
Flash Data Dissemination in Unstructured Peer-to-Peer Networks

Antonis Papadimitriou andAlex Delis
University of Athens, Athens, 15784, Greece

{anthony, ad}@di.uoa.gr

Abstract

The problem of flash data dissemination refers to spread-
ing dynamically-created medium-sized data to all members
of a large group of users. In this paper, we explore a so-
lution to the problem of flash data dissemination in un-
structuredP2Pnetworks and propose a gossip-based pro-
tocol, termed Catalogue-Gossip. Our protocol alleviates
the shortcomings of prior gossip-based dissemination ap-
proaches through the introduction of an efficient catalogue
exchange scheme that helps reduce unnecessary interac-
tions among nodes in the unstructured network. We pro-
vide deterministic guarantees for the termination of the pro-
tocol and suggest optimizations concerning the order with
which pieces of flash data are assembled at receiving peers.
Experimental results show that Catalogue-Gossip is signif-
icantly more efficient than existing solutions when it comes
to delivery of flash data.

1. Introduction

The problem of rapid data dissemination in peer-to-
peer (P2P) networks is now recognized as the key element
to effectively address many applications including acqui-
sition of real-time weather information, announcement of
traffic-conditions, publication of stock quotes and prolifera-
tion of news and emergency alerts. Sizeable groups of users
often organized inP2Poverlays are now increasingly in-
terested in acquiring dynamic information in order to make
timely decisions [9]. In the aforementioned application do-
mains, new data has to reach large numbers of users and/or
customers as quickly as possible. This specialized form
of dissemination is termedflash data disseminationand
refers to quickly spreading dynamically-created medium-
size data to all members of a potentially large group of
users. Flash dissemination is very different from rudimen-
tary file transfer approaches as the core requirement is that
all participants have to obtain dynamic data fast and that
the originator of the information might be any node in the
P2P-network. Occasionally, flash data dissemination has to

proceed under adverse conditions in which networks suf-
fer from frequent node node arrivals/departures or feature
nodes prone to failure with high probability during unex-
pected events. Such conditions appear when either emer-
gency situations are in development or time-critical oper-
ations are involved including deployment of physical re-
sources, handling of micro-payments among users of a
community, and resumption of multi-player games.

In a scenario that entails fast dissemination of earthquake
data, the objective is to efficiently propagate informationre-
garding ongoing seismic activity to many sites so that data
can be exploited for both scientific evaluation and for issu-
ing necessary public alerts. Another equally important ap-
plication is that of detecting heat and humidity while moni-
toring a forest area. The goal here would be to detect bush
fires and gather information that would help design a strat-
egy to combat them. The main challenge that these sys-
tems face is that timely data dissemination should be guar-
anteed even in light of catastrophic events that may damage
computing equipment in multiple sites. In a multi-player
game scenario, there is often a global game state that all
peers should be aware of. This state information should
be spread quickly by using a flash dissemination scheme,
even if users constantly join or depart the game. Lately,
unstructuredP2P-networks are increasingly used to imple-
ment such systems [4, 12], due to their unique characteristic
of ensuring reliable operation even in adverse network con-
ditions with minor maintenance overhead. The main ad-
vantage of unstructuredP2P-networks is that they impose
no pre-fixed overlay on the participating nodes and by and
large rely on random communication among peers for their
operation. These two features allow for the flexible realiza-
tion of the two fundamental operations –information search
and dissemination– yielding an network capable of over-
coming unexpected failures.

In this paper, we propose a new protocol for flash data
dissemination in unstructuredP2P-networks. The protocol
features a novel gossip-based dissemination approach that
reduces communication overheads among peers and thus, it
achieves faster dissemination of data reports. Our dissem-
ination algorithm termedCatalogue-Gossip, is based on a

1

succinct structure calledCataloguethat allows for efficient
node interactions. Additionally, we develop a specialized
termination discovery mechanism that provides determinis-
tic guaranties for the reliability of the dissemination. We
also discuss a more fault-tolerant variant of the protocol
which implements a decentralized file chunk selection pol-
icy to increase resistance to failures on the originator of a
disseminated resource.

2. Related Work

Overlay structure information is absent in unstructured
P2P-networks and algorithms developed for such systems
rely on random message exchanges. In this context, gossip-
based protocols have been widely used in unstructured
P2P-networks mainly due to their simplicity and increased
fault tolerance. Moreover, results that have been obtained
through probabilistic analysis point into the efficiency of
gossip-based protocols to spread reports [8].

