
Adaptive Navigation of Vehicles in
Congested Road Networks

Vasilis Verroios
University of Athens

Athens, Greece
v.verroios@di.uoa.gr

Konstantinos Kollias
University of Athens

Athens, Greece
k.kollias@di.uoa.gr

Panos K. Chrysanthis
University of Pittsburgh

Pennsylvania, USA
panos@cs.pitt.edu

Alex Delis
University of Athens

Athens, Greece
ad@di.uoa.gr

ABSTRACT
We examine the problem of routing vehicles in a road net-
work where traffic congestion affects the time required to
traverse an edge. We propose a fully distributed approach
that uses only the computational resources and communica-
tion capabilities of vehicles and requires no fixed infrastruc-
ture or centralized servers. Our approach bases its opera-
tion on wireless ad-hoc communications and offers a protocol
for alerting vehicles regarding traffic conditions in areas to
be travelled through. Vehicles exchange estimations for the
time required to reach areas of the road network and every
vehicle dynamically determines the path it will follow based
on estimations received from fellow travellers. Considering
vehicles as selfish players in a game-theoretic framework,
we relate the steady-state of our protocol with theoretical
results. In this direction, our simulation focuses on confirm-
ing that the protocol adjusts rapidly to congestion variation,
leading to a steady state. We also evaluate the performance
of our protocol, compared to a system which uses static nav-
igation to route vehicles, and as experimental results show,
our approach achieves a better traffic distribution on the
road network and provides improved average latency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications

General Terms
Algorithms

1. INTRODUCTION
Modern vehicles are equipped with GPS-enabled Personal

Digital Assistants (PDAs) that provide wireless communica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPS’08, July 6–10, 2008, Sorrento, Italy.
Copyright 2008 ACM 978-1-60558-135-4/08/07 ...$5.00.

tion capabilities of limited range and can form ad-hoc com-
munication networks among themselves. Such Vehicular Ad
Hoc Networks (VANETs) operate without any legacy client-
server communication and allow a variety of applications in-
cluding traffic monitoring [9]. Vehicles in such networks are
able to cope with traffic congestion in urban environments,
by selecting alternative paths, with smaller expected latency,
towards their destination.

The traditional approach for navigating vehicles in ur-
ban areas, where numerous paths between a point of ori-
gin and a destination may exist, requires fixed infrastruc-
ture for gathering real time traffic data from vehicles and
centralized servers for processing this data and suggesting
paths to vehicles [1, 4, 8]. Besides the additional cost of in-
stalling and maintaining the fixed infrastructure, this ap-
proach might suffer from scalability problems depending on
system-specific issues, the frequency with which real time
data is produced, and the number of vehicles using the sys-
tem.

The disadvantages of the centralized approach have been
highlighted in a number of efforts [5, 6, 12–16] where sev-
eral decentralized traffic information systems are proposed.
These systems mainly deploy dissemination mechanisms that
effectively dispatch global traffic information to all PDA-
equipped vehicles. In this paper, we propose a distributed
protocol that allows for vehicles to exploit selective infor-
mation obtained from others traveling ahead in a trajectory
towards a destination. Moreover, vehicles in our protocol
consolidate this information to better alert and inform those
following. In general, we assume that vehicles function in an
ad-hoc fashion and exchange messages that allow them to
create estimations for the time required to reach specific ar-
eas of a road network. Due to the limited range of its wireless
communication, every PDA-equipped automobile depends
on information received from other vehicles moving ahead
which are yet found within range. In particular, a vehicle
receives from anyone moving ahead estimations on how fast
the transmitter can reach specific regions of the road network
and what the transmitting vehicle experienced in its most
recent movement. Once a vehicle receives such information,
likely from multiple neighboring transmitters, it updates its
own estimations for traveling to geographic regions and ul-
timately determines the next road segment to travel. The
leading vehicles have shaped their own estimations recur-
sively, following the same idea. Our approach provides for

much flexibility as automobiles can incrementally and on a
demand-basis acquire information for the state of the road-
network ahead. We accomplish this by utilizing condensed
information regarding traffic conditions. At the same time,
we avoid global and unqualified dissemination of pertinent
information in contrast to existing approaches [5,12–16].

The rest of the paper is organized as follows. Related
work is discussed in Section 2. In Section 3, we present our
assumptions for the application environment and the details
of our protocol. In Section 4 we associate our protocol’s
behavior with game-theoretical results [10]. In Section 5
we evaluate our protocol in a simulation environment and
present the derived results. In Section 6 we conclude the
paper.

2. RELATED WORK
Most approaches for navigating vehicles through congested

road networks use centralized servers or fixed infrastructure
to monitor the traffic conditions. [4] presents a centralized
system that predicts, based on the movement model devel-
oped in [3], the future position and speed of vehicles in each
part of the road network, by using the starting time, ini-
tial speed and destination of each vehicle. Based on these
data, the system computes a shortest path for each vehicle
and assumes that the vehicle will actually follow this path,
forming new predictions based on this assumption. [1] pro-
poses the use of a hierarchical indexing method to represent
the road network and a method for shortest-path compu-
tation. These methods in [1] can be used in centralized
systems that constantly receive information about the state
of the road network from applications such Traffic Message
Channel (TMC) [2]. In [8], the area covered by the system is
partitioned into cells and there is a server for each cell that
maintains real time information about the traffic conditions
in road segments. Road sensors provide this information
to the server of the corresponding cell and the server dis-
seminates this information to other servers. The vehicles
communicate with the servers via a low bandwidth wireless
network and are able to submit shortest path queries to the
server of the cell in which they move.

