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Abstract. By effectively harnessing networked computing resources, the two-tier client-server model has been
used to support shared data access. In systems based on this approach, the database servers often become per-
formance bottlenecks when the number of concurrent users is large. Client data caching techniques have been
proposed in order to ease resource contention at the servers. The key theme of these techniques is the exploitation
of user data access locality. In this paper, we propose a three-tiered model that takes advantage of such data
access locality to furnish a much more scalable system. Groups of clients that demonstrate similarities in their data
access behavior are logically clustered together. Each such group of clients is handled by an Intermediate Cluster
Manager (ICM) that acts as a cluster-wide directory service and cache manager. Clients within the same cluster
are now capable of sharing data among themselves without interacting with the server(s). This results in reduced
server load and allows the support of a much larger number of clients. Through prototyping and experimentation,
we show that the logical clustering of clients, and the introduction of the ICM layer, significantly improve system
scalability as well as transaction response times. Logical clusters, consisting of clients with similar data access
patterns, are identified with the help of both a greedy algorithm and a genetic algorithm. For the latter, we have
developed an encoding scheme and its corresponding operators.
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1. Introduction

Database systems in modern networked environments are required to manage tremendous
volumes of data and allow transparent location-independent access to it. Applications de-
ployed in such environments include CAD/CAM, computer integrated manufacturing, sys-
tems for the management of production, and electronic-commerce systems. Typically, a
large number of users work simultaneously in order to complete design new components,
track provided services, and oversee financial operations [29, 30, 34, 45]. Efficient database
support for these systems is crucial. Previous work in the area has examined the relationship
between application software and independent data-servers [5, 17, 39, 51]. Although the
study of this interaction is essential, the handling of high-volume data among various sites
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in a network-based infrastructure poses new challenges [50]. To meet these challenges, con-
temporary databases have been based on the client-server (CS) model where a number of
machines (servers) host data and others (clients) carry out transaction processing [11, 14].

Client-server databases have shown reduced response times for client transactions over
their centralized counterparts. However, as data servers are shared among many users, they
become points of contention. Studies in this area have shown that when the number of
clients attached per server becomes large, such database architectures fail to guarantee
satisfactory performance rates [14]. Transient data caching at clients has been used as a
mechanism for improving system response times and easing resource contention at database
servers. By storing frequently accessed data at the client sites, repeated requests to the
server for the same data can be avoided, if not completely eliminated. The emergence of
high speed networks has also created new opportunities in CS systems since the contents of
remote client caches can also be exploited as data resources [35]. Data request forwarding
schemes that allow client requests to be treated by other clients, instead of servers, have
been introduced in distributed file systems and object-oriented client-server databases [6,
13]. Such request forwarding has been shown to improve transaction throughput rates and
make use of idle client resources. Although the above efforts have helped improve the
performance of CS systems, there are still upper bounds on their scalability. This is because
servers are required to not only process client data requests, but also manage global locking
and maintain data-location directories. As larger numbers of clients are attached per server,
delays experienced by clients in obtaining server data increase considerably and contribute
to a marked degradation in throughput.

In this paper, we propose two alternative architectures that avoid this performance degra-
dation by off-loading server tasks to an intermediate layer in the access hierarchy. The key
feature of the resulting three-tier configurations is logical client clustering. By analyzing
data access patterns of involved sites, we can logically group clients into disjoint sets. Clients
that access similar segments of the database are grouped together. Each cluster of clients
is handled by an Intermediate Cluster Manager (ICM) which is connected to the existing
database server(s). The interaction among clients and server(s) is achieved with the help of
ICMs that may feature a data-cache on their own. An ICM provides the following services
to its member clients:

– A cluster-wide data directory is maintained so that requests can be forwarded to other
clients within the cluster, whenever possible.

– Concurrency related structures (i.e., lock tables, cluster-wide wait-for graphs) for data
objects in a cluster are maintained at the ICM level. These structures are also used to
carry out deadlock detection within clusters.

– If an ICM has its own cache, requests for data/locks available in the cache can be handled
by the ICM itself.

By generating good logical client clustering and performing the above functions using ICMs,
the load on the server can be reduced significantly. This results in improved transaction
response times and consequently better system scalability. In general, it is worth mentioning
that the problem of logical client clustering is computationally expensive. In fact, the optimal
clustering of clients based on data access patterns is known to be NP-Complete [21, 44].
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We have implemented system prototypes for the standard client-server and the three-tier
database architectures. We have also implemented greedy and genetic algorithms to generate
favorable client clusters. Our experimental results establish that the clustered three-tier
systems avoid the scalability problem encountered by the conventional CS implementations.
Under a number of diverse workloads, the clustered configurations demonstrate many-
fold reductions in observed transaction turnaround times. Only in the case where good
client clustering was difficult to generate, the standard two-tier CS configuration featured
comparable performance.

Client clustering has been considered in the past by the operating system and database
communities. Many techniques that advocate the use of clusters of computing nodes and/or
TP monitors in order to scalably provide services to a large number of users have been
proposed. Such configurations have been used in the implementation of highly available
web servers and database servers [1, 16]. Logical clustering, as proposed in this paper,
is different from earlier clustering techniques in that it does not advocate the creation of
computing clusters based on the physical location or proximity of the involved client sites.
We believe that as network availability and bandwidth increases, the importance of clients’
physical proximity will continue to diminish. And, as data transfer costs and overheads
become lower, managing the sharing of data and co-ordinating serializable database accesses
become significant areas for improvement. These are the areas that we seek to address with
logical client clustering.

The remainder of this paper is organized as follows. Section 2 describes the key charac-
teristics of the standard CS as well as two alternative ICM-based architectures. In Section 3,
we present the algorithms used to generate client clusters and Section 4 discusses our ex-
perimental methodology and presents our performance results. Section 5 outlines related
work and compares it with our approach. Conclusions can be found in Section 6.

2. Networked database architectures

This section outlines two database architectures built around the concept of the Intermediate
Cluster Manager (ICM) and contrasts them with the conventional Flat CS architecture
(FCS). The two three-tiered configurations are the Logically Clustered CS database (LC-
CS) and its extended version (Extended-LC-CS). In the former, ICMs provide directory
services to allow clients within clusters to share data while the latter also allows data and
lock caching at the ICM level. Objects are the unit of data transfer between the server and
the client workstations [11, 15]. For the sake of simplicity, we assume that the granularity
of objects remains constant. All three configurations share a number of features:

(i) The primary copy of the database is hosted by the server and the clients communicate
with it via IPC (Inter-Process Communication) abstractions. There may be more than
one database server but we assume that there is no replication of data among them.

(ii) User transactions are initiated at the clients. The required data are fetched by the clients
and used by the transactions locally. Concurrent transaction processing is permitted at
each client site. Each client uses its memory and disk space to maintain local copies
of objects.
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(iii) The server performs low-level database functionalities on behalf of requesting clients.
In addition, the server ensures that all accesses to the data are serialized and that there
are no operations being performed on stale copies of data objects. This is achieved by
maintaining a global lock table.

(iv) Inter-transaction caching at the clients is permitted, i.e., database objects are allowed
to remain in client caches across transaction boundaries [14, 40].