Simple-gossip has been applied in a number of fields in-
cluding databases [3], network management [11] and infor-
mation dissemination [5]. This protocol is initiated by a
node that intends to disseminate a resource by selecting a
fixed number –called fan-out– of random peers to forward
the content in question. Every receiving peer does the same,
unless it has already “received” the resource, in which case
it ceases the forwarding. Unfortunately, simple-gossiping
approaches focus on reliability and fault-tolerance and ig-
nore the aspect of efficiency in terms of speed of dissemi-
nation. In fact, forwarding resources to randomly selected
peers may significantly degrade performance, as peers may
receive duplicate copies of resources. Another problem that
there is always a possibility that a peer does not receive
the disseminated information at all (i.e., the delivery is only
probabilistic).

Crew [4] was the first gossip-based protocol which ex-
plicitly dealt with fast dissemination of data in unstruc-
turedP2P-networks. In order to avoid duplicate transfers,
Crew-Gossipoperates in a pull mode as it involves having
all nodes eagerly request data they are missing, from ran-
dom peers. To make all nodes aware of missing chunks, a
phase of meta-data spreading viaSimple-Gossipprecedes
the main dissemination process. As requesting peers know
which files they need, duplicate data transfers are avoided.
Nevertheless,Crew-Gossiphas a weakness which degrades
its performance. Specifically, in the beginning of the dis-
semination nearly all requests to random peers are unsuc-
cessful, as no peer –apart from the originator– has any
data resource to share. The existence of many unsuccess-
ful messages offers ground for improvement when it comes
to offering a more optimized flash data dissemination pro-
tocol. OurCatalogue-Gossipapproach tackles the above
shortcomings by introducing catalogue-based interactions

among peers thus avoiding many redundant communica-
tions. In addition, we offer a decentralized implementation
of a data chunk selection policy to increase fault-tolerance.
To deal with the problem of probabilistic delivery, we sug-
gest a mechanism to ensure deterministic delivery of re-
sources to all peers in the network.

3. The Catalogue-Gossip Protocol

The key objective of theCatalogue-Gossipis to dis-
tribute content of arbitrary format and size to all peers con-
stituting the network.Catalogue-Gossiprelies on an under-
lying Membership Protocol[6, 7] for building up the un-
structured network. A membership management protocol is
responsible for creating consistent neighbor views at every
peer, so that when a node selects randomly a peer from its
view, it would be equivalent to randomly selecting from the
entire set of network nodes. Moreover, gossip-based mem-
bership protocols are designed to deal efficiently with dy-
namic network conditions, so that the node views are con-
sistent even in face of high churn or failure rate. Hence,
membership protocols allow flash data dissemination ap-
proaches to focus on improving dissemination speed rather
than handling dynamic aspects of the network.

With an unstructured network in place,Catalogue-
Gossipdisseminates resources by having all nodes spread
a meta-data message calledCatalogueto random peers in
the system. A catalogue contains a list of data available for
downloading from its owner. In the sections that follow,
we outline the structures used to implement the protocol
and explain howCatalogue-Gossipworks towards achiev-
ing fast content dissemination.

3.1. Data Structures

To handle content of arbitrary size and format, the pro-
tocol treats every file in an uniform manner. It splits files
into several parts ordata chunksand disseminates each such
chunk independently. A file is disseminated to a particular
peer, if the peer in question has received all parts compris-
ing the resource. The recipient peer is responsible for recon-
structing the original file from its constituent components.
To distinguish data chunks, the uploader of a file has to pro-
vide a uniqueid for each data chunk produced by using the
MD5-algorithm [10].

Every peer maintains two structures which are necessary
for the operation of theCatalogue-Gossipprotocol as Fig-
ure 1 depicts. The first is a table containing all chunks
that have been downloaded by a peer thus far. The table
helps the node ascertain which chunks are still missing. To
this end, the node can fetch missing parts from other peers.
Moreover, the table ofavailable chunksis used as an an-
nouncement (via theCataloguemessages) to other peers,

TABLE of available chunks

FilenameLocalID Chunk

Sequence
ChunkID

map.jpg

map.jpg

map.jpg

event.dat

1

2

3

4

1

2

8

3

md5{chunk data}

md5{chunk data}

md5{chunk data}

md5{chunk data}

LocalID
 Chunk

Sequence

Frequence

 Estimate

map.jpg
FREQUENCY COUNTERs

1
2

10

...

