the stringficken. Similarly, a handler uses the messagehandler pingto test the availability

of an agent; this may trigger ahandler pongreply from an active agent.

To find out whether network devices such as routers forward packets with spoofed IP addresses, an agent

crafts and dispatches to a handler a “spoofing probe”. The latter is typically an ICMP-echo message which

has the forged source IP address 3.3.3.3 and the payload carries its real source IP address; apparently, such

a spoofed-message should not be forwarded by routers with egress filtering. In the case that they are, the

handler forms an ICMP-echo reply whoseicmp id field is set toSPOOFREPLY(1016 by default as shown

in Table 12); the message payload contains the stringspoofworksand its destination address is set to the one

contained in the payload of the probing ICMP. Upon receipt, the agent becomes aware that network devices

allow spoofed-messages and commences using fake source addresses for its subsequent messages. Other-

wise, the agent falsifies only the last octet of the IP addresses. Through Algorithm 7, our analyzer pursues

relevant protocol fields and payloads shown in Table 12 to discern ICMP-basedStacheldrahtsessions.

The Stacheldrahtnetwork can also mount multiple type attacks such as ICMP, SYN, UDP and Smurf

floods. Table 13 shows unique characteristics of TCP, UDP, and ICMP attack packets that can be exploited to

effectively identifyStacheldrahtattack traffic. Regardless of the protocol used, the fieldsip tosandip flags

for all packets, are set to zero. In TCP packets, the sequencenumber is always the same which constitutes a

7with passphraserandomsucks

24

field characteristics check?
ip tos always set to zero Protocol Decoder
ip flags set to zero, meaning bits “don’t fragment” and “more fragment” are unset Protocol Decoder

attack packets based on TCP
ip ttl always set to 30, a relatively small value Protocol Decoder
src port in [1001, 2024], a relatively small range Protocol Decoder
tcp flags only SYN is set Protocol Decoder
tcp seq always 0x28374839 (in host order), an obvious anomaly Protocol Decoder
tcp urg random number (rarely zero), an error since bit “URG” not set Protocol Decoder
tcp win always 65535 Protocol Decoder

attack packets based on UDP
ip ttl set to 0xFF Protocol Decoder
udp sport in [1, 10000], decrement by one for each subsequent packet Behavior Police
dst port in [0, 9999], increment by one for each subsequent packet Behavior Police
udp checksum random number or zero, not calculate at all Protocol Decoder

attack packets based on ICMP
ip id fixed number (process ID of the agent) Behavior Police
ip ttl set to 0xFF Protocol Decoder
icmp checksum fixed number and incorrect Behavior Police

Table 13: Unique characteristics of TCP, UDP and ICMP attackpackets inStacheldraht

clear violation of the protocol; moreover, additional irregularities appear including not emptyurgent pointer

field, unsetURG-bit in tcp flagsand fieldip ttl having a relative small value. In UDP packets, the source

port number is initially set to 9999 and decremented by one for every subsequent packet; similarly, the

initial destination port is set to one and incremented by one. It is worth pointing out that the checksum

of such packets is not computed and may be either zero or a random number. As packets go through the

Protocol Decoder (PD), the above simple structural packet irregularities are identified, the application types

can be determined, and configurable actions such as blockingcan be taken. In addition, theBehavior Police

(BP) is able to identify flooding attacks generated byStacheldrahtvia the relationships between source and

destination ports of UDP-packets. Therefore, a large amount of attack traffic can be identified quickly and

avoid the processing bySession Correlator (SC), Traffic Distinguisher (TD), andMessage Sequencer (MS),

which is expensive in terms of CPU cycles and memory consumption.

4.2 Tribe Flood Network 2000 (TFN2K)

Handlers and agents routinely make up aTribe Flood Network 2000 (TFN2K)in which individual handlers

control groups of agents. The keyTFN2K feature is that communications are unidirectional from handlers to

agents. Messages are transported via TCP, UDP and ICMP, encrypted with strong cryptographic algorithms

such as CAST and encoded with a base-64 scheme. The encryption key is defined at compile-time and is

used as the password to accessTFN2K. To reduce the probability of detection,TFN2K interleaves its mes-

sage flow with decoy packets as Table 5 shows and by default, handler originating messages have spoofed

source IP addresses. When ICMP is employed as the covert communication channel between a handler and

an agent, an ICMP-echo reply is used to avoid returned message from agent’s TCP/IP stack. On the other

hand, if TCP/UDP transport services are used, most of the protocol fields in the generated packets have

randomized contents. In particular, theudp lengthis always set to larger than its actual size by three bytes,

the TCPtcp off field is invariably set to zero; both of these abnormalities are likely to create malfunctions

in network devices along the communication path. Finally, the UDP/TCP checksums are solely computed

on packet headers and payloads without considering the required 12-byte pseudo-headers rendering them

corrupt.

25

Should an intruder successfully pass the password-authentication and obtain access to aTFN2K network,

she may use the commands of Table 14 to communicate with handlers and launch various attacks including

SYN-floods,Smurf, andTarga. Each command is assigned a unique numeric identifier and mayaccept

parameters as shown in columnscmdandparametersof Table 14. For instance, the attacker can launch

SYN-floods,Smurf, andTargaattacks with commands 5, 7 and 9 respectively. Based on the command issued

by the attacker, theTFN2K handler constructs a TCP, UDP, or ICMP message, and subsequently delivers the

message to agents after encryption and encoding. Before encryption and encoding, the message is text-based

and follows the format convention+symbolic id+data, wheresymbolicid is a single character representing

a specific command,+ is a separator anddataoutlines the specific command parameters. For instance, as

cmd (numeric id and parameters description msg format before encrypt/encode
0 (void) stop ongoing floods +d+
1 -i spoof-level set IP spoof level, 0 (32 bits), +c+level

1 (24), 2 (16), or 3 (8)
2 -i packet-size Change Packet size +b+packet-size
3 -i remote-port Bind root shell to a port +a+remote-port
4 -i victim1@victim2@... UDP flood +e+victim1@victim2@...
5 -i victim1@victim2@... [-p dest-port] TCP/SYN flood +g+dest-port; +f+victim1@victim2@...
6 -i victim1@victim2@... ICMP/PING flood +h+victim1@victim2@...
7 -i victim@broadcast1@broadcast2@...ICMP/SMURF flood +i+victim@broadcast1@broadcast2@...
8 -i victim1@victim2@... MIX flood (UDP, TCP, ICMP) +k+victim1@victim2@...
9 -i victim1@victim2@... Targa3 flood +j+victim1@victim2@...
10 -i command execute remote shell command+l+command

Table 14:TFN2K client-to-handler-to-daemon commands

shown in the first message of Table 2, after granted access to the handler at IP address 192.168.5.143, the

intruder issues command “tfn -P ICMP -h 192.168.5.142 -c 4 -i192.168.5.37” in order to launch a UDP

flooding attack, where argument “-P ICMP” specifies ICMP as the transport service for the communication

between the handler and the daemon, argument “-h 192.168.5.142” indicates the location of the daemon,

while option “-c 4” is the command identifier for UDP flooding attack, and option “-i 192.168.5.37” is the

parameter to the command specifying the primary victim. Such an attacker-issued command is transferred

as message “+e+192.168.5.37”, and delivered to the daemon at 192.168.5.142 as the payload of an ICMP

echo reply message after encryption and encoding. The same command issued by the attacker but delivered

to agents with UDP and TCP transport services are described in Tables 3 and 5. Such well-formed messages

will be easily identified if they are transmitted in plain text. However, as Tables 2 and 3 show, encryption and

encoding are used to obfuscate messages before delivery. Therefore, ourTFN2K analyzer predominantly

resorts to behavior analysis and protocol anomaly inspection.

At its core, our analyzer mainly exploits the artifact of trailing As8 at the end of every message as discussed

in Algorithm 1. It is also worth noting that the length of the trailing sequence can be readily computed

as demonstrated in Algorithm 8, which outlines the functionof our TFN2K analyzer. First, the analyzer

inspects the content and size of the incoming packetP to ensure it is encoded with theTFN2K base-64

scheme. Then, it computes the number of trailingAs based on the lengthblen of P ’s payload following

the inverse procedure of that in Algorithm 1. The lengthclen of the CAST-encrypted-and-padded cipher

text can be determined with the help of lengthblen, which is the payload size ofP and also the length of

the encoded cipher. In order to figure out the number of padding zeros to the cipher text before encoding,

8whose ASCII code is 0x41

26

Algorithm 8 TFN2K Traffic Analyzer
1: Input: packetP , its sessionS and streamI
2: if (TYPEof S is already set)then
3: application type ofP as well as ofS has been identified;P is directly handed overTraffic Arbitratorand exit;
4: end if
5: check transport payload ofP to ensure that all characters are in [A-Z, a-z, 0-9, +/];
6: encode← payload ofP ; blen← length ofencode; q← (blendiv 4); r← (blenmod 4);
7: S cannot beTFN2K if r is not 0, 2, or 3;
8: clen← (3 q) if (r = 0); clen← (3 q + r - 1) otherwise;plen← (clen-16);P cannot beTFN2K if ((clen < 16) or (plen <4));
9: q← (plen div 16); r← (plen mod 16);elen← plen if (r = 0), orelen← (16(q+1)) otherwise;

10: q← (elen div 3); r ← (elen mod 3);start← (4q) if (r = 0), orstart← (4 q + r + 1) otherwise; Clearly,start is the start
point (indexing from 0) for the trailing A sequence ifP is created byTFN2K.

