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Sessions generated by Instant Messaging and Peer-to-Peer systems (IM/P2Ps) not
only consume considerable bandwidth and computing resources but also dramatically
change the characteristics of data flows affecting both operation and performance of net-
works. Most IM/P2Ps have known security loopholes and vulnerabilities making them an
ideal platform for dissemination of viruses, worms, and other malware. The lack of access
control and weak authentication on shared resources further exacerbates the situation.
Should IM/P2Ps be deployed in production environments, performance of conventional
applications may significantly deteriorate and enterprise data may be contaminated. It
is therefore imperative to identify, monitor and finally manage IM/P2P traffic. Unfortu-
nately, this task cannot be easily attained as IM/P2Ps resort to advanced techniques to
hide their traces including multiple channels to deliver services, port hopping, message
encapsulation and encryption.

In this paper, we propose an extensible framework that not only helps identify and

classify IM/P2P -generated sessions in real time but also assists in the manipulation
of such traffic. Consisting of four modules namely, session manager, traffic assembler,
IM/P2P dissector, and traffic arbitrator, our proposed framework uses multiple tech-
niques to improve its traffic classification accuracy and performance. Through fine-tuned
splay and interval trees that help organize IM/P2P sessions and packets in data streams,
we accomplish stateful inspection, traffic re-assembly, data stream correlation, and appli-
cation layer analysis that combined boost the framework’s identification precision. More
importantly, we introduce IM/P2Ps “plug-and-play” protocol analyzers that inspect data
streams according to their syntax and semantics; these analyzers render our framework
easily extensible. Identified IM/P2P sessions can be shaped, blocked, or disconnected, and
corresponding traffic can be stored for forensic analysis and threat evaluation. Exper-
iments with our prototype show high IM/P2Ps detection accuracy rates under diverse
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settings and excellent overall performance in both controlled and real-world environ-
ments.

Keywords: Instant Messaging; Peer-to-peer Overlay Networks; Analyzer-based Session
Identification; Traffic Arbitration; Classification Accuracy.

1. Introduction

Steady improvements on processing units, storage options, and network band-

width in conjunction with the need to deliver “rich” data have paved the way

for the emergence of Instant Messaging (IM) services and Peer-to-Peer systems

(P2Ps) 17,16,66,47,44. Such IM/P2Ps not only facilitate instant communications, data

exchange, and resource sharing, but also help reverse the “asymmetric” nature of

the conventional web services established on the client/server paradigm 65. Cur-

rently, IM/P2Ps constitute the dominant source of Internet traffic and consume a

large fraction of available network bandwidth 65,31,45. More than 100 million users

from AOL, MSN, Yahoo! and ICQ generated 900 million messages every day in

2003 14. By the end of 2006, the IM population was expected to exceed 250 million

users with 60% of real-time communications involving voice, text, and video 27. On

the other hand, KaZaA, a key P2P player, enjoys a strong following with 3 million

online users on average (up to 5 million on peak) and is downloaded approximately

2 million times a week worldwide 41. Similarly, eDonkey and LimeWire P2Ps have

about 1 and 0.3 million online-users respectively 19,46. As a P2P -based voice over

IP (VoIP) application, Skype attracted 21.3 million users in 2006 and it is estimated

that another 12 million will join in 2007 4.

Network sessions generated by IM/P2Ps play a significant role in today’s Internet

as a major bandwidth consumer. Measurements in a backbone network showed that

P2Ps created up to 50% of the traffic with an additional 18% of unidentified pack-

ets, possibly having the same origin 24. Apparently, Internet traffic has shifted from

“pure” text/image WWW-documents to instant messaging and resource-sharing

dominated by audio, video, and media streams 65,68,31. In a typical IM/P2P session,

two peers reciprocate in terms of traffic generation and help maintain the conti-

nuity of system operations, thereby consuming about the same bandwidth in both

directions; this is in contrast to the asymmetric bandwidth use of traditional Web

services. In addition, IM/P2P sessions may require upto 90 times more bandwidth

and many more concurrent connections than simple HTTP requests 31,67.

Users have often considered IM/P2Ps harmless and use them to share private

or even sensitive data 56. However, it is established by now that a large number of

IM/P2P implementations suffer from deficient handling of input validation process,

boundary conditions, access authorization, and race conditions 36,42. All these se-

curity holes essentially transform IM/P2Ps to ideal channels for the rapid spread of

viruses, worms, and greyware 36,71. Furthermore, some IM/P2Ps are even bundled

with adware, spyware, and keyloggers. For instance, analysis of LimeWire traffic

for a period of 45 days revealed 95 distinct types of malware 36. Similarly, it was
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reported that about 12% KaZaA clients are infected by various viruses 71 and ap-

proximately 50% of executable files downloaded through KaZaA contain malicious

code and greyware such as Gator, Cydoor, and SaveNow 63.

Evidently, IM/P2Ps may reduce productivity by affecting regular network opera-

tion and it becomes imperative that organizations be able to detect, restrict, or even

block such traffic 56,52. To avoid detection by security systems, IM/P2Ps often try to

“hide” their traffic with sophisticated techniques including port hopping, message

encapsulation, and strong data encryption 10,25. For instance, more than 38% of

sessions in KaZaA use dynamically generated ports instead of its registered stan-

dard TCP port 1214 rendering port-based session identification a poor choice 45.

MSN and Yahoo! IMs can “camouflage” their traffic within Web data underlying

the need for application-layer protocol dissection to improve traffic classification

accuracy 49. As IM/P2Ps mainly deliver their services on the stream-based TCP

transport mechanism, packet-based traffic detection systems become entirely inef-

fective. A number of recent P2Ps releases including Skype are specifically designed

to evade traffic filtering, prevent eavesdropping, and ultimately bypass all security

control using strong cryptographic techniques 11,56. As new-breed IM/P2P proto-

cols are continually introduced and variations of existing ones often appear, a good

fraction of traffic may go undetected should conventional fixed-port or packet-based

traffic identification and detection methods be used 48.

In this paper, we propose an extensible framework that identifies IM/P2P ses-

sions in real-time fashion so that we can improve traffic control and enhance IM/P2P

stream manipulation. In direct contrast to existing intrusion detection systems

(IDSs) that function off-line, we design our framework to operate “inline”. In doing

so, the framework intercepts, inspects, and classifies network traffic in real-time.

To detect message encapsulation, port hopping, and other evasive techniques, our

framework resorts to a combination of techniques including stateful inspection, traf-

fic re-assembly, data stream correlation, layer-7 or application-level analysis, and

session-based pattern matching. A unique feature of our approach is the use of

“plug-and-play” analyzers for specific IM/P2P streams; they help analyze and de-

tect unique stream characteristics and their use in the context of the framework

is extensible. As new versions and types of IM/P2Ps appear, our framework is ex-

tended accordingly once corresponding analyzers become available often through

reverse engineering. Manipulation operations on identified IM/P2Ps traffic include

alert generation, traffic shaping, stream blocking, and/or termination of connec-

tions. A logging mechanism is also featured to stage-in-disk IM/P2P sessions for

auditing and forensic analysis purposes if desired. We have carried out detailed

stress tests using synthetic data streams in controlled environments and experi-

mented with live traffic in real-world settings. Our results show that the proposed

framework demonstrates excellent performance in detecting IM/P2P sessions under

diverse workloads without raising false positives/negatives; at the same time, it

imposes minimal overhead to examined application streams.
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The rest of the paper is organized as follows: Section 2 outlines key charac-

teristics of IM/P2Ps . Section 3 presents the key features of our framework and

a number of IM/P2P analyzers are discussed in Section 4. Section 5 discusses our

experimental effort and presents our main findings. Section 6 presents related work

and concluding remarks can be found in Section 7.

2. Unique Characteristics of IM/P2P Systems

Instant Messaging systems (IMs) offer exchange of information and track status of

active users 56; using interconnections among IM-servers, they also provide real-

time voice/text conversation, file transfers, and on-line gaming. Existing systems

including the AOL Instant Messenger (AIM), Yahoo! and MSN messengers use

proprietary protocols making impossible for users to simultaneously access multiple

IM-services through a single interface. We expect this trend to continue despite of

various efforts on IM standardization 61,29,60,28,35. On the other hand, P2P systems

now offer a wealth of multimedia services with their nodes acting as either producers

or consumers of data/resources and often organized in hierarchies according to

their CPU capabilities, bandwidth, and availability; ultra-peers help balance load,

stabilize networks, and improve scalability 42,37,23. IM and P2P systems do have

overlapping features and by integrating those, Skype has clearly benefited and has

emerged as a very popular option in the field. In this section, we outline the unique

features of IM/P2Ps and point out the challenges needed to overcome in order to

identify pertinent network flows.

2.1. Diverse Behavior of IM/P2Ps Services

Services that used to be offered in isolation such as voice chat, video communica-

tion, sharing of diverse type data-objects, and mail messaging are now provided

by IM/P2Ps in an integrated fashion. IM/P2Ps can also demonstrate polymorphism

in realizing a single service. For instance, file transfers can be conducted using

pipelining, batching, or multi-source swarmed downloading. To accommodate this

diverse set of services, IM/P2Ps often specify their proprietary formats for message

exchanges; such formats may not be honored by the underlying transport services

as a single IM/P2P message may stride over multiple TCP/UDP packets or mul-

tiple messages may be packed into a single transport packet. For instance, the

AIM/Oscar protocol specification states that a number of AIM commands can be

shipped as the payload of a single transport packet 76. The field payload-length

carried by every Gnutella message helps the restoration of application message

boundaries 12,42. Should routing devices support different maximum segment sizes

(MSS), such devices may also yield inconsistencies between IM/P2P messages and

transport packets.

