
Processing Event-Monitoring Queries in Sensor Networks

Vassilis Stoumpos
University of Athens

Athens, Greece
stoumpos@di.uoa.gr

Antonios Deligiannakis
University of Athens

Athens, Greece
adeli@di.uoa.gr

Yannis Kotidis
Athens University of

Economics and Business
kotidis@aueb.gr

Alex Delis
University of Athens

Athens, Greece
ad@di.uoa.gr

Abstract

In this paper we present algorithms for building and
maintaining efficient collection trees that provide the con-
duit to disseminate data required for processing monitor-
ing queries in a wireless sensor network. While prior tech-
niques base their operation on the assumption that the sen-
sor nodes that collect data relevant to a specified query
need to include their measurements in the query result at
every query epoch, in many event monitoring applications
such an assumption is not valid. We introduce and formal-
ize the notion of event monitoring queries and demonstrate
that they can capture a large class of monitoring applica-
tions. We then show techniques which, using a small set of
intuitive statistics, can compute collection trees that mini-
mize important resources such as the number of messages
exchanged among the nodes or the overall energy consump-
tion. Our experiments demonstrate that our techniques can
organize the data collection process while utilizing signifi-
cantly lower resources than prior approaches.

1 Introduction
Many pervasive applications rely on sensory devices that

are able to observe their environment and perform simple
computational tasks. Driven by constant advances in mi-
croelectronics and the economy of scale it is becoming in-
creasingly clear that our future will incorporate a plethora of
such sensing devices that will participate and help us in our
daily activities. Even though each sensor node will be rather
limited in terms of storage, processing and communication
capabilities, they will be able to accomplish complex tasks
through intelligent collaboration.

Nevertheless, building a viable sensory infrastructure
cannot be achieved through mass production and deploy-
ment of such devices without addressing first the techni-
cal challenges of managing such networks. In this paper
we focus in developing the necessary data collection infras-
tructure for supporting data-hungry applications that need
to acquire and process readings from a large scale sensor
network. While previous work has focused on optimizing
specific types of queries such as aggregate [13], join [2],
model-based [8, 12] and select-all [7, 19] queries, we pro-
pose a data dissemination framework that can address the

needs of multiple, concurrent data acquisition requests in an
efficient manner.

It is generally agreed that one cannot simply move the
readings necessary for processing an application request out
of the network and then perform the required processing in
a designated node such as abase station. Wireless sensor
nodes have limited energy capacity and such an approach
will not only result in overburdening their radio links, but
will also quickly drain their energy as radio transmission is
by far the most important factor in energy consumption [14].
Thus, most recent proposals rely on building some type of
ad-hoc interconnect for answering a query such as theag-
gregation tree[13, 24]. This is a paradigm of in-network
processing that can be applied to non-aggregate queries as
well [7]. In this paper we concentrate on building and main-
taining efficientdata collection treesthat will provide the
conduit to disseminate all data required for processing many
concurrent queries in a sensor network, including long-term
and ad-hoc type of queries, while minimizing important re-
sources such as the number of messages exchanged among
the nodes or the overall energy consumption.

While prior work [4, 20, 22] has also tackled similar
problems, previous techniques base their operation on the
assumption that the sensor nodes that collect data relevant
to the specified query need to include their measurements
(and, thus, perform transmissions) in the query result at ev-
ery queryepoch. However, in many monitoring applications
such an assumption is not valid. Monitoring nodes are of-
ten interested in obtaining either the actual readings, or their
aggregate values, from sensor nodes that detect interesting
events. The detection of such events can often be identified
by the readings of each sensor node. For example, in vehicle
tracking and monitoring applications high noise levels may
indicate the proximity of a vehicle. In military applications,
high levels of detected chemicals can be used to warn nearby
troops. In other applications, as in the case of approximate
evaluation of queries over the sensor data [6, 15, 18], an
event is defined when the current sensor reading deviates by
more than a given threshold from the last transmitted value.
In all of these scenarios, each sensor node is not forced to
include its measurements in the query output at each epoch,
but rather such aquery participationis evaluated on a per
epoch basis, depending on its readings and the definition

1

Aggregate Query Non-Aggregate Query

SELECT AggrFun(s.value) SELECT s.id, s.value
FROM Sensors s FROM Sensors s
WHERE inclusionConditions(s) = trueWHERE inclusionConditions(s) = true
SAMPLE PERIOD e FOR t SAMPLE PERIOD e FOR t

Table 1: An Aggregate and a non-Aggregate Query
over the Values Collected by the Sensor Nodes.

of interesting events. In this paper we term the monitoring
queries where the participation of a node is based on the de-
tection of an event of interest asevent monitoring queries
(EMQs).

Our techniques base their operation on collecting sim-
ple statistics during the operation of the sensor nodes. The
collected statistics involve the number of events (or, equiv-
alently, their frequency) that each sensor detected in the re-
cent past. Our algorithms utilize these statistics as hints for
the behavior of each sensor in the near future and periodi-
cally reorganize the collection tree in order to minimize cer-
tain metrics of interest, such as the overall number of trans-
missions or the overall energy consumption in the network.
Our contributions are summarized as follows:

1. We introduce the notion of EMQs in sensor networks.
EMQs are a superset of existing monitoring queries, but are
handled uniformly in our framework, irrespectively of the
minimization metric of interest.
2. We present detailed algorithms for minimizing impor-
tant network resources such as the number of messages ex-
changed or the energy consumption during the execution of
an EMQ. The presented algorithms are based on the collec-
tion and transmission of a small, and of constant size, set of
statistics. We introduce our algorithms along with a succinct
mathematical justification.
3. We extend our framework for the case of multiple con-
current EMQs of different types.
4. We present a detailed experimental evaluation of our al-
gorithms. Our results demonstrate that our techniques can
achieve a significant reduction in the number of transmitted
messages, or the overall energy consumption, compared to
alternative algorithms.