11: check content in [0,start) of encode for pattern “AAAA”, if found, exit asP cannot beTFN2K;
12: check content in [start, blen) of encode for any non-A character, if found,S cannot beTFN2K and exit;
13: setTYPEof S to TFN2K if it is not set yet; otherwise, setCONFIRMEDof S to TFN2K;

we first compute the size of the original plain textplenas (clen-16), which in turn helps determine the size

elenof the cipher text without padding. The number of padding zeros to the cipher text can be calculated

as (clen-elen), the latter is used to determine the length of theA-sequence. With the help ofelen, we can

find out the starting point for the trailing A sequence, whileblen can be used to determine the end point

of the trailing A sequence as shown in Algorithm 8. Finally, theTFN2K analyzer examines the content of

the should-be-trailing area (i.e., [start, blen] in Algorithm 8) to ensure that it exclusively consists ofAs.

In order to reduce false positives, theTFN2K analyzer also inspects the content in [0,start) of P , which

should be the CAST-encrypted cipher text encoded in the base-64 scheme. It is reasonable to expect that

CAST encryption algorithm does not produce recognizable patterns in its cipher text such as a sequence of

zeros [29, 49]. Therefore, ourTFN2K analyzer assumes that the CAST-encryptedTFN2K cipher texts do

not contain a sequence of three consecutive zeros encoded aspatternAAAAin the base-64 scheme. To put it

simply,AAAAcannot appear in the encoded cipher text ofTFN2K message.

Since raw-sockets are used to transmit packets between handlers and agents, IP, ICMP, TCP and UDP

headers haveTFN2K-assigned values. In this manner,TFN2K-generated packets feature a number of unique

characteristics as Table 15 depicts. What all packets shareregardless of their transport protocol is that their

ip tosfield is set to zero,ip ttl has values in the range [200, 255], andip id takes values in the range [1024,

65535]. Also half the times, fieldsicmp seqandicmp id have zero values and the rest assume random values.

Similar observations are drawn for fieldstcp seq, tcp ack, andtcp win in TCP packets. Moreover, the TCP-

header field oftcp off is set to zero, wrong values appear in theudp lengthof UDP-header and checksums

for all TCP/UDP packets are incorrectly computed. OurTFN2K analyzer exploits such packet abnormalities

while a packet is being examined in theProtocol Decoder (PD)module. Similar protocol anomalies can

be observed in pureTFN2K flooding attack traffic as well. For instance, checksums for TCP and UDP

packets are incorrectly calculated; fieldip tos is always zero; the TCP protocol headertcp off is set to zero.

In addition, for UDP flooding attacks, the source port numberdecreases by one and the destination port

number increases by one for each subsequent packet, while their sum always remains constant to 65536;

this pattern is exploited by theBehavior Policemodule of ourDDoS Containerto discernTFN2K UDP

flooding attacks.

27

field characteristics checked by module
ip tos always set to zero Protocol Decoder
ip flags set to zero, meaning bits “don’t fragment” Protocol Decoder

and “more fragment” are unset
ip ttl random in [200, 255] Protocol Decoder
ip id random in [1024, 65535] Protocol Decoder

Packets based on TCP
tcp flags SYN|ACK, SYN, or ACK
tcp seq, tcpack, tcpwin half of time 0, others random Protocol Decoder
tcp off always set to zero Protocol Decoder
tcp checksum incorrectly left out pseudo-header Protocol Decoder

Packets based on UDP
udp length 3 bytes larger than true value Protocol Decoder
dst checksum incorrect as pseudo-header not included Protocol Decoder

Packets based on ICMP
icmp type, icmpcode zero Protocol Decoder
icmp id, icmp seq half of time zero, others random Protocol Decoder

Table 15: Unique Handler-to-agent TCP/UDP/ICMP-packet characteristics

4.3 DNS Amplification Attacks

The Domain Name Service (DNS) system provides translation services between domain names and IP ad-

dresses using a hierarchical overlay network over the Internet [43, 61, 60]. For flexibility, manyDNSservers

act as open-resolvers and automatically forward DNS queries to other authoritative name-servers on behalf

of requesters [61]. Open-resolvers have been recently usedto conductDNS amplification attacks. Such

attacks proceed into two phases: initially, they harvest a large number of Internet open-resolvers and sub-

sequently, they generate and deliver over-sized UDP-DNS-queries. Here, the size of queries is typically

larger than 1024 bytes.DNSattacks often use the IP-address of a victim as the source address in allDNS

requests which generate the same number of responses delivered to the victim. In this way, amplification

attacks force all resolver-responses to reach and overwhelm a single victim [60]. The problem is further

exacerbated with the poor life-cycle management ofDNS resource records (RRs) in many name servers,

which include expired host addresses and outdated entries for start of authority (SOA).

In developing an analyzer forDNS amplification attacks, we assume that ourDDoS Containeroperates

along with a firewall unit that can be easily configured to detect and block packets with spoofed IP-addresses.

EachDNSmessage –query (Q) or reply (R)– contains a header, which has a fixed size of 12 bytes. There

are 6 fields in the DNS header, and includes fieldstransaction ID, flags, numbers of questions, numbers of

answerRRs, numbers of authorityRRs, and numbers of additionalRRs. each of which is 2 bytes long. The

field transaction IDis used to match aDNSquery and its corresponding reply [61]. TheQ/R (query/reply)

bit of theflagsfield in theDNSheader of a message makes it straightforward to determine whether a message

is either a query or a response.

Our analyzer exploits the fact that anDNSamplification attack launched from an external network and

targeting machines in an internal network can be easily identified as its replies (Rs) have no corresponding

originator in the internal network. By also taking into account that a firewall may block all incoming

packets with incorrect destination IPs and outgoing packets with spoofed source IPs, an enterprise can be

fully protected against amplification attacks.

Algorithm 9 outlines our analyzer as it deals with interactions between open-resolvers and victims. In the

context of our framework, the analyzer is provided with a dedicated bit in the fieldsTYPEandCONFIRM.

The algorithm differentiates encounteredDNSsessions into the following categories:

28

Algorithm 9 DNS amplification attackAnalyzer for traffic between open-resolvers and victims
1: Input: packetP and its sessionS
2: if (field CONFIRMof S is set)then
3: P is handed over toTraffic Arbitrator module and exit;
4: end if
5: if (P is not aUDP DNS packet)then
6: P is handed over toTraffic Arbitrator and exit;
7: end if
8: if (P is aDNSquery)then
9: store the header’stransaction IDand set bit inTYPEcorresponding toDNSamplification

10: else
11: if (bit in TYPEcorresponding to DNS amplification not set)then
12: setCONFIRMof S and exit; (caseIII)
13: end if
14: if (transaction IDof P != storedtransaction ID) then
15: dropP and exit; (caseII)
16: else
17: P is a normalDNSreply andS is a legitimateDNSsession; (caseI).
18: end if
19: end if

I: normal sessions where aDNS-query is first encountered by the analyzer and then a reply appears with

transaction IDidentical to an already encountered query.

II : abnormalDNSsessions where queries and replies are detected by the analyzer but they have differ-

ent transaction IDs. In this rare case, theDNS-replies can be considered as outdated messages and

responses to previousDNSqueries.

III : amplification attack sessions that containDNS-replies only.

Evidently in caseI, the traffic is simply passed over to theTraffic Arbitrator. In caseII , the analyzer may

simply discard the incoming packetP as the mismatchedDNS reply likely originates from old and non-

existing session at this time. In caseIII , the analyzer identifies anDNSamplification attack, marks the

corresponding session as such, and the traffic from this point on is handled by theTraffic Arbitrator.

If both attackers and victims reside in networks protected by ourDDoS Container, the aboveDNSanalyzer

is expected to fail as suchDNS-messages are treated as belonging to session categoryI. However internal-

network originated and bound incidents are handled by ourBehavior Police (BP)module. Within this

module, we define aDNS flood templatethat helps identify UDP-flooding due to internal amplification

attacks. For instance, the template(prot=UDP)&&(dst ip=same)&&(src p=DNS) along with threshold

assigned to a value such as 1000 pps can identifyDNSattacks with intensity above 1000 pps. Here, the

conditiondst ip=samegroups all traffic from the same destination IP address whilesrc p=DNS indicates

the same source port (i.e., 53). Overall, our analyzer in concert with a firewall and the aboveBP template

can effectively detectDNSamplification attacks.