As portions of IM/P2Ps messages are often generated dynamically and pushed

into underlying protocol stacks on-the-fly, mapping discrepancies between applica-

tion messages and corresponding transport packets are also formed. For instance,
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when a Yahoo! client resides behind a firewall, it encapsulates its traffic in HTTP

streams. The HTTP header consists of a series of “key/value” pairs while the body

of the message carries content significant only to application. When such an HTTP

message is generated by a Yahoo! client, its header fields have fixed values and

are quickly created. On the other hand, the body of the message contains session-

related information and is dynamically generated by users. The latter implies that

time delays in the delivery between header and body to the transport service may

generate a different network packet sequence than its application counterpart. Ta-

ble 1 presents two different Yahoo! client login sessions via TCP port 80. The Yahoo!

clients in both sessions are configured to have firewall with no proxy type of con-

nection a and use version 8.1.0.209. In the first session, the HTTP message head

pkt dir message description
version: 8.1.0.209; protocol: TCP; server (S): 216.155.194.191:80; client (C): 192.168.5.36:1229;

1 C→S POST /notify/ HTTP/1.1 standard HTTP method: “POST”;
Content-Length: 47 size of “data” section
YMSG|00 0B 00 00 00 1B 00 57 00 00 Yahoo! Messenger: login request;
00 00 00 00 00 00 31 C0 80 73 ...|

2 S→C HTTP/1.0 200 OK reply from Yahoo! Messenger server
Content-Type: text/plain data type
|01 00 00 00| YMSG |00 00 00 00 00 60 Yahoo! Messenger: server reply;
00 57 00 00 00 01 7A 60 ...|

version: 8.1.0.209; protocol: TCP; client (C): 192.168.5.40:3839; server (S): 216.155.194.191:80;
1 C→S POST /notify/ HTTP/1.1 header of “POST” request

Cookie: Y=v=1&n=ann72 ... no data section in this message
2 C→S YMSG|00 0B 00 00 00 24 00 57 00 00 00 data are included in this message

00 7A 60 00 00 31 C0 80 73 ...|
3 S→C HTTP/1.0 200 OK header of HTTP reply

Content-Type: text/plain
|01 00 00 00| YMSG |00 00 00 00 00 5C embedded Yahoo! message
00 57 00 00 00 01 7A 60 00 00 31 C0 80 ...| Yahoo! client is authenticated

Table 1. Yahoo! IM traffic embedded in HTTP-streams where boundary inconsistencies may occur

and body are packed within a single TCP packet; this turns out to be the norm

in our traffic analyses. However, we sometimes observe sessions whose header and

body are placed into two TCP packets; this is the case with the second session of

Table 1. In rare occasions, we encounter sessions that have the HTTP body spread

over multiple TCP packets. The inconsistency in boundaries between application

messages and transport packets leads to the conjecture that packet-based traffic

identification methods inevitably generate false negatives.

IM/P2Ps may also demonstrate diverse behavior due to their configuration and

the network environment they operate in. For example when the Skype “automatic

login” option is not set, a specific user login-session based on TCP transport service

is established generating unique patterns in traffic. The latter can be exploited to

identify the session 5,20. On the other hand when “automatic login” is enabled,

the authentication is performed by supernodes (SNs) following an entirely different

athe option is under menu item messenger/preferences/connection.
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approach. Similarly, the Yahoo! IM embeds its traffic in HTTP data sections when

firewalls are present. Without firewalls in place, Yahoo! follows its native protocol

even when its server listens to TCP port 80. Thus, traffic streams have to be checked

against both IM/P2Ps native protocols and alternative hosting protocols such as

HTTP and HTTPS to avoid false negatives.

2.2. Multiple Protocols in IM/P2Ps Service Realization

To improve their reliability, IM/P2Ps frequently implement services with multiple

transport protocols. In this regard, the MSN-messenger uses TCP connections for

login and authentication while for file transfers and audio/video-conferencing uses

TCP(port 6891) and UDP(ports 13324/13325) respectively. Even the same service

can be delivered in multiple transport options. For instance, Skype determines the

presence and type of Network Address Translation (NAT) devices using UDP when

making a phone call. If firewalls block all UDP traffic, clients behind security devices

are still functional as Skype provides its services over TCP as well. Also in most

P2Ps , hosts utilize multiple mechanisms to access networks and manage services.

For example, to join a FastTrack network b, a host first probes the network by

dispatching UDP-requests to a subset of cached super-nodes and may ultimately

resort to TCP if no UDP-reply is received. Table 2 shows excerpts of traffic gen-

erated by a peer attempting to access a KaZaA network. At IP 192.168.5.143, the

peer initially UDP-pings a subset of supernodes (Table 2 only shows 4 of them,

i.e., packets 1–4). It then tries to establish TCP connections with the same set of

supernodes as packets 5–7 show. Among the supernodes in question, the one at

66.130.102.247:2713 accepts the request and the peer joins KaZaA successfully as

packets 8–11 indicate. P2Ps systems such as KaZaA and Overnet perform their

search, retrieval, load-balancing and signalling operations over either TCP or UDP.

To avoid a single point of failure, IM/P2Ps often replicate features either phys-

ically or functionally. Skype clients often use login servers (LSs) to get authenti-

cated. If a client finds all its TCP/UDP connections to LSs blocked, it can still

join the network by having the authentication procedure performed or relayed by

another node. Similarly, IMs often deploy multiple servers so that a single service

is supported by geographically dispersed nodes. In this regard, the AIM login and

authentication are provided by multiple servers that follow the OSCAR application

protocol c, while functionalities regarding locations of buddies/users and message

exchanges are realized through multiple servers that run the BOS (Basic OSCAR

Services) protocol. The MSN’s IM follows a similar approach. Finally, a number of

P2Ps employ both TCP and UDP for different stages of a single service. For exam-

ple, Overnet’s protocol consists of location determination of content and download

bthat is KaZaA, Grokster, or iMesh
cthe Open System for Communication of AOL in Real-time.
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# src. (IP:port) dst. (IP:port) proto payload description
1 192.168.5.141:3037 66.41.187.3:2202 UDP |27 00 00 00 A9 80 UDP ping

4B 61 5A 61 41 00|
2 192.168.5.141:3037 66.71.66.69:2289 UDP |27 00 00 00 A9 80 UDP ping

4B 61 5A 61 41 00|
3 192.168.5.141:3037 65.33.247.155:2936 UDP |27 00 00 00 A9 80 UDP ping

4B 61 5A 61 41 00|
4 192.168.5.141:3037 66.130.102.247:2713 UDP |27 00 00 00 A9 80 UDP ping

4B 61 5A 61 41 00|
5 192.168.5.141:29280 66.130.102.247:2713 TCP (SYN) use TCP
6 192.168.5.141:29281 66.71.66.69:2289 TCP (SYN) use TCP
7 192.168.5.141:29282 65.33.247.155:2936 TCP (SYN) use TCP
8 66.130.102.247:2713 192.168.5.141:29280 TCP (SYN|ACK) response
9 192.168.5.141:29280 66.130.102.247:2713 TCP (ACK) confirm
10 192.168.5.141:29280 66.130.102.247:2713 TCP |0D 82 F6 68 CE 79 handshake

CF 7E 95 13 D8 A9|
11 66.130.102.247:2713 192.168.5.141:29280 TCP |B7 5E D8 B3 28 94 response

04 29 EC 60 ...|

Table 2. Traffic generated by a KaZaA-peer (v3.2.5) during the process of joining of the network

of requisite files; the former uses UDP while the latter TCP. It is thus evident that

both TCP and UDP transport protocols frequently participate in multiple IM/P2Ps

phases to realize services. Should we be able to manipulate the ensued IM/P2P traf-

fic, both TCP and UDP types of packets have to be scrutinized to help identify and

classify traffic.

2.3. Port Hopping and Message Encapsulation

AIM, MSN, Yahoo! IMs register their native ports at 5190, 1863, and 5050 re-

spectively, while P2Ps including KaZaA, Gnutella, and eDonkey correspondingly

operate at default ports 1214, 6346, and 4661. However, IM/P2Ps often resort to

dynamic port assignment to provide flexibility, making user intervention and man-

ual configuration unnecessary; in addition, dynamic ports can avoid traffic shaping

and manipulation by security devices that deploy port-based filters. For instance in

KaZaA, only 20% of super-nodes use the registered TCP port of 1214 45. Further-

more, IM/P2Ps also employ port sweeping techniques termed port hopping to help

session establishment between entities. In port hopping, a host attempts to connect

a remote node over a set of ports systematically until the connection is established

successfully. Clearly, for the same service, the actual ports used by remote nodes in

the resulting sessions may widely vary over different hosts and/or time. For instance,

with the help of the locally maintained list of supernodes, a Skype client first tries

to contact a supernode on the port specified in the list. As a fallback mechanism,

the client also attempts to connect the supernode over ports 443 and 80 as well.

Similarly, the MSN IM permits clients to use TCP-port 80, while Yahoo! IM allows

for the “scanning” of ports 23, 80, 25, 119, and 20, should the default 5050-port for

authentication fails. In a similar fashion, AIM-clients attempt to reach servers over

ports 20, 21, 23, and 80 in turn, should their default 5190 becomes inaccessible.

Some firewalls restrict the port ranges even for connections initiated by hosts
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within protected zones. To this effect, IM/P2Ps use sweeping to determine the port

ranges blocked by firewalls. More specifically, a Skype-client randomly chooses a

TCP port in the range of 1026 and 1040 while attempting to establish a con-

nection with a super-node (SN). If the connection fails, the client increments the

number of its attempted port and the process is repeated until a connection is es-

tablished. Although most connections in port hopping fail due to incomplete TCP

three-way handshakes, we have to develop mechanisms to identify IM/P2P traffic

going through successfully via ports selected with sweeping. Obviously, port hopping

and sweeping strategies in IM/P2Ps help provide the same service over seemingly

arbitrary ports. It is projected that most IM/P2Ps are expected to use port hop-

ping 45,39,38, rendering the identification of pertinent connections a challenge.

The situation is further exacerbated when ports usurped by port hopping happen

to be used by HTTP and HTTPS. Here, IM/P2Ps resort to message encapsulation

techniques to embed their messages to HTTP/HTTPS messages instead of using

their native protocols. In the case of Yahoo! IM client working behind a firewall, the

security device may block all traffic except that which is destined to TCP port 80.

Should we configure Yahoo! IM to use the firewall with no proxy type of connection,

Yahoo! IM encapsulates its stream into HTTP-messages as Table 1 shows. Once

a TCP connection is established between the Yahoo! client and the server, the

client exercises a POST-method consisting of HTTP-header and pertinent data.

All header keys, such as Host and Content-Length are HTTP-defined; the server

reciprocates with a standard HTTP OK message (Table 1). The rationale here is

to foul IDSs/IPSs and AVs so that the latter allow the traffic through as benign

Web-streams. Unless HTTP data portions are inspected, IM/P2Ps sessions with

message encapsulation will go undetected and false negatives are unavoidable. To

overcome this limitation, layer-7 d data stream analysis has to take place. Moreover,

as IM/P2Ps hosts use proxy services including HTTP/HTTPS proxies and SOCKS

to successfully tunnel their message through security devices, the need for layer-7

inspection on IM/P2Ps traffic becomes pressing 56.

2.4. Mechanisms to Penetrate Security Systems

To mitigate the depletion of IP address space, NAT devices are ubiquitously de-

ployed in the Internet. The NAT asymmetric addressing and connectivity does affect

IM/P2P applications as the latter may involve responders lacking a consistent and

permanent IP address. Similarly, many one-way filters deployed in firewalls block

connections initiated by hosts outside protected networks, making it impossible for

hosts behind firewalls to participate as recipients to sessions. Typical techniques

employed by IM/P2Ps to “penetrate” both firewalls and NATs include rendezvous-

relay, connection reversal, and UDP hole-punching. In the rendezvous relay service,

any communication between clients is relayed via super nodes (SNs). In the con-

dalso known as application-oriented or “deep” inspection.
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nection reversal scheme, the recipient of a session requested by its counterpart

ultimately becomes the initiator of the intended session. This occurs after the re-

cipient is informed about the specifics of the session to be established through a

super node. When a NAT device maintains a consistent mapping between “private

IP/port” and “public IP/port”, the hole-punching technique can be used to es-

tablish UDP sessions between two entities behind NATs (same or different). Both

entities can obtain each other’s publicly visible IP address with the help of a su-

per node (SN) and then initiate the UDP connection simultaneously and directly

between them. Among others, Skype as well as Yahoo! and MSN IMs employ such

penetration techniques to provide services for sites found behind NAT devices.