1
2

missing

...

f1
f2

f10

...

LocalID
 Chunk

Sequence

Frequency

 Estimate

event.dat

1
2
3

missing f1
f2
f3

missing

4

Figure 1. Catalogue-GossipStructures

so that the latter may know which chunks are available for
downloading from that specific peer. The second structure
shown in Figure 1 is a set of of frequency counters whose
objective is to offer an estimation on how frequent each
specific chunk is in the entireP2P-system. In addition to
the aforementioned two structures,Catalogue-Gossippeers
tradeCataloguemessages which contain information about
the table of available chunks and a summary of the fre-
quency estimates of the catalogue-sender at the moment of
theCataloguemessage dispatch.

The table of available chunks (Figure 1) associates each
downloaded data chunk with the name of the file it belongs
to and a sequence number denoting its order among the rest
of the data chunks in that file. Moreover, for each separate
chunk it stores theMD5 key which has been produced by
feeding the contents of the particular data chunk to the mes-
sage digest algorithm. Each peer’s table is updated every
time a new chunk is downloaded at that node, by just ap-
pending an additional record which maps to the meta-data
information of the newly acquired chunk.

As mentioned above, each peer maintains a set offre-
quency countersshown in Figure 1. There is a frequency
counter structure for every resource and/or file being dis-
seminated in the network at any given moment. The struc-
ture in discussion helps maintain estimations of the rela-
tive frequency with which every chunk appears in the net-
work. These estimations essentially reflect the proportion
of the number of copies of each chunk to the total number
of chunks of the file spread in theP2P-system. Evidently,
estimations range between0 and1 and for each file in a
peer, they sum up to1. If a frequency counterestimation
refers to a chunk that has been already downloaded, there
is a pointer to the respective record at the table ofavailable
chunks. Otherwise, even if the chunk is missing, there is
still an estimation derived from trading catalogue messages
with other peers.

Peers exchange messages calledCataloguesduring the

CATALOGUE = Frequency Counter Data + Available Chunks' IDs

Filename ChunkID

map.jpg
map.jpg
map.jpg
event.dat

md5{chunk data}
md5{chunk data}
md5{chunk data}
md5{chunk data}

Filename

map.jpg

event.dat

{(1,f1),(2,f2),...,(10,f10)}

Frequency Estimates Total Chunks Counted

{(1,f1),(2,f2),(3,f3)}
Totalmap.jpg

Totalevent.dat

+

Figure 2. The Catalogue message

whole course of dissemination. These messages (Figure 2)
are a critical component for the efficient operation of the
proposed dissemination scheme. Dispatched by a peer, a
Cataloguecontains a summary of the frequency counter
data it has estimated thus far and a list with all the data
chunks that the peer has available for others. Each peer that
receives a catalogue can select a chunk to fetch from the list
and moreover it can use the frequency data to improve its
own estimations. It is worth mentioning that the contents
of this Catalogueare time-dependent. The content ofCat-
aloguechanges during the dissemination, according to the
chunks available by that peer at any given moment as well
as the current estimation of itsfrequency counters.

3.2. Basic Protocol Operation

Every peer inCatalogue-Gossipruns four separate mod-
ules that synegistically implement the operations of the pro-
tocol. Figure 3 depicts how the componentsCatalogue
Processing Listener, Choker, Transfer Managerand Cat-
alogue Dispatchercooperate. TheCatalogue Processing
Listeneris the module which always waits for connections
from other peers, so as to receive incoming catalogues and
decide which chunk to possibly fetch. It operates in con-
junction with theChokermodule which works as a throttle
mechanism used to reject connections if a node gets over-
loaded. TheTransfer Manageris responsible for carrying
out the data chunk transfers the peer is engaged in. Lastly,
theCatalogue Dispatcherforwards updated versions of the
Catalogueto randomly selected peers.

A node find itself in a passive state, if it does not forward
itsCatalogueto others. A peer in passive state may be either
entirely idle simply waiting for connections or just taking
part in some chunk transfers. A node is its active phase, if
its Catalogue Dispatchercomponent has commenced gos-
siping the localCatalogue. The state of the node is turned
into active the first time it downloads a chunk of a new file.
The peer leaves its active state once the protocol has deter-
mined that the dissemination of the file is over.