5 Implementation and Experimental Evaluation

We implemented the proposedDDoS Containerin C and integrated it as a module inFortiGate-800, a multi-

functional device that operates in inline fashion and provides firewall, anti-virus, and IDS/IPS functionali-

ties [30] and whose rated speed is 400 Mbps. We deployed ourDDoS Containerin test-bed environments

that follow the network layout of Figure 7 and installed binaries of DDoSclients, handlers, and agents in

a number of test machines so that variousDDoSnetworks are formed. Here, the networks are essentially

partitioned in internal and external segments that allow usto better control the traffic observed byFortiGate-

29

800. For instance, communications betweenTFN2K handler1 andagent2 pass through theDDoS Container
system, making possible for the latter to manipulate the ensued traffic. All 20 test machines operate either

Windows2000or Linux and are connected toFortiGate-800 via 100 Mbps switches. In order to verify the

behavior of our system, we use aEtherealtraffic sniffer [20] on a dedicated machine –Sniffer in Figure 7–

to capture data exchanged among test machines and ourDDoS Container.

...........

...........
handler

Attacker

DDOS Container

SnifferSwitch−2

Switch−1

StacheldrahtTFN2K handler 1 TFN2K agent
1

TFN2K agent TFN2K handler 2 Attacker2 Victim Machine1

1
1

2

FortiGate−800

Figure 7: Deployment of ourDDoS Container

(background traffic n)(foreground traffic 1)

Test Machine

(foreground traffic n)

Test Machine

(background traffic 1)

Test Machine Test Machine

Switch 1 Switch 2

DDOS Container

internal external

Figure 8: Trace-drivenDDoS Containertest envi-
ronment

Figure 8 depicts the specific trace-driven testbed that we used for all reported results. By offline creating

streams with varying mixes ofDDoS traffic (as foreground) and normal traffic (as background) and storing

them in separate trace files, we are able to inject them to theDDoS Containerusing different testers. By

controlling the traffic injection, we are able to establish the behavior of ourDDoS Container. In what

follows, we briefly present the main results of our experimental evaluation.

5.1 Baseline Behavior for theDDoS Container

To establish the baseline behavior of ourDDoS Containerand ascertain its capabilities in identifying com-

munications amongDDoSelements, we use the environment of Figure 7. Due to the hierarchical network

layout, it is possible that theDDoS Containermay not observe allDDoSactivities depending on its location.

In this baseline phase, we mainly focus on theDDoS Containeridentification capabilities and so we config-

ure the system to create alerts for suspicious sessions but forwarding all packets to their destination. This

“alert-only” configuration makes it feasible for the sniffer to capture the generated traffic and form traces

that can be run in the environment of Figure 8. We conduct experiments with both default and customized

DDoScodes.

In the course of default deployment, we use the Internet-available DDoSsources and compile them in their

default settings including TCP/UDP-ports, passwords, andencryption keys. Although we repeat the process

for each toolkit, we only outline the testing withTFN2K for brevity. We use machinesattacker1, TFN2K-

handler2, TFN2K-agent2 andvictim1 to construct aDDoSnetwork; here, the attacker usestelnetto access

the handler and theDDoS Containerobserves only the attacker-handler communications. TheFortiGate–

IPS module has a built-intelnetanalyzer that we exploit to identify allTFN2K attacker-issued commands of

Table 14. On the other hand, we use machinesattacker1, TFN2K-handler1, TFN2K-agent2 andvictim1

30

to make handler-to-agent communications visible to theDDoS Container. With the help of command line

option “-P”, the attacker instructs the handler to use different transport services including TCP, UDP and

ICMP. Segments of such handler-to-agent traffic captured bythe sniffer are shown in Tables 2, 3, and 5. Our

DDoS Containersuccessfully identifies suchTFN2K handler/agent communications. Should we deploy the

configuration consisting ofattacker1, TFN2K–handler2, TFN2K–agent1 andvictim1, we expose to the

DDoS Containerall messages exchanged amongDDoS–elements involved. Apparently, the environment of

Figure 7 allows for the easy deployment of a single attacker controlling multiple handlers, the co-existence

of multiple attackers, or even a handler manipulating a group of zombies. In all the above settings, ourDDoS
Containerdetects all pertinentTFN2K sessions. By repeating the same experiments for theStacheldraht,
Mstream, TrinooandKaitenwe reach the same outcome. During the second stage of our baseline experi-

ments, we customizeDDoScodes by re-designating ports, passwords, encryption keysand salt-strings used.

By repeating the aforementioned set of experiments, we showthat ourDDoS Containercorrectly identifies

all DDoS sessions as it bases its operation on deep inspection and behavior analysis instead of static port

information and specific encrypted patterns.

Next, we turn our attention toDDoS Containerperformance, in particular, we investigate the maximum

number of concurrent sessions sustained by our implementation. Provided thatDDoS user work in an

interactive manner and the time gap between two-consecutive commands is often long, overheads for the

operation ofDDoS Containerdo not appear to be a critical issue. We anticipate however that ourDDoS
Containerwill be ultimately deployed at the perimeter of networks; inthis regard, it may encounter a tens

of thousands of concurrent sessions and the performance maybe adversely affected if heavy overhead is

present. To determine the capabilities of our system, we usethe traffic of Table 4 as a template and generate

test-cases executed in the environment of Figure 8. The traffic consists of two parts: the first features packets

generated by the normal three-way handshake procedure not shown in the Table 4 and packet 1, while the

second part contains packets 2–5 and the remaining in the session9. We configureDDoS Containerto
forward all packets but generate two alerts for everyStacheldrahtsession. The first alert is generated when

an session is tentatively marked asStacheldrahtby using the attacker-to-handler stream (i.e., packet 1). The

second alert is created when a session is confirmed using the handler-to-attacker stream and packet 2 has

been processed. Should no more memory be available for the processing of an arriving session, theDDoS
Containerdoes not track it and allows the corresponding packets to pass through (i.e., fail open).

Each test carried out consists ofn DDoS(or foreground) andm normal (or background) sessions. Bothn

andm take values in [100,000, 700,000] as we anticipate that suchchoices are representative for the opera-

tion of a device at the edge of the network; this selection is also dependent on the total amount of memory

available inFortiGate-800 –default 4 GBytes– and the requirements for session representation. InStachel-
drahtfor example, each connection requires at least 41 Bytes according to Table 9. Based on Algorithm 7,

certain amount of data in the first attacker-to-handler message has to be stored in order to perform the cor-

relation with the corresponding handler-to-attacker message; this includes the encrypted session password

which is often less than 50 Bytes. Finally, by taking into account overheads for the organization and/or

maintenance of hash tables, session splay and interval trees needed for TCP reassembly, each session neces-

sitates at least 512 Bytes of overhead. According to Algorithm 4, we may need to store upto 5 KBytes data

exchanged in the session before we are able to determine thata stream is of background/non-DDoS nature.

Taking into account the above, the requirements for main memory in the case ofStacheldrahtis approx-

9not shown in Table 4

31

imately M=0.5*n+5.5*m KBytes; should both concurrent foreground and background sessions be around

650,000 respectively, the memory requirements before we start losing sessions is approximately 4 GBytes.

We should point out that the above estimation for memory consumptionM presents an upper bound as other

DDoStools do not need to store much data as is the case withStacheldraht.

We usenf
10 machines marked asforeground testersin Figure 8 to launch foreground traffic; each replays

the first half of the Table 4 forn/nf times, then pauses for a second and resumes by replaying the second

part of the trace for the same number of times. At the same time, mb background testers–default 10– feed

noise or normal application (FTP) traffic; this trace is split into two parts and each one is injected into the

DDoS Containerm/mb times with an intermission of one second. The testers modifythe IP addresses and

port numbers of both source and destination for each new connection to avoid conflicts among different

replayed sessions. In each test, we monitor the behavior ofDDoS Container, record the number of sessions

identified asStacheldrahtand alerts generated, and compute the ratio of correctly marked Stacheldraht
sessions. Table 16 shows the outcome of our testing; each rowspecifies the numbern of foreground sessions,

while each column indicates the numberm of background streams. As the total number of both foreground

and background streams increased, ourDDoS Containerproduces correct behavior except for the case of

(n,m)=(700,000, 700,000). The latter suggests that our prediction for the required memoryM in this set of

m=100,000 m=300,000 m=500,000 m=600,000 m=700,000
n=100,000 100.00 100.00 100.00 100.00 100.00
n=300,000 100.00 100.00 100.00 100.00 100.00
n=500,000 100.00 100.00 100.00 100.00 100.00
n=600,000 100.00 100.00 100.00 100.00 100.00
n=700,000 100.00 100.00 100.00 100.00 99.99

Table 16:DDoS Containertest results ofStacheldrahtworkloads

experiments was over-estimated.