To discover the presence and types of NATs and firewalls between a host and the

public Internet, IM/P2P applications typically employ techniques similar to Simple

Traversal of UDP over NAT (STUN) 62. STUN allows a host to determine the

presence and type of a NAT device via a coordinated message exchange with a STUN

server. The latter responds with messages containing the source IP address/port of

a request. As the STUN server can only observe the requestor’s publicly visible

address, the requestor can determine both NAT presence and type by comparing

its local address with that in the reply. Table 3 outlines Skype’s UDP probing to

determine the presence of NATs. In this setting, no firewall is installed but a NAT

device is in place with Skype running version 2.5.0.130. Each Skype UDP message

consists of a header containing a frame ID (2 bytes) and a function type (1 byte)

fields as well as a body whose size varies and in most cases its content is obfuscated

with the help of RC4 encryption method.

# dir len payload description
protocol: UDP; SC: 10.2.42.169:16803; SN1: 64.246.48.23:33033; SN2: 76.0.43.219:6800

1 SC→SN1 20 |47 3E 02 D4 46 BA frame ID: 0x473E; func. type: 0x02, obfuscation;
B3 76 B3 C3 5B ...| init vector: 0xD446BAB3; CRC32: 0x76B3C35B;

2 SN1→SC 11 |47 3E 27 42 23 FE frame ID: 0x473E; func. type: 0x27 & 0x0F
40 D3 33 0C 9A| = 0x07, NACK; src: 0x4223FE40 (66.35.254.64);

tag: 0xD3330C9A (211.51.48.154);
3 SC→SN1 25 |47 3E 23 01 D3 33 frame ID: 0x473E; func. type: 0x23 & 0x0F = 3;

0C 9A 40 F6 30 17 retrans.; tag:0xD3330C9A SN:0x40F63017
76 B3 C3 5B 7A ...| (64.246.48.23); CRC32: 0x76B3C35B;

4 SN1→SC 53 |05 A4 02 72 9D A6 frame ID: 0x05A4; func. type: 0x02, obfuscation;
0D 72 1B DC 36 ...| length = 53 indicates redirection

5 SC→SN2 27 |47 40 02 A0 F0 9C SC contacts another SN; frame ID: 0x4740;
99 5E 39 54 E4 6F func. type: 0x02, encryption used;
FB 57 3B 49 97 ...| init vector: 0xA0F09C99; CRC32: 0x5E3954E4;

6 SN2→SC 18 |8F 6E 02 4A BF 25 frame ID: 0x8F6E; func. type: 0x02, encryption;
79 BD 0A 4F 4B BE length = 18 acts as confirmation of accepting
3E 2B F5 A4 D6 1A| SC; SC joins the network

Table 3. UDP probe procedure in Skype v.2.5.0.130

The heavy-weight probe sequence formed by packets 1 to 4 of Table 3 is used

to determine the presence and type of NAT. The initiating UDP message from the

client (SC) contains the checksum derived from source/destination IP addresses.

Due to NAT, the client’s private IP (i.e., 10.2.42.169) is invisible to the super-node
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(SN), causing the SN-computed checksum with SC’s public address to be different

from that in packet 1. Therefore, SN returns a negative acknowledgment message

(NACK) as packet 2 in Table 3 shows. The SC’s publicly visible IP address contained

in the SN-originated NACK message allows SC to realize the existence of a NAT

device and the mapping between private address 10.2.42.169 and public address

66.35.254.64. Once packets 1 and 2 have been exchanged and SC derives both NAT

presence and type, penetration techniques can be used to facilitate IM/P2P services.

NAT devices typically define the lifetime for their mapping between private

and public addresses. For a TCP session, its lifetime is determined by its connec-

tion establishment and termination phases while for a UDP connection, the length

of its active period designates its lifetime. To maintain the consistent mapping be-

tween private and public addresses, IM/P2P systems may periodically inject probes.

Moreover, the churn effect caused by the frequent and unpredictable arrival and de-

parture of IM/P2P nodes also force active hosts to probe networks regularly to

obtain current network topology and meta-data 75. For instance, a Skype client

routinely send out UDP probes to various super nodes to determine their availabil-

ity as shown by packets 5 and 6 of Table 3. Compared to the heavy-weight probe

sequence of packets 1 to 4, its light-weight counterparts of packets 5 and 6 involve

fewer message exchanges. The Skype traffic of Table 3 clearly demonstrates that

no application protocol field assumes fixed values, defeating any signature-based

detection method. However, by correlating message streams in both directions of

a Skype session, we can observe that the 2-byte frame ID field of a heavy-weight

probing session, randomly chosen by SC, is echoed back in SN’s NACK message.

Similarly, the 4-byte tag in SN’s NACK message is also carried by the subsequent

SC messages. Therefore, traffic correlation is feasible and effective to the identifi-

cation of Skype probe sessions, which is actually the technique used by our Skype

analyzer (in Algorithm 4.1 of Section 4.5).

2.5. Encryption of Communication Messages

IM/P2Ps also employ cryptographic techniques to protect their communications

from eavesdropping, alteration, and replay. However, some IM/P2P abuse encryp-

tion techniques to evade security systems. For instance, KaZaA obfuscates its com-

munication streams to defeat pattern-based traffic identification systems. Similarly,

Skype scrambles its traffic with various cryptographic methods according to the

communication ports involved. When a Skype client (SC) cannot establish a TCP

connection to a SN on non-privileged port, it then attempts TCP ports 443 and 80

in this order. If port 443 is used, Skype does not follow strictly the Transport Layer

Security (TLS) protocol typically used by HTTPS. If SC uses TCP port 80, Skype

does not respect the regular HTTP standards at all. Instead, Skype resorts to its

own proprietary protocol or changes the interpretation of standard specifications

such as HTTPS. Such traffic deviations from standard specifications on TCP ports

443 and 80 make it possible to discern Skype traffic in spite of encryption.
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Table 4 presents part of the communications between a Skype SC/SN pair over

TCP port 443 when version 2.5.0.130 is used. Our traffic analysis indicates that

the first message from a SC always has 72 bytes even though stream-based TCP

connections are used. Such a peculiarity is due to the fact that Skype always uses

“PUSH” to flush out every message it creates. As demonstrated in Table 4, packet 1

is client-hello message embedded in a record layer of SSL version 2. In all our traffic

traces, packet 1 of all Skype sessions over TCP port 443 share the same payload

excluding the 16-byte challenge field.

# dir len payload description
protocol: TCP; client (denote as C):192.168.1.67; login server (denote as S): 165.234.212.137:443

1 C→S 72 |80 46 01 03 01 00 2D 00 00 00 SSLv2 record layer (0x80); len: 70 (0x46);
10 00 00 05 00 00 04 00 00 0A handshake msg type: client hello (0x01);
00 00 09 00 00 64 00 00 62 00 00 ver: TLS 1.0 (0x0301); cipher spec len:
08 00 00 03 00 00 06 01 00 80 07 45 (0x002D); session ID len: 0 (0x0000);
00 C0 03 00 80 06 00 40 02 00 80 challenge len: 16 (0x0010); cipher specs:
04 00 80 FD 0A 73 88 59 B6 2F TLS RSA WITH RC4 128 SHA (0x0005)
14 75 22 AB 60 51 4E E7 6C| ...(total: 15); challenge (16 B): 0xFD0A...

2 S→C 134 |16 03 01 00 4A 02 00 00 46 03 TLS record layer (0x16 & 0x80 = 0); type:
01 40 1B E4 86 02 AD E0 29 E1 handshake (0x16); ver: TLS 1.0 (0x0301);
77 74 E5 44 B9 C9 9C B4 31 31 handshake: len: 74 (0x004A); server hello
5E 02 DD 77 9D 15 4A 96 09 (0x02); len: 70 (0x000046); gmt unix time:
BA 5D A8 70 20 1C A0 E4 F6 Jan 31, 2004 09:23:18... (0x401BE486);
4C 63 51 AE 2F 8E 4E E1 E6 bytes (28 B): 0x02AD...; ID len: 32;
76 6A 0A 88 D5 D8 C5 5C AE ID (32 B): 0x1CA0...; cipher suite:
98 C5 E4 81 F2 2A 69 BF 90 TLS RSA WITH RC4 128 SHA (0005);
58 00 05 00 37 86 50 A3 1B ...| compression: null; data: 0x3786...;

3 C→S 38 |44 0E D5 88 09 5B CB E0 2F encrypted data;
4E 4E DA 21 26 26 01 E4 ...|

Table 4. Operations on TCP port 443 in Skype (version 2.5.0.130)

The SN-reply of packet 2 is supposed to be a ServerHello message; however, it

fails to follow the TLS constraints in a number of ways: firstly, instead of specifying

the server’s current date and time, the field gmt unix time of Skype sessions always

assume the same and fixed value (i.e., 0x401BE486), clearly deviating from TLS

specifications. Secondly, the 28-byte field random bytes, which is supposed to be a

sequence of randomly generated numbers required by TLS, takes constant values

(i.e., |02 AD E0 29 ...| as shown in Table 4) for all ServerHello messages in Skype,

which is also a TLS violation. Finally, the portion of the message starting from byte

80 and on, does not comply with TLS. In addition to the artifacts in protocol fields of

Skype encrypted messages, message size can be a good indicator for Skype streams

as well. For instance, the first SC-originated message has always 72 bytes and the

second SC-originated message is always 14 bytes for Skype version 1.4, while it

varies for version 2.0 and later. Obviously, the unique characteristics of such Skype

traffic over TCP port 443, including constant values in fields gmt unix time and

random bytes as well as the fixed size of first SC-originated message can be used as

telltales to identify such traffic.

Skype traffic on regular TCP ports -other than that to port 443- is more chal-

lenging to identify as strong cryptographic algorithms may be used. Even so, a num-
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ber of Skype design features generate artifacts that can be successfully exploited.

For instance, the obfuscated Skype TCP stream is created by applying bitwise

exclusive-OR operation on the original plaintext and a RC4-generated stream. In

versions earlier than 2.0, Skype applies the first 10-byte of the RC4-stream to both

the first and next 10-byte plaintext. This generates an artifact in the ensued cipher-

text that can be readily exploited. Another artifact that all Skype version share in

their TCP-streams is that the TCP “PUSH” bit is set for all messages. This forces

the TCP/IP stack to deliver each Skype message individually in a TCP packet as

long as the message size is less than MSS (maximum segment size). This bound-

ary coincidence between Skype messages and TCP packets can help detect Skype

TCP sessions by analyzing sizes of packets and the correlation among exchanged

messages in sessions.