Upon accepting a new connection, theCatalogue Pro-

Catalogue

Processing

 Listener

choker
 Transfer

Manager

fetch

chunk

...

concurrent chunk

 transfers

table

 freq

counters

 Catalogue

Dispatcher

 update

strucutres

incoming

catalogue

outgoing

catalogue

Figure 3. Logical Components of the Protocol

cessing Listenerscans the incomingCatalogueto see which
chunks are candidates for fetching from the remote peer. A
chunk becomes a candidate for fetching, if it is contained
in the incomingCatalogue, but missing from the local peer.
The peer selects which chunks to fetch according to its own
chunk selection policy. Once it has decided, it notifies the
Transfer Managerabout the chunkid and the remote peer’s
address, so that the transfer can be started. Li light of the
fact that theCataloguecontains no chunk of interest to the
receiving peer, theCatalogue Processing Listenerresponds
with an “UNSUCCESSFUL” message.

TheChokermodule acts as a filter on the connections ac-
cepted by theCatalogue Processing Listener. More specif-
ically, it computes the node’s available bandwidth in order
to decide whether to allow additional connections. If the
peer does not have adequate spare bandwidth to accom-
modate another chunk transfer, the incoming connection is
“choked” and a “BUSY” message is returned to the sender.
The spare bandwidth is calculated by subtracting the band-
width used by ongoing transfers from the total bandwidth of
the node. The latter can be estimated by having theTransfer
Managerkeep track of the highest downloading bandwidth
rate ever appearing during the node’s operation. Because
of the potentially vast number of connections established in
this gossip-based environment, this measured value quickly
approximates the actual maximum bandwidth of a node [4].

During the dissemination of a file, any peer can take part
in multiple data chunk transfers. TheTransfer Manageris a
multi-threaded module able of handling concurrent connec-
tions to remote hosts. Besides that, its main responsibility
is to update the structures maintained by the peer any time
a chunk transfer is complete. TheTransfer Managerdoes
so by appending a record to the table of available chunks
and by updating the estimates of the frequency counters. If
the peer is in its passive state, theTransfer Manageriniti-
ates theCatalogue Dispatchermodule to start gossiping the
node’sCatalogue.

As soon as a node enters its active state, theCatalogue

Dispatcherbegins gossiping the localCatalogueto other
peers. The node selects a peer at random from its local
view of neighbors. As mentioned earlier, this is equivalent
to selecting a random peer from the entire system. The node
can now construct an updated version of the localCatalogue
and forward it to the selected remote peer. This procedure is
constantly repeated during the dissemination of a file. The
peer leaves its active state when the protocol detects that the
dissemination is over. A system parameter regarding the ac-
tive state of a node is the inter-gossip time interval. This
parameter denotes the time period elapsed between succes-
sive pushes of theCatalogueand may designate the degree
of aggressiveness in the behavior of each node. Aggressive
behavior as exemplified by short intervals may cause more
load imbalances across nodes, with the originator suffering
the highest load. This is due to the fact that the initiator
may send moreCataloguesduring a single chunk transfer
which in turn results in more peers fetching chunks from
the initiator. The same holds for all the nodes that start gos-
siping theirCatalogueearly during the dissemination, thus,
leading to uneven load distribution.

3.3. Protocol Enhancements

3.3.1 Dissemination Termination Mechanism

A potential disadvantage of gossip-based systems is that
there are no guarantees that a disseminated resource will ul-
timately reach all network nodes. In [8], the fan-out (i.e.
number of gossip targets) required at each node is com-
puted, in order to achieve reliable dissemination of a re-
source, with very high probability. Essentially, only proba-
bilistic guaranties can be provided in a simple gossip-based
setting. Hence, an additional mechanism is required to pro-
vide deterministic guaranties. InCatalogue-Gossip, deter-
ministic delivery is attained by having all peers continu-
ing to forward theirCatalogueuntil the dissemination com-
pletes. The question which emerges is how each node will
know that the dissemination of a file is complete across the
entire network, so that it can stop forwarding itsCatalogue.