In each architecture, two types of locks are allowed: shared (read-only) and exclusive
(read-write) [43]. Several transactions can access the same data item with a shared lock
(SL). On the other hand, at any given time, only one client is allowed to lock a data object
exclusively. Moreover, a transaction is not allowed to obtain any type of lock on an object
that has been locked by another client or transaction in an exclusive mode (EL). The locking
scheme has been derived from the strict two phase locking (2PL) mechanism for distributed
environments [4]. The following three subsections describe the operations of the three
architectures in detail.

2.1. Flat client-server architecture (FCS)

The flat client-server architecture consists of a number of clients directly connected to the
database server. The server maintains a global lock table to ensure that clients cannot obtain
conflicting locks on database objects simultaneously. When a client transaction requests
database objects, the client’s cache manager checks if these objects/locks are available
locally. For data not available in the local cache, the client contacts the server and asks that
the requested locks be granted and the corresponding objects be sent over. Once the necessary
data becomes available, the client’s CPU and available buffer space are used to carry out
the necessary processing. The set of downloaded objects constitutes a local database that is
stored in the client’s memory as well as disk caches in an inter-transaction caching fashion.
We support the client framework used in [43, 57, 59] where clients cache the locks for objects
as well. Therefore, all future requests for the cached data (with the cached locks) can now
be satisfied by the client locally. A client releases a lock on an object (and returns the object
to the server, if necessary) if the server recalls it or if the client needs to create space in its
local cache. Lock tables at the client and the server are updated accordingly. In addition,
an invalidation mechanism is in place in order to avoid using cached but obsolete data
objects [57]. We assume that clients can launch multiple concurrent transactions. Conflicts
on objects requested by such local transactions are managed with the help of the client’s
own lock and object managers. Obviously, the lock that can be granted by a client’s lock
manager to a local transaction depends on the lock that the client has itself obtained from
the server.

If a client’s lock request on an object conflicts with the lock presently granted to other
client(s) then the server sends callback messages to all such client(s) requesting that they
release their locks as soon as possible [57]. If the object has been updated at a client then
it is also required that the client returns the latest version of the object to the server. Once
the object has been returned, the server grants the lock to the requesting client and sends
the object over. In figure 1, consider a request by Client1 for a SL on ObjectA. ObjectA
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Figure 1. An example of object locking in FCS.

is exclusively locked by Client2. Therefore, the server issues a callback request to Client2

requesting it to return the object as soon as possible. Once Client2 has finished its processing
and returned the updated copy of the object releasing the EL, a SL is granted to Client1

and ObjectA is shipped to it. Thus, FCS clients depend on the server as the only source of
database objects that are not available in their local caches.

2.2. Logically clustered client-server architecture (LC-CS)

In LC-CS, clients that demonstrate similar object access patterns are logically clustered
into groups. This contrasts with previous proposals where clustering has been performed
on the basis of the clients’ physical locations and existing network topology [13, 48]. Each
group of clients in the LC-CS is managed by an Intermediate Cluster Manager (ICM). ICMs
cooperate with the main database server and therefore, unlike FCS, clients are not directly
connected to the server. The resulting LC-CS is a three-tier architecture with the ICMs
serving as mediators (see figure 2).

Similar to the FCS, database processing in LC-CS is performed at the clients only.
However in LC-CS, the server does not maintain a lock table for all clients in the system.
Instead, it only keeps a lock table that stores locks granted at the cluster level. ICMs
keep track of the object and lock status for individual clients in their clusters. This two-
level locking enables the system to minimize the server’s concurrency processing as object
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Figure 2. Hierarchical locking in LC-CS.

requests satisfied within clusters do not directly interact with the server’s lock manager.
The latter updates its lock table only when locks are granted to clusters. An example of this
hierarchical locking schema is shown in figure 2. The server has granted an EL on ObjectA
to Cluster1. ICM1 now has the authority to grant SL or EL requests on ObjectA to any client
within the cluster. Therefore, if Client2 requests a lock on ObjectA then ICM1 can grant this
request without having to contact the server.

When a client transaction requests data objects/locks, the client checks whether the
requests can be satisfied from its local disk and memory caches. If an object is not available
locally then the client dispatches a request for that object (and the appropriate lock) to its
ICM. The method in which the ICM satisfies requests for data objects depends on the type
of locks that have been requested (shared or exclusive). The steps taken by the ICM for a
SL request are shown below:

(i) When an ICM receives an object request from a client, it looks up its cluster directory
to see if another client within the same cluster has the object cached.

(ii) If the object is present at a client within the cluster, then the ICM requests that client to
forward the object to the requesting client as soon as possible. In figure 2, we consider
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a request by Client1 for a SL on ObjectA. This request is forwarded by the ICM1 to
Client2. Client2 will ship a copy of ObjectA to Client1. Since Client2 has an EL on
ObjectA, the object is forwarded to Client1 once the transaction that is using it has
committed; Client2 downgrades its own lock on ObjectA to a SL. ICM1 is informed of
the successful forwarding operation so that it can update the cluster lock table/directory
accordingly. At the same time, the server’s lock table entry containing EL for ICM1

needs to be downgraded to SL. Before this downgrading take place, the server receives
an updated object from ICM1.

(iii) If the object is not cached at any client in the cluster then the ICM contacts the server
and requests to ship a copy of it. The server can grant this request immediately if no
other cluster has locked the requested object in exclusive mode (in figure 2, consider
a request by Client1 for a SL on ObjectC ). Otherwise, the server issues a callback
request to the ICM that has an EL on the object; that ICM issues a callback to the
client that holds the EL. As soon as the client releases its EL and returns the object to
its ICM, the ICM ships it to the server, the server ships it to requesting ICM, and that
ICM sends it to the client. An example of this case would be a request by Client3 for
a SL on ObjectA (figure 2). In this situation, ICM2 requests the server for the object.
The server calls back the object from ICM1. ICM1 issues a callback to Client2. Once
Client2 returns the object to ICM1, ICM1 forwards it to the server. At that point, the
object can be finally shipped to Client3.

The steps that are taken when a client requests an EL are analogous to the ones described
above. The basic requirement is that before a lock can be granted, it is necessary for all
conflicting locks to have been released.

In general, a client returns an object (and releases the lock on it) only when it receives a
callback request for that object or when it needs to create free space in its cache. In either
case, the client and the ICM have to ensure that the lock tables at the ICM and the server
are updated correctly. The manner in which this is done depends on the type of lock that
the client is about to release:

(i) If the object has been updated at the client (EL) then the latest version of the object
is shipped to the ICM before it is purged from the client’s cache. Once the ICM has
received the updated page, the client deletes the object. The ICM passes on the updated
object to the server and updates its lock table entry to indicate that no copies of the
object are present in the corresponding cluster.

(ii) If the client has a SL on the object then there is no need to ship the object back to the
server. The client only needs to inform the ICM that it is about to purge the object from
its cache. If no other client in the cluster has cached the object then the ICM informs
the server that the object is no longer present in its cluster.