3. A Framework for IM/P2P Traffic Identification

In this section, we outline our framework that identifies IM/P2P sessions in in-

line fashion. In this regard, it can intercept and thoroughly inspect all incom-

ing/outgoing packets before either forwarding or dropping the packets. We treat

network traffic as sequences of application messages instead of TCP/UDP packets;

this assists in identifying an IM/P2P session even if boundaries of application mes-

sages do not coincide those of underlying transport packets. We resort to stateful

inspection on data streams to improve detection accuracy; in addition, by correlat-

ing data streams in both directions of each session, false positives/negatives can be

reduced dramatically. Our framework dissects data streams at application-layer to

uncover IM/P2P sessions using port hopping and encapsulation mechanisms. Such

“deep” analysis is feasible via the extensible use of IM/P2P analyzers that can

be integrated into our framework in a plug-and-play fashion. Actions on detected

IM/P2P sessions include alert generation, packet logging, traffic blocking as well as

traffic shaping in order to limit the network bandwidth and resource consumption.

3.1. Architecture of IM/P2P Traffic Identifier

Two IM/P2P peers can exchange information only after a TCP/UDP connection

is established. By denoting the originating site as the “client” while the destina-

tion node as the “server”, we can uniquely identify a connection with a five-tuple

<IPc, PORTc, IPs, PORTs, PROTO>, where IPc and PORTc are the IP address

and port of the originator (or client), while IPs and PORTs are their counterparts

for the recipient (or server), and PROTO represents the protocol of the session

(TCP/UDP). Within each session, two data streams can be defined, one from client

to server, while the other from server to client. We anticipate that a typical IM/P2P

system consists of a very large number of concurrent users with each potentially

establishing multiple connections to others. To keep track of all IM/P2Ps sessions,

a core objective of our framework, it is vital to organize session-related informa-

tion efficiently so that manipulation of pertinent traffic can be conducted without
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affecting the performance of the network. The session-related information includes

connection status, progress of transmissions, and application types. Tracking ses-

sion information also makes it possible to perform stateful inspection, session-based

manipulation of traffic, and correlation of data streams in both directions of the

same session.

Outgoing Packet

Session Manager Traffic Arbitrator

IM/P2P Traffic Classifier

Traffic Assembler IM/P2P Dissector Module

Incoming Packet

Fig. 1. Architecture of our IM/P2P traffic classifier

Gnutella dissector

Overnet dissector

BitTorrent dissector

DirectConnect
dissector

KaZaA dissector
AOL dissector

MSN dissector

Yahoo! dissector

to Traffic Arbitrator

Traffic Manager

from Stream Assembler

IM/P2P Dissector Module

Jabber dissector

Skype dissector

Fig. 2. Components in the IM/P2P–dissector module

To restore the boundaries of IM/P2P messages from a stream of transport pack-

ets, it is imperative that all constituent packets are stored and orderly re-assembled

so that the resulting aggregations can be interpreted in accordance to respective

IM/P2P specifications. Without such a re-assembly process, an IM/P2P session

may go undetected if its messages happen to stride multiple transport packets,

or several messages are packed inside a single transport packet. Figure 1 depicts the

overall architecture of our system that consists of Session Manager, Traffic Assem-

bler, IM/P2P -Dissector, and Traffic Arbitrator. Any time a packet P arrives, the

Session Manager determines its session and creates a new one if no such session al-
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ready exists. The role of the Traffic Assembler is to merge all observed packets from

the same stream in the correct order. A re-assembled data stream is subsequently

worked on by the IM/P2P -Dissector module whose objective is to determine the

application’s type (i.e., MSN, Yahoo!, Gnutella, Skype etc.) Finally, packet P is

handed over to the Traffic Arbitrator module and may be dropped, shaped, for-

warded according to designated system configuration, or stored along with other

auxiliary information into the disk for forensic analysis.

3.2. The Session Manager

We maintain IM/P2P sessions with the help of the session-table structure shown

in Table 5. Every bidirectional session is uniquely identified with the help of the

first five fields in its session-table entry namely, IPc, PORTc, IPs, PORTs, and

PROTO. The field TYPE provides the application type for the session if it has been

identified by the IMP2P–Dissector module e; otherwise, it indicates that the traf-

fic is non-IM/P2P . While the CONFIRM field is set once traffic correlation on both

directions of the session has been performed and both streams follow the protocol

specification identified by TYPE. Fields start-time and last-access respectively in-

dicate the session creation time and the most recent instance in which traffic from

this session was detected. To this effect, sessions without appropriate disconnection

procedures can be identified and removed to reclaim resources (e.g., memory). Fi-

nally, the two data streams that make up the session are stored in client ptr and

server ptr respectivelyf .

field name size(bytes) description
IPc 4 IP address of the originator (denoted as client) of the connection
PORTc 2 port number of the originator (client) for the connection
IPs 4 IP address of the recipient (denoted as server) for the connection
PORTs 2 port number of the recipient (server) for the connection
PROTO 1 protocol utilized by the session (TCP/UDP)
application 4 application type, initially “unknown”, eventually set to one of

non-IM/P2P, AOL, MSN, Yahoo!, KaZaA, ...
TYPE 4 traffic type detected with flow from one direction, type can be

one of AOL, MSN, Yahoo!, KaZaA, ...
CONFIRM 4 traffic type confirmed by flow from other direction of same session
start-time 4 creation time of the session
last-access 4 last active time of session in either direction (i.e., pkt transmission)
serverptr 4 pointer to server stream data structure
clientptr 4 pointer to client stream data structure

Table 5. The session-table structure

Our frameworks tracks sessions organized using splay-trees that achieve amor-

tized access/update times within a constant multiple of the information theoretic

eAIM, Yahoo!, MSN, KaZaA, etc.
fclient ptr and server ptr are pointers to another structure called stream that records packets
discussed in Section 3.3.
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lower bound; this is attained by moving accessed nodes “closer” to the root ren-

dering future retrievals to frequently used nodes less expensive 72. Every node in a

splay-tree corresponds to a session under surveillance and essentially stores the in-

formation of session-table described in Table 5. Our session tree T can be searched

with key constructed by the first five fields of the session table, and some tree

operations work as follows: function session-init(T) initializes a splay-tree T and

makes it ready for operations on sessions such as insertion, retrieval, or deletion of a

packet P into T performed by functions session-insert(T,P), session-find(T,P), and

session-delete(T, P), respectively. Function session-find(T,P) locates the session for

a packet P by initially constructing a tuple <SIP , SP , DIP , DP , PROTO> from

the source and destination IP/port pairs and the protocol PROTO of P . The tuple

is used as a key to search session tree T ; if this yields no result, the “dual” tuple

<DIP , DP , SIP , SP , PROTO> is formed and is used to search T again. Searches

without outcome in both attempts invoke session-insert(T, P) to create a new ses-

sion for P with application type set to “unknown”. Clearly, the complexity of the

above functions is O(log n) and is incurred mainly due to splay-tree search.

3.3. The Traffic Assembler

The main objective of the Traffic Assembler module is to synthesize packets in a

data stream according to their correct sequence numbers. For each one-way data

stream within a session, we maintain the necessary information to facilitate the

traffic re-assembly process. For a TCP stream, we mainly use the following fields of

information: state tracks the connection status of its originator and its value can be

SYN-SENT, SYN-RCVD, ESTABLISHED, or CLOSE. Field ISN stores the initial

sequence number of the stream, while fields total-size, and total-pkt record the

numbers of bytes and packets transmitted so far by the originator of the stream.

We use an interval-tree constructed on red-black tree to organize all packets within

a stream 13, and field data is a pointer to such a structure.

In a UDP stream, we use fields total-size and total-pkt very much like in

TCP streams. Moreover, UDP streams use the fields: data points to a buffer that

stores all data received for a stream so far, data-size indicates the size of buffered

data, and total-size is the total bytes of data transmitted in the stream. In an

interval tree representing a data stream, each node’s key is the closed interval [Ps,

Pe] corresponding to the start- and end-sequence numbers of packet P while the

node’s value is the content of P . For a given packet P , Ps can be obtained directly

from P ’s TCP header; while Pe can be derived from protocol fields total length, IP

header length, and TCP-header size of P . In addition, we define function stream-

find(S, P ) as returning the stream I for which packet P is part of session S.

The relationship between any two packets P and Q can be determined based

on their respective sequence intervals. Packets P and Q are duplicate if Ps = Qs

and Pe = Qe; P precedes Q if Pe < Qs and P follows Q if Ps > Qe. If conditions

Ps > Qs and Pe < Qe are satisfied, then P is contained by Q; on the contrary, P
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contains Q if Qs > Ps and Qe < Pe. Packets P and Q are overlapping if (Ps < Qs

and Qs < Pe < Qe) or (Qs < Ps and Ps < Qe < Pe). The above defined relation-

ships between packets P and Q affect the behavior of operations on interval-trees.

We define functions interval-insert(I, P) and interval-delete(I, P) to carry out the

respective insertion and deletion operations on a given interval tree I for packet P .

Obviously, these functions perform standard binary tree search, therefore have com-

putational complexity of O(log n). Function interval-retrieve(I, P) finds all packets

in I that have relationship of overlap, duplicate, or contain with P . Function

interval-build(I, low, high) creates a new packet Q having start- and end-sequence

numbers of [low, high]. If the end-sequence number high = ∞, then Q is built based

on all packets received so far; similarly, if the start sequence number low = −∞,

Q is built from the initial sequence number (ISN) of the stream. Function interval-

traversal(I) performs an in-order tree walk of I and lists all intervals in sorted

order according to their low endpoints; this is particularly useful when it comes to

packet logging. As functions interval-retrieve(I, P ), interval-build(I, low, high) and

interval-traversal(I) potentially traverse the entire tree, their complexity is O(n).

With the help of above packet relationships and operations, the stream re-

assembly procedure works as follows: for an arriving packet P , its session S is

located by function session-find(T , P ); similarly, its stream I is fetched with the

help of function stream-find(S, P ); Then, function interval-retrieve(I,P ) is invoked

to obtain any packet Q that has relationship of overlap, duplicate, or contain with

P . If Q does not exist, P is a fresh packet and function interval-insert(I,P) inserts P

into I along with its arrival time. If P overlaps with Q, their overlapping parts are

checked to determine whether they are identical. Should P and Q assume the same

value in the overlapped part, P is inserted into I with its arrival time, otherwise

P is malformed. If P and Q have the same sequence interval, their payloads are

compared; if their content is identical, P is a retransmission of Q; otherwise, a TCP

specification violation is found. Similarly, for cases where P contains Q or P is con-

tained by Q, we compare the content on their common sequence number interval. If

they are the same, then P is a forward overlapped packet when P contains Q and

simply a retransmission of Q if P is contained by Q. In the latter case, P is inserted

into I; otherwise, P is a suspect packet. Finally, a new sequence of bytes Q is built

by calling function interval-build(I, ISN, ∞) to re-assemble all packets received by

stream I so far.