By repeating the above testing procedure for all attack tools, we establish similar results. For each test

case, we adjust the replay rates of all sessions during the traffic injection, so that we can generate traffic with

various characteristics, including constant bit rate (CBR), self-similar, and normal-distributed traffic. How-

ever, the aggregated traffic is controlled so that the rated speed of theFortiGate is not exceeded, therefore

rendering that any packet drop is introduced due to exceeding memory consumption of theDDoS Container.
Our experiments show that the memory consumption of theDDoS Containerunder various traffic patterns

with different characteristics is similar, indicating that the memory consumption is closely related to the

number of concurrent sessions.

5.2 Identifying DDoSAttacks UsingSnort-Inline

Conventional security mechanisms such as IDSs/IPSs can identify DDoS attacks only with the help of

specially-crafted signatures but remain “unaware” of the unique characteristics ofDDoS attacks. Snort-
Inline, an open source IDS/IPS, is implemented atop thelibpcap packet-capturing library and is mainly

deployed in small networks. It can be configured to detectDDoS traffic provided that special signatures

such as those of Table 17 are crafted.

By examining for the agent-generated pattern “shell bound to port” in the ICMP-echo-reply payload,

10set tonf =10

32

no. rule explanation
1 icmp $HOME NET any− > $EXTERNAL NET any (msg:”TFN server response”; inspect ICMP message with type

icmp id: 123; icmpseq: 0; itype: 0; content:“shell bound to port”; sid:238;) “echo reply”, ip id = 123, and telltale
2 icmp $EXTERNAL NET any− > $HOME NET any (msg:”tfn2k icmp possible ICMP type “echo reply”, ipid = 0,

communication”; icmpid: 0; itype: 0; content:“AAAAAAAAAA”; sid:222;) and pattern “AAAAAAAAAA” in payload
3 udp $EXTERNALNET any− > $HOME NET 31335 (msg: “Trin00 Daemon inspect UDP packet with dstport 31335

to Master message”; content:“l44”; sid:231;) and pattern “l44” in payload
4 tcp $EXTERNAL NET any− > $HOME NET 27665 (msg: “Trin00 Attacker inspect TCP packet with dstport 27665,

to Master default startup password”; flow: established, toserver; telltale “betaalmostdone” in payload
content: “betaalmostdone”; sid:234;)

5 udp $EXTERNALNET any− > $HOME NET 6838 (msg: “mstream agent inspect UDP packet with dstport 6838
to handler”; content:“newserver”; sid:243;) and pattern “newserver” in payload

6 tcp $HOME NET 12754− > $EXTERNAL NET any (msg:”DDOS mstream inspect TCP packet with srcprot 12754,
handler to client”; flow: toclient, established; content:“>”; sid:248;) “>” in payload, and from server side

7 icmp $EXTERNAL NET any− > $HOME NET any (msg:”DDOS Stacheldraht inspect ICMP packet with type “echo reply”,
client spoofworks”; icmpid: 1000; itype: 0; ; content: “spoofworks”; sid:227;) ip id = 1000, and “spoofworks” in payload

8 icmp $HOME NET any− > $EXTERNAL NET any (msg:”DDOS Stacheldraht inspect ICMP packet with type “echo reply”,
server response”; icmpid: 667; itype: 0; ; content: “ficken”; sid:226;) ip id = 667, and “ficken” in payload

Table 17: Rules/signatures used inSnort-Inlineto detectDDoStraffic

Rule 1 attempts to identifyTFN traffic; at the same time, fieldsicmp id andicmp seqof the packets should

comply with theTFN requirement of having values 123 and 0, respectively. However, by applying Rule 1

to the traffic of Table 1, no alarm is generated as the sought pattern cannot be found. Rule 2 detects the

control traffic betweenTFN2K handlers and agents by both searching for a sequence of ten trailing “A”s

in the ICMP-echo-reply message and ensuring that theicmp id value is zero. Due to encryption/encoding

used, the length ofTFN2K-generated “A”s varies between [1..21] and in this respect,Rule 2 fails to identify

some pertinent traffic such as those in Table 2. Moreover, Table 3 TCP/UDP-traffic escapes theSnort-Inline
detection entirely as far as Rule 2 is concerned. To detectTrinoo traffic, Rules 3 and 4 monitor UDP pack-

ets at port 31335 for string“l44” and inspect the TCP stream at port 27665 for telltale “betaalmostdone”,

respectively. Similarly, Rules 5 and 6 identifyMstream-traffic by looking for the pattern “newserver” in

UDP-payloads arriving at port 6838 and “>” in TCP-payloads originating from port 12754. As Rules 3-6

inspect specific ports, they are certainly vulnerable to dynamic port assignment. Finally, Rules 7 and 8

attempt to captureStacheldrahttraffic by inspecting ICMP-echo-reply messages. Rule 7 looks for “spoof-

works” and fieldicmp id with value 1000; while Rule 8 searches for“ficken” and fieldicmp id with value

667. When inspecting the traffic of Table 12,Snort-Inline identifies only a small fraction ofStacheldraht
packets; any control-related traffic escapes detection as well.

5.3 DDoS ContainerAccuracy in Classifying Traffic

To compare theDDoS Containeraccuracy in classifyingDDoStraffic versus other options such as the open-

sourceSnort-Inline IDS/IPS, we conduct a wide range of tests with both implementations and establish

their false positive/negative rates. While forming an ICMP-basedTFN2K attack network withattacker1,

TFN2K-handler2, TFN2K-agent1 andvictim1 of Figure 7, we use bothDDoS ContainerandSnort-Inline
to detect malicious traffic; the latter predominantly exploits rule 2 of Table 17. We determine false negative

rates for both systems by having the attacker issue the command “tfn -P ICMP -c cmd id -i parameter”

with flags-c and-i indicating specific command identifier and corresponding parameter(s). Table 18 shows

a number of such commands with columnplain text indicating the handler-generated instructions on clear

text before CAST encryption and base-64 encoding;plen indicates the message size for the plain text and

trail shows the length of the trailing sequence ofAs. We can see thatSnort-Inlinesucceeds in detecting

33

cmd plain textmessage plen trail Snort DDoS Container
1 -c 0 +d+0 4 5 negative alert
2 -c 2 -i 64 +b+64 5 6 negative alert
3 -c 3 -i 128 +a+128 6 8 negative alert
4 -c 3 -i 1024 +a+1024 7 9 negative alert
5 -c 4 -i 192.168.5.37 +e+192.168.5.37 15 20 alert alert
6 -c 5 -i 192.168.5.37 -p 10 +g+10: +f+192.168.5.37 22 8 negative alert
7 -c 6 -i 192.168.5.141 +h+192.168.5.141 16 21 alert alert
8 -c 7 -i 192.168.5.37@192.168.5.141 +i+192.168.5.37@192.168.5.141 29 17 alert alert
9 -c 8 -i 10.0.0.1@10.0.0.1 +k+1.0.0.1@10.0.0.1 47 4 negative alert
10 -c 9 -i 1.0.0.1@1.0.0.2 +j+1.0.0.1@1.0.0.2 18 3 negative alert
11 -c 10 -i ”ls –almost-all -c” +l+ls –almost-all -c 50 7 negative alert
12 -c 10 -i ”ls –directory -a -k” +l+ls –directory -a -k 52 9 negative alert

Table 18: False negatives generated while testingTFN2K sessions

sessions that have more than ten trailingAs which essentially implies that theSnort-Inlinemight create 9/21

false negatives if the length of the trailing sequence is uniformly distributed. AlthoughDDoS Container
correctly detects all twelve sessions of Table 18,Snort-Inlinefails to generate alerts in nine instances.

We subsequently examine the generation of false positives by both tools and through six tests out-

lined in Table 19. Initially, we create a trace by generatingtraffic using the commandping -p 41414141

192.168.5.141where the-p flag forces the packing of ICMP echo request payload with pattern “41414141”

or alphanumeric string “AAAA”. In response, node 192.168.5.141 creates an ICMP echo reply whose sam-

ple is shown as the first case in Table 19. With the help of Figure 8 testbed, we inject theping-trace without

any modification toDDoS Container/Snort-Inlineand both generate no alert. InDDoS Container, this is

due to the fact that the payload of ICMP echo replies are not base-64 encoded and inSnort-Inlinebecause

the fieldicmp id of the reply is non-zero and fails to satisfy rule 2. In the second test of Table 19, command

cmd IP payload description Snort DDoS Container
1 ICMP echo reply ICMP header:|00 00 D2 F8 56 16 00 00| icmp type: 0; icmpcode: 0; no no

ICMP payload:|78 B3 27 42 16 DD 02 00 icmp id: 0x5616; icmpseq: 0;
41 41 41 41 41 41 41 41 41 41 41 41 ...| data: 8 binary bytes + “AA...”;

2 replace “icmpid” ICMP header:|00 00 21 0F 00 00 00 00| icmp type: 0x0; icmpcode: 0; positive no
with 0 ICMP payload:|78 B3 27 42 16 DD 02 00 icmp id: 0; icmp seq: 0;