From this discussion, we can see that the use of ICMs can offer several advantages over
the two-tier FCS architecture:

(i) when the data are cached at some client(s) in the cluster, the object location directories
maintained by the ICMs allow requests for data to be satisfied without the intervention
of the server,
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(ii) the ICM’s cluster-wide lock table allows sharing of data in its cluster and also guar-
antees that data accesses are serialized, and

(iii) the detection of deadlocks is carried out in a distributed manner [10]. ICMs are respon-
sible for serializable transaction processing and deadlock detection within their own
clusters whereas the server is responsible for enforcing system-wide serializability.
Wait-for graphs at both ICMs and the server are used to detect and resolve deadlocks
at the cluster and server levels.

Since interaction with the server may not be necessary, the above benefits can contribute
significantly towards reducing the load on the database server when the clients in each clus-
ter have a considerable overlap in their data requirements. In such situations, the scalability
of the server can be vastly increased compared to that of the FCS server. The resource
requirements of the ICMs are not very demanding either. Relatively small and inexpen-
sive machines can be utilized to provide the object directory services and concurrency
control.

2.3. Extended logical clustered client-server architecture (Extended-LC-CS)

The Extended-LC-CS architecture is designed to improve upon the benefits provided by the
LC-CS. In LC-CS, every request that is satisfied within the cluster requires three
messages: object request from the client to the ICM, forwarding request from the ICM
to an appropriate client, and forwarded object from that client to the requesting
client. This is due to the absence of data/lock caching abilities at the ICM. If ICMs
are given the ability to cache database objects as well, an important enhancement
becomes possible. When a client requests a SL then after the object is fetched from
the server, the ICM can store it in its own cache too. This allows the ICM to satisfy
future SL requests by itself. Hence, it is possible for non-conflicting (SL-SL) object re-
quests to be satisfied with only two messages, without the need for request/object
forwarding.

This saving in the number of messages (and, consequently, blocking time) can become
very significant if the sites in each cluster demonstrate a degree of locality in their ac-
cesses to the data. The ICM can now function as a downsized-server and a subset of the
functionality of the database server can be replicated at the ICM. This allows clusters to
operate independently of each other as long as their data requirements do not intersect.
Therefore, in contrast to the LC-CS, ICMs in the Extended-LC-CS first examine their own
cache to see whether the requested objects and locks are available. If so, the request can
be satisfied immediately. Otherwise, the request is processed in a manner similar to the
LC-CS. In figure 3, consider a request by Client2 for a SL on ObjectC . Since, ObjectC has
not been exclusively locked by any other client, the server grants this request immediately
and ObjectC is shipped to ICM1. ICM1 forwards the object to Client2 and also stores it in
its own cache. Now, a request by Client1 for a SL on ObjectC can be granted by the ICM1

on its own authority.
In a LC-CS cluster, when an object is dropped by all clients, the object has to be returned

to the server if necessary, and the ICM is required to release the corresponding lock. This
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Figure 3. ICM caching and hierarchical locking in extended-LC-CS.

can create two adverse effects: (i) if an object, that is frequently accessed by the clients in
a cluster, is dropped by that cluster then it may have to be re-fetched from the server in
the near future. This causes increased transaction blocking times and also incurs additional
messaging overhead, and (ii) the server is required to process each such request, therefore
the scalability of the system (in terms of the total number of clients supported) is reduced
considerably.

The Extended-LC-CS solves the above two problems effectively by incorporating caching
abilities into the ICMs. The cache buffers available at an ICM are used to store objects that
have been dropped from the caches of all the clients in the cluster. Now, the interaction
with the server, that was necessary in LC-CS in the above cases, is no longer required.
Future requests on data objects cached at the ICM level can be satisfied without server’s
assistance. The enhancements proposed in the Extended-LC-CS promise vastly improved
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response times for object requests, lower network utilization, and reduced server load.
However, it is evident that these gains can only be substantial when the clients are clustered
in a way that the sharing of data within the clusters is maximized. In fact, when client
clusters are not defined satisfactorily, Extended-LC-CS can demonstrate a lower efficiency
than even the basic FCS architecture. This is because the access serialization and messaging
overheads are significantly higher for inter-cluster data requests than for intra-cluster ones.

2.4. An analytical comparison between the two types of configurations

In this subsection we perform an analysis of the two-tier (FCS) and three-tier (LC-CS and
Extended-LC-CS) architectures based on the probability of object request satisfaction at
the clients, and within the clusters. Table 1 lists the used variables and their descriptions.

First, we formulate an expression for the average time taken to satisfy an object request
in the FCS architecture. This is derived from figure 4 which shows the flow of control for an
object request. The label of each solid directed edge represents the cost (time delay) caused
by the originating node of that edge.

Table 1. Variable definitions.

Variables Descriptions

Probabilities

Pchit Prob (hit in a client’s memory space)

Phit Prob (hit in a server’s memory space)

Time Delays

CComps−msg Time for handling a message for a request in a client

CReadobj Time for reading from client’s disk to memory

CWaitdisk Delay in a client’s disk queue

CIDsearch Time for searching a directory in a ICM

I Comps−msg Time for handling a message for a request in a ICM

I Waitservice Delay in an ICM’s queue waiting a service

LCSWaitservice Delay in a server‘s queue in LC-CS

RBuf search Time for searching a cache buffer in a remote client

RCompo−msg Time for handling a message with an object in a remote client

RWaitservice Delay in the remote client’s queue waiting a service

SBuf search Time for searching a memory space in a server

SCompo−msg Time for handling a message with an object in a server

SReadobj Time for reading from server’s disk(s) to memory

SWaitdisk Delay in a server’s disk queue

SWaitservice Delay in a server’s queue in FCS

To−msg Network delay for an object message

Ts−msg Network delay for a request message
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Figure 4. Control flow for an object service in the FCS.

Let tCC be the average time for fetching an object from the client’s local cache (disk and
main memory), and let tFCS−Server be the average time taken by the server to satisfy an object
request. If PC−FCS is the probability with which a requested object is found in the client’s
cache, then the expected time taken for each object request to be satisfied is:

tFCS−Request = PC−FCS × tCC + (1 − PC−FCS) × tFCS−Server (1)

From figure 4, tFCS−Server can be expanded to:

tFCS−Server = ComputingFCS + NetworkFCS + DiskFCS + WaitingFCS, (2)

where:

ComputingFCS = CComps−msg + SBuf search + SCompo−msg

NetworkFCS = Ts−msg + To−msg

DiskFCS = (1 − Phit) × (SWaitdisk + SReadobj)

WaitingFCS = SWaitservice

In the three-tiered configurations, if an object is not available in the client’s own cache
then a request is dispatched to its corresponding ICM (see figure 5). Now, if the ICM cannot
satisfy the request from within the cluster (either from it’s own cache or from another client
in the cluster), it sends a request for that object to the server. Let tICM be the average time
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Figure 5. Process flow for an object reading with costs in the LC-CS.

for satisfying an object request within the cluster, and let tLC−Server be the average time for
an object request serviced by the main database server. tLC−Server includes the time taken
for request processing at the ICMs (to check whether the request can be satisfied within the
cluster).