3.4. The IM/P2P Dissector Module

As every IM/P2P system defines it own protocol that best suits its service needs,

employing a monolithic organization for traffic identification would not be a vi-

able option in the long run. As mentioned earlier, a number of IM/P2Ps such as

Yahoo! and MSN can encapsulate their traffic within normal HTTP streams. The

straightforward option would have been to develop a a single protocol dissector

for HTTP traffic and within its dissector to have different segments for identifying
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every possible type of IM/P2Ps traffic. However, every time a new breed and/or

variant of IM/P2Ps would emerge such monolithic mechanism should be reworked

anew. Thus, we opt for a Traffic Manager that cooperates with different IM/P2P

dissectors each of which analyzes a single protocol as Figure 2 shows. Our over-

all organization allows for the extensibility of the approach as analyzers for new

variants and emerging systems can be readily incorporated into the framework. For

example, as Skype generates unique traffic patterns when it uses HTTP port 80, a

new IM/P2P protocol dissector can by developed and plugged into our framework

instead of modifying any existing module.

Our Traffic Manager works as follows: as soon as a packet P arrives along with

its session S, stream I, and re-assembled sequence Q, the Traffic Manager checks

fields TYPE and CONFIRM of S to determine the application type of P . If S’s type has

been determined, P is transferred to module Traffic Arbitrator in conjunction with

S and I. If the application type of S has not been determined, all IM/P2P analyzers

are sequentially called until the type of packet is identified. Algorithm 3.1 outlines

the procedure our Traffic Manager follows to determine the application type of an

incoming packet and its session. As soon as the application type of a session has

been determined, all the subsequent session traffic simply passes through the Traffic

Manager and the entire IM/P2P dissector module without any further intervention.

In addition, to improve the performance of Algorithm 3.1, we restrict the total sizes

of data to inspect within a session in both directions to a user-defined threshold

whose default value is 5KB or 3 packets. If the session’s application type cannot be

identified after examining this maximum amount of data, the session is declared as

non-IM/P2P.

Algorithm 3.1 Traffic Manager Operation
1: P ← newly arrival packet; L ← list of all registered IM/P2P analyzers in our framework; S

and I are the session and stream of P ;
2: if (field application is not “unknown”) then

3: P is part of an identified IM/P2P session; P is passed to module Traffic Arbitrator along
with S and I and exit from this procedure

4: end if

5: while (still non-visited analyzer in analyzer pool L) do

6: A ← next analyzer in L; A is invoked with parameter P , S, I, and Q;
7: if (field application is not “unknown”) then

8: application type of P has been determined; P is passed to module Traffic Arbitrator along
with S and I and exit from this procedure

9: end if

10: end while

11: if (total number of bytes of S ≥ MAX SIZE) OR (total packets of S ≥ MAX PKT) then

12: fields TYPE and CONFIRM of S are set to be “non-IM/P2P ” (default MAX SIZE is 3KB and
MAX PKT is 5)

13: end if

To minimize the false positive/negative rates, our IM/P2P protocol analyzers

correlate traffic in both directions of a session to ascertain that a protocol is indeed
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followed by both streams. More specifically for TCP traffic, each IM/P2P analyzer

typically operates on the re-assembled data stream instead of the sequence of trans-

port packets, and marks the field TYPE of a session based on one data stream of the

session and ultimately sets the field CONFIRM according to information derived from

the other stream. IM/P2P analyzers may dissect a data stream syntactically or se-

mantically. Syntax analysis mostly deal with message structures and formats while

the semantic part involve checks on validity of the values in various protocol fields

and the message exchange process between the communication ends. As IM/P2P

protocols share little commonality in their message structures, each analyzer main-

tains its own information pertinent to each session. As an example, Algorithm 3.2

demonstrates the functionality of our Yahoo! protocol analyzer that identifies IM

traffic embedded in HTTP streams such as those presented in Table 1.

Algorithm 3.2 Operation of the Yahoo! IM Analyzer for HTTP-embedded traffic
1: Input: newly arrived packet P along with its session S, stream I, and re-assembled sequence

of bytes Q;
2: if (Q’s destination port is HTTP AND Q’s method is POST) then

3: data ← data section of the first HTTP message in Q;
4: ID ← data[0, 3], where data[i, j] means the sequence of bytes from ith to jth in data; ver

← data[4, 5]; type ← data[10, 11];
5: if (ID = “YMSG” AND ver is in [0, 9, 10, 11] AND type is in [0, 1, 2, 6, 4C, 57, ...]) then

6: bit “Yahoo” of field TYPE is set;
7: end if

8: else if (Q’s source port is HTTP) then

9: data ← data section of the first HTTP message in Q;
10: tag ← data[0, 3]; ID ← data[4, 7]; ver ← data[8, 11]; type ← data[14, 15];
11: if (tag = 0x01000000 AND ID = “YMSG” AND ver is in [0, 9, 10, 11] AND type is in [0,

1, 2, 6, 4C, 57, ...]) then

12: bit “Yahoo” of field CONFIRM is set;
13: end if

14: end if

15: if (bits “Yahoo” of fields TYPE CONFIRM are set) then

16: field application of session S is marked as Yahoo
17: end if

Algorithm 3.2 uses the client-originated traffic to tentatively mark the type of S

by setting the corresponding field TYPE (Table 5). It also resorts on the information

derived from the stream of the opposite direction (i.e., from server) to ultimately

confirm the type by setting field CONFIRM. To distinguish various IM/P2P types,

fields TYPE and CONFIRM work as bit masks in which every IM/P2P type recognized

by our framework is allocated one bit. By applying the procedure of Algorithm 3.2

to the traffic in Table 1, we can readily establish the session’s type provided that

application message boundaries are restored with the help of the preceding Traffic

Assembler module.
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3.5. The Traffic Arbitrator

Should the application type of a packet P as well as its session S have not been

determined yet, the Traffic Arbitrator module simply forwards P to its destination;

otherwise, the Traffic Arbitrator may impose a number of actions on P and any

packets emanating from the same session S according to user-set system configu-

ration. Such actions include dropping a single packet P or all subsequent packets

in the session, forwarding traffic, shaping of traffic, and/or blocking connections

from the same IP source. Regardless of the action, a copy of P is stored in main

memory along with its session information in order to help subsequent re-assembly

operation and the determination of its application type. In addition, all packets of

an IM/P2P session (including subsequent packets) and information about the ses-

sion (e.g., its application type, creation time, and transmission statistics) can be

selectively flushed to permanent storage for future forensic analyses. In addition to

the above choices, the Arbitrator module may pro-actively tear down a connection

by sending out TCP RESET packets or ICMP destination unreachable messages to

either or both ends of the communication channel. The ultimate handling or shaping

of stream may depend on the traffic type detected; for instance, streams generated

by the Yahoo! messenger may be passed but be subjected to traffic shaping to limit

its bandwidth and resource consumption, while those of KaZaA sessions may be

entirely blocked.

4. Protocol Analyzers for IM and P2P Systems

IMs predominantly use the client/server model with the client-part often installed in

user machines. The IMs server-component manages and relays data among clients;

servers are usually maintained by ISPs such as AOL, Microsoft, or Yahoo!. However,

for media transmissions, IMs resort to peer-to-peer paradigm. In a P2P network,

nodes come together to form a distributed platform for resource sharing where all

peers are often considered equal and may establish direct communications. Contem-

porary systems such KaZaA, Gnutella, and Skype use hybrid architectures where

peers act as either supernodes or ordinary nodes according on their capabilities.

Supernodes host content-indices; regular nodes attach to supernodes and use them

as relay outlets for all their operations. In this section, we discuss our analyzers

for the AIM and MSN IMs as well as for Gnutella, FastTrack/KaZaA, and Skype

P2Ps . In addition, our framework also supports a number of analyzers for other

contemporary IM/P2Ps including the Yahoo! messenger, Jabber, Trepia, eDonkey,

BitTorrent, and DirectConnect 8.

4.1. AOL Instant Messenger (AIM) System

Both AOL Instant Messenger (AIM) and ICQ messenger use the proprietary and

binary-based protocol OSCARg that is now understood with reverse engineering.

gOpen System for Communication in Realtime
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However, aspects of OSCAR continuously change so that new features are inte-

grated and third-parties are prevented from connecting to AIM servers. OSCAR

is considered a stream-based protocol as its services are provided through a series

of commands in the FLAP-format, with each command spreading out over several

TCP packets or multiple commands delivered within a single TCP packet depending

on command types and transmission timing. Two types of servers exist in AIM, the

OSCAR server and the Basic OSCAR Service servers (BOS). The former is respon-

sible for client authorization and the latter for the realization of instant messaging,

information retrieval and account (e.g., buddy nicknames) management. OSCAR

uses a single-login procedure for clients to join the system as users contact the au-

thorization server (e.g., “login.oscar.aol.com”), provide their account information,

and obtain back a cookie used to connect to other servers. By maintaining contact

buddy-lists and online status information for users, AIM not only provides real-time

text/voice communication services, but can also block abusive users, deliver status

messages, create chatrooms, and support file sharing, group games, as well as audio

and video conference.

Table 6 presents the syntax of the FLAP protocol. Each message in FLAP

format contains five fields of which the first four are fixed and span 6 bytes. The

field command start is the FLAP banner and is always character “*” or 0x2A in

ASCII code. The one-byte field frame type or channel ID specifies the message

type of the current frame with signon and data values h very frequently used here.

When the message type is data, the content of the data section follows protocol

SNAC which is outlined in the second part of Table 6. An AIM session begins

with a sign-on procedure as soon as a client connects to an OSCAR server via the

default TCP-port 5190; the latter is configurable. Once signed-on, the client obtains

a cookie from the OSCAR server and can subsequently connect to any BOS server

without any further authentication. AIM has also the ability to work with proxy

servers using protocols such as SOCKS4 and SOCKS5.

In Table 7, we show a sample of an AIM session without the preceding TCP

three-way-handshake. Although the client initiates the TCP connection, it is the

server that begins the sign-on process by sending the client a new connection mes-

sage along with channel ID, sequence number, and version number as shown in

packet 1 of Table 7. The client responds with a new connection command through

the sign-on channel (i.e., ID 0x01). Both ends then exchange information for login,

authentication, and authorization (packets 3–5). Once the address of a BOS server

is obtained shown in packet 6 of Table 7, the client closes its current connection

and may establish a new session with the identified BOS server to finally request

IM services.