The common theme in decentralized traffic information
systems [5, 12–16] is that each vehicle records the time re-
quired to traverse predefined road segments and this traffic
information is widely disseminated using the vehicles’ com-
munication capabilities. In contrast, in our approach, in-
formation exchanged between vehicles has a more compact
form, that summarizes estimations for the traffic congestion
in several road segments. [12] presents the architecture and
mechanisms of a self-organizing traffic-information system
that uses a “provoked”broadcast scheme for traffic informa-
tion dissemination based on Inter-Vehicle Communication.
In [16], a theoretical analysis of a dissemination mechanism
is discussed and the effectiveness of a “zero infrastructure”
traffic information system is evaluated. In [15], each partici-
pating vehicle adapts its transmission interval, according to
its current traffic speed and disseminates the time latency of
different road segments at different rates, according to the
distance from its current position. Grassroots [5] also focuses
on a dissemination mechanism that attempts to effectively
propagate road segment traffic information in large-extent
road networks. An alternative approach for decentralized
traffic information systems is proposed in [6]. A vehicle that
wishes to find the shortest path towards a destination, forms

a query, that must be routed through other vehicles, all the
way until it reaches a vehicle moving in the destination.
Then, a response has to be routed back in a reverse manner
to the vehicle that initiated the query.

3. MODEL AND ASSUMPTIONS

3.1 Model Description
Each vehicle is equipped with a GPS-enabled PDA that

has wireless communication capability with limited range.
The GPS provides vehicles with instant location and speed
information. The PDA’s storage maintains a directed graph,
which represents the road network. The nodes of the graph
are the junctions of the road network and the edges are
one-direction road segments between two consecutive junc-
tions. Figure 1 presents a part of Brooklyn’s road network
and the corresponding subgraph. The road network is par-

id: 7 id: 8

id: 1

id: 2

id: 9 id: 10

id: 4

id: 3 id: 5

id: 6

id: 7

id: 3

id: 4

id: 9 id: 10

id: 5

id: 6

id: 8

id: 1

id: 2

ATLANTIC AVENUE

B
R

A
D

F
O

R
D

S
T

W
Y

O
N

A
S
T

Figure 1: A part of a road network and the corre-
sponding sub-graph.

titioned into a set of regions, with every edge belonging to
one region. The approach we follow in this paper, is to
define geographic regions whose extent is small enough so
that there is no significant benefit in intra-region routing
and the destination of each vehicle is a specific such region.
For example, in an urban area, each territory could be par-
titioned into a number of regions, proportional to the ter-
ritory’s congestion level and extent. The partition of the
road network into regions can rely on statistical data and is
fixed and stored in the PDA. Our protocol navigates a ve-
hicle until it enters the region that contains its destination.
Then, the vehicle can follow any path to its exact destina-
tion point without any significant gains or losses. For each
edge e, the PDA maintains information about the length of
the edge, the ending node, the outgoing edges of the end-
ing node (termed next outgoing edges of e) and the region
where it belongs. The location information, provided by the
GPS, are sufficient to indicate the region, the edge and the
exact distance that the vehicle has covered on the edge on
which it moves. Throughout this paper we denote this in-
formation as region id, edge id and edge offset respectively.
Vehicles communicate by exchanging messages with other

vehicles within range, thus, radio-frequency communication
is essential [2]. These messages contain estimations for the
time required to reach every region in which the road net-
work extends in and other useful information. We designate
R for the maximum transmission distance of all vehicles.

The protocol is based on the construction of time estima-
tions, using information provided by leading vehicles that
has been recursively, yet asynchronously, constructed in the
same way. Each vehicle maintains a table for each next out-
going edge of the edge it traverses. Each such table includes
one time estimation per region of the road network. In addi-
tion, a basic table is used by each vehicle to summarize the
best estimation for each region and the next outgoing edge,
of the edge it traverses, that gives this estimation. Despite
the fact that a given vehicle has a destination that lies in
a specific region, it also maintains time estimations for all
the other regions of the road network, which must propa-
gate, implicitly through the protocol, to other vehicles with
destinations that lie in different regions, so that they can be
informed of the traffic conditions in distant areas.

All vehicles periodically broadcast their position and based
on this location, vehicles that receive the broadcasted mes-
sage are able to determine whether the broadcasting vehicle
is a leading one and if there is any interest in sending a
request to obtain information from it. Each vehicle is in-
terested in receiving estimations from vehicles that move
on the same edge, but with larger offset, and from vehicles
that move on a next outgoing edge not far from the junc-
tion. Procedure EvalInterest (Figure 7), which is presented
in Subsection 3.3, describes in detail the conditions under
which a vehicle is interested in receiving estimations from
another vehicle. Figure 2 indicates that vehicle 1 is inter-
ested in receiving estimations from vehicles 2, 3, that move
on the same edge and have larger offsets and from vehicles
4, 5, 6, 7, 8, 9, 10 that move on next outgoing edges e2, e3,
e4 not far from the junction. Vehicle 1 is not interested in
vehicles 11, 12, 13 that move on next outgoing edges, but
far from the junction, in vehicles 14, 15, 16, 17 that move on
the next incoming edge e5 and in vehicles 18, 19 that move
on e1, but with smaller offset.

e3

e2

e1

12
6

e5

1

4

11 14

e4

15

5

10
9

17

16

13

7 3 2 1819
8

Figure 2: Encircled vehicles (2–10) are those of in-
terest to vehicle 1.