2 Motivational Example
In Table 1 we present examples of the two main classes of

monitoring queries in sensor networks. We borrow the syn-
tax of TinyOS [13] to denote the epoch duration (e) and the
lifetime of the query (t). The predicateinclusionConditions
has been added in order to specify which sensor nodes will
participate in the query evaluation per epoch. At each query
epoch, all the sensor nodes that include their collected data
in the query result are termed in our framework asepoch
participating nodes. For queries that wish to collect data
from all the sensor nodes at each epoch, the above predicate
always evaluates totrue.

When a monitoring query specifies inclusion predicates,
these may contain either static or dynamic predicates (or

both) regarding the sensor nodes. Examples of static pred-
icates may involve, but are not limited to, the collection of
measurements from: (i) Sensors with specific identifiers; (ii)
Immobile sensors in a specific area; or (iii) Sensors moni-
toring a specific quantity, in cases of sensor networks with
diverse types of sensor nodes that monitor different quan-
tities. Static predicates are very useful in a variety of ap-
plications and have received the focus of the bulk of past
research [13, 24].

However, there is a large class of monitoring queries that
cannot be expressed using static inclusion conditions. Ex-
amples include vehicle tracking and equipment monitoring
applications where inclusion predicates need to be condi-
tioned on readings taken by the sensor nodes such as noise
levels or temperature readings. In its most simple form
a dynamic inclusion predicate may be a condition of the
form “current reading> threshold”. More complex forms
may require the evaluation of a user defined function over
a history of accumulated readings. We call such predicates,
whose evaluation depends also on the readings taken by the
nodes, as dynamic predicates as they specify which nodes
should include their response in the query evaluation at each
epoch (i.e., nodes whose values exceed a given threshold,
or deviate significantly from previous readings). We term
those monitoring queries that contain dynamic predicates
asevent monitoring queries(EMQs). Given a monitoring
query, existing techniques seek to developcollection trees
that specify the way that the data is forwarded from the sen-
sor nodes to theRoot node. Periodically these collection
trees may be reorganized in order to adapt to evolving data
characteristics [18].

An important characteristic of EMQs, which is not taken
into account by existing algorithms that design collection
trees, is that each sensor node may participate in the query
evaluation, by including its reading in the query result, only
a limited number of times, based on how often the inclu-
sion conditions are satisfied. We can thus associate anepoch
participation frequency Pi with each sensor nodeSi , which
specifies the fraction of epochs that this node participated in
the query result in the recent past.

Given estimates of the epoch participation frequencies,
one can design significantly more efficient collection trees
than prior approaches. Consider the sample scenario de-
picted in Figure 1(a). In this figure, 36 sensor nodes are
placed in a grid. The sensor identifiers appear next to each
sensor node. We also distinguish theRoot node at the lower
left corner, a monitoring node that performs queries over the
data collected by the sensor nodes. In our sample network
we assume that each sensor node can communicate with its
immediate horizontal, vertical or diagonal neighbors, while
only nodeS30 can communicate with theRoot node. In Fig-
ure 1(b) we depict sample estimates for the number of times
each sensor node will participate in the query result within
the next 100 epochs. In the above scenario, given the pre-
sented epoch participation frequencies, two interior nodes
along with all the boundary nodes on the upper and right-

(a) (b) (c) (d)

Figure 1: (a) Identifiers of sensors in grid arrangement; (b) Estimated number of participations in query
result in 100 epochs; (c) Collection tree for MinHops algorithm. Cost = 3130 transmissions; (d) Collection
tree for our algorithm. Cost = 1900 transmissions.

most edges of the network always detect events, while the
remaining interior nodes detect events with a lower prob-
ability, whose average value is about 5%. For the afore-
mentioned sample scenario, in Figure 1(c) we depict a sam-
ple collection tree chosen by an algorithm, termed asMin-
Hops that seeks to minimize the number of hops that each
node’s data needs to traverse until it reaches theRoot node.
Next to each node we depict the actual number of transmis-
sions that each node performed within these 100 epochs.
Similarly, in Figure 1(d) we present the collection tree that
our algorithms created for the evaluation of the SUM aggre-
gate. A significant observation is that our algorithm seeks
to forward the query results from nodes with high epoch
participation frequencies through a limited number of inte-
rior nodes, compared to theMinHopsalgorithm. One can
easily establish the significant reduction in the number of
transmissions that our algorithm achieved (1900 vs 3130 or,
equivalently, a 65% reduction).

3 Problem Formulation
We first introduce the types of EMQs that our framework

supports and then present the optimization problems tackled
in this paper. We then present the cost model used in our
algorithms in order to estimate the energy consumption of a
sensor node during the transmission process.

3.1 Supported Queries

In Table 1 we presented the two main classes of SQL
queries that our framework supports. It is important to em-
phasize at this point that even non-participating nodes may
take part in the query evaluation process by forwarding mes-
sages towards theRoot node. However, the collected val-
ues of non-participating nodes influence neither the reported
query result nor its size.

The first class of supported queries involve non-
aggregate queries over the values of epoch participating sen-
sor nodes. In this type of queries the amount of data trans-
mitted by any node of the collection tree depends on the
number of epoch-participating sensors that are descendants
of that sensor node.

The second class of supported queries involves aggregate
functions over the measurements collected by the participat-

ing sensor nodes. A good classification of aggregate func-
tions is presented in [13], depending on the amount and type
of state required in non-leaf nodes in order for them to cal-
culate the aggregate result for the partition of descendant,
in the collection tree, participating sensors. Table 2 summa-
rizes this classification.

A crucial part of the operation of our algorithms is the
estimation of the amount of data that will be transmitted
in a given (or candidate) collection tree. In order to accu-
rately estimate this information, the aggregate function be-
ing used needs to be distributive, algebraic or holistic (see
Table 2). Unique and content-sensitive aggregate functions
can only be supported by using a worst case estimate for the
amount of transmitted data. Please note that holistic aggre-
gate queries share similar characteristics with non-aggregate
queries and, thus, are treated in a similar way in our frame-
work.

3.2 Problem Definition

In this paper we seek to develop dissemination protocols
for the classes of EMQs described in Section 3.1. The goal
is, given the type of query at question, to design the collec-
tion tree so as to minimize either: (1) The number of trans-
mitted messages in the network; or (2) The overall energy
consumption in the network.