To identify an AIM session, our AIM analyzer checks the traffic stream against

FLAP and SNAC. For each incoming message Q, our analyzer first tests the size of

Q for the current message, so that it satisfies the minimum length for a well-formed

hhaving the ASCII 01 and 02 values respectively.
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field name size (B) description check
protocol: FLAP

command start 1 command start identifier, always 0x2A (’*’); yes
frame type 1 channel identifier: Signon (0x1), Data (0x2), yes

Error (0x3), Signoff (0x4)
sequence number 2 random, increase in subsequent command, controlled no

independently in both directions
data length 2 size of FLAP data in data field yes
data n data yes

protocol: SNAC
family ID 2 identify service groups including Messaging (0x4), yes

Invitation (0x6), Location Services (0x2)
sub-type ID 2 a specific service in the family yes
flags 2 optional and rarely used no
request ID 4 identify non-atomic information no
SNAC data variable parameters for the service no

Table 6. FLAP and SNAC protocols

pkt dir payload description
protocol: TCP; server (S): 64.12.161.185:5190; client (C): 192.168.5.141:14431

1 S→C |2A 01 33 52 00 04 00 00 00 01| connection in signon channel, seq. 0x3352
2 C→S |2A 01 72 3C 00 04 00 00 00 01| reply in signon channel, seq. 0x723C, ver. 1
3 C→S |2A 02 72 3D 00 1F 00 17 00 06 SNAC family and sub-type: sign-on (0x0017),

00 00 00 00 00 00 00 01 00 09 7A request (0x0006); username: zchenpoly
63 68 65 6E 70 6F 6C 79 00 4B 00| other info.

4 S→C |2A 02 33 53 00 15 00 17 00 07 family and sub-type: sign-on, reply (0x0007);
00 00 00 00 00 00 00 09 34 37 ...|

5 C→S |2A 02 72 3E 00 97 00 17 00 02 subtype: signon, logon (0x0002); screen: zc...
00 00 00 00 00 00 00 01 00 09 ...|

6 S→C |2A 02 33 54 01 AC 00 17 00 03 signon subtype: logon reply (0x03);
00 00 00 00 00 00 00 01 00 09 ...| screen: zc ...

7 C→S |2A 04 72 3F 00 00| close connection with channel ID 04

Table 7. Sample AIM packet stream

AIM message (i.e., 6 bytes) and then verifies the validity of values in fields of FLAP

shown in Table 6 with “yes” in column “check”. For messages with channel ID of

1, our analyzer further checks the first 4 bytes of its data field (i.e., field version)

to ensure that it is the valid version number (i.e., 0x00000001). For messages in

the singon channel, the analyzer interprets their data fields according to SNAC

(Table 6). Finally, the analyzer tracks interactions between the client and the server

of each AIM session to verify their conformance to protocol specifications. Such

tracking information helps confirm the application type of AIM sessions.

4.2. MSN Messenger

Core services provided by the MSN IM include user login authentication, manage-

ment of users contact lists, online state maintenance and notification, asynchronous

communication mechanisms, and information access control. MSN IM services are

provided by different types of servers each having multiple replicates for resilience.

Dispatch servers (DSs) initially negotiate the version of the MSN protocol (MSNP)

to be used for a specific client; this protocol can be either MSNP9 or MSNP10. The
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majority of MSN services including client authentication, user property synchro-

nization, and event notification delivery are provided by notification servers (NSs).

Switchboard servers (SSs) offer lightweight communications among users and are

predominantly used for messaging. Should a client A intend to communicate with

B, A ships a request to an overseeing NS which in turn refers A to a SS server; B

receives notification from its NS and finally, a connection is established to the same

SS.

The MSN IM protocol is ASCII/line-based and uses TCP as its transport ser-

vice. Each command begins with a case sensitive three-letter instruction followed by

zero or more parameters, and terminated with carriage-return and line-feed (ASCII

0x0A/0x0D). Parameters are normally encoded with ASCII and are separated by

whitespaces (%20) but UTF-8 encoding can be used as well. Requests are delivered

asynchronously and so multiple requests can be concurrently submitted without

waiting for responses from a server; the server should deliver either a response or

error message for each request, but not necessarily in the same order as received.

The parameter transaction ID in each command can be used to match request

and response messages. As MSN IM functions over a network, any NS can provide

authentication at TCP port 1863 by default. Clients can connect to servers via

SOCKS4, SOCKS5, or HTTP proxy as well. With the exception of the authentica-

tion sequence in which passwords are MD5-encrypted, all messages are transferred

in clear text, making it easy for our analyzer to dissect pertinent MSN IM sessions.

# dir message description check
protocol: TCP; server (S): 207.46.106.75:1863; client (C): 192.168.5.141:4370

1 C→S VER 4 MSNP10 MSNP9 CVR0 ver supported: NSNP9, MSNP10; yes
transaction ID (i.e., TrID): 4

2 S→C VER 4 MSNP9 CVR0 reply to request with yes
TrID 4, use ver. 9

3 C→S CVR 5 0x0409 winnt 5.1 i386 request with TrID 5, client’s yes
platform info.

MSNMSGR 6.1.0207 MSMSGS client’s MSN version
username@hotmail.com user handler

4 S→C CVR 5 6.0.0602 5.0.0527 1.0.0000 response to request with TrID 5, yes
http://download.microsoft.com specify dispatch server

5 C→S USR 6 TWN I username@hotmail.com user ID and security package yes
6 S→C USR 6 TWN S lc=1033,id=507, information for authentication yes

tw=40,fs=1, ...

Table 8. A typical MSN IM session

Table 8 shows a typical MSN messenger session. The first client command VER

in message 1 sets its TrID to be 4 and message 2 in its respective reply reciprocates

with the same TrID. At first, client and server execute the version negotiation

protocol to ensure that they both support the same version. The result of this

negotiation in Table 8 is the use of MSNP9 even though the client supports both

MSNP10 and MSNP9 as message 1 depicts. The client also provides its MSN IM

version, platform, and operating system through the CVR command. In response,

the server manifests its own MSN version and provides a URL to download the



October 10, 2007 3:46 WSPC/INSTRUCTION FILE WS-IJCIS-060191

Identification and Management of IM/P2P Sessions 23

latest MSN in messages 3 and 4. Command USR in messages 5 and 6 help exchange

information between client and server for login and authentication. To identify an

MSN IM session, our analyzer tracks every command in both data streams of the

session, checks its format, the validity of its parameters, and interactions between

requests and responses. To improve accuracy, all parameters are decoded if they

are encoded with UTF-8 standard. In addition, for any session connecting to TCP

port 80 of a host, our analyzer also inspects the data section of each HTTP POST

message for encapsulated MSN messenger traffic.

4.3. The Gnutella Network

Although earlier versions of the Gnutella protocol used flooding method to locate

files, its later versions feature a number of extensions including intelligent query

routing, SHA hashing for file checksums, file compression, partial-file sharing, and

parallel download (swarming) to improve performance. To avoid flooding storms,

the network was organized around powerful ultrapeers that form an overlay network.

The latter is responsible for the creation, organization, and maintenance of indices of

resources found in ordinary peers under the jurisdiction of each ultrapeer. Flooding is

prevented by having queries be communicated among ultrapeers. Typically, Gnutella

peers acts as both client and server (termed servents). To join a Gnutella network,

a peer has to latch to at least one active node; this involves querying a number of

known bootstrap servers or a list of ultrapeers maintained locally by the client. Once

online, a peer can communicate through messages ping, pong, query, query-hit, and

push. Ping attempts to discover active hosts in the network and its response pong

outlines a peer’s address, port(s), and information about files available. Query tries

to locate a requested resource; its receiver may respond with a query hit message

if a match is found in the receiver’s local data-set. Finally, push allows a servent

behind firewalls to contribute data to the network.

Every ultrapeer is aware of its neighbors; this neighbor list is periodically up-

dated by dispatching pings with TTLs limiting their scope to 7 hops. A node’s

pong-response is routed in reverse over the same path traveled by the just-received

ping and the response information is used to either create or update the initiator’s

neighbor list. Ordinary nodes maintain lists of active ultrapeers and update such

lists any time they attach to a supernode. The descriptor query is passed from an

ordinary node to one of its overseeing ultrapeers that returns a query hit if the

request can be locally satisfied; otherwise, the query is delegated to neighboring

ultrapeers. As soon as the requested resource has been located, a standard HTTP

session is established directly between the initiator and provider to download the

requested file making it hard to differentiate Gnutella from Web traffic.

A conversation between an ordinary node and an ultrapeer begins with a Gnutella

three-way handshake procedure. In particular, Table 9 shows two sessions initiated

by a peer: the first fails due to overload at the target ultrapeer as packet 1 and 2

depict. On the other hand, packets 3–5 show a successful join. The client’s greeting
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# dir payload of message description
client (C): 192.168.5.141:33359; server-0 (S0): 68.104.240.174:6346; server (S): 137.99.153.234:6346

1 C→S0 GNUTELLA CONNECT/0.6 request for joining Gnutella
2 S0→C GNUTELLA/0.6 503 Full Gnutella server is overloaded (code 503)
3 C→S GNUTELLA CONNECT/0.6 banner for Gnutella network

Accept-Encoding: deflate can receive compressed data;
X-Ultrapeer: False; this peer is not an ultrapeer;
X-Query-Routing: 0.1; Pong-Caching: 0.1; routing protocol and pong caching;
GGEP: 0.5; FP-1a: 128,h... Gnutella Generic Extension Protocol

4 S→C GNUTELLA/0.6 200 OK banner for Gnutella network
Accept-Encoding: deflate; can receive compressed data;
Content-Encoding: deflate; may send compressed data;
X-Try-Ultrapeers: 130.127.82.159:6346,...; other ultrapeers (in “IP:port” pair);
X-Ultrapeer: True; this peer is an ultrapeer;
X-Query-Routing: 0.1; Machine: 1,... query routing protocol

5 C→S GNUTELLA/0.6 200 OK handshake banner for Gnutella network
Content-Encoding: deflate; FP-1c: j<c ... compress data; encryption information

Table 9. Traffic generated by a Gnutella peer attempting to join the network

message contains the banner string GNUTELLA CONNECT/0.6 and a number of

key:value pairs, specifying its capabilities and functionalities. For instance, Accept-

Encoding indicates the sender can decompress incoming messages, X-Ultrapeer spec-

ifies whether the sender is an ultrapeer, while X-Query-Routing and GGEP signal a

client’s support for query routing protocol and Gnutella Generic Extension Protocol

(GGEP). Some clients even include information for authentication and encryption

as shown by FP-1a and FP-auth-Challenge of packet 3. In its response, the server in-

cludes the banner GNUTELLA/0.6 200 OK, manifests its ultrapeer status with key

X-Ultrapeer set to True, indicates acceptance of compressed messages with Accept-

Encoding set to deflate, and signals that it can compress its transmitted messages

as well by having Content-Encoding set to deflate. Authentication and encryption

related information may be included in the key FP-1b of message 4. The third step

of the handshake completes with the client sending back a message starting with

banner GNUTELLA/0.6 200 OK; subsequently, the client node can look for files

dispersed in the network. To identify a Gnutella session, our analyzer examines all

banner strings (i.e., GNUTELLA CONNECT/0.6 and GNUTELLA/0.6) appearing

in messages and the interactions between the peers of the session (i.e., GNUTELLA

CONNECT/0.6 from client followed by GNUTELLA/0.6 from server and finally

GNUTELLA/0.6 from client). In addition, it dissects some of the <key:value> pairs

as information contained in such pairs helps in the analysis of subsequent messages.