When a leading vehicle ol receives a request for estima-
tions by a requesting vehicle or, it provides or with its basic
table ETl together with several data that will be used to es-
timate the time required by or to reach the current position
of ol. These data include the time tl that was required for ol

to cover the distance between the two and the average speed
sav1 of the leading vehicles in range of ol, tl time ago. If sav2

is the average speed of leading vehicles in range of or, then

or estimates that it requires time tr = tl
sav1
sav2

to reach the

current position of ol. We use the average speed of the PDA-
equipped vehicles, that participate in the protocol’s func-
tion, as an indication for the actual traffic congestion ahead
of the vehicle or. In this way, the protocol remains functional
even if the percentage of the PDA-equipped vehicles is low.
The fraction

sav1
sav2

expresses the percentage with which traf-

fic congestion ahead of or has either increased or decreased
by the time ol was in the current position of or. If ol were
moving from a different edge, we would use the correspond-
ing position time-wise on the edge in question. The average

(a)

(b)

sav1
= 20km

h

30km
h

30km
h

or

ol

e2

e1

tl = 30s

5

sav2
= 30km

h

tr = 20s

10km
h

10km
h 30km

h

30km
h

ol

e2

e1

4
3

2 1

Figure 3: (a) ol computes the average speed of the
leading vehicles 1, 2, 3 and 4 found within range.
(b) or estimates the time required to reach the new
position of ol.

speed sav1 of leading vehicles 1, 2, 3, and 4 was 20 km

h
when

ol was in the current position of or as Figure 3(a) shows. In
Figure 3(b), or computes the average speed sav2 = 30km

h
of

the leading vehicles ol, 5, on e2, e1 and the time required
to reach the position of ol is tr = tl

sav1
sav2

= 30 20

30
s = 20s.

How the average speed is computed is presented by proce-
dures TimeElapsed and GenerateEstimation (Figure 7). tr

is added to the entries of ETl to generate a new table of
estimations. In Figure 4 the road network is partitioned in
regions Reg1, Reg2, Reg3 and the new table of estimations
is produced by or by adding tr = 20s to the entries of ETl.
The entries of the derived table are used to update the en-
tries of the tables maintained by or for the corresponding
next outgoing edges. Details of this update are presented in
Procedure EstUpdate (Figure 7), which is described in Sub-
section 3.3. The basic table is also updated by keeping the
best estimation for each region.

The table of each next outgoing edge indicates the es-
timated time required by a vehicle to reach each possible
region, if the vehicle selects the corresponding edge at the
next junction. So, when a vehicle crosses a junction to a new
edge, its basic table is substituted with the table of the new
edge. A vehicle that moves within a specific region, main-
tains an estimation of value 0 for this region. Naturally,
all estimations are reduced with time. Requests for infor-
mation and the resulting updates are performed constantly
by a vehicle while it moves on the road network. The data

Reg3

Reg2

Reg1

or

ol

ETl ≡ 2 m 10 s
10 m 10 s

Reg2

Reg3

Reg1 5 m 5 s

Reg2

Reg1 5 m 5 s + 20 s

Reg3 10 m 10 s + 20 s
2 m 10 s + 20 s

Figure 4: Deriving a table for the next outgoing
edge where ol is moving.

structures and the detailed description of the protocol are
presented in the following subsections.

3.2 Data Structures
Each vehicle maintains two basic data structures. The

first, termed Est, is a detailed representation of the tables
of the next outgoing edges and the basic table discussed in-
formally in the previous subsection. It consists of a list of
tables of estimations, with one node table[e] for each outgo-
ing edge e, of the edge the vehicle traverses, and one basic
table of estimations, basic table. Each row of a table refers
to a specific region, with row i containing the estimation
for the region with region id i. In the basic table, row i in-
cludes the minimum estimation (est time) to travel to region
i and the next outgoing edge that gives this minimum value
(best edge). For the next outgoing edge ei, the estimations
in table[ei] refer to the time required to reach each region
of the road network in case the vehicle selects ei at the next
junction.

The second data structure, Distance table, describes the
vehicle’s recent movement by keeping the average speed of
the leading vehicles and timing information. If we define
a fixed distance quantum q, then each vehicle stores the
following information for each of its last 2R

q
positions (R is

the assumed transmission range):

• The time elapsed (termed time elapsed) since the ve-
hicle was in that position.

• For the edge and the next outgoing edges, which corre-
spond to that position, the average speed of the lead-
ing vehicles that were in range of the vehicle and were
moving on the corresponding edge at the time. The
average speed value average speed[0] is kept for the
edge that the vehicle was traversing and one value
average speed[e] is kept for each next outgoing edge
e of that edge.

The 2R distance has been selected due to the fact that, as we
will see in procedure EvalInterest (Figure 7), the maximum
distance between a vehicle and a leading vehicle that is of in-
terest to it, is 2R. As shown in Figure 5, the structure Est of
the vehicle, that moves on e4, has a basic table and 3 tables
for the next outgoing edges e1, e2, e3. The Distance table
structure has 4 average speed rows, 1 for the current edge
and 3 for its next outgoing edges, and 500 columns, one for
each of the vehicle’s 2R

q
last positions (R = 250, q = 1).

06m 14.32s

11m 09.11s

est time

18m 41.43s

22m 12.56s

.

.

.

87

88

1

2

.

.

.

SegID

87

88

1

2

.

.

.

SegID

87

88

1

2

.

.

.

SegID

11m 09.11s

08m 11.82s

21m 44.71s

56m 43.40s

.

.

.

est time

06m 14.32s

48m 57.10s

18m 41.43s

29m 58.01s

.

.

.

est time

1

3

best edge

1

2

.

.

.

13m 44.20s

31m 12.20s

19m 59.38s

22m 12.56s

.

.

.

est time

1

01m 52.41s

40 km/h

11 km/h

05 km/h

44 km/h

2

01m 51.47s

37 km/h

12 km/h

18 km/h

31 km/h

. . .

. . .

. . .

. . .

. . .