The minimization of additional metrics of interest is dis-
cussed in Section 4.4. Our algorithms do not make any as-
sumptions about the placement of the sensor nodes, their
characteristics or their radio models.

3.3 Energy Consumption Cost Model

A sensor node consumes energy at all stages of its oper-
ation. However, because our algorithms do not require any
significant computational effort by the sensor nodes, we ig-
nore in the cost model used in this paper the power con-
sumption when the sensor node is idle and the consump-
tion due to computations. The notation that will be used in
our discussion here, and later in the description of our algo-
rithms, is presented in Table 4. Additional definitions and
explanations are presented in appropriate areas of the text.

We first describe the cost model used to estimate the en-
ergy consumption of a nodeSi during the data transmission

Category Type of Partial State Needed State Size Examples

Distributive Aggregate values for descendants Constant MAX, MIN, COUNT, SUM
Algebraic Aggregate values for descendants, Constant AVG

but for different aggregate function
Holistic Entire Data of descendants Proportional to MEDIAN

#epoch-participating descendants
Unique Distinct Values of descendants Data-Dependent COUNT DISTINCT

Content-Sensitive Aggregate-Specific Data-Dependent Histogram of Values

Table 2. Characteristics and Examples of Aggregate Function Types.

Symbol Typical Value
SC 1µJ
ETX 50nJ/bit
ERF 100pJ/bit/m2

ERX 50nJ/bit

Table 3: Typical Radio Pa-
rameters.

Symbol Description

Root The node that initiates a query and which collects the relevant data
of the sensor nodes

Si The i-th sensor node
Pi The epoch participation frequency ofSi

Di The minimum distance, in number of hops, ofSi from theRoot
|aggr| The size of the (non-)aggregate values transmitted by a node
Etri, j Energy spent bySi to transmit a new packet of|aggr| bits toSj

DEtri, j Energy spent bySi to transmit additional|aggr| bits toSj

(on an existing packet).
ACi, j Attachment cost ofSi to a candidate parentSj

CFi ,DCFi , Cost factors utilized by neighboring nodes ofSi when
HCFi estimating their attachment cost toSi

Table 4. Symbols Used in our Algorithm

of |aggr| > 0 bits of data to nodeSj , which lies in distance
disti, j from Si . The energy cost can be estimated using a
linear model [17] as:

Etr i, j = SCi +(H + |aggr|)× (ETXi +ERFi ×dist2i, j),

where: (i)SCi denotes the energy startup cost for the data
transmission ofSi . This cost depends on the radio used
by the sensor node; (ii)H denotes the size of the packet’s
header; (iii)ETXi denotes the per bit power dissipation of
the transmitter electronics; and (iv)ERFi denotes the per bit
and squared distance power delivered by the power ampli-
fier. This power depends on the maximum desired commu-
nication range and, thus, from the distance of the nodes with
which Si desires to communicate. Thus, the additional en-
ergy consumption required to augment an existing packet
from Si to Sj with additional|aggr| bits can be calculated
as:DEtr i, j = |aggr|× (ETXi +ERFi ×dist2i, j).

For the case when each sensor node receives data, we
need to keep in mind that each sensor must open its radio in
order to receive data or queries transmitted by neighboring
nodes. This startup cost is incurred when the node wakes up
from its sleep mode and, in contrast to the data transmission
case, is not directly related to the reception of data (since
the sensor may receive no data). Thus, this mandatory cost
is not taken into account in our model.

When a sensor nodeSi receivesH + b j bits from node
Sj , then the energy consumed bySi is given by: Ereci =
ERXi × (H + b j), where the value ofERXi depends on the
radio model. Some typical values [17] ofSC, ETX, ERX and
ERF are presented in Table 3.

4 Algorithm Overview
We now present our algorithms for creating and main-

taining a collection tree that minimizes the desired metric

(number of messages or energy consumption). We also pro-
vide detailed pseudocode in addition to a formal analysis.

4.1 Construction/Update of the Collection Tree

The algorithm is initiated with the query propagation
phase. The query is propagated from the base station
through the network using a flooding algorithm. In densely
populated sensor networks, a nodeSi may receive the an-
nouncement of the query from several of its neighbors. As
in [13, 24] the node will select one of these nodes as itspar-
ent node. The chosen parent will be the one that exhibits
the lowestattachment cost, meaning the lowest expected in-
crease in the objective minimization function. For example,
if our objective is to minimize the total number of transmit-
ted messages, then the selection will be the node that is ex-
pected to result in the lowest increase in the number of trans-
mitted messages in theentirepath from that sensor until the
Root node (and similarly for the rest of the minimization
metrics). At this point we simply note that in order for other
nodes to compute their attachment cost, nodeSi transmits a
small set of statisticsStatsi and defer their exact definition
for Section 4.2.

The result of this process is a collection tree towards the
base station that initiated the flooding process. A key point
in our framework is that the preliminary selection of a par-
ent node may be revised in a second step where each node
evaluates the cost of using one of its sibling nodes as an al-
ternative parent. Due to the nature of the query propagation,
and given simple synchronization protocols, such as those
specified in [13], the nodes lyingk hops from theRoot node
will receive the query announcement before the nodes that
lie one hop further from theRoot node. LetRecSk denote
the set of nodes that receive the query announcement for
the first time during thek-th step of the query propagation
phase.

At stepk of the query propagation phase, after the pre-
liminary parent selection has been performed, each nodeSi
in setRecSk, needs to consider whether it is preferable to al-
ter its current selection and choose as its parent asibling
nodewithin set RecSk −Si . Each node calculates a new
set of statisticsStatsi , based on its preliminary parent se-
lection, and transmits aninvitation, which also includes the
node’s newly calculatedStatsi values, that other nodes in
RecSk (and only these nodes) may accept. Of course, we
need to be careful at this point and make sure that at least
one node withinRecSk will not accept any invitation, as
this would create a disconnected network and prevent nodes

from RecSk to forward their results to nodes belonging in
RecSk−1. We will achieve this by imposing a simple set of
rules regarding when an invitation may be accepted by a
sensor node.

