
Enhancing DNS for Improved E-mail Services
in a Clustered Environment

Kostas Zorbadelos
Otenet SA

Kifisias Ave. 109 and Sina
15124, Marousi, Greece

kzorba@otenet.gr

Alex Delis
Deprt. of Informatics

The University of Athens
15771, Athens, Greece

ad@di.uoa.gr

Abstract

The Domain Name System (DNS) affects most Internet services including e-mail. It has
scaled well with the growth of the Internet but it also has limitations. In normal DNS operation
it is likely for users to be directed to ”sub-optimal” targets for obtaining service or even to
nodes in which there is no service availability at a specific time interval. We propose an
enhanced name-server that functions in cooperation with the open-source BIND and takes
into consideration the state of the machines that provide the mail service. The main task of
our name-server is to effectively carry out host-name resolution to cluster-node IPs even in
light of failed or overloaded cluster nodes. We present the server’s software architecture and
the techniques for load evaluation to attain near-optimal name-to-address resolution.

1 Introduction

E-mail still enjoys tremendous growth worldwide and Internet Service Providers (ISPs) have to
continually improve the delivery of e-mail services to millions of subscribers. Even medium-size
ISPs have to accommodate the needs of tens of thousands of users. As the volume of subscribers
increases, optimization techniques are necessary to keep the service running smoothly and prevent
it from ungraceful degradation. Distribution of load in a cluster of machines that provide a service
is common. Various criteria are used to evaluate the load of each node so as to direct the client to
the “best” possible machine for service. There are various products from many manufacturers that
attempt to address the problem of load sharing [11]. However, many of these products perform
load evaluation at the network level, without taking into consideration the characteristics of the
specific service at the application layer. Furthermore, some depend on specific other products for
their operation, or were designed for performance tuning of other product offerings in the first
place.

We suggest a solution to the problem of load sharing that takes into consideration the following
criteria:

• Depends on core Internet protocols and standards (DNS)

• Is independent of specific vendor product offerings
• Takes into account the characteristics of the mail services at the application layer
• Effectively,transparently and dynamically eliminates the failed nodes in the cluster diverting

the load to the other machines
• Performs frequent polls to obtain an as good and as current as necessary picture of the load
• Although described for mail services can be adapted to other applications
• Is based on open source components

Related approaches that use DNS to attain load sharing are discussed in [7, 2]. The most common
and widely used, is the Round Robin feature of BIND [1]. In this, the addresses of a specific
domain name are returned to the client in a round robin fashion but without more elaborate load
evaluation or even check for availability of the destination machine. The Internet Software Con-
sortium has expressed an opinion [7] for being reluctant to introduce more sophisticated load
balancing code in BIND. They propose as an alternative to use a separate name-server to handle
the domain names with any type of reordering suitable for the application at hand. The lbnamed
has followed this approach and uses a a separate name-server to handle domains with dynamic
re-ordering [13].

In this paper, we present the design rationale and algorithms for load evaluation for an enhanced
name-server which cooperates with the open source BIND. The name-server in question handles
only delegated domains used for load balancing of mail services. It should not be considered a
substitute for BIND and provides only a small subset of BIND’s capabilities in responding DNS
queries.

2 The Operational Environment

Our operational environment is depicted in Figure 1. We have three classes of servers for the mail
services and we also have a filer (Network Attached Storage) that contains the user mailboxes.
The machines that need access to the mailboxes mount the space over NFS. All the servers are
multi-homed to distinguish the network traffic towards the outside world, from the internal NFS
traffic towards the filer. This is desirable for both security reasons (better access control to the
filer) as well as performance. NFS performance is especially sensitive and requires a lot of tuning
[14, 8], so having the NFS traffic in a separate LAN is generally a good idea.

As we can see, the machines have names in a virtual domain (lb.ourdomain) that is delegated
to the enhanced name-server. The first class (mailgate.lb.ourdomain) contains the servers that
are used by subscribers as “outgoing”. Users declare the name mailgate.ourdomain as outgoing
SMTP server to their Mail User Agents (MUAs) so all mail traffic generated by our subscribers is
delivered to the outside world by this class of machines. The domain name mailgate.ourdomain
is therefore a CNAME to mailgate.lb.ourdomain. These machines do not need access to the
mailboxes of the subscribers.