. . .

time elapsed

average speed[0]

average speed[1]

average speed[2]

average speed[3]

500

00m 00.45s

29 km/h

32 km/h

23 km/h

04 km/h

2R
q

= 500

e4

e3

e1

e2

basic table table[e1] table[e2] table[e3]

87

88

1

2

.

.

.

SegID

Est

Distance table

Figure 5: Vehicle data structures with R = 250 and
q = 1.

For every period of length T , the Distance table of each
vehicle is updated. At the end of this period, if the ve-
hicle covered an lq distance during the period, we delete
the l oldest records of the Distance table and we add l new
records as described in the rest of the paragraph. In the
elapsed time field, we enter the values T , T l−1

l
, T l−2

l
, . . . ,

T 1

l
. Each vehicle periodically broadcasts its instant speed

and position. During each period, a vehicle keeps track of
the speeds broadcasted by leading vehicles in range, taking
its own speed into consideration, on the same or on next out-
going edges and computes the corresponding average speeds.
These values are stored in the average speed list of the Dis-
tance table. Figure 6 presents an example of this update for
T = 0.9 and a 3q distance covered during this period.

average speed[0]

average speed[e1]

average speed[e2]

average speed[e3]

time elapsed

1 2 3 4 5 → 2

Distance table

. . . 50 → 47 48 49

NEW

0.6s0.9s0.9s. . .

33 km/h

12 km/h

19 km/h

16 km/h

33 km/h

12 km/h

19 km/h

16 km/h

31 km/h

12 km/h

18 km/h

14 km/h

. . .

. . .

. . .

. . .

38 km/h

13 km/h

05 km/h

43 km/h

40 km/h

11 km/h

05 km/h

44 km/h

→1m3.9s1m3s →1m 3s1m2.1s →1.8s

obsolete data

→ 1 50

0.3s

33 km/h

12 km/h

19 km/h

16 km/h

Figure 6: Update of Distance table with R = 100,
q = 4, T = 0.9, l = 3.

3.3 Protocol
Each vehicle periodically broadcasts its instant location,

expressed as a pair (edge id, edge offset), and its instant
speed. A vehicle o2 that receives the transmission (edge id1,
edge offset1,speed1) of a vehicle o1, decides, by calling Eval-
Interest(edge id1, edge offset1) (Figure 7), whether to re-
quest information from o1 or not. Procedure EvalInterest
returns true in case the two vehicles move on the same edge,
with o1 having greater offset, or in case o1 moves on a next
outgoing edge of o2 and both are within distance R of the
junction between them. In case EvalInterest returns true, a
SendDataReq(edge id2, edge offset2) message is sent to o1.

Once the request is received, o1 sends a DataResp mes-
sage to o2, which includes the basic table E1 of o1, the
time t1 that took o1 to cover distance equal to the dis-
tance between the two vehicles and the average speed s1

of the leading vehicles in range of o1 before that distance
was covered. Procedure TimeElapsed(edge id2,edge offset2)
(Figure 7) describes how o1 computes t1 and s1 based on its
Distance table structure, depending on whether o2 is moving
on the same edge as o1 or not.

After receiving the DataResp(E1,t1,s1) message, o2 calls
procedure GenerateEstimation(E1, t1, s1, edge id1) (Figure
7) and computes a temporary table Ei, which is used by
procedure EstUpdate(Ei, edge id1) (Figure 7) to update the
Est structure of o2. GenerateEstimation predicts that time
t1

s1
s2

is required for o2 to reach the position of o1, with s2 be-
ing the average speed of the leading vehicles in range of o2.
This time is added to the entries of E1 in order to produce
the aforementioned Ei. In case the congestion on the area
between o1 and o2 has increased since o1 was in position of
o2, the fraction s1

s2
will have a great value which indicates

that o2 requires much more time to reach the current posi-
tion of o1, than o1 did. EstUpdate(Ei, edge id1) updates the
estimations of the tables of the next outgoing edges by com-
bining the current estimations with the newly formed ones
of Ei. In case o1 was on a next outgoing edge, EstUpdate
only needs to update the table corresponding to this specific
edge. In case o1 and o2 were on the same edge, EstUpdate
has to update the tables of all next outgoing edges that give
the best estimation for some region, according to Ei. The
basic table stores the best estimation for each region and
the next outgoing edge that provides this estimation. Es-
tUpdate uses a decay factor a < 1 in order to to reduce the
influence of earlier estimations; a is 1 if no earlier estima-
tions exist. The procedures presented in Figure 7 are given
in a high level description and could be enhanced in order
to deal with practical issues.

A vehicle upon approaching a junction, selects the next
outgoing edge that provides the minimum estimation for its
destination region. After crossing a junction to a new edge,
the basic table of the Est structure is replaced by the table of
the edge that the vehicle followed. Since the next outgoing
edges’ tables don’t have a best edge field, once the vehicle
begins traversing a new edge, it has empty best edge values
in the basic table. The next outgoing edges’ tables are empty
when the vehicle passes to a new edge. As discussed, a
vehicle that moves within a region has a fixed estimation of
0 for this region in its basic table.

The fact that each vehicle is allowed to select any next
outgoing edge leaves open the possibility that the algorithm
will lead the vehicle to cross the same junction twice when
moving towards a destination. Consider the case where a
vehicle is informed that it should leave a major avenue to
follow a smaller road due to heavy congestion on the av-
enue. Now consider that a traffic accident happens on the
smaller road, increasing the road’s traffic congestion. Thus,
the algorithm might suggest that the vehicle should return
to the major avenue. To avoid this possibility, since it may
be undesirable to lead a driver to perform a circle under any
circumstances, we could add restrictions so that, for a given
destination region, each vehicle is allowed to select only from
a predefined subset of the next outgoing edges of a junction.
These restrictions could be based on the suggestions of a
static navigation system or on the notion of “view” intro-

duced in [1], which can be thought as the rectangular area
whose diagonal is the line connecting the current position of
the vehicle and a destination point. With these restrictions
the protocol must be slightly adjusted so that the basic table
does not include best estimations from next outgoing edges
which are not allowed to be followed for a given region. Part
of our experimental effort in Section 5 examines how the in-
troduction of restrictions affects the protocol’s performance.