If PC−LC−CS is the probability that a client’s request is satisfied locally and PICM−LC−CS

is the probability that the request sent to an ICM is satisfied within the cluster then the
expected response time for a request is:

tLC−Request = PC−LC−CS × tCC + (1 − PC−LC−CS)(PICM−LC−CS × tICM

+(1 − PICM−LC−CS) × tLC−Server) (3)

Here tICM can be expanded to:

tICM = ComputingICM + NetworkICM + ClientDiskICM + WaitingICM (4)
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where:

ComputingICM = CComps−msg + CIDsearch + IComps−msg

+RBuf search + RCompo−msg

NetworkICM = 2 × Ts−msg + To−msg

ClientDiskICM = (1 − Pchit) × (CWaitdisk + CReadobj )

WaitingICM = I Waitservice + RWaitservice

tLC−Server can be also expanded such that:

tLC−Server = ComputingLCS + NetworkLCS + DiskLCS + WaitingLCS (5)

where:

ComputingLCS = CComps−msg + CIDsearch + I Comps−msg + SBuf search

+SCompo−msg

NetworkLCS = 2 × Ts−msg + To−msg

DiskLCS = (1 − Phit ) × (SWaitdisk + SReadobj )

WaitingLCS = I Waitservice + LCSWaitservice

In order to make a comparison between the expected response times at a client in the two
architectures, we make the simplifying assumption that the cache hit ratios at clients are
the same, i.e., PC−LC−CS = PC−FCS. This is not an unreasonable assumption as the cache-
hit ratios at clients (in the two-tier or three-tier systems) that receive identical transaction
streams (and, therefore, make the same object requests) will be very similar. Now, we use
Eqs. 1 and 3 to derive an estimate for PICM−LC−CS, the probability that an object request
is satisfied within the cluster, such that the overall average object response times in both
architectures are the same. Equating response time equations 1 and 3, we get:

tFCS−Server − tLC−Server = PICM−LC−CS × (tICM − tLC−Server) (6)

From this equation, PICM−LC−CS can be formulated as:

PICM−LC−CS = (tFCS−Server − tLC−Server)

(tICM − tLC−Server)
(7)

PICM−LC−CS in Eq. 7 is the percentage of requests that need to be satisfied within the
clusters in a three-tiered architecture to make the overall average object response times
equal to that in the flat architecture. Using the detailed cost equations that are described
above PICM−LC−CS is calculated as:

PICM−LC−CS = E1

E2
(8)
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where:

E1 = SWaitservice − CIDsearch − I Comps−msg − Ts−msg − I Waitservice

−LCSWaitservice

E2 = RCompo−msg + RBu fsearch + RWaitservice + (1 − Pchit)(CWaitdisk

+CReadobj ) − SComom sg − SBu fsearch − LCSWaitservice

+(1 − Phit)(SWaitdisk + S Readobj)

As stated earlier, PICM−LC−CS is the percentage of clients’ object requests that are satisfied
within their cluster. Equation 8 provides the lower bound value for PICM−LC−CS that will
make the object response times in the two architectures equal. A higher value of PICM−LC−CS

would imply lower response times in the three-tier configurations as compared to the FCS.
From the equation for E1 and E2 we can see that the value of PICM−LC−CS depends directly
on the average queuing delays encountered in the main database servers in the two models,
and on the queuing delay at the ICMs. Later in this paper, we show the average queuing
delays measured during our experiments.

Logical client clustering, proposed in this paper, seeks to identify groups of clients that
demonstrate similar database access behavior and place them together into clusters. If such
logical clusters are well-formed then the sharing of data within clusters is increased. An
increase in such data sharing leads to a corresponding increase in the value of PICM−LC−CS. In
the next section, we describe the algorithms used to define client clusters based on their data
access patterns, and the evaluation functions used to determine the quality of the clustering
solutions.

3. Algorithms for logical client clustering

We first describe the input data, i.e, the format of the clients’ database access pattern. Then,
we describe two off-line clustering algorithms that are used to group clients with similar
database access patterns into the same cluster. It should be noted that the optimal solution to
this problem, based on identifying clusters that demonstrate the maximum access overlap,
is NP-Complete [21, 44]. The first algorithm is based on greedy approach, and the second
one is a genetic algorithm (GA) with a new encoding scheme and corresponding operators.

3.1. Input data representation

Without loss of generality, we assume that the database is a collection of uniquely identifiable
objects. The object access patterns for individual clients can be created by monitoring data
requests from the clients over a period of time.

The access pattern is represented by a collection of 0-1 bit strings, one for each client
in the system. For n clients, let C be the set of n binary bit-strings, where the bit-string
Ci represents the data access pattern for client i . Hence, for client i , Ci = 〈b1

i , . . . , bz
i 〉,
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where z is the number of objects in the database(s). The bits in each Ci are set using the
rule:

b j
i =

{
1, if client i accesses the j th data object

0, otherwise

Using this representation of access patterns, the problem of finding a subset of clients with
maximal common accesses becomes that of finding the largest set of overlapping 1’s in the
two-dimensional array C .

Obviously, in an environment where a client may access any database object, it is possible
that after a long period of monitoring a great majority of bits for each client will be set to 1.
In order to resolve this problem, we create bitmapped access patterns for each client during
discrete time windows. The most recent access patterns are used to perform the clustering.
In the next subsection, we describe a greedy algorithm to solve this problem.

3.2. Greedy algorithm for client clustering

In our first effort, we developed a single-pass greedy algorithm to determine client clusters.
In a generic greedy algorithm, the choice made at each iteration is the one that is the best
among the available options. Using this as the guiding principle, the algorithm we developed
consisted of the following steps:

(i) If there are clients still unassigned to clusters then pick one of these clients randomly.
(ii) Add this client to the cluster that has the greatest database object access overlap with.

If the client does not have a significant overlap with any cluster or if all the existing
clusters are full, then a new cluster is created and the client is added to it.

(iii) Apply steps (i) and (ii) until all clients have been assigned to clusters.

The second step identifies which cluster a client should join. A bit-string is maintained for
each cluster that represents the union of the sets of objects accessed by the clients in the
group. This is used to help determine the affiliation of a client that needs to be clustered.

This algorithm is very fast (in real time) and it is easy to generate many possible solutions
rapidly—by examining candidate clients in different orders. However, it has several disad-
vantages that make the generated solutions unsatisfactory: first, it searches for a solution
only in the local solution space, i.e., all future solutions are in the immediate neighbor-
hood of the current point. This makes it susceptible to local minima. Second, it also has no
backtracking ability. Once a client has been assigned to a cluster, it cannot be later moved
to another cluster. In order to improve upon this greedy algorithm, we address the client-
clustering problem by using a genetic algorithm-based approach (GA). GA algorithms are
known to be among the most promising of the evolutionary algorithms [24, 25, 27]. Genetic
algorithms have received much attention as robust stochastic searching algorithms for var-
ious optimization problems [24] and have been frequently used in clustering problems that
feature n-dimensional space input data [32, 54]. In [41], various evolutionary algorithms
are investigated for data allocation among distributed server nodes, and a genetic algorithm
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approach shows superior performance to the other algorithms. After an initial evaluation
of a number of optimization algorithms, we opted for a GA-based algorithm since, unlike
other search-based techniques, a genetic algorithm starts with a large population of feasi-
ble solutions and performs a parallel search of the solution space [24]. This multi-modal
approach makes the algorithm less likely to get caught in local minima, and ensures a more
comprehensive search of the solution space. Furthermore, since new solutions are generated
using probabilistic transition rules instead of deterministic procedures, a much more varied
set of feasible solutions can be generated without resorting to exhaustive techniques.