LetCandPari denote the set of nodes inRecSk that trans-
mitted an invitation thatSi received. LetSm be the prelimi-
nary parent node ofSi , as decided during query propagation.
Amongst the nodes inCandPari , nodeSi considers the node
Sp such as the attachment costACi,p is minimized. If ties
occur, then these are broken using the node identifiers (i.e.,
prefer the node with the highest id). ThenSp is selected as
the parent ofSi instead of the preliminary choice Sm only if
all of the following conditions apply:

• ACi,p < ACi,m. This conditions ensures thatSp seems as a
better candidate parent than the current selectionSm.

• ACi,p ≤ ACp,i . This conditions ensures that it is better to
selectSp as the parent ofSi , than to selectSi as the parent
of Sp.

• If ACi,p = ACp,i , then the identifier ofSp is also larger than
the identifier ofSi . This condition is useful in order to
allow nodes to forward messages through neighbor nodes
in RecSk and also helps break ties amongst nodes and to
prevent the creation of loops.

The collection tree may periodically get updated, either
because of a significant change in data distribution or be-
cause of the addition/termination of queries in a multi-query
setup discussed in section 5. Such updates are triggered by
the base station using the same protocol used in the initial
creation. In this case, the nodes compute and transmit their
computed statistics in the same manner, but do not need to
propagate the query itself.

4.2 Calculating the Attachment Cost

Determining the candidate parent with the lowest attach-
ment cost is not an easy decision, as it depends on several
parameters. For example, it is hard to quantify the result-
ing transmission probability ofSj , if a nodeSi decides to
selectSj as its parent node. In general, the transmission
frequency ofSj (please note that this is different than the
epoch participation frequency of the node) may end up be-
ing as high as min{Pi +Pj ,1} (when nodes transmit on dif-
ferent epochs) and as low asPj (when transmissions happen
on the same epochs andPi ≤ Pj). A commonly used tech-
nique that we have adopted in our work is to consider that
the epoch participation by each node is determined by inde-
pendent events. Using this independence assumption, node
Sj will end up transmitting with a probabilityPi +Pj −PiPj ,
an increase ofPi(1−Pj) over Pj . Similarly, if Sj−1 is the
parent ofSj , this increase will also result in an increase in
the transmission frequency ofSj−1 by Pi(1−Pj)(1−Pj−1),
etc. In our following discussion, for ease of presentation,
when considering the attachment cost ofSi to a nodeSj , we
will assume that the nodes in the path fromSj to theRoot
node are the nodesSj−1,Sj−2, . . . ,S1.

4.2.1 Minimizing the Number of Transmissions

The attachment cost ofSi when selectingSj as its parent
node can be calculated by the increase in the transmission
frequency of each link fromSi to theRoot node as:

ACi, j = Pi +Pi(1−Pj)+Pi(1−Pj)(1−Pj−1)+ . . .

A significant problem concerning the above estimation of
ACi, j is that its value depends on the epoch participation fre-
quencies of all the nodes in the path ofSj to theRoot node.
Since the number of these values depends on the actual dis-
tance, in number of hops, ofSj to theRoot node, such a
solution does not scale in large sensor networks.

Fortunately, there exists an alternative formula to calcu-
late the above attachment cost. Our technique is based on
a recursive calculation based on a singlecost factor CFi at
each nodeSi . In our example discussed above, the values of
CFi andACi, j can be easily calculated as:

CFi = (1−Pi)× (1+CFj)
ACi, j = Pi × (1+CFj)

One can verify that expanding the above recursive formula
and setting as the boundary condition that theCF value of
theRoot node is zero gives the desired result. Thus, only
the cost factor, which is a single statistic, is needed at each
nodeSj in order for all the other nodes to be able to estimate
their attachment cost toSj .

We also need to note that the formulas presented above
also address the case of non-aggregate or holistic aggregate
queries. In these cases the size of the transmitted data in-
creases proportionally to the number of each node’s epoch-
participating descendants in the collection tree, as we ap-
proach theRoot node. Thus, sometimes the transmitted
data by a node may be split into multiple messages due to
the maximum packet size. However, we first note that such
cases typically occur in higher levels of the collection tree
(and, thus, by a potentially small subset of the sensor nodes)
and that, more importantly, our techniques seek to compute
and utilize simple statistics. Our study of alternative cost
models that incorporated this factor yielded only minor im-
provements while significantly increasing the communica-
tion cost during the collection tree formation. We thus omit
such extensions from our presentation.

4.2.2 Minimizing Total Energy Consumption, Dis-
tributive and Algebraic Aggregates

This case is very similar to the case described above. When
considering the attachment cost ofSi to a candidate parent
Sj , we note that additional energy is consumed by nodes in
the path ofSj to theRoot node only if a new transmission
takes place. This is because each node aggregates the par-
tial results transmitted by its children nodes and transmits a
new single partial aggregate for its sub-tree [13]. Thus, the
size of the transmitted data is independent of the number
of nodes in the subtree, only the frequency of transmission
may get affected. LetEtr i, j denote the energy consumption

when Si transmits a message toSj consisting of a header
and the desired aggregate value(s) - based on whether this
is a distributive or an algebraic aggregate function. The en-
ergy consumption follows the cost model presented in Sec-
tion 3.3, where thePRFi value may depend on the distance
betweenSi andSj (thus, the two indices used above). Using
the above notation, and similarly to the previous discussion,
the attachment costACi, j is calculated as:

ACi, j = Pi ×Etr i, j +Pi × (1−Pj)×Etr j, j−1 +

Pi × (1−Pj)× (1−Pj−1)×Etr j−1, j−2 + . . .

= Pi × (Etr i, j +CFj), where

CFi = (1−Pi)× (Etr i, j +CFj)

If one wishes to take the receiving cost of messages into
account, all that is required is to replace in the above formu-
las the symbols of the formEtrk,p with (Etrk,p +Erecp), since
each message transmitted bySk to Sp will consume energy
during its reception bySp.