When a vehicle reaches within R

4
of the next junction

and has not traced any vehicles on a next outgoing edge, it
forms estimations with an alternative mechanism. We apply
a shortest path algorithm to determine the time required to
reach a region through the specific edge. This is repeated
for all regions. These estimations are used to update the ta-
bles, as if they were provided by a leading vehicle. The edge
weights used by the algorithm express the expected time re-
quired to traverse each edge, and are fixed and stored in the
PDA. Possibly an edge could have a different weight for each
time during a given day or, alternatively, the algorithm’s re-
sult could be multiplied by a factor expressing the expected
congestion of the road network at the time. At the initia-
tion phase of the protocol, this mechanism can be used to
produce the very first estimations of the vehicles.

The proposed protocol functions effectively when each ve-
hicle has leading vehicles within its maximum transmission
range R. This holds, given the wireless communication ca-
pability of modern commercial devices (a few hundred me-
ters), in congested urban environments. In the absence of
traffic congestion, on the contrary, the maximum transmis-
sion range may not be enough. In that case, the shortest
path mechanism that relies on stored data and is described
in the previous paragraph could be sufficient.

It is interesting to see that a vehicle’s computational load
is not affected by the total number of vehicles in the road
network or the level of traffic congestion, because a fixed fre-
quency can be used for receiving/sending estimations from/to
other vehicles. The volume of information exchanged be-
tween two vehicles and the cost for updating the estimation
tables, increase linearly with the total number of regions. As
a consequence, a scalability issue may arise, if the increase of
the road network’s extent leads to a large number of regions.
We expect that the approach we proposed for defining the
regions in the road network (see Subsection 3.1), produces
an efficient total number of regions, for real environments.
In Section 6, we mention a different approach for defining
the regions in the road network, that addresses the afore-
mentioned scalability issue.

4. STEADY STATE AND OPTIMALITY
CONSIDERATIONS

We assume our road network is a directed graph G with
a single source node s and a single destination node t. Con-
stantly, new vehicles begin their trip from node s to node t.
Our protocol can be thought as a distributed algorithm that
routes each vehicle through a path of minimum latency, by
indicating a next outgoing edge each time the vehicle ap-
proaches a junction. Actually, the algorithm suggests the
same path to all vehicles until the congestion increases its
latency so that it stops being the path of minimum latency.
When this is detected, the algorithm routes the vehicles
through the new path of minimum latency. This is repeated
as long as a new path of minimum latency arises. Assume

Procedure EvalInterest(edge id1,edge offset1)
1. (∗ my edge id, my edge offset describe the current position of the vehicle that called the procedure. ∗)
2. if my edge id = edge id1

3. then if edge offset1> my edge offset
4. then return true
5. else return false
6. distance to junction ←my edge id.length−my edge offset
7. if edge id1 ∈ next outgoing edges(my edge id)
8. then if distance to junction< R and edge offset1 < R

9. then return true
10. else return false
11. return false

Procedure TimeElapsed(edge id2,edge offset2)
1. if edge id2 6= myedge id (∗ If we move on a next outgoing edge of the requesting vehicle o2. ∗)
2. then distance ←myedge offset+(edge id2.length−edge offset2) (∗ The distance between o1 and o2 ∗)

3. j ← 2R−distance

q

4. t1 ←Distance table[j].time elapsed
5. av1 ←Distance table[j].average speed[0]
6. av2 ←Distance table[j].average speed[myedge id] (∗ myedge id was a next outgoing edge when we were at position j ∗)

7. s1 ←
av1+av2

2

8. else (∗ If we move on the same edge with the requesting vehicle o2. ∗)
9. distance ←myedge offset−edge offset2
10. j ← 2R−distance

q

11. t1 ←Distance table[j].time elapsed
12. s1 ←Distance table[j].average speed[0]
13. return (t1, s1)

Procedure GenerateEstimation(E1, t1, s1, edge id1)

1. j ← 2R
q

(∗ Current position ∗)

2. if edge id1 6= myedge id (∗ If o1 moves on a next outgoing edge ∗)
3. then av1 ←Distance table[j].average speed[0]
4. av2 ←Distance table[j].average speed[edge id1] (∗ edge id1 is a next outgoing edge ∗)

5. s2 ←
av1+av2

2

6. else (∗ If we move on the same edge with o1. ∗)
7. s2 ←Distance table[j].average speed[0]
8. for all regions k

9. Ei[k].est time ←E1[k].est time+t1
s1
s2

10. Ei[k].best edge ←E1[k].best edge
11. return Ei

Procedure EstUpdate(Ei, edge id1)
1. if edge id1 6= myedge id (∗ If o1 moves on a next outgoing edge ∗)
2. then for all regions k

3. (∗ Update the table of edge id1 for all regions k ∗)
4. Est.table[edge id1][k].est time ←(1− a)· Est.table[edge id1][k].est time + a· Ei[k].est time
5. else (∗ If we move on the same edge with o1. ∗)
6. (∗ The next outgoing edge Ei[k].best edge gives the best estimation for region k. Update this edge’s table only for k. ∗)
7. for all regions k

8. Est.table[Ei[k].best edge][k].est time ←(1 − a)· Est.table[Ei[k].best edge][k].est time + a· Ei[k].est time
9. for all regions k