41 41 41 41 41 41 41 41 41 41 41 ...| data: “AAAAAAAAAA ...”;
3 replace first 8 bytes ICMP header:|00 00 00 00 00 00 00 00| type: 0; code: 0; icmpid: 0; positive no

with A ICMP payload:|41 41 41 41 41 41 41 41 icmp seq: 0; data:
41 41 41 41 41 41 41 41 41 41 41 41 ...| “AAAAAAAAAA ...”;

4 replace first 8 bytes ICMP header:|00 00 29 0F 00 00 00 00| type: 0; code: 0; icmpid: 0; positive no
with base-64 code ICMP payload:|42 53 47 41 56 6A 62 59 icmp seq: 0; data:

41 41 41 41 41 41 41 41 41 41 41 41 ...| “BSGAVjbYAAA...”;
5 replace first 15 bytes ICMP header:|00 00 29 0F 00 00 00 00| type: 0; code: 0; icmpid: 0; positive no

with base-64 code ICMP payload:|67 47 79 34 31 49 2B 69 icmp seq: 0; data:
69 5A 74 36 4E 73 52 41 41 41 41 41 ...| “gGy41I+iiZt6NsRAAA...”;

6 replace entire payload ICMP header:|00 00 29 0F 00 00 00 00| type: 0; code: 0; icmpid: 0; positive no
with base-64 code but ICMP payload:|54 47 7A 4D 38 6D 58 53 icmp seq: 0; data:
put ten As randomly 46 4B 4F 38 4A 7A 44 70 56 52 49 66 ...| “TGZM8mXSFKO8Jz ...”;

Table 19: Test cases for the evaluation of false positives

icmp field icmpid 0 is applied to all ICMP messages before replayed by the tester, forcing the icmp id

filed of the ICMP header to become zero. Here,Snort-Inlinemistakenly identifies the ICMP echo reply

asTFN2K traffic by matching rule 2, whileDDoS Containerraises no alert as the message is not base-64

encoded.

In test 3, we change the first eight bytes of the ICMP payload with a sequence of A while in case 4, we

change the first eight bytes of the ICMP payload to random characters in the range [A-Z, a-z, 0-9, +/], the

34

legitimate base-64 code inTFN2K. Again,Snort-Inlineflags both cases asTFN2K traffic because sequences

of more than ten As appear in the payload. In case 5, we replacethe first 15 bytes with base-64 code while in

case 6 we replace the entire payload with base-64 code. AlthoughDDoS Containerconsiders the above two

cases normal traffic,Snort-Inlinegenerates false positives. Obviously, in the test cases we perform,Snort-
Inline has a false positive rate of 5/6. While carrying out tests with the entire range ofDDoSattack tools

investigated in this paper, we establish thatDDoS Containercreates neither false positives nor negatives in

contrast toSnort-Inline.

5.4 Sensitivity to DiverseDDoSFlooding Attacks

In order to inundate a network with heavy traffic,DDoS tools often create floods by using low-level inter-

faces such as raw sockets; these interfaces bypass protocolrestrictions and require tools to craft protocol

headers for the created IP,TCP,UDP and ICMP packets. The anticipated high packet rate and expected vo-

luminous traffic necessitate that tools use simplified techniques in creating flooding attack packets. Figure 9

shows the assignment of source and destination ports for packets in aStacheldrahtUDP-flood attack. Both

source and destination ports of packets take values in range[0, 10,000] and for the first attack packet, its

corresponding source and destination ports are set to 9998 and 2. In subsequent packets, the source and des-

tination ports are respectively decremented and incremented by one yielding their sum invariant to 10,000,

an obvious signature.TFN2K UDP-flood packets demonstrate similar behavior as Figure 10depicts. Source

 0

 2000

 4000

 6000

 8000

 10000

 0 5000 10000 15000 20000 25000 30000

por
ts

index of packets

Ports of UDP flooding in Stacheldraht

src
dst

src + dst

Figure 9: Source and destination ports in a
StacheldrahtUDP-flood attack

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 65536 131072 196608

por
ts

index of packets

Ports of UDP flooding in TFN2K

src
dst

src + dst

Figure 10: Source and destination ports in a
TFN2K UDP-flood attack

and destination ports are initialized to 65,534 and 2 respectively for the first packet and their values keep

changing in single unit steps while their numeric sum remains constant to 65,536. Table 20 shows a seg-

ment ofMstream-generated TCP-flood packets with unique characteristics;the packets have fixed size of 54

bytes from which 14 are for the Ethernet header, 20 for the IP header, and 20 for TCP header. Moreover, the

ip tosandip flagsfields remain constant to values 8 and 0 respectively andip id is stepwise incremented as

discussed in [13]. In the TCP-header,tcp flag andtcp win are set toACK, and 16,384 whiletcp sportand

35

tcp seqare incremented by one when represented in host order instead of network order.

src IP src port dst port ip id tcp flags tcp seq tcp ack description
directions of all packets: daemon (D): 192.168.5.141→ victim (V): 192.168.5.37;

1 122.141.239.55 0x0AE7 (2791) 24035 0xAD41 ACK 0xBD6B0B00 0 pkt1: random ipid, src port,

dst port, and tcpseq
2 214.0.67.96 0x0BE7 (3047) 42903 0xAE41 ACK 0xBE6B0B00 0 incremented ipid in host-order;

i.e., pkt1:0xAD41→ pkt2:0xAE41

3 176.51.61.100 0x0CE7 (3303) 64241 0xAF41 ACK 0xBF6B0B00 0 incremented srcport in host-order;

i.e., pkt2:0x0BE7→ pkt3:0x0CE7

4 21.203.199.59 0x0DE7 (3559) 19041 0xB041 ACK 0xC06B0B00 0 incremented tcpseq in host-order;

i.e., pkt3:0xBF6B0B00

→ pkt4:0xC06B0B00

5 157.170.14.59 0x0EE7 (3815) 29847 0xB141 ACK 0xC16B0B00 0 random source IPs for all packets

6 153.134.240.102 0x0FE7 (4071) 9172 0xB241 ACK 0xC26B0B00 0 random dst ports for all pkts

7 164.181.244.13 0x10E7 (4327) 44259 0xB341 ACK 0xC36B0B00 0 ACK in tcp flag is set for all pkts

8 152.219.249.44 0x11E7 (4583) 42114 0xB441 ACK 0xC46B0B00 0 however, tcpack is 0 for all pkts

9 231.222.111.123 0x12E7 (4839) 40428 0xB541 ACK 0xC56B0B00 0 other peculiarities: fixed ipflags

(zero);

10 4.191.45.57 0x13E7 (5095) 23360 0xB641 ACK 0xC66B0B00 0 fixed packet size

(40 bytes, excluding the header);

11 98.92.3.96 0x14E7 (5351) 7174 0xB741 ACK 0xC76B0B00 0 fixed tcpwin (16384 bytes);

12 173.81.218.80 0x15E7 (5607) 59842 0xB841 ACK 0xC86B0B00 0 fixed ip flags (zero);

13 159.98.164.20 0x16E7 (5863) 52641 0xB941 ACK 0xC96B0B00 0 fixed ip tos (8) and ipttl (255)

Table 20:Mstream-generated TCP-flood

Here, we ascertain the effectiveness of ourDDoS Container, by replaying various types of traffic with

known foreground characteristics. For brevity, we use the traffic of Figures 9 and 10 as well as that of

Table 20 to feed the testbed of Figure 8. We inject attack mixed with normal traffic into ourDDoS Container
and vary the replay speed so that the attack intensity is adjusted. We form diverse types of workloads by

mixing different foreground traffic and background traffic;the former consists ofStacheldrahtUDP-flood,

TFN2K UDP-flood, orMstreamTCP-flood attacks while the latter is FTP traffic. Various traffic templates

can be defined to help assess the effectiveness of ourDDoS Containerin detecting flooding attacks; a number

of such templates are shown in Table 21. A threshold expressed in packets-per-second (pps) and shown as

thrd complements the definition of each template and indicates the intensity of the traffic above which the

DDoS Containershould generate an alert.

Templates 1–6 designate traffic patterns forStacheldrahtUDP floods. As the conditiondst ip=same

indicates, template 1 clusters all packets with same destination IP; this template mimics the way the

vast majority of IDSs/IPSs operate using pure destination-based patterns to detect floods. The designa-

tion (dst ip=same)&&(dstport inc) of template 2 identifies a stream in which the destination IPsremain the

same but the destination ports are numerically increasing;template 3 outlines a similar pattern but inspects

for decreasing source ports. Templates 4 and 5 identify traffic whose packets comply with the condition

src port+dst port=10,000and show the same destination address, while template 6 exclusively uses the des-

ignationsrc port+dst port=10,000. As templates 1–5 use the destination address to cluster traffic, they mostly

reflect the way traditional flood detection methods work. In contrast, template 6 is destination-address-free

and we expect it to be more robust in dealing with floods. Templates 7–12 are formed to detectMstream
TCP-flood attack packets. We include template 7 to establisha comparison on detection accuracy between

our DDoS Containerand pure destination-based detection methods. On the otherhand, template 12 groups

all packets together that have acknowledgment number of zero and their TCP-window size is 16384.