4.2.3 Minimizing Total Energy Consumption, Holistic
Aggregate and Non-Aggregate Queries

When considering the attachment cost ofSi to a candidate
parentSj , we need not only consider the new messages gen-
erated in the path fromSj to theRoot node, but also the
energy consumption due to the increase in the length of mes-
sages that would have been transmitted anyway. Please re-
call that the energy consumption for each transmission of
|aggr| bits bySi to Sj is given by:DEtr i, j = |aggr|× (PTXi +
PRFi × dist2i, j). Calculating the aforementioned number of
messages is simple, as we have already discovered a similar
recursive formula that estimates the attachment cost when
only considering the transmission of new messages. So, we
will utilize two new recursively computed statistics. The
DCF value of a node will be similar to theCF value, but
will use theDEtr∗,∗ transmission costs, instead of theEtr∗,∗
transmission costs used in theCF formula. TheHCF value
of a node will be equal to the sum of theDEtr∗,∗ values in the
nodes path to theRoot node. One can verify that the energy
consumption due to the enlargement of messages, because
of the attachment ofSi to Sj , that would have been transmit-
ted anyway is:Pi × (HCFj −DCFj). The required formulas
are presented below:

CFi = (1−Pi)× (Etr i, j +CFj)
HCFi = DEtr i, j +HCFj

DCFi = (1−Pi)× (DEtr i, j +DCFj)

ACi, j = Pi × (Etr i, j +CFj)+Pi × (HCFj −DCFj)

4.2.4 Summary

Table 5 summarizes the statistics required to be transmit-
ted by each node during the query propagation. Please note
that the invitation phase always requires one more transmit-
ted statistic, as the nodes need to check whether it is more
beneficial to be attached to another node or the reverse (see

Minimization Type of Decision Invitation
Metric Aggregate

Transmissions Aggregate CFi Pi ,CFi
Non-Aggregate

Energy Consumption Distributive CFi Pi ,CFi
Algebraic

Energy Consumption Holistic CFi ,HCFi , Pi ,CFi ,
Non-Aggregate DCFi HCFi ,DCFi

Table 5. Statistics Attached to Messages

the last two rules in Section 4.1) As it can be clearly seen
from this table, our algorithms utilize only a limited num-
ber of statistics, which are computed using only information
transmitted by neighboring sensor nodes. Due to space con-
straints, the proof of the following Theorem can be found in
the full paper [21].

Theorem 1 For sensor networks that satisfy the connectiv-
ity requirements of Section 3 our algorithm always creates
a connected routing path that avoids loops.

4.3 Algorithm Implementation

In Algorithm 1 we present the complete algorithm for the
decisions of a sensor node. This algorithm is invoked both
at the query propagation phase and when updating the col-
lection tree. Each node first waits to receive the decisions
by nodes that lie one hop closer to theRoot node (Line 2).
Based on the received decisions it performs an initial parent
selection using theProcessDecisionssubroutine described
in Algorithm 2 (Lines 3-4). It then calculates some nec-
essary statistics and transmits an invitation to neighboring
nodes (Lines 5-6). The node then waits (Line 7) to receive
invitations from neighboring nodes and makes a final de-
cision on its parent selection using theProcessInvitations
subroutine presented in Algorithm 3 (Lines 8-9). The node
then transmits its final decision (Line 10) to neighboring
nodes and ignores any received decisions or invitations until
the next update period when the collection tree will be re-
organized (a counter denoting the reorganization period can
be attached to the queries transmitted by theRoot node in
order to help the nodes understand the transition to a new
update period). An interesting observation that we have not
mentioned so far involves the nodes with zero epoch partic-
ipation frequencies. For these nodes, the computed attach-
ment costs to any neighboring node will also be zero. In
such cases we select the candidate parent which produces
the lowestEtr i, j +CFj +HCFj −DCFj value. This decision
is expected to minimize the attachment cost, if the sensor at
some point starts observing events.

4.4 Extensions

In the full paper [21] we describe extensions on refining
the statistics utilized by the sensor nodes. Furthermore, we
show that our techniques can be easily adapted to incorpo-
rate different minimization metrics, than the ones presented
in Section 3.2. For example, the formulas for minimizing
the number of transmitted bits can be derived using the for-
mulas for the energy minimization for the corresponding

Algorithm 1 BuildCollectionTree() Subroutine
1: {Si is the node being examined}
2: Wait to receive decisions by neighboring nodes

3: Set
−→
Decas the received decisions by the nodes with minimumD values (ignore

other decisions).

4: k = ProcessDecisions(
−→
Dec) {Returns index of selected parent}

5: Di = 1 + Dk
6: Transmit invitation to neighboring nodes
7: Wait to receive invitations by neighboring nodes

8: Set
−→
Inv as the received invitations by the nodes withD values equal toDi (ignore

other invitations).

9: m = ProcessInvitations(
−→
Inv) {Returns index of selected parent}

10: Transmit decision
11: Ignore received decisions and invitations until next reorganization.

Algorithm 2 ProcessDecisions(
−→
Dec) Subroutine

1: {Si is the node being examined}
2: SelectDeck as the decision with the minimum attachment cost. IfPi = 0 utilize

in the calculations a non-zero value at this step to prevent all nodes from having
the same (zero) attachment cost.

3: Let Sk be the sender ofDeck
4: Setparent(Si) = Sk
5: Calculate statistics (cost factors) for current node based on current parent selec-

tion
6: Returnk {Index of selected parent node}

type of query (i.e., distributive, non-aggregate). In these
formulas one simply has to substitute the termEtr i, j with
the size of a packet (including the packet’s header) and to
substitute the termDEtr i, j with the size of each transmitted
aggregate value (thus, ignoring the header size). In the case
where the goal is to maximize the minimum energy amongst
the sensor nodes, the attachment cost can be derived from
the minimum energy, amongst the nodes in a sensor’s path
to theRoot node, raised to−1 (since our algorithms select
the candidate parent with theminimumattachment cost).