10. (∗ For each region k, the basic table will have the minimum estimation given by a next outgoing edge ∗)
11. Est.basic table[k].est time ←min{next outgoing edge e: Est.table[e][k].est time}
12. em ←the edge that gives the minimum above
13. Est.basic table[k].best edge ←em

Figure 7: Protocol procedures.

that the algorithm’s time estimations adapt to congestion
variation, such that there is a negligible delay between the
time that the path of minimum latency switches and the
time when the algorithm suggests the new path. Based on
this assumption, our algorithm avoids a situation where sev-
eral paths periodically take over being the path of minimum
latency and converges to a state where all paths followed by
vehicles are estimated to have the same latency. Assuming
that our estimations are precise, every path that is followed
by a fraction of the vehicles will have the same latency. Note
that there may be paths, not followed by any vehicle, that
have greater latency than the ones followed by the vehicles.
Part of our experimental studies in the next section, focuses
on determining the degree to which the aforementioned as-
sumptions hold and the convergence to a steady state is
achieved.

Each vehicle applies our algorithm in order to select a path
of minimum latency towards the destination node t and does
not care about the average latency of all vehicles. Intuitively,
it seems that in the aforementioned steady state, vehicles
are distributed in a uniform manner among the available
paths from source to destination, such that all paths have
the same total latency. It would be interesting to examine
the difference between the minimum possible average latency
(perhaps achieved by treating several vehicles in an unfair
manner) and the average latency in our algorithm’s steady
state. In this direction, the algorithm’s steady state can be
associated with the game-theoretical [10] results presented
in [11]. The selfish routing model of Roughgarden and Tar-
dos consists of a directed graph and an infinite number of
players that wish to route a negligible amount of flow from
the source node to the destination node, trying to minimize
the total latency of the path each one selects. The latency
on each edge is a linear function of the flow passing through
it and the strategy of a player is a path from source to desti-
nation. The authors assume that the outcome will be a Nash
equilibrium. A Nash equilibrium is an outcome such that no
player benefits from switching strategy unilaterally. In this
setting, all Nash equilibria are such that all paths from a
source node to a destination node, that carry positive flow,
have the same latency. All other paths have greater or equal
latency, even for flow equal to 0. This situation is similar
to the steady state of our algorithm if we consider the road
network as the directed graph and the vehicles as the selfish
players. In [11], the authors evaluate the efficiency of the
Nash equilibrium state using the notion of the price of an-
archy [7], which is the worst case ratio of a defined social
cost in a Nash equilibrium to the optimal social cost. The
social cost used in [11] is the average latency of all players
and the main result is that the price of anarchy for the self-
ish routing setting is 4

3
. The result also holds for the general

case of multiple source-destination pairs.
The assumed ideal behavior of our algorithm and the con-

vergence to a steady state indicate that our algorithm pro-
vides players with sufficient information, that allows them
to choose their paths as if they had complete knowledge of
the road network’s state. As implied by the theoretical re-
sult of [11], the selfish path selection by each player leads
to an outcome that, in the worst case, is not far from the
optimal, regarding the average latency of all vehicles.

5. EXPERIMENTAL EVALUATION
Our experimental section consists of two categories of ex-

periments. In the first subsection, we examine how close the
protocol’s behavior comes to the ideal behavior described in
Section 4, in a network where all vehicles have a common
source and a common destination. In the second subsection
we evaluate our protocol’s performance by comparing it with
a static navigation system, using several metrics. In both
subsections we have used the following simplifications in our
simulation. We assume that message transmission times are
negligible, that wireless communication is not affected by
any kind of obstacles and that the maximum transmission
range is 150m.

5.1 Convergence to a Steady State
In this subsection we examine the behavior of our proto-

col and whether it converges to a steady state. The network
used in this subsection’s experiments consists of 30 edges,
19 nodes and 11 paths from the source node s to the desti-
nation node t. The corresponding graph is pictured in Fig-
ure 8. The time required to traverse an edge of this graph,
is defined by a linear function of the number of vehicles that
traverse this edge, at a given time. The parameters of the
linear function, depend on the length and the width of the
corresponding edge. Each vehicle begins its movement from
a random position on the starting edge es, which is common

es

eev

t

s

Figure 8: Graph used in experiments of Subsec-
tion 5.1.

for all vehicles, and wishes to reach the destination t, which
is also common for all vehicles, by following one of the pos-
sible paths. The time interval between the beginning of two
consecutive vehicles’ movement follows the uniform distri-
bution. Our simulation uses a fixed number of vehicles and,
for each vehicle that reaches the destination t, a new one
immediately starts its movement from a random position
on the starting edge es. The experiment is completed once
the total number of arrivals reaches a predefined limit. In
order to establish whether the system converges to a state
where all possible paths have approximately the same la-
tency, we periodically measure the latency of each path and
for the measured values we compute the relative standard
deviation, RSD (=100% standard deviation

mean value
). In the experi-

ment, whose results appear in Figure 9 the road network is
constantly traversed by 5, 000 vehicles and measurements of
path latencies are taken for every unit of time. The RSD is
high for the 20 first time units, where it reaches above 50%.
Then, RSD begins to descend, drops below 10% and stabi-
lizes between 1% and 6%. We observe that the steady state
of our protocol does not achieve the ideal 0% for the RSD,
which would imply the exact same latency for every path.
This is due to the fact that the elapsed time between the mo-
ment that the path of minimum latency is changed and the
moment that the protocol begins suggesting the new path

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

R
S

D

time

Figure 9: Experiment with single source and desti-
nation and no event triggered.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100 110

R
S

D

arrivals (in thousands)

Figure 10: Experiment with single source and des-
tination and no event triggered.

is not negligible. In Figure 10, for 5, 000 vehicles, we have
partitioned the 100, 000 total arrivals in groups of 10, 000
consecutive arrivals. For each arrival, we measure the time
that was needed for the vehicle’s movement from source to
destination. For the values that correspond to a group of
10, 000 arrivals we compute the RSD, in order to examine
if vehicles tend to have the same source-destination latency
and thus evaluate the estimations’ precision. For the first
group of 10, 000 arrivals, the RSD is high and approaches
30%. For the next and the following groups, as the steady
state is approached, the RSD drops to 3%-6%.