To address the issue we develop a termination mecha-
nism. Our protocol instructs peers to leave their active phase
by using a heuristic condition. Each node that forwards its
Catalogueexpects either the beginning of a chunk trans-
fer or an “UNSUCCESSFUL” response. Receiving many
successive unsuccessful responses is an indication that the
dissemination has either concluded or is almost complete.
The exact number of responses (r) that would indicate the
termination of the dissemination is a system parameter.

To ease the proper tuning of this parameter, we provide
the following analysis. Consider a network which consists
of N nodes,M of which have completed (i.e. received all
file chunks) andK are still pending. For providing the anal-
ysis we make the assumption that the dissemination pro-

ceeds in steps. We say that a set ofK nodes is isolated for
one round, if none of theM completed nodes sends aCata-
logueto any of theK nodes. The probability of a one-round
isolation is equal to the probability that allM nodes select a
completed node1 to forward theCatalogueto. So we have:

q = Pr(a node selects a completed node to send to)

q =
M

N
= 1 −

K

N

and,

p = Pr(all M nodes select a completed node)

p = qM = (1 −
K

N
)
N−K

finally,

Pr = Pr(p happens in r successive rounds)

Pr = pr = (1 −
K

N
)
r(N−K)

Hence, according to the anticipated size of a system, one
can adjust system parameterr so that a node becomes iso-
lated with as lowPr as desired. A system with lowPr is
more accurate as in this case nodes keep on forwarding their
catalogue, until the dissemination is actually completed.
Allowing a higherPr means that more nodes might infer
that the dissemination is over before this actually becomes
true. Such a setting is suitable for systems with constraint
resources (e.g., battery consumption in mobile networks).
Here, it would be better for most nodes to stop expending
resources while having theirCatalogueforwarded and let a
small portion of remaining nodes pull their missing chunks.

A node checks the heuristic condition only after it has
collected all the chunks of a file to ensure that an unsuc-
cessful response means that the remote node has completed
the transfer of all the chunks. As soon as a peer has re-
ceivedr successive unsuccessful responses, it leaves its ac-
tive phase, stops forwarding itsCatalogueand assumes that
the dissemination is over.

To handle the extreme case of an isolation ofr rounds,
we include a timeout mechanism in the protocol. This timer
expires if noCatalogueis sent to a peer for a long time. In
this case, the peer stops gossiping its catalogue and starts
gossiping direct requests for the missing chunks to random
peers. In other words, this mechanism actually allows a
peer to unilaterally make a transition from the push to the
pull model of operation, in order to deal with isolation.

1one of theM nodes that have received all chunks.

3.3.2 Resilience to Initiator Faults

Gossip-based protocols are in general resilient to node
faults and their performance degrades gracefully with crash-
ing peers. However, they have an inherent weakness when
it comes to resilience to faults on the initiator of a dissemi-
nation. It is crucial that the initiator can forward all the data
chunks quickly, so that the entire file becomes replicated in
the network as fast as possible. This is required so that the
system can complete the dissemination even if the initiator
fails early on in the process.

To reach this increased level of fault tolerance, we de-
signed a chunk selection policy which favors rare chunks,
so that all chunks can be replicated across the peers quickly.
The other policy we investigated is having the recipient of
a Catalogueselect one chunk at random. More specifically
the two policies we use are:

• Rarest-First: ideally, the rarest-first policy selects to
fetch the chunk which is less common among the
nodes of theP2P-network. This can facilitate speeding
up the degree of data diffusion in the network earlier
during the dissemination.

• Random-First: this policy instructs the peer to ran-
domly fetch any of the available chunks, as announced
by theCatalogue. Note that this approach does not in-
cur the extra communication overhead of Rarest-First
policy (the protocol could be implemented withoutfre-
quency counters).

To implement a policy such as Rarest-First, there is a
need to maintain a global view of the system to be able to
tell which chunks are rare and which are more common. A
centralized approach could readily achieve this by having
every downloader register at the origin site which chunks
it has already downloaded [2]. This is not applicable in
the case of data dissemination in fully-decentralizedP2P-
networks, where no global state can be maintained at the
initiator. We thus propose a decentralized implementation
of the Rarest-First policy, so that it can be used in pure P2P
environments.