By mixing flooding attack traffic generated byStacheldraht, TFN2K, or Mstreamand some attack-free

36

template thrd C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
traffic created byStacheldrahtor TFN2K UDP flooding attacks

1 (dst ip = same) 100 neg alert alert alert neg alert alert alert no pos
2 (dst ip = same) && (dstp inc) 100 neg alert neg neg neg neg neg neg no no
3 (dst ip = same) && (srcp dec) 100 neg alert neg neg neg neg neg neg no no
4 (dst ip = same) && (srcp + dstp = 10,000) 100 neg alert neg neg neg alert neg neg no no

(change 10,000 to 65,536 forTFN2K)
5 (dst ip = same) && (srcp + dstp = 10,000) 2 alert alert alert alert alert alert alert alert no no
6 (src p + dstp = 10,000) 2 alert alert alert alert alert alert alert alert no no

traffic created byMstreamTCP flooding attacks
7 (dst ip = same) 100 neg alert alert alert neg alert alert alert no pos
8 (dst ip = same) && (ip id inc) 100 neg alert neg neg neg neg neg neg no no
9 (dst ip = same) && (tcpack = 0) 100 neg alert neg neg neg alert neg neg no no
10 (dst ip = same) && (tcpack = 0) 2 alert alert alert alert alert alert alert alert no no
11 (dst ip = same) && (tcpwin = 16384) 2 alert alert alert alert alert alert alert alert no no
12 (tcp ack = 0) && (tcp win = 16384) 2 alert alert alert alert alert alert alert alert no no

Table 21: Sensitivity results forStacheldrahtUDP,TFN2K UDP, andMstreamTCP flood attack workloads

FTP traffic, each with different intensities, we generate a number of scenarios indicated as casesC1 to

C10 in Table 21. In all cases, both foreground attack and background traffic have as their destination the

primary victim’s IP address. In casesC1 andC2, we inject pure attack traffic with rates of 2 and 100 pps

respectively. InC3, foreground traffic of 2 pps is mixed with 98 pps attack-free traffic; in C4, the foreground

and background traffic streams have intensity rates of 98 ppsand 2 pps respectively. CasesC5 andC6 are

similar to C1 andC2 with the only difference that while replaying the packets the replay-order of some

consecutive foreground packets is swapped; in this spirit,C7andC8are similar toC3andC4with different

order for some of the packets. CasesC9andC10 inject only background traffic with intensity rates of 2 pps

and 100 pps. In Table 21, “no” and “alert” indicate that ourDDoS Containercorrectly classifies the injected

traffic as either legitimate or malicious while “pos” and “neg” show false positives and negatives.

Table 21 outlines the overall behavior of ourDDoS Containerunder the aforementioned diverse traffic

settings. The key observation is that whenthrd is set to 2 pps requirement, theDDoS Containerunder tem-

plates 5, 6, 10, 11, and 12 produces the correct results as it either alerts after observing two malicious packets

or correctly identifies background traffic shown with “no”. Destination-based templates 1 and 7 create false

positives in pure background traffic ofC10 as they only inspect destination IP addresses of the incoming

packets and the injected background traffic shares the same destination address, therefore producing false

positive. On the other hand, templates 2, 3, and 8 miss the flooding attacks inC6simply because the swap-

ping replay orders of attack packets destroy the monotonic increment or decrement relationships existing in

source ports, destination ports, or IP identifiers (i.e.,ip id), causing the observed attack intensities of these

templates to be lower than the real attacks. The setting of threshold value is critical as templates 9 and 10

show; whenthrd is set to 2 pps, theDDoS Containeris successful in accurately detecting all attack traffic

streams while it fails in part to accomplish this when the threshold is set at 100 pps. The higher threshold

simply misses attacks with lower intensities. In this regard, it is desired to set the threshold to the lowest

possible values. However, decreasing thresholds indiscriminately may generate false positives. For exam-

ple, if we change the threshold in template 1 from 100 to 2 pps,theDDoS Containercreates a false positive

for C9.

Having lower values for thethrd without creating false positives also implies that there isbetter utilization

of computing resources. For instance templates 5 and 6 have the same detection accuracy for all tests, while

template 6 entails less constraints and thus, requires lessmemory. Since templates 6 and 12 demonstrate not

37

only superb robustness in detecting flooding attacks but also low memory consumption, they are used in the

FortiGate-800 device when deployed in production.

5.5 Discussion on theDDoS ContainerPerformance

A thorough testing ofFortiGate-800 equipped with ourDDoS Containerhas been recently conducted by

NSS, an independent IPS testing organization [27]. At its ratedspeed of 400Mbps, theFortiGate-800 detects

and blocks all attacks under various test-load conditions.Basic latency figures were well within acceptable

limits for all traffic loads and with all packet sizes; they ranged from 249µs for traffic of 100Mbps consist-

ing of 256 byte packets to 280µs with 400Mbps with 1000 byte packets. With 40Mbps ofSYNflood-traffic

generated by theTFN2K DDoS tool, FortiGate shows latency of 188µs with 256 byte packets and 216µs

with 1000 byte packets [27]. The HTTP response time, defined as the time interval between request trans-

mission and reply arrival, for Web page access increased only slightly duringSYNflood tests from 214µs

under normal load to 219µs with the SYN flood. Even under eight hours of extended attacks comprising

of millions of exploits mixed with genuine traffic,FortiGate-800 continued to block 100% of attack traffic

while allowing all legitimate traffic pass through. Moreover, our DDoS Containerwas able to correctly

identify all “false negative” and “false positive” test cases and demonstrated excellent resistance to known

evasion techniques including IP fragmentation and TCP segmentation. Tests byICSA-Laboratoriesalso of-

fered similar observations while testingFortiGate equipped with ourDDoS Containermodule [33]. Overall,

our own experiments and those of independent testers revealthe high detection/prevention accuracy of our

DDoS Container; the latter also impacts in a minimal manner both network latency and system throughput.

6 Related Work

DDoS attacks have been long recognized as a major threat to the Internet [24, 44, 22, 18, 19], and [42]

helped establish that most sites suffer numerous dailyDDoSattacks while occasionally experiencing inten-

sive traffic flooding of up to 500,000 pps.DDoStools includingTrinoo, TFNandShafthave been dissected

and analyzed to help create counter-measures [40].DNS amplification attacksexploit the “open-resolvers”

in theDNSsystem and bombard with over-sized UDP-DNS-queries targeted sites [60]. In general, defense

mechanisms can be classified as preventive, reactive, and tolerant. Preventive mechanisms attempt to elimi-

nate the conditions necessary for the formation ofDDoSattacks in their various stages, such as vulnerability

identification, site penetration, code implantation, and attack launching [21, 58]. Reactive mechanisms con-

tinually monitor the behavior of programs and/or network activities, trying to identify possible attacks and

then generate alerts (e.g., in IDSs) or eliminate them (e.g., in IPSs) [26, 22]. In order for legitimate traffic to

be handled even in light of an ongoingDDoSattack, tolerance mechanisms featuring resource redundancy,

bandwidth-rate limitation, and dynamic system re-configuration have been proposed [3, 54].

Although it is critical that the origin of an attack be identified for accountability d and forensic analysis

purposes [40, 56, 64], such an identification is not always feasible due to address spoofing [21]. Tracing

systems includingICMP Traceback, IP Traceback, andCenterTrackare designed to address this issue but

their success remains limited as they often lead to zombie processes instead of the real instigators ofDDoS
attacks [6, 57, 48, 53, 18]. Similarly, theSleepy Watermark Tracing (SWT)approach uses watermarks

to uniquely identify connections [62].SWT could be used with routers so that the latter inject pertinent

38

information (i.e., watermarks) to involved network–applications. By correlating incoming/outgoing packets,

SWTcould help accurately determine a path-flow; evidently, this scheme is only feasible should applications

be watermark-aware, all routers are trustworthy, and thereis no link-to-link encryption.

By monitoring traffic, utilities includingCisco IOS QoS, NetFlow, Cflowd, FlowScan, NetDetectorand

RRDtoolhelp both detect and visualize abnormal behavior but more importantly provide early-warning to

potentialDDoS attacks [58, 19, 40]. Routers with functionality of ingress/egress filtering ensure that the

sources/destinations of data streams comply with adopted policies [21]. More specifically, ingress filtering

examines every incoming packet to a network for the validityof its IP source-address; similarly, egress

filtering checks all outbound packets to ensure their legitimate addresses [40]. Theunicast reverse path

forwarding(uRPF) mechanism in some routers ascertains the validity of a packet if the latter arrives through

one of the “best” paths available [58, 40]; although useful,uRPFcan only mitigate the intensity of aDDoS
attack. The establishment of demilitarized zones (DMZ) [14], the use of proxies to manage TCP-based

connections [50], as well as the deployment of firewalls withport or service based traffic filtering [58]

may lessen the effectiveness ofDDoSattacks; unfortunately, such measures are ineffective toward attacks

launched internally and their “all-or-nothing” policy mayrender both legal and useful facilities such asping

andtracerouteunavailable ifICMP-messages are not allowed to enter/leave such a guarded-network.