3.3. The used genetic algorithm

To find a best-possible solution, we apply a GA to the above problem using two separate
evaluation functions to generate succeeding generations of solutions. Using an appropriate
measure to judge the quality of a generated solution is very important if the GA is to converge
upon the best achievable solutions. The key objective of our evaluation functions is the
maximization of potential common access pattern among clients as well as the minimization
of the number of clusters and the overlapping access pattern among clusters. Our proposed
functions, termed IntraC and InterC, are described below.

– IntraC: Clients in a group should have a very high percentage of common data accesses
so that most object requests can be satisfied within the cluster. IntraC is a measure of
the common data accesses of the clients in each cluster, taken over all clusters. Hence,
for a generated solution consisting of k clusters:

IntraC =
k∑

i=1

(
OClusteri

DBSIZE

)2

+ 1

k2
(9)

where OClusteri is the number of objects accessed in common by clients in Clusteri

and DBSIZE is the size of the database. The ratio of OClusteri /DBSIZE represents the
measurement of the quality for a single cluster (i.e., cluster cohesiveness). The evaluation
function also encapsulates the number of clusters generated as a measure of quality of the
clustering solution. This is an important parameter as it restricts the number of clusters
generated. Without this restriction, the GA can generate solutions with arbitrarily large
number of clusters thereby increasing the cost of implementing the ICM layer.

– InterC: Inter-cluster data accesses need to be as few as possible. For every object request
that necessitates lock callbacks and releases across clusters the LC-CS and Extended-
LC-CS systems incur a very high overhead. InterC is the percentage of inter-cluster data
accesses made by the clients in all generated clusters. Therefore, for a generated solution
consisting of k clusters:

InterC =
∑k

i=1
Mi
Ni

× ci∑k
i=1 ci

(10)
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where Ni is the total number of objects accessed by clients in Clusteri , Mi is the number
of objects accessed by clients in Clusteri that are also accessed by clients from other
clusters, and ci is the number of clients in Clusteri . The ratio of Mi/Ni indicates the
probability of inter-cluster operations. The ci s are used to weight the evaluations of
individual clusters so that a cluster with a larger number of clients will contribute more
to the overall average.

We combine these two evaluation functions into a single metric f that gives equal weigh-
tage to both of them

f = 1

2
(IntraC + (1 − InterC)) (11)

The (1−InterC) is necessary to convert InterC from a minimizing function to a maximizing
function. The sum of two factors is averaged so that the final value ranges between zero and
one. The f is used in the GA to judge the fitness of the chromosomes in each generation.

In a GA, characteristics of the solution are represented as the genes of a chromosome.
In our implementation, each chromosome is stored as a linked list of genes. Each gene
represents one cluster, and the complete chromosome identifies one clustering solution.
As depicted in figure 6, an initial population of chromosomes is first generated. For this,
we use the greedy algorithm described earlier. The size of the initial population is chosen
to be large enough so that the formation of many different chromosomes is feasible (one
hundred is considered to be a reasonable size for the initial population [25]. The fitness of
each chromosome in the population is calculated according to the evaluation function f
(Eq. 11). From this initial population, the next generation of chromosomes is created by
applying the laws of natural selection, i.e., chromosomes with better fitness have a higher
probability of being selected for the next generation.

Using the chromosomes selected for the new population, we select the candidates for
recombination arbitrarily. From this pool of candidate “parents”, we select pairs of chromo-
somes randomly and generate their “children” by recombining the genes of the two parents.
This enables the GA to search the unexplored area in the solution space. At the moment
of recombination, a number of genes in each parent are selected for crossover, and the
chosen genes are exchanged between parents generating two children. This GA recombi-
nation process is similar to the reproduction process in nature. The two parents are then
replaced by the child chromosome in the population.

Figure 6. Structure of the genetic algorithm.
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Subsequently, genes from randomly picked chromosomes are mutated randomly by small
amounts. In a similar fashion to the random selection and recombination operations dis-
cussed above, the GA’s mutation operation makes the evolution among the candidate so-
lutions possible. The frequency of mutation determines the degree of inheritance from the
previous generation. If this frequency is too high, even chromosomes of very good quality
cannot be inherited to the next generation and the GA becomes similar to one of the stochas-
tic methods [24]. In contrast, if frequency of mutation is too low, the quality of chromosomes
depends on the recombination process and GA appears like one of the deterministic ap-
proaches [24]. In summary, succeeding generations of chromosomes are generated either
for a fixed number of generations or until a solution with the required fitness is found. In
our experiments, we ran the GA until two hundred generations had been created and then
picked the best available solution.

The GA has the disadvantage that it cannot prevent the creation of very large clusters
if a great number of clients demonstrate very similar data access behavior. This can be a
problem because now the ICM corresponding to that cluster may become a bottleneck. In
these cases, an additional stage of processing is necessary. This extra processing involves
running the GA again on the clients in the large cluster under consideration. However,
now only the InterC evaluation function is used as we only want to minimize inter-cluster
accesses among this subset of the original clients.

3.4. An example

The logical clustering solutions generated by 12 generations of the GA are shown in
figure 7. The input to this example were the database access patterns of 10 clients. These

Figure 7. A sample run of the genetic algorithm with 10 clients.
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access patterns were created randomly for a database containing 10,000 objects. The initial
population of chromosomes was generated using the greedy maximal overlap algorithm
and is shown as Generation 0 in figure 7. Here, we can see that Chromosome 1 is rated as
the best solution and Chromosome 3 is the worst.

After 12 generations of recombinations and mutations, we can see that the chromosomes
are converging towards a single optimal solution (according to the combined measure).
Three of the five chromosomes are identical with a combined evaluation value of 0.5314.
After a few more generations, all the chromosomes will suggest the same clustering so-
lution. Since the GA is not an unimodal optimization algorithm, it can be seen that the
final population also contains several unacceptable clustering solutions. This is, in fact, an
advantage of a GA. The multi-modal search makes a GA less likely to get stuck in local
optima.

4. Experimental evaluation

In this section, we describe the experimental evaluation of the three architectures and
detailed prototypes that run in a network of workstations. By varying the number of clients
and database access patterns, we have examined their performance indicators and scalability.

4.1. Methodology

Our test-bed consists of six Sun workstations running Solaris 7 and connected by a 10 Mbps
LAN Ethernet. In our experiments, the database server ran by itself on one workstation,
while the ICMs and the clients were equally distributed over the remaining machines. The
values for key database system related parameters are shown in Table 2.

We have used the Paged File (PF) layer to manage object database systems at the clients,
ICMs and the server [54]. The PF layer incorporates the functionality needed to maintain
a page buffer in memory and also writes updated pages back to disk when necessary. The
database consists of 10,000 objects with the size of each object as 256 bytes. We chose

Table 2. Key database-related parameters.