Decentralized Rarest-First policy is implemented by us-
ing the frequency counter structures of Figure 1. Each peer
maintains a frequency counter for every different file being
currently disseminated in the system. This counter provides
an estimation of the percentage of each chunk’s copies rel-
ative to the total number of chunk copies belonging to the
particular file in the system. The originator of a resource
creates a counter which assigns the frequency1

L
to all L

chunks of the disseminated file.
When dispatching itsCatalogue, the initiator includes

the data of the frequency counter as illustrated in Figure 2.
The recipient of theCatalogueselects one of the chunks
based on its current local frequency counter and fetches the

chunk. The data of the frequency counters of a peer has to
be updated in two cases: when a new chunk is fetched and
when it receives a frequency estimation from another peer.

The update in the first case is accomplished by increas-
ing theTotal variable of the file (Figure 2) by one and then
adding 1

Total
to the frequency of the chunk fetched. To

retain the assertion that the sum of frequency estimations
over theL chunks of a file is equal to one (

∑L

i=1 fi = 1),
the added fraction has to be subtracted from the rest of fre-
quency estimates. So it is split intoL − 1 equal parts, each
of which is subtracted from the respective estimates.

For the second case, the recipient of theCataloguehas
to compute the new estimation of frequencies by aggregat-
ing the information sent by the remote peer. To do so, we
propose a weighted mean aggregator operator. To compute
the respective weights it uses the “Total Chunks Counted”
information shown in theCatalogueof Figure 2. This in-
formation is initially set toL (the number of the chunks) by
the originator and0 by all other peers, and is updated each
time a peer fetches a chunk or aggregates the estimates of
other peers. Formally:

fA

i = Mi(f
A

i , fB

i) = wAfA

i + wBfB

i

with

wk =
Totalk

TotalA + TotalB
, k = {A, B}

where A is the recipient of theCatalogue, B is the sender
andfi is the estimate of the frequency of thei-th chunk.
Although intuitively Random-First and Rarest-First poli-
cies have comparable dissemination speed performance in
the long term, Rarest-First is faster in replicating all data
chunks in the system, whereas Random-First incurs less
overhead in the network.

4. Experimental Results

In order to evaluate the efficiency of theCatalogue-
Gossip, we created a simulation environment based on the
JiST simulation engine [1].JiST is a Java-based runtime
environment for discrete event simulations. Our assess-
ment included a number of protocols used for flash data
dissemination. Specifically, the compared protocols were
Catalogue-Gossip, CrewandSimple-Gossip. Our compari-
son mainly focuses on the scalability of the protocols for di-
verse network and file sizes while taking into account other
performance aspects of the protocols.

In our evaluation, we used the following metrics:
i) Completion-Timedefined as the time taken for the suc-
cessful update of all peers,ii) Coverage-Speeddesignated
as the number of successfully updated peers at any point
during the dissemination,iii) Data-Overheadmeasured as
the number of unsuccessful messages and finally,iv) Chunk-
Replicationdefined as the time taken by the originator to

send all chunks. In our experimentation, we vary the fol-
lowing key factors:
• Network Size (N): The largest the network is in terms

of peer population, the longer the dissemination takes
to be accomplished. It is also critical to establish out
how well the different protocols scale as the network
size increases.

• Content Size (S): Flash dissemination in unstructured
networks usually refers to medium-sized data (of
50KB or less). Nevertheless it may refer to the rapid
dissemination of image data captured by security cam-
eras or to the fast spreading of alerts. Hence, it is cru-
cial to determine which protocols work best for differ-
ent content sizes.

Next, we briefly outline results from our experimentation
while focusing on the above-mentioned four metrics.

Completion-Time (CT): In order to ascertain how the pro-
tocols efficiently scale in largeP2P-networks we carried out
experiments to assess the completion time of each proto-
col under varying content sizes for the communicated re-
sources. Figure 4 depicts the behavior ofSimple, Crew
andCatalogueprotocols in terms ofCT under varying peer
population assessing their applicability for flash dissemina-
tion. Simple-Gossip has the worst performance among the

0 200 400 600 800 1000
50

100

150

200

250

300

350

400
Completion Time for different Network Sizes

Network Size

C
om

pl
et

io
n

T
im

e

Simple−Gossip
Crew−Gossip
Catalogue−Gossip

Figure 4. CTs for different network sizes.

three protocols. It takes longer to disseminate the data in
every case and consequently appears to scale poorly with
increasing network size. This is not the case withCrew
andCatalogue-Gossipwhich show more robust behavior in
large-scale networks.Catalogue-Gossiphowever achieves
better completion times as it completes in about half the
time it takes forCrew-Gossip to do so. The same behavior
appeared in our experiments even for extremely high num-
ber of nodes of up to50K peers where asCatalogue-Gossip
still outperformedCrew.