The second class (mail.lb.ourdomain) is advertised as MX record for our domain. To be precise,
what is advertised is mail.ourdomain which is a CNAME to mail.lb.ourdomain. Although MX

Figure 1: The clustered environment for mail services

records should contain only canonical domain names and not CNAMES to avoid mailer loops, in
our case there is only one MX record with the lowest preference. This record points to a different
IP address each time because of the way our enhanced name-server works. In the rare case where a
mailer trying to deliver to ourdomain is directed to an IP which is not available, the mailer differs
delivery and as it retries it finally obtains a different IP in the mail.lb.ourdomain pool. We do not
expect the client resolver to have cached previous IP addresses due to the short TTL returned by
our enhanced name-server. The machines in this class are the only machines that deliver mail to
the users’ mailboxes.

Finally the third class (popper.lb.ourdomain or imap.lb.ourdomain) contains the servers that
provide access to users’ mailboxes via pop or imap. Subscribers declare popper.ourdomain
or imap.ourdomain in the configuration of the tools they use to fetch their mail to their local
machines, or their MUAs. The popper.ourdomain and imap.ourdomain are CNAMES for pop-
per.lb.ourdomain and imap.lb.ourdomain respectively.

The relevant part of the setup in the parent ourdomain zone is presented in Figure 2. With this
setup, the delegated virtual sub-domain lb remains transparent to the final users.

3 Service Classes Affected by DNS

In the case of an ISP subscriber that tries to send mail, she most probably declares to her MUA
software a host-name to use as an outgoing SMTP server. This server is configured to relay mail

@ IN MX 0 mail.ourdomain.

mailgate IN CNAME mailgate.lb.ourdomain.
mail IN CNAME mail.lb.ourdomain.
popper IN CNAME popper.lb.ourdomain.
imap IN CNAME imap.lb.ourdomain.

Figure 2: The ourdomain zone configuration

for subscribers. She could also use the MTA running on her local machine and configure it to
forward all mail to the ISP’s SMTP server (“smarthost” configuration). In any case, the IP of
the relay server is required to establish a SMTP connection. The MUA or local MTA therefore
performs a DNS query to locate the IP and as a result, it finally receives a record containing the
wanted IP. The same scenario is performed whenever a user tries to establish a session with a pop
or imap server to retrieve mail from her remote mailbox. In our environment and for either case,
the user is directed to one of the machines in the cluster (mailgate group in the case of sending
mail, popper or imap for accessing her mailbox).

The case of mail delivery is different though. For the mail delivery, another type of DNS RR
(Resource Record) is utilized, namely the MX records. The exact algorithm used by Mail Transfer
Agents to deliver a mail to its final destination is described in RFC 974 [12]. The MTA performs
an MX query to find the relevant records for the destination domain with the corresponding pref-
erences. It then tries each MX in turn starting with the one that has the lowest value associated
with it. To avoid mail loops the MTA checks if itself is part of the list, in which case it discards
all records with preference values greater than or equal to its own. Finally, of course, the MTA
needs to find the IP address of the corresponding MX so as to attempt the delivery. Most MTAs
are tolerant in case they don’t find MX records for a destination domain, and try as a last resort to
deliver the mail to the host included in the address. In our environment, the delivery of mail items
destined to ourdomain will end up in one of the machines in the “mail” group.

4 Bottlenecks and Load Factors

One of the most sensitive factors that can affect the performance of the entire service, is the NFS
protocol used in the mounted file system containing the users’ mailboxes. For the NFS server
part, there are optimized filer products such as the Netapp Filers which can provide very good I/O
throughput and minimize the NFS server bottleneck. For the client part, there are performance tun-
ing techniques, but require experimentation for calibration. These methods also depend upon the
specific platform NFS is implemented. [14, 8] offer a number of guidelines for NFS performance
tuning and problem diagnosis. Since NFS is a network based protocol, the underlying network
performance is also vital to its operation.