Parameter Value

Database size 10,000 objects

Server main memory size 2,500 objects

ICM main memory size 500 objects

ICM disk capacity 500 objects

Client disk cache size 200 objects

Client memory cache size 100 objects

(Minimum, maximum) number of objects (1, 10)

Accessed by a transaction
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this object size for experimental convenience only, and our sensitivity analysis shows that
using objects of a larger size (up to 4 Kb) does not significantly affect the trends in our
experimental results. Without loss of generality, we assume that exactly one object is stored
in each page of the PF layer databases.

Communication between the clients and the server, and ICMs (in LC-CS and Extended-
LC-CS), was done using TCP sockets. In our prototypes, the servers, clients and ICMs are
designed to be connection-oriented, i.e., connections established at the beginning of the
experiment are maintained for the duration of the experiment. Clients in FCS are connected
directly to the database server. In LC-CS and Extended-LC-CS, clients are connected to
the ICM corresponding to their cluster which, in turn, is connected to the server. In order to
transfer data among clients in the most efficient manner, we have opted to use a specialized
“directory server.” The goal of the latter is to receive data objects from clients and forward
them to their intended recipients without maintaining socket connections among all pairs of
sites at all times. There are two benefits in using such a service: the significant time delay (in
the order of 1 sec) that would incur in establishing and closing socket connections for each
data transfer is avoided and the maximum number of open socket connections is linearly
proportional to the number of clients. The logical network topologies for the FCS and the
LC-CS/Extended-LC-CS implementations are shown in figure 8(a) and (b) respectively.

In FCS, the server processes all requests for data objects/locks from the clients. It main-
tains an up-to-date lock table and resolves all concurrency issues including deadlock de-
tection (which is done using a graph-based deadlock detection algorithm [12]). In order to
do this efficiently, we have designed the server, the clients and the ICMs as multi-threaded
processes. The FCS server assigns one thread to each client in the system. This thread is
responsible for handling all future interaction with that client. The multi-threaded imple-
mentation allows client data requests to be satisfied as efficiently as possible. In the two
LC-CSs, the server interacts with a number of ICMs by designating a thread for each one
of them. Similarly, each ICM executes one thread for every client in its cluster. We imple-
mented these packages using the Solaris thread library. Synchronization between multiple

Figure 8. Logical network topologies for the implementations.
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threads, when accessing global shared variables, was performed using the available mutual
exclusion (mutex) primitives.

Clients may generate multiple concurrent transactions. Transaction arrivals at each client
are generated as a Poisson process with a fixed inter-arrival mean of 1.5 seconds. The CPU
processing time for each transaction is generated using an Exponential distribution with an
average of 0.5 seconds. The transaction processing load on the server is varied by increasing
or decreasing the number of clients. Each transaction requests multiple database objects
following a uniform distribution between one and ten objects. It is assumed that a fraction
of the objects accessed within a transaction will be modified. Modified objects ultimately
create I/O write operations. Once objects become available, along with their appropriate
locks, transactions are being executed as lightweight processes. If the required data is locally
available, then it is locked by the transaction and is brought into the client’s buffer memory.
If the object is updated, then it is marked as dirty so that it is written back to the client
buffers when the transaction commits.

The percentage of transaction objects that are modified is varied according to the workload
in use. These workloads have been designed to compare the efficiency of the logically
clustered schemes with that of the flat client-server architecture. We have used two types of
workloads based on the HOTCOLD scenario [8] and a variation of the producer/consumer
(also known as FEED) scenario [8, 14].

In the general HOTCOLD scenario, every client accesses mostly a specific range of the
database (i.e., a “hot-spot” region) while rarely works with the remaining objects (i.e., the
“cold” dataspace). In our case, we designate fifty disjoint hot-spots whose individual size is
1% of the database size. Clients access hot-spots 90% of the time and cold space only 10%
of the time. We adopt two workloads that differ in the way client hot-spots are selected.

In the first HOTCOLD-based workload, each client randomly selects up to five hot-spots.
We call this database access pattern Hotspot-Scattered. In the second HOTCOLD-based
pattern, the set of hot-spots is divided into ten distinct subsets. Each client selects one of the
ten such subsets for 90% of its I/Os and the remaining requests (10%) go anywhere in the
cold section of the dataspace. In particular, the first 10% of the clients select their hot-spots
between the range zero to four, the next 10% clients choose theirs between the range five
to nine, and so on. We term this access workload Hotspot-Concentrated.

The goal of the above two workloads is to investigate the scalability of the three archi-
tectures in light of possibly favorable clustering. Since client object accesses are directed
to specific ranges, clustering algorithms are able to group sites that work with similar hot-
spots together. In these two workloads, the fraction of overall modified objects remains
at a moderate level (i.e., 5% of accessed objects are modified) which is representative of
everyday database processing [61].

Next, we examined the behavior of the three architectures in a producer/consumer (FEED-
based) setting. A producer is a client that modifies half (50%) of its accessed objects. A
consumer site simply reads (consumes) objects. In this type of workload, we assume that
10% of clients involved are producers.

The interaction between consumers and producers gives rise to two possible workloads.
In the first, a subset of consumer clients and a producer client access a common subset of
hot-spots. We call this database access pattern Optimistic-FEED as we conjecture that a
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Table 3. Experiments.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Database access Hotspot- Hotspot- Optimistic- Pessimistic-
pattern Scattered Concentrated FEED FEED

Update 5% 5% 50% 50%
selectivity

clustering algorithm will be able to group each producer and its corresponding consumers
together. In the second producer/consumer workload, a producer accesses a set of ran-
domly selected hot-spots (up to five). Similar to the first FEED-based workload, groups
of consumer clients are set to access a common subset of hot-spots. We term this work-
load Pessimistic-FEED. Even a very effective clustering algorithm will be unable to create
groups of producers and consumers whose inter-cluster data accesses are minimized. In
both FEED-based workloads, 90% of the object accesses made by each client are directed
to its designated hot-spot(s). Table 3 summarizes the performed experiments.

4.2. Experimental results

For all sets of experiments, we used the greedy and genetic algorithms to create client
clusters. Both algorithms try to colocate clients that demonstrate common data access
behavior. In addition, the optimization function used in the genetic algorithm also tries
to reduce the occurrences of inter-cluster data accesses. We observed that the evaluation
function for the solution generated by the genetic algorithm is significantly better than
that of the greedy method. More specifically, in clustering with one hundred clients using
a Hotspot-Scattered workload, the combined evaluation function for the GA was 0.563
whereas for the greedy algorithm it was 0.462. The percentage of accesses that were inter-
cluster were 2.2% and 6.9% for the GA and greedy algorithm respectively.

In Table 4 we show the hot-spots accessed by 20 clients (due to space limitation) in
a randomly generated Hotspot-Scattered workload. For this access pattern, the clustering
solutions generated by the greedy algorithm and the genetic algorithm are shown in Table 5.
From this example, it can be easily confirmed that the GA does better as it successfully
clusters clients that access common database hot-spots. The percentage of inter-cluster
accesses (of all data accesses) is 1.7% in the clustering generated by the GA while it is
4.1% in the greedy algorithm’s solution.