Resource-intensive TCP SYN-flooding and packet fragmentation attacks are often dealt with “client puz-

zle” protocols; for each client request, servers pose “puzzles” that are time-dependent and feature informa-

tion unique to servers under heavy traffic [12, 63, 40]. A server allocates resources for a connection only if

the initiator correctly solves the puzzle; forcing the attacker to commit significant resources to sustain the

intensity of an attack [34, 39, 19, 2]. Should filtering be impossible, network topology reconfiguration in-

cluding “back-holing” of victims may reduceDDoSdamages [66]. Rate-limiting mechanisms set thresholds

for bandwidth consumption for various types of traffic, especially those identified as malicious [37, 41]. By

removing traffic ambiguities, protocol normalization or scrubbing techniques also help mitigate the effec-

tiveness of attacks [38]. Auditing tools help discoverDDoSagents and/or handlers by identifying changes in

file systems and critical system configurations [59] or locating unique patterns in programs, especially bina-

ries [11]. With the help of such auditing strategies, host-based tools such asTripwire may detect malicious

DDoScodes, while network-based auditing tools such asddosscancan detect the existence of handler-agent

communications by searching for specific patterns in ongoing network traffic [40]. Unfortunately, both host

and network-based tools become ineffective whenDDoS attacks utilize techniques such as dynamic port

allocation, message encryption, and information compression.

Reactive mechanisms toDDoS attacks mostly entail pattern matching and behavior anomaly analysis.

Patterns of known attacks are often stored in a signature database used to identifyDDoS activities [47].

When traffic at a site deviates from what is deemed as “normal”, it is flagged and counter-measures are

taken [66, 37, 41]. In this regard, there is a wide range of tools which successfully address mostly individual

aspects ofDDoS attacks. For example, theCaptIO through the use of rules can detect ICMP-floods and

subsequently limits the bandwidth consumption of such traffic types; it fails however to identify either

spoofed or multi-source attacks. Similarly, theTop Layer AppSwitch 3500can counter attacks such asland,
smurf, fraggle, andUDP-bombs but is unable to handle ICMP and SYN-floods coming off random source

addresses [27].

By applying temporal quantization and Granger causality test to the MIB databases from multiple do-

mains, precursors toDDoSattacks can be extracted, which may indicate imminent attacks [7, 8]. Unfortu-

39

nately, in order to conduct causality analysis, MIB databases in both attacker and primary victim machines

should be accessible [7] which may be of limited value in pragmatic settings. In addition, information

on MIB variables from different domains should be exchangedin real-time [7, 8]; this may not be feasi-

ble especially when an intenseDDoSattack is under way. Furthermore, the MIB variables used including

TCPInSegs, UDPOutDatagrams, andICMPInMsgs, are of coarse granularity making it difficult to distin-

guish among differentDDoSattacks. Finally, this causality analysis is based on abnormal traffic behavior

such as flooding; therefore, it is applicable to communications between zombies and primary victims only

and is ineffective for messages exchanged between attackers and handlers as well as handlers and agents.

Our work in this paper builds on the abovementioned efforts and our main objective is to provide not only a

pragmatic and comprehensive but also an extensible framework capable of effectively detecting/preventing

malicious traffic among attackers, handlers, zombies, and primary victims in a wide range of contemporary

DDoSattacks.

7 Conclusions and Future Work

By penetrating into a large number of machines through security flaws and vulnerabilities and stealthily

installing malicious pieces of code, a distributed denial of service (DDoS) attack constructs a hierarchical

network and launches coordinated assaults. By exhausting the network bandwidth, processing capabilities

and other resources of victims,DDoS render services unavailable to legitimate users. AsDDoS toolkits

use multiple mechanisms, it is in general very challenging to identify and/or prevent such attacks. Al-

though trace methods and ingress/egress filtering techniques are used to locate agents and/or zombies in

intermediate network nodes, they are complex to implement and difficult to deploy as they frequently call

for global cooperation. Elements of hierarchicalDDoSattack networks use dynamic TCP/UDP ports and

source address spoofing to hide attackers and thwart their tracing. Moreover, one-way communication chan-

nels, encrypted messages, and the use of evasive techniquesrender conventional IDSs/IPSs ineffective as

the latter typically resort to specific pattern matching andfixed-port traffic identification.

In this paper, we propose a comprehensive framework, theDDoS Container, whose main objective is

to overcome the deficiencies of existing approaches. TheDDoS Containeruses network-based detection

methods and operates in inline fashion to inspect and manipulate passing traffic in real-time. By tracking

connections established by bothDDoSattacks and normal applications, our framework maintains state infor-

mation for each session, conducts stateful inspection, andcorrelates data among sessions.DDoS Container
performs stream re-assembly and dissects the resulting aggregations against protocols followed by known

DDoS systems facilitating the identification of such malicious activities. The use of deep inspection and

behavior analysis enhanceDDoS Container’s detection accuracy when it comes to encryptedDDoS traffic.

Our framework can take a number of steps in handling detectedDDoS traffic including alerting, packet

blocking and proactive session termination. Experimentation with the prototype of ourDDoS Container
demonstrates its effectiveness in a large number of settings and establishes its efficiency.

We intend to follow up this work by pursuing three objectives: (i) maintain the currency of ourDDoS
Containerframework by incorporating analyzers for emerging and newDDoS strains, (ii) provide mech-

anisms to exchange information among variousDDoS Containers deployed in different locations so that

event correlation in targeted network regions can be conducted; here, the goal is to detectDDoS attacks

with victims spanning multiple domains or launched with very light intensity rates, and (iii) explore the

40

integration of ourDDoS Containerwith other security systems including firewalls, anti-virus, host-based

IDSs/IPSs, and anti-malware programs to more effectively combat aggregate malicious activities resulting

from the mixture ofDDoSand popular worms.

Acknowledgments: We are very grateful to the reviewers for their meticulous comments that helped us

improve the presentation of our work. We are also thankful toPeter Wei ofFortinet, Inc. for discussions on

the framework presented in this manuscript and Qinghong Yi,Gary Duan, Ping Wu, Fushen Chen, Joe Zhu

and Hong Huang for helping with parts of our implementation and testing effort.

References
[1] C. M. Adams and S. E. Tavaris. Designing S-Boxes for Ciphers Resistant To Differential Cryptanalysis. InProceedings of

the 3rd Symposium on State and Progress of Research in Cryptography, pages 181–190, Rome, Italy, Feb. 1993.

[2] T. Aura, P. Nikander, and J. Leiwo. DOS-Resistant Authentication with Client Puzzles.Springer-Verlag, Lecture Notes in
Computer Science, 2133, 2001.

[3] G. Banga, P. Druschel, and J. Mogul. Resource Containers: A New Facility for Resource Management in Server Systems.
In Proceedings of the 1999 USENIX/ACM Symposium on Operating System Design and Implementation, pages 45–58, New
Orleans, LA, February 1999.

[4] M. Blaze, J. Ioannidis, and A.D. Keromytis. Toward Understanding the Limits of DDoS Defenses. InProceedings of the
Tenth International Workshop on Security Protocols, Cambridge, United Kingdom, April 2002.

[5] D. Brumley. Remote Intrusion Detection (RID).http://www.stanford.edu/, 2000.

[6] H. Burch and B. Cheswick. Tracing Anonymous Packets to Their Approximate Source. InProceedings of the 2000 USENIX
LISA Conference, pages 319–327, New Orleans, LA, December 2000.

[7] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, and R. K. Mehra. Proactive Intrusion Detection and Distributed Denial of Service
Attacks - A Case Study in Security Management.Journal of Network and Systems Management, 10(2):225–254, June 2002.

[8] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, R. Prasanth, B. Ravichandran, and R. Mehra. Proactive Detection of Distributed
Denial of Service Attacks Using MIB Traffic Variables - A Feasibility Study. In In Proceedings of The Seventh IFIP/IEEE
International Symposium on Integrated Network Management(IM 2001), pages 609–622, Seattle, WA, May 2001.

[9] CERT Coordination Center. Smurf Attack.http://www.cert.org/ advisories/CA-1998-01.html, 1998.

[10] CERT Coordination Center. Trends in Denial of Service Attack Technology.http://www.cert.org/ archive/pdf/DoS trends.pdf,
October 2001.

[11] National Infrastructure Protection Center. Advisory01-014: New Scanning Activity (with W32-Leave.worm) Exploiting
SubSeven Victims.http://www.nipc.gov/ warnings/advisories/ 2001/01-014.htm, June 2001.

[12] Y. W. Chen. Study on the Prevention of SYN Flooding by Using Traffic Policing. InProceedings of the Network Operations
and Management Symposium, 2000 (NOMS 2000), pages 593–604, Honolulu, HI, 2000. IEEE/IFIP.