At the application layer, all MTAs use one or more queues to store mail items that wait to be
delivered. Queue analysis [3, 10, 4] can provide valuable metrics regarding the load of each MTA.
Generally speaking, the mail items’ count that wait in the queue for delivery and their size, provide
a good estimate of an MTA’s load. Another bottleneck point can be the locking that is required
in the delivery of mails to local mailboxes. We can overcome this by using maildir [9] format
for the mailboxes. Document [16] provides a benchmark for the use of mbox vs maildir in IMAP
services.

In the next section, we provide formulas that take into account the aforementioned factors. Our
overall objective is to maximize the throughput (number of mail items delivered to their destination
per second) by distributing the load evenly across the machines that constitute the cluster.

5 Load Evaluation and Distribution Algorithms

For every class of machines deployed (mailgate, mail, popper/imap) we establish different cri-
teria. The common part in all cases, is that the load is expressed as a single number and load
estimation takes into account a “history window” that is, the load samples within a specific time
frame.

• Outgoing Mail: In the case of the mailgate class of machines, we take into consideration
the general load average of the machine and the size of the mail queue. In this case NFS is
not involved, since the MTAs in these machines do not interact with the mailboxes. At the time
when the pollerc performs a sampling, it breaks the mail queue into time intervals. The recent
time intervals have fine granularity while the older ones have geometrically less fine granularity.
The messages contained in the recent intervals are given greater weight in the computation of
load while the older ones less. This happens, because in general the most recent messages are
the ones that are being processed while the older ones are more likely “differed” because of an
earlier failed delivery attempt. The differed messages are retried in a growing time frame between
retransmissions. Therefore it is logical to assume that the younger messages affect the current load
of the MTA more than the older ones. The following formula expresses all the above:

ls = lm ·

k∑

i=1

ci · ni · S̄i (1)

where, ls is the sample of the load at a specific time; lm is the load average of the machine (as
given for example by the top [15] command), ci is the weight of the messages in the i-th time
interval of the queue (with the first interval containing the younger messages), ni is the count of
the mail items contained in the i-th time interval, S̄i is the average size (in KB or MB) of the mail
items of the i-th time interval, and finally k is the count of the time intervals we break the queue
into. We also have ci > ci+1 that is the younger messages affect the current load more than the
older ones.

Finally, we take into consideration the N previous samplings so we have a history window of

N · ts size (ts is the time between the samplings). So the final load of a node is determined as:

l =
1

N

N∑

i=1

lsi
= l̄s (2)

• Local Mail Delivery: The machines that belong in the “mail” group perform the deliveries to
the local user mailboxes. In this case, we take into consideration the general load of the machine,
the size of the mail queue (items that wait to be delivered) and also the NFS overhead in the load
evaluation. The following formula binds these factors together:

ls = lm · nq · S̄q · tsvctm (3)

where, ls is the sample of the load at a specific time, lm is the load average of the machine, nq

is the count of the mail items contained in the queue, S̄q is the average size (in KB or MB) of
the mail items in the queue, and lastly tsvcmt is the average service time (in milliseconds) for I/O
requests that were issued to the NFS file system.

Considering the N previous samplings for a history window of N · ts size (ts is the time between
the samplings), we finally obtain:

l =
1

N

N∑

i=1

lsi
= l̄s (4)

• POP/IMAP Services: The machines in the popper/imap class have the greatest NFS interaction
with the mailboxes. The number of concurrent user sessions, the size of the session mailbox and
as always the general load of the machine are the factors contributing to the load computation:

ls = lm · tsvctm ·

Ns∑

i=1

nmi
·

¯Smi
(5)

where, ls is the sample of the load at a specific time, lm is the load average of the machine, tsvcmt is
the average service time (in milliseconds) for I/O requests that were issued to the NFS file system,
Ns is the count of the pop/imap sessions, nmi

is the count of the mail items in the user mailbox
corresponding to the i-th session, and ¯Smi

is the average size (in KB or MB) of the mail items in
the mailbox corresponding to the i-th session.

When taking into consideration the history window of the N previous samplings, we have:

l =
1

N

N∑

i=1

lsi
= l̄s (6)

6 The Enhanced Name-Server

Our enhanced name-server consists of two parts, the main enh-named and a pollerc. The multi-
threaded enh-named’s software architecture appears in Figure 3. The program starts, binds to the

Figure 3: The multi-threaded enh-named

machine’s address and listens for incoming requests on TCP and UDP ports 53 (domain service).
Upon start, it reads a configuration file that contains among other things the pools of the hosts that
provide the mail services and the port each pollerc listens for probes by the pollerd daemon.