Below, we present our results for the four experimental sets. We consider three key pa-
rameters that serve as indicators of the transaction processing performance of the three
architectures: average transaction turnaround time, average object response time, and av-
erage queuing delay at the server for client object requests. In each graph, we present the
results for the FCS and the two LC-CS architectures. We show the results for the clustering
solutions generated by the genetic algorithm as well as the greedy one. The execution time
of each experimental set is approximately 10 hours.
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Table 4. Clients’ hotspot accesses (20 clients, Hotspot-Scattered).

Client Hot spots accessed Client Hot spots accessed

0 49 10 11, 13

1 14 11 1, 18, 35

2 46 12 4, 7, 11

3 15, 20, 34 13 8, 14, 39

4 21, 38 14 41, 47

5 45 15 29

6 39 16 6, 41

7 16, 20, 41 17 23, 26, 35

8 1 18 18, 33

9 5 19 11, 43

Table 5. Clients’ clustering solutions (20 clients, Hotspot-Scattered).

Greedy algorithm Genetic algorithm

0, 1, 2, 3, 0, 1, 5, 6

Clients in cluster 0 4, 5, 6, 10, 11, 12,

7, 11, 14 15, 18, 19

8, 9, 10, 12, 2, 3, 4, 7,

Clients in cluster 1 13, 15, 16 8, 9, 13,

17, 18, 19 14, 16, 17

Evaluation function f 0.582 0.667

4.2.1. Experiment 1: Hotspot-scattered. Figure 9 shows the average transaction turn-
around times in the three architectures. In FCS, the average turnaround time increases
almost linearly as the number of clients increases. The increase in turnaround times in the
two clustered architectures is much more gradual. Very similar trends can also be seen in
the average object response times (figure 10) and the average request queuing delays at the
server (figure 11). The rate at which the average object response time increases for FCS
is much greater than in the LC-CS or Extended-LC-CS. The observed trends are a direct
result of the Hotspot-Scattered workload.

The clustering generated by the genetic or the greedy algorithm have a very small per-
centage of inter-cluster accesses. This ensures that most object requests are satisfied within
the cluster and the load on the server is significantly reduced. Hence, increasing the number
of clients does not linearly increase the load on the LC-CS server. However, this is not
the case in the FCS configuration. Since all requests have to go through the server, any
increase in the number of clients implies a corresponding rise in the load over the server.
The additional overheads of maintaining global data consistency and concurrent accesses
also increase rapidly in FCS.
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Figure 9. Experiment 1—Hotspot-Scattered: Average turnaround times for client transactions (milliseconds).

In figure 12, we can see that in the presence of 100 clients in LC-CS (Greedy) approxi-
mately 15% of all object requests are satisfied within the cluster using object forwarding.
The Extended-LC-CS configuration has the added feature of the ICM cache space. Objects
that have been purged by all clients from their own caches are stored at the ICMs. This
makes it possible for the ICM to satisfy requests for such objects without referencing the
server. For 100 clients in Extended-LC-CS, 3.9% of all object requests are satisfied from
the ICMs’ caches. This is in addition to the object requests satisfied from the caches of
other clients within the same cluster.

4.2.2. Experiment 2: Hotspot-concentrated. The results for the second set of experiments
are shown in figures 13–16. In the Hotspot-Concentrated workload each group of clients
shares a disjoint subset of hot-spots. Therefore, clustering solutions are easier to identify
and the difference in the quality of the clustering solutions generated by the genetic and
greedy algorithms is reduced. Here, there is an even smaller percentage of inter-cluster
accesses as compared to the clustering solutions for the Hotspot-Scattered workload.

The overall performance trends are similar to those derived in the previous experiment. In
the clustered architectures, the overall average object response time is considerably shorter
than that in FCS. For most requests, ICMs can locate an object copy within their boundaries.
Thus, client requests can be satisfied without the intervention of the server. Only in the case
of lock conflicts between clusters is the server required to perform object callbacks and
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Figure 10. Experiment 1—Hotspot-Scattered: Average response times for client object requests (milliseconds).

update its lock tables. For instance, in the Extended-LC-CS (GA) architecture and for 100
clients, inter-cluster lock conflicts occurred in only 5.9% of all object requests.

Comparing the results of figures 9, 10 and figures 13, 14, the observed turnaround and
object response times are longer in the second experiment. This is especially evident when
100 clients participate. Longer times are attributed to the much stronger contention generated
by Hotspot-Concentrated as client access “contiguous” hot-spots. Serving such conflicting
object accesses involves longer processing times.

4.2.3. Experiment 3: Optimistic-FEED. This set of experiments uses the Optimistic-
FEED workload. Due to the distinct access behavior of each set of clients, the two clustering
algorithms are able to easily identify good groups. In fact, both the genetic algorithm and
the greedy algorithm give identical clustering results. For all numbers of clients, producers
and their corresponding consumers are colocated in the same cluster.

The results are shown in figures 17–19. The graphs indicate that even with the extremely
high update rates at the producers (50% of all object accesses are updates), LC-CS and
Extended-LC-CS show gradual increases in both transaction turnaround time and object
response time. Usually, when the update ratio is very high, it is expected that the transaction
turnaround time and object response time will increase very rapidly as the number of clients
increase. This is due to the resulting object recalls and blocking delays at server. However,
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Figure 11. Experiment 1—Hotspot-Scattered: Average queuing delay at server (Microseconds—log scale).

Figure 12. Experiment 1—Hotspot-Scattered: Average cluster-level object hit ratios for the LC-CS.
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Figure 13. Experiment 2—Hotspot-Concentrated: Average turnaround times for client transactions (msecs).

when updated objects are accessed only by clients within the same cluster, the blocking
factor at the server can be avoided. This is clearly seen in figure 19. Thus, the Optimistic-
FEED workload scenario is very amenable to a logically clustered architecture.

4.2.4. Experiment 4: Pessimistic-FEED. For this set of experiments we use the Pessi-
mistic-FEED workload. In contrast with the Optimistic-FEED workload, here the producers
access randomly selected hot-spots. Therefore, the clustering algorithms are unable to group
producers and the consumers corresponding to each of them in the same cluster. Again,
producers update 50% of their accessed objects. The results for this set are shown in
figures 20–22.

The performance of LC-CS and Extended-LC-CS are either similar to or worse than that
of FCS in most cases. The average turnaround times for FCS are better than in the clustered
architectures as consumers are not located in the same cluster with their producers. When
there is an inter-cluster access, at least two ICMs should be involved in the processing. In
turn, this creates delays at the ICM level which cumulatively present long turnaround times
for the LC-CS and the Extended-LC-CS configurations. The above is true in spite of the
fact that for 100 clients the average FCS object response time is worse than the other two
(i.e., see figure 21).

From all four sets of experiments, we observed that clustering the LC-CS and Extended-
LC-CS architectures using the GA consistently results in superior performance than when
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Figure 14. Experiment 2—Hotspot-Concentrated: Average response times for client object requests (msecs).

using the greedy technique. These results reflect the performance of the two algorithms
in terms of their access similarity detection and the composition of well-formed clusters.
However, it should be noted that there exists a tradeoff between the performance and the
necessary CPU time and memory requirements of the two algorithms. In order to cluster 100
clients, the GA needs more than 7,000 seconds while the greedy requires only 80 seconds.