More specifically, information in key X-Ultrapeer is used to construct a list of po-

tential Gnutella super nodes, which can be used to further verify the application

types for sessions involving hosts in the list.

4.4. The FastTrack Protocol and KaZaA Network

The FastTrack protocol used by KaZaA, Grokster, and iMesh P2P systems, is a

proprietary suite that integrates a number of advanced features including peer hier-

archy, resumption of interrupted downloads, and simultaneous downloading of file
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segments from multiple sites. Joining peers are classified as either super or ordinary-

nodes based on system characteristics. Supernodes act as directory facilities for sets

of regular nodes. An ordinary node initially resorts to a hard-coded list of supern-

odes to join the network; each supernode is described by the template <IP:port>.

Once attached, a peer may update its supernode list to better reflect its current

environment. At the same time, the node uploads to its supernode a list of its files

to-be-shared. A query is routed to the supernode of the requesting peer for iden-

tifying a site holding the sought file; eventually, the HTTP protocol helps transfer

the file from the holding peer to the requesting peer. To prevent the development of

open-source clones and defeat detection by security systems, FastTrack encrypts all

messages among supernodes and most messages from ordinary nodes to supernodes,

making it challenging to identify such traffic. Even so, reverse engineering is still

possible for communications between ordinary nodes and supernodes since initial-

ization data for encryption algorithms –not public key encryptions– are dispatched

in clear text.

KaZaA uses both TCP/UDP layers and Table 10 shows the format for its hand-

shake request, handshake response, ping, and pong messages. An ordinary node may

try multiple methods to join the network. For instance, it may use flooding by

sending UDP-pings to all its supernodes, may attempt to establish TCP connec-

tions with multiple supernodes at the same time and expect a response from any one

of them, or use UDP and TCP alternatively until a working supernode is located.

When a TCP-connection gets established, the initiating peer sends a handshake

msg type field name size description check
handshake rand 4 random number no
request (TCP) seed 4 cipher seed, used to encode “type” and no

derive encryption key
type 4 encryption type ([0x29, 0xBF] before yes

encoded with “seed”)
handshake seed 4 cipher seed, used to encode “type” and no

derive encryption key
response (TCP) type 4 encryption type ([0x29, 0xBF] before yes

encoded with “seed”)
ping (UDP: message type 1 0x27 for “node ping” message yes
peer to supernode) type 4 encryption type in [0x29, 0xBF] yes

unknown 1 always be 0x80 yes
network name n zero-terminated network name (“KaZaA”) yes

pong (UDP: message type 1 0x28 for “node pong” message yes
supernode to peer) type 4 encryption type in [0x29, 0xBF] yes

unknown(1) 1 always be 0x00 yes
unknown(2) 5 purpose unknown no
network name n zero-terminated network name yes

Table 10. KaZaA’s syntax for handshake request, handshake response, ping, and pong messages

request to the supernode containing a random number (4 bytes), a seed (4 bytes)

for encoding and encryption purposes, and the encryption type (4 bytes), which is

encoded with the help of the seed. The encoding algorithm in question has been

reverse engineered 26,58. Should the supernode accept the request, it ships back a
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handshake response containing its own encryption seed and type, while the latter

is encoded with the same algorithm as that of the ordinary node. Based on the

seeds provided by both ends of the session, the supernode and the ordinary node

can compute encryption keys for their incoming and outgoing data streams, and all

subsequent messages are encrypted using the resulting keys 26,58.

# dir payload field name content description check
protocol: UDP; client (C): 192.168.5.141:3037; server (S): 66.130.102.247:2713;

1 C→S |27 00 00 00 message-type 27 ping msg to join KaZaA yes
A9 80 4B 61 type 0x000000A9 encryption type (0xA9) yes
5A 61 41 00| unknown 80 purpose unknown yes

network-name KaZaA network name yes
2 S→C |28 00 00 00 message-type 28 “pong” message (0x28) yes

A9 00 35 2C type 0x000000A9 encryption type yes
5C 34 F3 4B unknown(1) 00 purpose unknown yes
61 5A 61 41 unknown(2) 0x352C5C34F3 purpose unknown no
00| network-name KaZaA network name (6 bytes) yes

Table 11. A typical UDP-based portion of KaZaA session with ping and pong messages

When the underlying transport protocol is UDP, the encryption type is trans-

ferred in clear-text, making it straightforward to identify a UDP-based KaZaA

session. We show a sample UDP-based KaZaA session with the supernode using

UDP port 2713 instead of the default port 1214 in Table 11; the ordinary node

sends a ping and the supernode answers with a pong. Both sides of the session

agree to use encryption type 0xA9 among the 100 types of encryption available

for their subsequent communications. To identify a UDP- or TCP-based KaZaA

session, our analyzer scans messages for their syntax and semantics conformance to

the FastTrack protocol. The analyzer examines values appearing in fields specified

in column check of Tables 10 and 11 for legitimate values. Since all messages except

the first two in a KaZaA session (TCP or UDP) are encrypted and cannot be dis-

sected without being decrypted first, our protocol analyzer always dissects the first

two messages of each session according to the FastTrack protocol for establishing

potential KaZaA traffic.

4.5. The Skype VoIP System

As a voice over IP (VoIP) application based on P2P technology, Skype has gained in

popularity after its initial launch 30. Since 2003, more than twenty different Skype

versions have been released. To facilitate inter-operations, many VoIP systems are

constructed according to the standard specification of Session Initiation Protocol

(SIP). In contrast, Skype resorts to proprietary protocols for signalling and me-

dia delivery. In addition, communications in Skype are obfuscated or end-to-end

encrypted with strong cryptographic algorithms such as RSA, AES, and RC4. Fur-

thermore, its ability to detect firewalls and NATs offers Skype the capability to

penetrate and circumvent network security systems 5,20. Finally, with the help of

information on network environments and security restrictions, Skype automatically
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adjusts its behavior including transport services (TCP and/or UDP), communica-

tion ports, and message exchange procedures avoiding all together its manual user

configuration.

In a way reminiscent to KaZaA, Skype uses an overlay P2P network with three

main components: login server (LS), supernode (SN), and Skype client (SC). LSs

authenticate SCs and grant the latter access rights to the network. SNs route SC-

messages to appropriate destinations, relay login messages between LSs and SCs,

and handle traffic between SCs should the latter are NAT/firewall-restricted. The

SCs are essentially the user interface to Skype functionalities including call initia-

tion, instant messaging and file transferring 7. To join the network, an SC attempts

to contact an SN whose information is locally stored and kept up-to-date. Informa-

tion on several bootstrap-SNs is hard-coded into Skype binaries to help first-time

SCs obtain updated lists of currently available SNs. The SC transport service can

be either TCP or UDP i depending on the network environment. If resident behind

security devices, a client attempts to initiate connections to an SN using TCP ports

443 (HTTPS) and 80 (HTTP). In general, Skype uses arbitrary ports when UDP

is the transport option; the only exception to this rule is when bootstrap-SNs are

contacted and in this case port 33033 is used.

Through analysis and correlation of Skype sessions generated by various ver-

sions, we have established that each Skype UDP message has a header consisting

of a frame ID (2 bytes) and function type (1 bytes) and a message body whose

size may vary and in most cases its content is obfuscated with the help of the RC4

encryption method. Frame IDs are used to distinguish different sessions while func-

tion types determine the constructions and interpretations of message bodies. In

Skype signalling, UDP messages are mainly used for NAT detection and SN avail-

ability probing; the former is deemed as heavy-weight probing since it consists of

multi-round information SCs and SNs exchanges while the latter is a light-weight

procedure as it involves only a single messaging round. Although such UDP probes

are very similar among different Skype versions, the size of their messages may

vary. Table 12 depicts the communications between a SC/SN pair in Skype version

1.3.0.60 at the very beginning of an SC execution. For comparison, we use the same

setting for the traffic in Tables 12 and 3.

Our traffic analysis confirms that the first UDP message by SCs is always 14

bytes for all versions upto 2.0 as shown in Table 12. However, this initial message

shows varying sizes after version 2.0. Table 3 shows a first UDP message with size

20 bytes for example. A similar observation was made as far as the size of the second

SC-originating message is concerned. The size was fixed to 23 bytes in versions prior

to 2.0. Nevertheless, what all versions share in common is that the size of second SC

message is always 5 bytes larger than the first one. The first SN message is 11 bytes

long and the length of the second either 18 or 51 or 53 bytes. The function type of

inot mandatory.
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# dir len payload description
protocol: UDP/TCP; SC: 192.168.1.66:3993/5422; SN: 71.207.146.44:12653

1 SC→SN 18 |37 91 02 3C 79 79 FE 27 frame ID: 0x3791; function type: 0x02,
64 A3 EF B1 38 15 19 60 obfuscation msg; initialization vector:
B2 AB| 0x3C7979FE; CRC32: 0x2764A3EF;

2 SN→SC 11 |37 91 17 47 87 44 F6 6D frame ID: 0x3791; func. type: 7 (0x17&0xF),
3F 3B 99| NACK; src: 0x478744F6; tag: 0x6D3F3B99;

3 SC→SN 23 |37 91 03 01 6D 3F 3B 99 frame ID: 0x3791; function type: 0x03,
47 CF 92 2C 27 64 A3 EF retransmission; tag:0x6D3F3B99;
F2 9C D5 13 C6 4A 5F| SN:0x47CF922C (71.207.146.44);

4 SN→SC 18 |FD 09 02 91 89 6E 9C frame ID: 0xFD09; function type: 0x02,
04 11 F5 8A E0 CE 41 an obfuscation message; length = 18 indicates
62 D3 63 AD| joining Skype successfully

5 SC→SN 0 (SYN) TCP session to SN on same port (i.e., 12653)
6 SN→SC 0 (SYN|ACK)
7 SC→SN 0 (ACK)
8 SC→SN 14 |10 EA 08 5D AE 92 7B encrypted data

97 1D 6C 10 E3 7B CF|

Table 12. Joining the Skype network by a SC v.1.3.0.60

packet 3 is 0x03, indicating a retransmitted message by SC; in addition to using

the same frame ID, this message also echoes back the 4-byte tag in the NACK

and includes the IP address of the SN (i.e., 71.207.146.44). The SN-dispatched

packet 4 has a different frame ID from packet 3 and its message body is entirely

obfuscated. However, as our analysis shows, the message with length of 18 bytes

indicates that the particular SN can serve the requesting client. The SC establishes

a TCP connection with this SN on port 12653 as packets 5 to 8 of Table 12 show.