The experiment, whose results appear in Figures 11 and 12
is similar to the experiment mentioned above, with the dif-
ference that we have triggered a virtual event at time 75,
causing high congestion on one of the edges, eev (see Fig-
ure 8), thus deactivating a subset of the possible paths. We
performed this experiment in order to examine the conse-
quences that a traffic accident would have on our protocol’s
behavior. Figure 11 corresponds to Figure 9 and Figure 12
corresponds to Figure 10. RSD values of Figure 11 from
time 75 and later are produced only from the paths that do
not include eev. As Figure 11 indicates, up to time 75, our

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

R
S

D

time

Figure 11: Experiment with single source and des-
tination and event triggered at time 75.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100 110

arrivals (in thousands)

RSD
percentage of objects that traverse the damaged edge

Figure 12: Experiment with single source and desti-
nation and event triggered during the fourth group
of arrivals.

protocol had achieved a steady state, with the RSD not ex-
ceeding 6%. The event causes an increase to the values of the
RSD, which exceeds 10% until the protocol leads the system
to a steady state once again, after time 90. In Figure 12,
the additional boxes for each group of arrivals, present the
percentage of vehicles that followed a path which includes
eev. As previously, the RSD for the first 10, 000 arrivals
is close to 30% and for the next two groups of arrivals, it
drops below 5%. Before the event, 25%-30% of the vehicles
follow paths that include eev, which is normal since these
paths are approximately 1

4
of the possible paths. The event

happens during the fourth group of arrivals and causes the
increase of the RSD at approximately 10% and decrease in
the percentage of vehicles passing through eev at 6%. After
the sixth group of arrivals, the RSD drops to values not ex-
ceeding 5%, while from the fifth group of arrivals and later,
no vehicle passes through eev.

5.2 Performance Evaluation
In this subsection we compare the performance of our pro-

tocol to a system of static navigation, whose suggestions
rely on already stored statistical data about traffic condi-

tions in the road network. We also examine how our pro-
tocol is affected by the addition of restrictions to the set of
next outgoing edges of a junction, for each destination re-
gion. These restrictions aim to prevent the possibility that
a vehicle might cross the same junction twice while moving
towards its destination (see Subsection 3.3). For this pur-
pose, the experiments also evaluate another version of our
protocol, that uses restrictions.

Figure 13: Graph used in experiments of Subsec-
tion 5.2.

In our experiments, we used a road network with 171
edges. The corresponding graph is pictured in Figure 13.
The edges of this graph derive from three different road
categories, major avenues (extra bold edges in Figure 13),
secondary avenues (bold edges), and common streets (thin
edges). The time required to traverse an edge and the speed
of the vehicles that traverse this edge, depends on the num-
ber of vehicles located in this edge at a given time. Differ-
ent functions are used for each road category. Each vehicle,
using the uniform distribution, randomly selects a starting
point and a destination point, which define a starting region
and a destination region. Once the vehicle reaches its des-
tination point, it randomly selects a new destination, thus,
the total number of vehicles traversing the network remains
constant during the experiment. The total number of vehi-
cles expresses the road network congestion. The experiment
is completed once a predefined number of arrivals is reached.
The metrics used in these experiments include the average
value, the maximum value and the RSD of the latency expe-
rienced by the vehicles from their source to their destination.
These metrics are measured for each pair of source region -
destination region and then a mean value is computed for
all source-destination pairs.

Figure 14 depicts the average latency, when the road net-
work is constantly traversed by 1, 000, 2, 000, 4, 000 or 8, 000
vehicles. As the congestion of the road network increases,
we observe that the benefit of applying our protocol instead
of static navigation increases significantly. The average la-
tency for 8, 000 vehicles is almost triple when vehicles use the
static navigation system. The performance of our protocol’s
version with restrictions is slightly worse, but close to the
one without restrictions for this metric. Thus, we conclude
that the addition of restrictions attaches only a very limited
cost in order to prevent the possibility that the protocol
leads a vehicle to cross the same junction twice. The values
computed for the version with restrictions are also worse for
the metric of the RSD for 2, 000, 4, 000 and 8, 000 vehicles,
as depicted in Figure 15. It seems that by restricting some of

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
ea

n
av

er
ag

e
la

te
nc

y

number of vehicles

adaptive navigation without restrictions
adaptive navigation with restrictions

static navigation

Figure 14: Mean average latency.

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
ea

n
R

S
D

number of vehicles

adaptive navigation without restrictions
adaptive navigation with restrictions

static navigation

Figure 15: Mean relative standard deviation.

the vehicles from choosing any next outgoing edge of a junc-
tion, towards a destination, the deviation of the latency ex-
perienced by the vehicles increases for high congestion. For
1, 000 vehicles the RSD is lower when we apply restrictions,
which could be explained by the fact that there is a small
fraction of vehicles that are lead by the protocol to cross the
same junction twice when no restrictions are applied. The
static navigation system achieves better RSD values for any
level of congestion. This is expected since all paths from
one region to another are identical, for their largest part, as
indicated by the statistical data of the static navigation sys-
tem. Figure 16 presents the performance of the 3 navigation
systems relative to the maximum latency metric. Similarly
to the RSD metric, the version of our protocol that uses
restrictions performs better than the one without restric-
tions for 1, 000 vehicles and slightly worse for 2, 000, 4, 000
and 8, 000 vehicles. Our protocol performs better than the
static navigation system, for the maximum latency metric,
with the difference being greater as congestion increases.