5 Multi-Query Optimization
In the multi-query scenario, each nodeSi may choose dif-

ferent parent nodes for each posed query. Thus, the resulting
network topology may not be a tree after-all but a directed
acyclic graph. In the case of multiple concurrent queries we
need to introduce some additional (or augmented) notation
for the presentation of our algorithms. LetPk

i denote the
epoch participation frequency ofSi regarding thek-th query.
Let fi(k) denote the index of the selected parent node ofSi
for thek-th posed query.

In order to be able to derive recursive formulas for
the estimation of the attachment cost, in our approach we
break the posed queries into two groups. The first group
of queries contains the distributive and algebraic aggregate
queries, while the second group contains the holistic and
non-aggregate queries. In our discussion below we assume
that the group of queries handled in each case contains a
total ofM queries of similar type.

Using the notation PRODk
i =

M

∏
x = 1

f (x) = f (k)

(1−Px
i) and

partialPRODk
i, j =∏

x < k
f (x) = Sj

(1−Px
i), and by processing the

Algorithm 3 ProcessInvitations(
−→
Inv, k) Subroutine

1: {Si is the node being examined}
2: {Sk is the current parent node}
3: In the following discussion, all estimations of the attachment cost utilize the same

ERFi value, as discussed at the end of Section 4.2.3.
4: SelectInvm as the invitation with the minimum attachment cost. IfPi = 0 utilize

in the calculations a non-zero value at this step to prevent all nodes from having
the same (zero) attachment cost.

5: Let Sm be the sender ofInvm
6: if ACi,m ≤ ACi,k then
7: Returnk {No benefit in changing parent node}
8: end if
9: CalculateACm,i using information fromInvm
10: if ACi,m > ACm,i then
11: Returnk {Reverse decision is better}
12: else ifACi,m == ACm,i AND i > m then
13: Returnk {Base decision on identifier}
14: end if
15: Setparent(Si) = Sm
16: Calculate statistics (cost factors) for current node based on current parent selec-

tion
17: Returnm{Index of selected parent node}

queries in order based on their identifier (i.e., from 1 toM),
we demonstrate in the full paper [21] that the attachment
costACk

i, j of Si to Sj regarding thek-th query is calculated
as follows:

• Minimizing Total Number of Transmissions.

ACk
i, j = Pk

i × (JCFk
j + partialProdk

i, j)

JCFk
i = PRODk

i +(1−Pk
i)×JCFk

j

• Minimizing Total Energy Consumption: Distributive and
Algebraic Aggregates.

ACk
i, j =Pk

i × partialProdk
i, j ×Etr i, j +

Pk
i × (1− partialProdk

i, j)×DEtr i, j

Pk
i ×JCFk

j +Pk
i × (JECFk

j −JDCFk
j)

JCFk
i = PRODk

i ×Etr i, f (k) +(1−Pk
i)×JCFk

f (k)

JECFk
i = (1−Pk

i)× (DEtr i, f (k) +JECFk
f (k))

JDCFk
i = PRODk

i ×DEtr i, f (k) +(1−Pk
i)×JDCFk

f (k)

• Minimizing Total Energy Consumption: Holistic Aggre-
gate and Non-Aggregate Queries.

ACk
i, j =Pk

i × partialProdk
i, j ×Etr i, j +

Pk
i × (1− partialProdk

i, j)×DEtr i, j +

Pk
i ×JCFk

j +Pk
i × (JHCFk

j −JDCFk
j)

JCFk
i =PRODk

i ×Etr i, f (k) +(1−Pk
i)×JCFk

f (k)

JHCFk
i =DEtr i, f (k) +JHCFk

f (k)

JDCFk
i =PRODk

i ×DEtr i, f (k) +(1−Pk
i)×JDCFk

f (k)

6 Experiments
We developed a simulator for testing the algorithms pro-

posed in this paper under various conditions. In our dis-
cussion we term our algorithm for minimizing the number

Figure 2: Messages and Message Overhead
for Synthetic Data Set. Results for MinEnergy
Presented for both Aggregate SUM and Non-
Aggregate Query.

of transmissions asMinMesg, and our algorithm for mini-
mizing the overall energy consumption asMinEnergy. Our
techniques are compared against two intuitive algorithms.
In the MinHopsalgorithm, each sensor node that receives
the query announcement randomly selects as its parent node
a sensor amongst those with the minimum distance, in num-
ber of hops, from theRoot node [13]. In theMinCostalgo-
rithm, each sensor seeks to minimize the sum of the squared
distances amongst the sensors in its path to theRoot node,
when selecting its parent node. Since the energy consumed
by the power amplifier in many radio models depends on the
square of the communication range, theMinCostalgorithm
aims at selecting paths with low communication cost.

In all sets of experiments we place the sensor nodes on
random locations over a rectangular area. The radio param-
eters were set accordingly to the values in Table 3. The mes-
sage header was set to 32 bits, similarly to the size of each
statistic and aggregate value. In all figures we account for
the overhead of transmitting statistics and invitation mes-
sages during the creation of the collection tree in our algo-
rithms.

6.1 Experiments with Synthetic Data Sets

We initially placed 36 sensor nodes in a 300x300 area,
and then scaled up to the point of having 900 sensors. We
set the maximum broadcast range of each sensor to 90m. In
all cases theRoot node was placed on the lower left part of
the sensor field. In each case we set the epoch participation
frequency of the sensor nodes with the maximum distance,
in hop count, from theRoot to 1. Unless specified other-
wise, with probability 8% some interior node assumed an
epoch participation frequency of 1, while the epoch partici-
pation frequency of the remaining interior nodes was set to
5%.

We first evaluated a non-aggregate “SELECT *” query
over the measurements obtained by the epoch participating
sensor nodes. Since in this query the measurements of each
epoch participating node need to be propagated all the way

to theRoot node, and the only sharing that can be achieved
in combined messages involves the message’s header, we
expect little energy savings in this case. We also evaluated
a SUM aggregate query over the values of epoch partici-
pating sensor nodes using all algorithms. We present the
total number of transmissions for each type of query, algo-
rithm and number of sensors in Figure 2. Please note that
the MinEnergy algorithm built very different collection trees
for the two types of queries. For the remaining algorithms,
the number of transmitted messages was the same for both
types of queries. The corresponding average energy con-
sumption by the sensor nodes for each case is presented in
Table 6.