#---
enh-named configuration
#---

zone lb.ourdomain {
...
pollerd_wakeup = num
...
The config for the first pool of machines (mailgate).
This creates the name mailgate.lb.ourdomain
group mailgate {

host mailgate1 {
the canonical name of the host
cn=mailgate1.ourdomain
the host ip address
ip=ip1
the port that the pollerc listens on that machine
pollerc_port= port1

}
...
host mailgateN {
cn=mailgateN.ourdomain
ip=ipN
pollerc_port= portN

}
}

The config for the second pool of machines (mail).
This creates the name mail.lb.ourdomain
group mail {

host mail1 {
cn=mail1.ourdomain
ip=ip1
pollerc_port= port1

}
...

host mailN {
cn=mailN.ourdomain
ip=ipN
pollerc_port= portN

}
}

Finally the config for the popper/imap pool of machines.
This creates the name popper.lb.ourdomain
group popper {

host popper1 {
cn=popper1.ourdomain
ip=ip1
pollerc_port= port1

}
...
host popperN {
cn=popperN.ourdomain
ip=ipN
pollerc_port= portN

}
}

This creates the name imap.lb.ourdomain
group imap {

host imap1 {
cn=imap1.ourdomain
ip=ip1
pollerc_port= port1

}
...
host imapN {
cn=imapN.ourdomain
ip=ipN
pollerc_port= portN

}
}
...

}

A list of all hosts is initially created. This list has a record for each host, that contains the name(s)
of the machine, its IP, a boolean field that indicates whether it is alive, the canonical domain name
and the machine’s current load. For each group of machines an array is created that contains
references to the hosts list. This situation is depicted in Figure 4.

Our enh-named is a multi-threaded program that has a number of worker threads that service
the incoming DNS requests, plus a special thread that is our poller daemon (pollerd). The job of
the pollerd thread is to wake every specified time interval and communicate with each external
machines’ pollerc to obtain their corresponding load. The pollerd uses UDP protocol for this
communication and sends asynchronously requests to each pollerc running on the mail server
cluster nodes. Upon receiving an answer that contains the load of the specified machine, the
pollerd updates the relevant data structure with the current load. If pollerd doesn’t receive an
answer from a machine after a timeout period, it marks it as dead and updates the data structures
accordingly. pollerd is the only thread that writes to the shared data structures with all others
being readers.

The worker threads’ role in enh-named, is the actual service of the incoming DNS queries.

Figure 4: enh-named pertinent data structures

Our name-server is not a full featured domain server like BIND, so it understands a subset of
the possible DNS queries (no recursive queries for example) and answers only for the domains
it knows about. Client resolvers should not be pointed to our name-server directly. For each
incoming query that has to do with a machine class, a worker thread returns an answer, based on
the current load of the machines in the class. The array relevant to the name being asked is sorted
according to ’live machines with the lowest load’ and the machine with the lowest load is returned
as an answer. The TTL of the answer is very small, to avoid its caching by other resolver clients.
Such caching would defeat the whole purpose of dynamic load-balancing that we try to achieve.
The TTL should be equal to or less than the pollerd’s polling interval.

The pollerc program runs on every machine in the cluster. Upon startup, it reads its configuration
file, binds to the host’s address and listens for probes from the pollerd thread to the port specified.
The pollerc part is the one that implements the algorithms described in section 5. When contacted
by the pollerd on the UDP port it listens to, pollerc returns its machine’s current load. The
configuration file contains all necessary information the pollerc needs to perform its role.