A direct observation is that the performance difference
between our protocol and static navigation becomes greater
as congestion increases, for the mean average latency and
maximum average latency metrics. This can be explained
by the fact that when congestion is increased, the distance

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
ea

n
m

ax
im

um
 la

te
nc

y

number of vehicles

adaptive navigation without restrictions
adaptive navigation with restrictions

static navigation

Figure 16: Mean maximum latency.

between vehicles is reduced and information can be prop-
agated effectively throughout the road network. Moreover,
the vehicles’ computational load is not affected by the total
number of vehicles.

6. CONCLUSION AND FUTURE WORK
In this paper we presented a distributed protocol that fa-

cilitates the dynamic navigation of vehicles in congested ur-
ban road networks. Our approach requires no centralized
servers or fixed infrastructure as vehicles become aware of
traffic conditions in distant parts of the road network by
receiving information by fellow travellers geographically lo-
cated ahead of them in the direction of movement. To this
effect, leading vehicles provide estimations for the time re-
quired to reach specific areas of the road network. Exper-
imental results show that our approach adjusts rapidly to
congestion variation and achieves a better traffic distribu-
tion on the road network, compared to a static navigation
technique, yielding improved average and maximum latency.

In our approach, we partition road networks into small
regions, such that the routing within a region has no signifi-
cant benefit. This one-level fragmentation may lead to large
number of regions and furnish overheads as far as the trans-
port and processing of protocol requisite data is concerned.
We plan to investigate the effectiveness of adopting regions
organized in a hierarchy to address potential scalability is-
sues as far as wide geographic areas is concerned. In this
hierarchy, a vehicle with a destination region of level j must
first be navigated successively to the regions of level 1, 2,
. . . , j-1 that all include its destination point. Although our
protocol can be effectively applied to congested road net-
works, it may become an under-performer in extreme situ-
ations where portions of the road network may experience
very low traffic density and at the same time at least one
congestion point may have been formed. In this context, we
plan to extend our protocol with a specialized dissemina-
tion mechanism that harnesses information from oncoming
vehicles as well.

7. REFERENCES
[1] Y. Bai, Y. Guo, X. Meng, T. Wan, and K. Zeitouni.

Efficient Dynamic Traffic Navigation with Hierarchical

Aggregation Tree. 8th Asia Pacific Web Conference,
Harbin, China, January 2006.

[2] H. L. Bertoni. Radio Propagation for Modern Wireless
Systems. Prentice Hall, Upper Saddle River, NJ, 2004.

[3] H. D. Chon, D. Agrawal, and A. E. Abbadi. Query
Processing for Moving Objects with Space-time Grid
Storage Model. Int. Conf. on Mobile Data
Management, Singapore, January 2002.

[4] H. D. Chon, D. Agrawal, and A. E. Abbadi. FATES:
Finding A Time dEpendent Shortest path. Int. Conf.
on Mobile Data Management, Melbourne, Australia,
January 2003.

[5] S. Goel, T. Imielinski, K. Ozbay, and B. Nath.
Grassroots - a Scalable and Robust Information
Architecture. Technical Report DCS-TR-523,
Department of Computer Science, Rutgers University,
2003.

[6] E. S. Kim, S. Y. Hwang, and K. J. Li. Arrival Time
Dependent Shortest Path by On-Road Routing in
Mobile Ad-Hoc Network. 4th Int. Workshop on Web
and Wireless Geographical Information Systems,
Goyang, Korea, November 2004.

[7] E. Koutsoupias and C. H. Papadimitriou. Worst-case
Equilibria. 16th Annual Symposium on Theoretical
Aspects of Computer Science, Trier, Germany, March
1999.

[8] K. Y. Lam, E. Chan, T. W. Kuo, S. W. Ng, and
D. Hung. RETINA: A REal-time TraffIc NAvigation
System. ACM Int. Conf. on the Management of Data,
Santa Barbara, CA, June 2001.

[9] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode.
TrafficView: A Scalable Traffic Monitoring System.
Int. Conf. on Mobile Data Management, Berkeley, CA,
January 2004.

[10] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, Boston, MA, 1994.

[11] T. Roughgarden and E. Tardos. How Bad is Selfish
Routing? Journal of the ACM, 49(2):236–259, 2002.

[12] L. Wischhof, A. Ebner, and H. Rohling. Information
Dissemination in Self-organizing Intervehicle
Networks. IEEE Transactions on Intelligent
Transportation Systems, 6(1):90–101, 2005.

[13] L. Wischof, A. Ebner, H. Rohling, M. Lott, and
R. Halfmann. Adaptive Broadcast for Travel and
Traffic Information Distribution Based on
Inter-Vehicle Communication. IEEE Intelligent
Vehicles Symposium, Columbus, Ohio, June 2003.

[14] L. Wischof, A. Ebner, H. Rohling, M. Lott, and
R. Halfmann. Sotis - a self-organizing traffic
information system. 57th IEEE Semiannual Vehicular
Technology Conference, Jeju, South Korea, April 2003.

[15] H. Xu and M. Barth. An Adaptive Dissemination
Mechanism for Inter-Vehicle Communication-Based
Decentralized Traffic Information Systems. IEEE
Intelligent Transportation Systems Conference,
Toronto, Canada, September 2006.

[16] A. Ziliaskopoulos and J. Zhang. A Zero Public
Infrastructure Vehicle Based Traffic Information
System. Transportation Research Board’s 2003 Annual
Meeting, Washington, D.C., January 2003.