5. Related work

Most of the related work in the clustering of workstations/clients has been carried out in
the area of distributed file systems (DFS). The Frolic DFS is an early representative of
systems that allow replication of files over a number of sites [48]. Its main objective is
to offer transparent file services over physically separate networks of workstations. Frolic
targets environments with extensive file sharing but rare read/write conflicts across multiple
clusters. Each cluster of workstations is coordinated by at least one server. A protocol for
maintaining strong data consistency in a distributed file system was proposed in [57]. Here,
although data files are replicated over multiple servers, no one server is held to be responsible
for control over the entire file system. Instead, file-state information is stored at a majority
of the servers that can create a consistent state of each file. The xFS system [13] advocates
an environment for handling file requests. Here, files are moved away from the server to
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Figure 15. Experiment 2—Hotspot-Concentrated: Average queuing delay at server (Microseconds–Log scale).

Figure 16. Experiments 2—Hotspot-Concentrated: Average cluster-level object hit ratios for the LC-CS.
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Figure 17. Experiment 3—Optimistic-FEED: Average turnaround times for client transactions (msecs).

the client sites. Therefore, the server is relieved from high loads usually observed is server-
based file systems such as the AFS [49] and Sun NFS. The role of the server is to monitor the
location of file copies within a group of workstations and forward file requests to appropriate
sites. A hierarchical caching technique applicable to large-scale distributed file systems is
discussed in [6]. The goal of this proposal is to ease central server contention by diverting
file requests to clients that already maintain copies through a multi-level metadata structure.
Our work differs from the approaches discussed above in that our approach dynamically
creates client clusters, based on the clients’ data access patterns, rather than on factors such
as physical proximity.

In an early work on distributed databases, fragmentation techniques are used in order to
split a database into partitions and place them at different sites with or without replication
of data [42]. In [2], a model that optimally places relations in a network is presented.
In the same work, it is shown that the problem of determining a non-redundant allocation
is NP-hard. Vertical fragmentation for distributed database design is discussed in [47].
Clustering of database objects has been a popular area of research over the last few years.
A number of techniques try to minimize the incurred I/O costs for mostly object-oriented
databases [3, 58, 61]. The core idea is that objects frequently fetched together are grouped
into a storage segment that caters for fast access. Efficient retrieval is feasible mostly
sequential scans over data segments and avoidance of random movements of the disk head.



LOGICALLY CLUSTERED ARCHITECTURES 191

Figure 18. Experiment 3—Optimistic-FEED: Average response times for client object requests (msecs).

[22, 28, 38, 56]. In all above efforts, the fragmentation and object clustering techniques are
performed at the storage level only. The same is the case with most commercial systems
including ObjectStore [33], Versant [58], and the object-oriented application builder/suite
Forté [7]. In this work, we cluster inter-networked systems at the level of sites as opposed
to clustering data objects within storage devices used thus far.

Distributed caching techniques have also been proposed and implemented for the dis-
semination of information on the World-Wide Web (WWW). Here, the basic idea is to
cache frequently requested web pages in locations, called proxy-servers, that are closer to
interested clients/users [23, 36]. When a client requests a particular page, the request is
first sent to the proxy server. If the page is available at the proxy server then the request is
satisfied without having to contact the remote server at all. Using such caching, the load
on web servers can be reduced, response times can be shortened, and the overall network
bandwidth consumption can be optimized. An analysis of internet existing caching hierar-
chies and scalable caching techniques for reducing client response latency are discussed in
[9, 19, 20, 37, 46, 53]. These techniques can be classified to those that are based on coop-
erating web-caching [9, 37] and those built around directory services of cached contents
[19, 20, 46]. In contrast to the WWW, where the data is almost entirely read-only, the main
focus of our work is on database systems where data updates and potential access conflicts
are significant in terms of both size and frequency.
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Figure 19. Experiment 3—Optimistic-FEED: Average queuing delay at server (Microseconds–log scale).

Most prior studies that deal with data access patterns aggregate multiple streams of re-
quests from a population of users into a cumulative stream. In these efforts, the major concern
is in understanding the group features of the workload generated by a client community
so that hit-ratios for pages/objects can be increased in web-caches/proxies [18, 26, 31]. In
contrast, our work treats every client access pattern individually in order to derive good
client clusters.

6. Conclusions and future directions

In this paper, we have proposed an alternative to the conventional client-server database
model that features client clustering and uses Intermediate Cluster Managers (ICM). Clients
are logically colocated based on the similarity of their data accesses. Each such group is
coordinated by an ICM that undertakes limited server tasks. Depending on whether there
are caching capabilities at the ICM, two three-tier architectures are suggested: Logically-
Clustered CS (LC-CS) and Extended-LC-CS. We have developed prototype packages that
implement these two architectures as well as the conventional FCS configuration. To support
three-tier architectures, we also developed two client clustering algorithms: one based on a
genetic algorithm approach and the other based on a greedy heuristic technique. We have
carried out a number of experiments under diverse workloads with all three packages and
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Figure 20. Experiment 4—Pessimistic-FEED: Average turnaround times for client transactions (msecs).

have experimented with two logical client clustering techniques. Our main results are:

– Given a set of database access patterns, it is possible to create clusters of clients that
access common segments of the data space and reduce inter-cluster data accesses. This
allows the introduction of an intermediate layer in the system hierarchy which satisfies
the data requirements of clients within individual clusters.

– Well-formed clustering in LC-CS results in a substantial reduction in server load. This
allows the system to scale-up to a much larger number of clients than that of the FCS archi-
tecture. ICMs can assist in increasing scalability without imposing significant penalties
and overheads.

– System performance rates can be further improved by extending the capabilities of the
ICMs to allow them to cache data/locks (Extended-LC-CS). The observed reduction in
the message-passing and the corresponding transaction blocking is significant. However,
this is not always the case. If the database access patterns do not permit a good client
clustering formation, the FCS could demonstrate similar or even better performance
levels. This proved to be the case for our Pessimistic-FEED workload.

In most database environments, it is to be expected that clients’ data access requirements
will change over time. Such behavior should be detected so that clients can be moved
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Figure 21. Experiment 4—Pessimistic-FEED: Average response times for client object requests (msecs).

to clusters that best match their new data requirements. We are currently exploring two
approaches that can be used to re-assign clients to more appropriate clusters:

(i) Individual re-assignment: A client with deviating data access behavior is moved to a
more appropriate cluster. To achieve this, clients’ access patterns should be monitored,
and occurring changes should be detected within acceptable deadlines. The change
detection can take place at the ICM layer.

(ii) Global re-clustering: Current information regarding the data access patterns of all
clients is used to re-generate the clustering formation. The data access patterns of each
client from the most recent time windows are shipped from the ICMs to the server and
the clustering algorithm is re-run to determine the new compositions of the clusters.
The system can perform re-clustering periodically or within periods whose duration
can be a function of important system parameters (including CPU server load, network
traffic, length of ICM/server disk queues etc.).

In the future, we also plan to investigate issues related to database evolution and provide the
features that allow our architecture to dynamically connect/disconnect and function with
multiple database servers.



LOGICALLY CLUSTERED ARCHITECTURES 195

Figure 22. Experiment 4—Pessimistic-FEED: Average queuing delay at server (Microseconds–Log scale).
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