#---
Pollerc configuration
#---
pollerc {

the UDP port pollerc listens for
requests from pollerd
port=<num>
the type of algorithm pollerc implements
for the evaluation of load
type=<outgoing-smtp|local-delivery|popper|imap>
sample time interval
every that interval pollerc will perform a
sample of the machine’s load
polling_interval=<num>
this affects the history window described
in the algorithms section
this number of previous samplings are taken
into consideration for the current evaluation
of load
history_polls=<num>

}

In order for our setup to successfully operate, we need to delegate a “virtual” zone from our
domain to the enh-named. This is done by adding the proper NS records in ourdomain zone
file (figure 5). With this setup, we have 2 enhanced named servers that operate independently of
each other for redundancy. Each DNS query for the machines in the mail cluster, arrives in our
name-server who responds with the alive machine that has the lowest load at the time.

A subtle point that is worth mentioning, is that our name-server responds with a CNAME record
and not with an A. The CNAME points to the canonical domain name of the machine (which is the
reason we need the canonical name in the configuration file). The answer returned also contains
the IP of the machine in order to avoid the extra query to our parent name-server. The IP is known
to our name-server as we need it for the communication with the pollerc and we include it in the
configuration file. By returning a CNAME instead of an A record we avoid returning an answer
to the resolver client that doesn’t have a corresponding PTR record. Finally, as we have earlier
mentioned, the answer has a small TTL to avoid caching, typically the polling interval or a fraction
of it.

lb IN NS lbns1.ourdomain.
lb IN NS lbns2.ourdomain.

Figure 5: Delegation of the lb zone from the parent ourdomain

7 Conclusions

Our enhanced name-server is a proposal for load balancing that is independent of specific product
offerings, takes into account the characteristics of the services at the application layer and dynam-
ically eliminates failed nodes, redirecting their load to other machines. This way it also provides a
way for easier scheduling of server downtime for upgrades and maintenance. Although mainly it
is a work in progress, the ideas behind it address the issues of load balancing using open, widely
implemented standards. There is room for improvements and also possibility to deploy the name-
server to other applications, by writing and putting into service pollerc programs that perform the
load evaluation with different algorithms.

Acknowledgments: we would like to thank Edwin Kremer for commenting on earlier drafts
of this note as well as Achilles Voliotis and Kostas Tavernarakis of Otenet for very informative
discussions.

References

[1] Paul Albitz and Cricket Liu. DNS and BIND. Number ISBN: 0-596-00158-4. O Reilly and Associates,
Inc., 2002.

[2] Thomas P. Brisco. RFC 1794: DNS Support for Load Balancing, April 1995.

[3] Victor Duchovni. Postfix Bottleneck Analysis. http://www.postfix.org/
QSHAPE_README.html.

[4] Victor Duchovni. qshape(1) man page, Postfix documentation.

[5] Terry Gray. Message Access Paradigms and Protocols. ftp://ftp.cac.washington.edu/
mail/imap.vs.pop, September 1995.

[6] iostat(1) man page.

[7] BIND and Load Balancing. http://www.isc.org/products/BIND/docs/
bind-load-bal.html.

[8] Chuck Lever. Using the Linux NFS Client with Network Appliance Filers. Technical report, Network
Appliance, March 2004.

[9] maildir(5) man page.

[10] mailq(1) man page, included in sendmail, postfix, exim.

[11] Netcraft faq. http://uptime.netcraft.com/up/accuracy.html.

[12] Craig Partridge. RFC 974: Mail Routing and the Domain System, January 1986.

[13] Roland J. Schemers. lbnamed: A Load Balancing Nameserver in Perl.
http://www.stanford.edu/˜riepel/lbnamed, September 1995.

[14] Seth Vidal Tavis Barr, Nicolai Langfeldt and Tom McNeal. Linux NFS HowTo.
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html, August 2002.

[15] top(1) man page.

[16] Sam Varshavchik. Benchmarking mbox vs maildir. http://www.courier-mta.org/
mbox-vs-maildir, March 2003.

http://www.postfix.org/
QSHAPE_README.html
ftp://ftp.cac.washington.edu/
mail/imap.vs.pop
http://www.isc.org/products/BIND/docs/
bind-load-bal.html
http://uptime.netcraft.com/up/accuracy.html
http://www.stanford.edu/~riepel/lbnamed
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://www.courier-mta.org/
mbox-vs-maildir

	Introduction
	The Operational Environment
	Service Classes Affected by DNS
	Bottlenecks and Load Factors
	Load Evaluation and Distribution Algorithms
	The Enhanced Name-Server
	Conclusions