Figure 5 depicts how the protocols react to different

sizes of disseminated file for a500-node network. We vary
the size of the data resources from5 to 50KB. Appar-
ently, Simple-Gossipperforms poorly whereas bothCrew
andCatalogueseem to scale roughly the same. We should
mention here that the setting of this experiment favorsCrew
and is the worst case forCatalogueas disseminated data
resources were split into a small number of chunks (five).

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200
Completion Time for different Content Size (constant number of chunks)

Content Size (KB)

C
om

pl
et

io
n

T
im

e

Simple−Gossip
Crew−Gossip
Catalogue−Gossip

Figure 5. CTs vs. varying content size.

Catalogueperforms much better thanCrew when re-
sources are split in many chunks. For instance in the ex-
perimental setting of Figure 4, resources were fragmented
into 10 chunks and the resulting performance ofCatalogue
was twice as good asCrew’s. In cases of small chunks, the
overhead of the numerous unsuccessfulCrewpull requests
increases and rendersCrew inefficient when compared to
Catalogue. Our proposed protocol scales well regardless of
the splitting of resources into chunks and this further con-
tributes to its robustness.

Coverage-Speed(CS): this measurement offers a view on
how quickly a resource is disseminated throughout the net-
work. Figure 6 depicts the rate of peer completion during
the entire period of the dissemination for the three proto-
cols. Although initially Simpleclosely followsCrew, it
finally demonstrates much inferior rates as soon as about
80% of the peers have received the entire data resource,
because the probability of selecting a random peer which
has not completed yet falls dramatically. Moreover,Cata-
loguecompletes much earlier thanCrew. This is because
in Crew, the probability of selecting a peer with available
chunks during the first steps of the dissemination is very
small. This means that there is a significant delay in spread-
ing the chunks in the network at the beginning of the dis-
semination, a fact reflected by theCrewcurve in Figure 6.

Data-Overhead(DO): The reason behind the good perfor-
mance ofCatalogue-Gossipis that it manages to reduce
data overhead. The protocol’s design has focused on avoid-

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500
Coverage Speed

N
od

es
 C

om
pl

et
ed

Time

Simple−Gossip
Crew−Gossip
Catalogue−Gossip

Figure 6. CSs for the three protocols.

ing redundant transfers and unsuccessful messages. This
section confirms thatCatalogue-Gossipis more efficient in
peer communication. Before continuing, it is useful to de-
fine what an “unsuccessful” message means in each proto-
col. First of all, an unsuccessful message in Simple-Gossip
is a transfer of a duplicate chunk. As already analyzed, du-
plicate chunk transfers in Simple-Gossip are the source of
high data overhead. In Crew-Gossip, an unsuccessful mes-
sage is a pull request to a peer which has no chunk that is
of interest to the requesting peer. Unsuccessful messages
in Catalogue-Gossipreflect the event of a peer pushing its
Catalogueto another node, which has all the chunks in
theCatalogue. Figure 7 illustrates the numberCatalogue-
Gossiphas about 80% less redundant messages than Crew).
of redundant messages for the three protocols.Catalogue-
Gossiphas the smallest redundancy, an order of magnitude
less than in Crew-Gossip (the vertical axis is logarithmic).

Chunk-Replication(CR): Chunk-replication examines
how well chunk selection policies do in the context of
Catalogue-Gossip. Figure 8 displays all three chunk selec-
tion policies evaluated in this paper, namely Random-First,
Centralized Rarest-First and Decentralized Rarest-First
policy. As Figure 8 shows, the centralized Rarest-First
replicates the chunks of the original file the fastest in the
system. This is because every peer selects the optimal
chunk to fetch, as if there was a global state maintained
about the frequency of chunks in theP2Pnetwork. On the
contrary, the Random-First policy takes much longer to
achieve the same degree of replication. Moreover, differ-
ence between the above two policies becomes wider when
it comes to files consisting of more chunks (Figure 8 refers
to a resource of10 chunks). This is because the expected
number of random samples needed to draw allN chunks
increases rapidly withN . The Decentralized Rarest-First is
a much better approximation to its centralized version, than