As we can see, ourMinMesgalgorithm achieves a sig-
nificant reduction in the number of transmitted messages
compared to the MinHops and MinCost algorithms. The
reduction in messages is up to 64% and 105%, respectively,
with an average gain of 48% and 93.7%, respectively, com-
pared to the theMinHopsandMinCostalgorithms. How-
ever, since these gains depend on the number of transmis-
sions that epoch-participating nodes perform, it is perhaps
more interesting to measure therouting overheadof each
technique. We define the routing overhead of each algo-
rithm as the relative increase in the number of transmissions
when compared to the number of epoch participations by
the sensor nodes. Note that the latter number is amandatory
cost that represents the transmissions in the network if each
sensor could communicate directly with theRoot node. For
example, if the total number of epoch participations by the
sensor nodes was 1000, but the overall number of transmis-
sions was 1700, then the routing overhead would have been
equal to(1700−1000)/1000= 70%. As we observe from
Figure 2, ourMinMesgalgorithm often results in 3 times
smaller routing overhead compared to the alternative algo-
rithms considered. We also observe that the MinEnergy al-
gorithm in the aggregate case produced results very close to
the ones of MinMesg. A main difference between these two
algorithms is that amongst candidate parents with similar
cost factors, the MinEnergy algorithm is less likely to se-
lect a distant neighbor than the MinMesg algorithm, which
only considers epoch participation frequencies. This is a
trend that we observed in all our experiments. However, in
the case of non-aggregate queries, the MinEnergy algorithm
formed very different collection trees, as it avoided routing
measurements through very long paths.

The MinEnergy algorithm performs very well in both
types of queries. Compared to the MinHops algorithm, it
achieves up to a 2-fold reduction in the power drain for ag-
gregate queries and up to 19% for non-aggregate queries.
Compared to the MinCost algorithm the energy savings are
smaller but still significant (i.e., up to 79% in the aggregate
query). The MinMesg algorithm is obviously a very poor
choice, with respect to the energy consumption, for non-
aggregate queries.

We expect that the more the epoch participation frequen-
cies of sensor nodes increase, the less likely that out tech-

Aggregate SUM Query Non-Aggregate “SELECT *” Query
Sensors MinMesg MinEnergy MinHops MinCost MinMesg MinEnergy MinHops MinCost

36 109.339 109.341 161.278 136.354 381.483 292.231 335.920 303.270
144 70.129 68.971 139.821 121.640 515.215 344.489 390.806 344.213
324 71.662 68.703 146.425 106.416 687.083 444.157 523.670 448.816
576 65.921 64.717 127.315 104.156 624.817 457.788 547.147 471.845
900 67.107 64.077 128.299 102.708 756.902 549.262 640.830 559.183

Table 6: Average Power Consumption (in mJ) for Synthetic
Dataset

Sensors MinMesg MinEnergy MinHops MinCost

150 73.607 67.821 111.751 91.990
600 58.131 58.273 97.958 85.158
1350 50.418 49.350 89.231 76.099

Table 7: Average Power Consumption (in
mJ) for SchoolBuses Dataset

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Participation Frequency of Nodes with P <> 1

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

M
es

sa
ge

s

MinMesg
MinHops
MinCost

Figure 3: Transmissions Varying the Epoch Partic-
ipation Frequency

Figure 4. Transmissions - Trucks data
Transmissions Average Energy Consumption

Sensors MinEnergy-1Step MinEnergy MinEnergy-1Step MinEnergy

36 106474 79887 147.882 109.341
144 405279 232298 126.374 68.971
324 749013 487889 112.964 68.703
576 1258888 827959 101.935 64.717
900 1812024 1279129 93.273 64.077

Table 8: Comparison of 1-Step and 2-Step Par-
ent Selection for MinEnergy Algorithm. Number of
Transmissions and Average Power Consumption
(in mJ) for Synthetic Data Set

niques will be able to provide substantial savings compared
to the MinHops and MinCost algorithms. In Figure 3 we
repeat the aggregate query of Figure 2 at the sensor network
with 324 nodes, but vary the epoch participation frequency
Pi of those nodes that do not make a transmission at each
epoch (i.e., of those nodes withPi < 1). While Figure 3
validates our intuition, it also demonstrates that significant
savings can be achieved even when sensor nodes have large
Pi values (i.e.,Pi ≥ 0.5).

A novel feature of our technique is the 2-step parent se-
lection phase. In Table 8 we compare the performance of
our MinEnergy algorithm in the aggregate SUM query de-
scribed above versus a variant that was not allowed to select

Figure 5. Transmissions - SchoolBuses data

a node’s sibling as its parent node in the collection tree. As
we can see, the benefits from utilizing the 2-step process are
important in all aspects (transmitted messages and power
consumption).

6.2 Experiments with Real Data Sets

We also experimented with the following two real data
sets. TheTrucks data set contains trajectories of 276 mov-
ing trucks [1]. Similarly, theSchoolBusesdata set contains
trajectories of 145 moving schoolbuses [1]. For each data
set we initially overlaid a sensor network of 150 nodes over
the monitored area. We set the broadcast range such that in-
terior sensor nodes could communicate with at least 5 more
sensor nodes. Moreover, each sensor could detect objects
within a circle centered at the node and with radius equal
to 60% of the broadcast range. We then scaled the data set
up to a network of 1350 sensors, while keeping the sensing
range steady. In Figures 4 and 5 we depict the total num-
ber of transmissions by all algorithms for the Trucks and
SchoolBuses data sets, correspondingly, when computing
the SUM of the number of detected objects. In our scenario,
nodes that do not observe an event make a transmission only
if they need to propagate measurements/aggregates by de-
scendant nodes. Due to space constraints we present the av-
erage energy consumption of the sensor nodes in the same
experiment for only the SchoolBuses data set in Table 7. As
it is evident, our algorithms achieve significant savings in
both metrics. For example, the MinCost algorithm, which
exhibits lower power consumption than the MinHops algo-
rithm, still drains about 50% more energy than our MinEn-
ergy algorithm. Moreover, both our MinMesg and MinEn-
ergy algorithms significantly reduce the amount of transmit-
ted messages by up to 42% and 73% when compared to the
MinHops and MinCost algorithms, respectively.