[13] Z. Chen, Z. Chen, and A. Delis. Analyzers forDDoS Attack Tools. Technical report, Athens, Greece, December 2005.
Department of Informatics and Telecommunications, Univ. of Athens, http://www.di.uoa.gr/∼ad/analyzers.pdf.

[14] W.R. Cheswick, S.M. Bellovin, and A.D. Rubin.Firewalls and Internet Security. Addison-Wesley, Professional Computing
Series, Boston, MA, second edition, 2003.

[15] D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture. Prentice-Hall, Englewood Cliffs, NJ,
1991.

[16] ComputerWorld. Microsoft Admits Defense Against Attacks Was Inadequate.http://www.computerworld.com /software-
topics/os/story /0,10801,57054,00.html, Jan. 2001.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The MIT Press, 1997.

[18] D. Dean, M. Franklin, and A. Stubblefield. An Algebraic Approach to IP Traceback. InProceedings of the 2001 Network
and Distributed System Security Symposium, San Diego, CA, February 2001.

[19] C. Douligeris and A. Mitrokotsa. DDoS Attacks and Defense Mechanisms: Classification and State-of-the-Art.Computer
Networks: The International Journal of Computer and Telecommunications Networking, 44(5):643–666, April 2004.

[20] Ethereal. Ethereal: Powerful Multi-Platform Analysis. http://www.ethereal.com, May 2005.

[21] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP Source Address
Spoofing.Internet Engineering Task Force, May 2000.

[22] M. Fullmer and S. Romig. The OSU Flowtools Package and Cisco Netflow Logs. InProceedings of the 2000 USENIX LISA
Conference, New Orleans, LA, December 2000.

[23] X. Geng and A. B. Whinston. Defeating Distributed Denial of Service Attacks.IT Professional, 2(4):36–41, July 2000.

[24] V.D. Gligor. A Note on the Denial of Service Problem. InProceedings of the 1983 IEEE Symposium on Security and Privacy,
Oakland, CA, December 1983.

[25] V.D. Gligor. Guaranteeing Access in Spite of Distributed Service-Flooding Attacks. InProceedings of the Security Protocols
Workshop, Sidney Sussex College, Cambridge, UK, April 2003. Springer-Verlag.

41

[26] J. Green, D. Marchette, S. Northcutt, and B. Ralph. Analysis Techniques for Detecting Coordinated Attacks and Probes. In
Proceedings of USENIX Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, April 1999.

[27] NSS Group. Intrusion Prevention System (IPS) Group Test. http://www.nss.co.uk/ips/edition2/fortinet/, 2005.

[28] K. Hafner and J. Markoff.Cyberpunk: Outlaws and Hackers on the Computer Frontier. Simon and Scuster, New York, NY,
1991.

[29] H. M. Heys and S. E. Tavares. On the Security of the CAST Encryption Algorithm. In Proceedings of the Canadian
Conference on Electrical and Computer Engineering, pages 332–335, Halifax, Nova Scotia, Canada, Sep. 1994.

[30] Fortinet Inc. Intrusion Prevention System.Web Site, May 2005.

[31] Computer Security Institute and Federal Bureau of Investigation. 2000 CSI/FBI Computer Crime and Security Survey.
Computer Security Institute publication, March 2000.

[32] F. Kargl, J. Maier, and M. Weber. Protecting Web Serversfrom Distributed Denial of Service Attacks. InProceedings of 10th
International World Wide Web Conference, Hong-Kong, China, May 2001.

[33] ICSA Lab. Intrusion Prevention System (IPS) Test. http://www.icsalabs.com/, 2005.

[34] J. Leiwo, P. Nikander, and T. Aura. Towards Network Denial of Service Resistant Protocols. InProceedings of the 15th
International Information Security Conference, New York, NY, August 2000.

[35] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAVE: Source Address Validity Enforcement Protocol. InProceedings
of the IEEE INFOCOM International Conference, New York, NY, June 2002.

[36] R. Love. Linux Kernel Development. Developer’s Library Sams Publishing/Novel, second edition, 2005.

[37] R. Mahajan, S. Bellovin, S. Floyd, V. Paxson, and S. Shenker. Controlling High Bandwidth Aggregates in the Network.ACM
Computer Communications Review, 32(3), July 2002.

[38] G. R. Malan, D. Watson, F. Jahanian, and P. Howell. Transport and Application Protocol Scrubbing. InProceedings of the
INFOCOM International Conference (3), pages 1381–1390, Tel-Aviv, Israel, March 2000.

[39] C. Meadows. A Formal Framework and Evaluation Method for Network Denial of Service. InProceedings of the 12th IEEE
Computer Security Foundations Workshop, Mordano, Italy, June 1999.

[40] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher.Internet Denial of Service: Attack and Defense Mechanisms. Prentice
Hall, ISBN: 0-13-147573-i, 2005.

[41] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the Source. InProceedings of the 10th IEEE International Conference
on Network Protocols, Paris, France, November 2002.

[42] D. Moore, G. Voelker, and S. Savage. Inferring InternetDenial-of-Service Activity. InProceedings of the 2001 USENIX
Security Symposium, Washington, D.C., Aug. 2001.

[43] R. Naraine. Massive DDoS Attack Hit DNS Root Servers.http://www.esecurityplanet.com/ trends/ article/ 0,,10751
1486981,00.html, October 2002.

[44] R. Needham. Denial of Service: An Example.Communications of the ACM, 37(11):42–47, November 1994.

[45] Fox News. Powerful Attack Cripples Internet.http://www.foxnews.com/story /0,2933,66438,00.html, April 2003.

[46] K. Park and H. Lee. On the Effectiveness of Route-Based Packet Filtering for Distributed DoS Attack Prevention in Power-
Law Internets. InProceedings of ACM SIGCOMM Conference, San Diego, CA, August 2001.

[47] M. Roesch. Snort – Lightweight Intrusion Detection forNetworks. InUSENIX 13-th Systems Administration Conference –
LISA’99, Seattle, WA, 1999.

[48] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support for IP Traceback. InProceedings of the 2000
ACM SIG-COMM Conference, pages 295–306, Stockholm, Sweden, August 2000.

[49] B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd Edition). John Wiley & Sons, Inc.,
New York, 1996.

[50] C. Schuba, I. Krsul, M. Kuhn, G. Spafford, A. Sundaram, and D. Zamboni. Analysis of a Denial of Service Attack on TCP.
In Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.

[51] Packet Storm Security. Wet Site.http://packetstormsecurity.com, 2005.

[52] D. D. Sleator and R. E. Tarjan. Self-Adjusting Binary Search Trees.Journal of the ACM, 32(3):652–686, 1985.

[53] D. Song and A. Perrig. Advanced and Authenticated Marking Schemes for IP Traceback. InProceedings of the 2001 IEEE
INFOCOM Conference, Anchorage, AK, April 2001.

[54] O. Spatscheck and L. Peterson. Defending Against Denial of Service Attacks in Scout. InProceedings of the 1999
USENIX/ACM Symposium on Operating System Design and Implementation, pages 59–72, February 1999.

[55] S. M. Specht and R. B. Lee. Distributed Denial of Service: Taxonomies of Attacks, Tools, and Countermeasures. InInterna-
tional Workshop on Security in Parallel and Distributed Systems, pages 543–550, San Francisco , CA, September 2004.

[56] L. Spitzner.Honeypots: Tracking Hackers. Addison Wesley, ISBN: 0321108957, 2002.

[57] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS Floods. InProceedings of the 2000 USENIX Security
Symposium, pages 199–212, Denver, CO, July 2000.

[58] Cisco Systems. Unicast Reverse Path Forwarding.Cisco IOS Documentation, May 1999.

[59] Tripwire. Tripwire for Servers.http://www.tripwire.com/products/servers/.

[60] R. Vaughn and G. Evron. DNS Amplification Attacks.http://www.isotf.org/news/DNS-Amplification-Attacks.pdf, March
2006.

[61] P. Vixie. Extension Mechanisms for DNS (EDNS0).Internet Engineering Task Force, August 1999.

42

[62] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy Watermark Tracing: An Active Network-Based Intrusion Response
Framework. InProceedings of the IFIP TC11 Sixteenth Annual Working Conference on Information Security: Trusted Infor-
mation: The New Decade Challenge, pages 369–384, 2001.

[63] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New Client Puzzle Outsourcing Techniques fro DoS Resistance.In
Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS’04), pages 246–256, Washington,
DC, October 2004.

[64] N. Weiler. Honeypots for Distributed Denial of Service. In Proceedings of Eleventh IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2002, pages 109–114, 2002.

[65] Wired.com. Yahoo on Trail of Site Hackers.http://www.wired.com /news/business /0,1367,34221,00.html, May 2003.

[66] J. Yan, S. Early, and R. Anderson. The XenoService – A Distributed Defeat for Distributed Denial of Service. InProceedings
of the 3rd Information Survivability Workshop (ISW’00), Boston, USA, October 2000.

43