0 50 100 150 200 250 300 350
0

10

10^2

10^3

10^4

10^5

10^6
Redundant Messages during Dissemination (500 Nodes)

Time Periods during Dissemination

R
ed

un
da

nt
 M

es
sa

ge
s

Simple−Gossip
Crew−Gossip
Catalogue−Gossip

End of Dissemination
 in Crew−Gossip

End of Dissemination
 in Simple−Gossip

End of Dissemination
 in Catalogue−Gossip

Figure 7. Redundant messages in Simple-
Gossip, Crew-Gossip and Catalogue-Gossip.

the naive Random-First policy.

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

Time

N
um

be
r

of
 d

iff
er

en
t c

hu
nk

s

Chunk Selection Policies Comparison

Random−First Policy
Centralized Rarest−First Policy
Decentralized Rarest−First Policy

Figure 8. Time required by initiator to send all
10 chunks to other peers.

5. Conclusions and Future Work

In this paper, we proposed theCatalogue-Gossippro-
tocol for addressing the problem of flash data dissemina-
tion in unstructuredP2P-networks. Catalogue-Gossipex-
perimentally shows improved performance behavior over
existing counterparts as it features reduced data overheads
and accelerated speed with which data reach their desti-

nation nodes during the course of the dissemination pro-
cess.Catalogue-Gossipalso enforces deterministic delivery
which is a strong requirement for data dissemination sys-
tems. Finally,Catalogue-Gossipimplements a decentral-
ized policy ensuring short time periods elapsed between ini-
tiation of a dissemination and the full replication of the data
throughout the unstructured network. We plan to enhance
the protocol by incorporating compression techniques to
further reduce the volume of traded-data chunks and by ex-
ploiting specialized Bloom-filters to more efficiently repre-
sent protocol structures. We also intend to pursue an ana-
lytical approach in establishing bounds of feasible perfor-
mance gains with respect to prior approaches.

References

[1] R. Barr, Z. J. Haas, and R. van Renesse.JiST: an Efficient Approach

to Simulation using Virtual Machines.Software: Practice and Expe-

rience, 35(6):539–576, May 2005.

[2] B. Cohen. Incentives Build Robustness in BitTorrent. InWorkshop

on the Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,

H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithmsfor

Replicated Database Maintenance. In6th ACM Symposium on Prin-

ciples of Distributed Computing, Vancouver, Canada, 1987.

[4] M. Deshpande, B. Xing, I. Lazaridis, B. Hore, N. Venkatasubrama-

nian, and S. Mehrotra. CREW: A Gossip-based Flash-Dissemination

System. In26th IEEE Int. Conf. on Distributed Computing Systems,

2006.

[5] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie.

Epidemic Information Dissemination in Distributed Systems. IEEE

Computer, 37(5):60–67, May 2004.

[6] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-Peer

Membership Management for Gossip-based Protocols.IEEE Trans-

actions on Computers, 52(2):139–149, February 2003.

[7] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van

Steen. Gossip-based Peer Sampling.ACM Transactions on Com-

puter Systems, 25(3):8, 2007.

[8] A.-M. Kermarrec, L. Masoulie, and A. J. Ganesh. Probabilistic Re-

liable Dissemination in Large-Scale Systems.IEEE Transactions on

Parallel and Distributed Systems, 14(3):248–258, March 2003.

[9] K. Ramamritham and P. Shenoy. Dynamic Information Dissemina-

tion. IEEE Internet Computing, 11(4):14–15, 2007.

[10] R.Rivest. TheMD5 Message-Digest Algorithm. RFC1321, 1992.

[11] S. Voulgaris and M. van Steen. An Epidemic Protocol for Manag-

ing Routing Tables in Very Large Peer-to-peer Networks. In14th

IFIP/IEEE Int. Workshop on Distributed Systems: Operations and

Management (DSOM’03), 2003.

[12] A. Yu and S. T. Vuong. MOPAR: a Mobile Peer-to-Peer Overlay Ar-

chitecture for Interest Management of Massively Multiplayer Online

Games. InInt. Workshop on Network and Operating Systems Sup-

port For Digital Audio and Video (NOSSDAV’05), Stevenson, WA,

2005.