We then decided to mix the data sets. We separated

Sensors MinMesg MinEnergy MinHops MinCost

150 70,583 125,686 107,887 122,532
600 286,894 401,431 336,143 479,544
1350 430,094 774,530 606,105 1,038,093

Table 9. Messages for Multi-Query Scenario

the SchoolBuses into two categories (by randomly coloring
each schoolbus as either colorA and B) and overlaid this
data set with the trucks data set. We then performed three
simultaneous queries requesting the total number of trucks,
schoolbuses of colorA and schoolbuses of colorB observed
in the network. We used the same topology, network scale
and placement of theRoot node as above and compared our
MinMesgandMinEnergyalgorithm with theMinHopsand
MinCostalgorithms, which were modified to select a single
parent node for all queries (this produced the best results for
them). Due to space constraints, in Table 9 we depict only
the total number of transmitted messages for all algorithms.

7 Related Work
The database community has long been the advocate of

using an embedded database management system for data
acquisition in sensor networks [13, 24]. The use of a declar-
ative SQL-like query interface allows rapid development
of applications in such systems without the need to man-
age hand-coded programs at each sensor node [14]. In the
database community different types of popular queries have
been discussed, such as aggregate [5, 6, 13, 18, 16], join [2],
model-based [8, 12] and select-all queries [7, 19]. Tracking
queries that seek to determine the spatial extent of a partic-
ular phenomenon have also been considered [9, 23].

Many of the low-level networking details have already
been discussed in the networking community and, thus, can
be utilized in our framework. As an example, nodes in unat-
tended wireless networks must be able to self-configure [3]
and discover their surrounding nodes [10]. Prior work on
computing energy-efficient data routing paths (such as the
aggregation tree) [11, 20, 22] have tackled similar problems,
but these techniques base their operation on the assumption
that the sensor nodes that collect data relevant to the speci-
fied query need to include their measurements in the query
result at every query epoch. However, this assumption does
not hold in event monitoring queries that are the scope of
our framework. Due to space constraints, a more elaborate
discussion of the related work can be found in [21].

8 Conclusions
In this paper we presented algorithms for building and

maintaining efficient collection trees in support of event
monitoring queries in wireless sensor networks. We demon-
strated that is it possible to create efficient collection trees
that minimize important network resources using a small set
of statistics that are communicated in a localized manner
during the construction of the tree topology. Furthermore,
our techniques utilize a novel 2-step refinement process that
significantly increases the quality of the created trees. We

have also demonstrated that our algorithms can handle a
mix of event monitoring queries (EMQs) including aggre-
gate and non-aggregate queries.

References
[1] Rtree Pportal. http://www.rtreeportal.org.
[2] D.J. Abadi, S. Madden, and W. Lindenr. REED: Robust, Efficient

Filtering and Event Detection in Sensor Networks. InVLDB, 2005.
[3] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring sEnsor

Network Topologies. InINFOCOM, 2002.
[4] Jae-Hwan Chang and Leandros Tassiulas. Energy Conserving Rout-

ing in Wireless Ad-hoc Networks. InINFOCOM, 2000.
[5] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggrega-

tion Techniques for Sensor Databases. InICDE, 2004.
[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-

Network Data Aggregation with Quality Guarantees. InEDBT, 2004.
[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Dissemination

of Compressed Historical Information in Sensor Networks.VLDB
Journal, 2007.

[8] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and
W. Hong. Model-Driven Data Acquisition in Sensor Networks. In
VLDB, 2004.

[9] M. Duckham, S. Nittel, and M. Worboys. Monitoring Dynamic Spa-
tial Fields Using Responsive Geosensor Networks. InGIS, 2005.

[10] D. Estrin, R. Govindan, J. Heidermann, and S. Kumar. Next Century
Challenges: Scalable Coordination in Sensor Networks. InMobi-
COM, 1999.

[11] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidermann. Im-
pact of Network Density on Data Aggregation in Wireless Sensor
Networks. InICDCS, 2002.

[12] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Net-
works. InICDE, 2005.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag:
A Tiny Aggregation Service for ad hoc Sensor Networks. InOSDI
Conf., 2002.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
Design of an Acquisitional Query processor for Sensor Networks. In
ACM SIGMOD, 2003.

[15] C. Olston and J. Widom. Offering a Precision-Performance Tradeoff
for Aggregation Queries over Replicated Data. InVLDB, 2000.

[16] S. Pattem, B. Krishnamachari, and R. Govindan. The Impact of
Spatial Correlation on Routing with Compression in Wireless Sen-
sor Networks. InIPSN, 2004.

[17] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava. Energy
aware wireless microsensor networks.IEEE Signal Processing Mag-
azine, 19(2), 2002.

[18] A. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. Balancing En-
ergy Efficiency and Quality of Aggregate Data in Sensor Networks.
VLDB Journal, 2004.

[19] A. Silberstein, R. Braynard, and J. Yang. Constraint Chaining: On
EnergyEfficient Continuous Monitoring in Sensor Networks. InSIG-
MOD, 2006.

[20] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in
mobile ad hoc networks. InACM/IEEE International Conference on
Mobile Computing and Networking, 1998.

[21] V. Stoumpos, A. Deligiannakis, Y. Kotidis, and A. Delis. Pro-
cessing Event-Monitoring Queries in Sensor Netwrks. Tech-
nical Report, University of Athens, June 2007. Available at
http://www.cs.umd.edu/ adeli/TR07.pdf.

[22] N. Trigoni, Y. Yao, A.J. Demers, J. Gehrke, and R. Rajaraman. Multi-
query Optimization for Sensor Networks. InDCOSS, 2005.

[23] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour Map Matching for
Event Detection in Sensor Networks. InSIGMOD, 2006.

[24] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks.SIGMOD Record, 31(3):9–18, 2002.