In contrast, packet 4 of Table 3 is 53 bytes long, implying that the just-contacted

SN is busy and so the SC request is redirected to other SNs as packets 5 and 6

demonstrate.

Algorithm 4.1 Protocol Analyzer for Skype UDP traffic
1: P is the newly arrival packet, S and I are session and data stream that P belongs to
2: ID ← P [0, 1]; where P [i, j] means the sequence between ith and jth bytes of P starting from

zero; type ← (P [2] & 0x0F); OBFUSCATE ← 0x02, NACK ← 0x07;
3: if (I is from client to server in session S) then

4: if (P is the first packet of I in session S) and (type is OBFUSCATE) and (size of P >=
18) then

5: ID is store in I; TYPE of S is set to Skype

6: end if

7: else

8: if (type is NACK) and (length of P is 11) and (ID is the same as that stored by client)
then

9: CONFIRM of S is set and a Skype session is detected
10: else if (type is OBFUSCATE) and (length of P is 18, 51, or 53) then

11: CONFIRM of S is set and a Skype session is detected
12: end if

13: end if

14: if (both TYPE and CONFIRM of S is set to Skype) then

15: application of S is set to Skype

16: end if

17: P is handed over to Traffic Arbitrator (TA)
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Skype services such as authentication, buddy search, and call initiation follow

different protocols and consequently generate different sequences and/or templates

of traffic. As these sequences demonstrate diverse characteristics and share few com-

monalities, we have no other choice but design various mini-analyzers that cover

all aspects of Skype generated traffic. For brevity, we only present in Algorithm 4.1

the procedure followed by our framework to specifically identify Skype UDP prob-

ing discussed above. This mini-analyzer is based on traffic correlation to identify

the probing procedure. The first client-message of a session is examined to en-

sure that its payload is longer than or equal to 18 bytes and its function type is

“OBFUSCATE” (i.e., 0x02). A positive outcome tentatively marks the session as

Skype. Then, server-dispatched messages are used to finally verify the session. For

heavy-weight UDP probing, the first message from the SN always has function type

of NACK and payload size of 11 bytes as mentioned earlier. In contrast, the SN

typically uses function type of “OBFUSCATE” in light-weight UDP probing. Algo-

rithm 4.1 handles both heavy and light-weight probing appropriately and confirms

pertinent sessions accordingly.

5. Experimental Evaluation

We have implemented our IM/P2P framework in C and incorporated it into Forti-

Gate’s IPS module. FortiGate is a stand-alone network device providing firewall,

anti-virus, and IDS/IPS functionalities 34. Its modularized architecture allows for

the seamless coupling of new packages and forms the basis for its multi-modal op-

eration. In particular, we have integrated our framework into FortiGate-800 that

features 4 Gigabyte main memory and is prorated to handle upto 400Mbps traffic

and can maintain up-to one million connections per second. We have established the

correct operation of the suggested framework in the controlled testbed environment

of Figure 3 and evaluated its operation through deployment in real-world networks

as well. Section 5.1 outlines our baseline experimentation while section 5.2 presents

our scalability experimentation in our controlled test environment, and finally Sec-

tion 5.3 discusses representative outcomes of the framework’s deployment in real

networks.

While working with the controlled testbed environment of Figure 3, we use

a number of machines to either execute clients for various IM systems or act as

peers –ordinary nodes or supernodes– for P2P networks. All test machines use

Windows2000 or Linux and connect to the FortiGate via a 100/1000Mbps switch.

To verify the behavior of our framework, we used the traffic sniffer Ethereal 22

on a dedicated machine (shown as Sniffer in Figure 3). The sniffer captures data

exchanged between test machines and our framework.

5.1. Baseline Behavior of Our Framework

To establish the baseline operation of our framework in the presence of port hopping

and/or use of dynamic ports, we experiment with all our IM/P2Ps analyzers 8. For
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brevity, we discuss our findings involving a Yahoo!-client login session as well as a

session with a KaZaA-client.

We install a Yahoo!-client on test machine 1, and configure it with no firewall

connection-type implying that its user believes there is no security device involved.

In actuality though, we position FortiGate between the internal network where the

Yahoo!-client resides and the external network.

• We initially set the framework to forward all identified Yahoo!-sessions and

use the Sniffer to capture all communications. We show portion of the
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ensued traffic in Table 13. Using the normal TCP three-way handshake

procedure, the client establishes a TCP connection with the Yahoo!-IM

server at its default 5050 port. In its first subsequent message in packet 1,

the client dispatches a “service verify” request (with type 0x4C) along with

its supported version (0x0B) and status (“available”). Through its Yahoo!

analyzer, our framework tentatively marks the connection as Yahoo! IM

session. As soon as the server replies with packet 2 accepting the request

and granting access rights, our framework correlates the information of

packet 2 with what it has already “seen” in the other direction of the

session and confirms the session type. As the configured counter-action

is set to forwarding, the session “flows” through the framework with no

obstruction.

# dir payload description
protocol: TCP; client (C): 192.168.5.40; server (S): 216.155.193.145;

counter-measure on identified Yahoo! sessions: forwarding
1 C:4000→S:5050 YMSG|00 0B 00 00 00 00 00 4C 00 client msg; ver: 0x0B;

00 00 00 00 00 00 00 00| type: VERIFY (0x4C);
2 S:5050→C:4000 YMSG |00 00 00 00 00 5C 00 server reply; ver: 0x00;

57 00 00 00 01 7A 60 ...| type: AUTHENTICATE (0x5C);
counter-measure on identified Yahoo! sessions: blocking

1 C:4058→S:5050 YMSG|00 0B 00 00 00 00 00 4C 00 client message: ver: 0x0B;
00 00 00 00 00 00 00 00| type: VERIFY (0x4C);

2 C:4058→S:5050 (FIN|ACK) connection closed by client side
3 C:4063→S:23 YMSG|00 0B 00 00 00 00 00 4C 00 ...| Telnet port
4 C:4064→S:80 YMSG|00 0B 00 00 00 00 00 4C 00 ..| HTTP Web server
5 C:4065→S:21 (SYN) FTP control port
6 C:4066→S:25 YMSG|00 0B 00 00 00 00 00 4C 00 ...| SMTP
7 C:4067→S:119 YMSG|00 0B 00 00 00 00 00 4C 00 ...| NNTP
8 C:4068→S:20 YMSG|00 0B 00 00 00 00 00 4C 00 ...| FTP data port
9 C:4070→S:5050 YMSG|00 0B 00 00 00 00 00 4C 00 ...| standard port

Table 13. Procedure for a Yahoo!-client to join the network at the presence of our framework

• We next configure FortiGate to block all identified Yahoo!-sessions. While

repeating the above Yahoo!–IM login process, we generate the traffic shown

in the second portion of Table 13. By correlating information from the

client-initiated request and the server’s reply –the latter not shown in Ta-

ble 13,– our framework confirms the session as Yahoo!-IM and blocks it. The

client issues packet 2 terminating the attempt to port 5050 after a specified

time period elapses and subsequently tries to contact the server over ports

23, 80, 21, 25, 119 and 20. These ports are for the provision of telnet,

Web-server, FTP-control, SMTP, NNTP, and FTP-data services respec-

tively. Through correlation of streams, FortiGate identifies and blocks all

attempted Yahoo! IM sessions regardless of the ports attempted.

It is worth pointing out that the Yahoo!–server does not listen to TCP-

port 21 and so the connection attempted by packet 5 is not successful

as the normal TCP three-way handshake procedure fails. In contrast, the
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server provides services over ports 23, 80, 25, 119, and 20; the Yahoo!-

client can dispatch messages to the server once TCP connection has been

established. Moreover, the payloads of packets 3, 4, 6, 7 and 8 start with

YMSG which is the banner for Yahoo!–IM messages indicating that no

message encapsulation occurs.

• By setting FortiGate’s counter-measure to reset connection for identified

IM/P2P sessions, we observe that Yahoo! sessions similar to those shown in

Table 13 are terminated with TCP-Reset packets dispatched by our module

instead of the normal disconnection procedure. Similarly, our framework

appropriately delivers all prescribed actions in all occasions; these actions

also include reset client, reset server, block source-IP, and block destination-

IP with marginal time overheads.

Next, we configure the Yahoo!-client on test machine 1 with firewall with no

proxy connection-type to have Yahoo!-IM use its encapsulation technique to “pen-

etrate” the firewall. By repeating the above testing procedure multiple times and

with the help of the Sniffer we capture the resulting traffic, a portion of which is

shown in Table 1. If we compare the second (TCP) session of Table 1 with that

represented by packet 4 of Table 13, different patterns occur. Although in both

cases the respective servers listen to TCP-port 80, the session shown in Table 1 has

its data section encapsulated in HTTP messages; in addition, a single Yahoo!–IM

message is split into multiple TCP packets transport as the first client-initiated

message of Table 1 depicts. Our framework identifies correctly all such Yahoo!–IM

sessions and delivers appropriate counter-action.

We derive similar findings when experimenting with the entire range of IM/P2P

systems 8 as our framework is based on layer-7 analysis. The latter helps successfully

deal with encapsulation to IM/P2P 2p protocols, spread of application messages into

multiple transport packets, placement of multiple messages in a single packet as well

as use of evasion techniques in the test-environment of Figure 3.

To assess the capability of our framework on the recognition of P2P sessions

and the use of dynamic ports in the context of our test environment, we monitor a

KaZaA-client connected to a respective overlay-network. Pertinent client-to-server

connections are facilitated with the help of a list of approximately 200 supernodes

–in the format of <IP:port>– found in the client’s registry j. We initially configure

FortiGate to forward all KaZaA traffic. While operating the client for a long time,

we extract the content of its supernode list every 30 minutes; we then aggregate this

data to obtain the statistics of Figure 4 regarding the use of ports versus nodes. The

figure clearly shows that only a very small fraction of supernodes –the long peak

that corresponds to only 1.6%– uses the default port 1214 for service. Most of the

KaZaA supernodes use ports within the [1024, 4054] range; although some small

peaks exist in Figure 4, the use of dynamic ports appears to be relatively uniform.

jthe list is located at HKLM/Software/KaZaA/ConnectionInfo/KazaaNet and is updated as dis-
cussed earlier.
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By changing FortiGate’s action to blocking and with the help of the Sniffer, we

establish that our framework successfully intercepts and drops all KaZaA traffic

despite the ever changing use of ports and supernodes by the client.

5.2. Scalability and Performance Under Diverse Synthetic

Workloads

To ascertain the capabilities of our framework in handling very large numbers of

concurrent IM/P2P sessions and successfully tracking the states of such sessions,

we use the testbed of Figure 5. In this context, we recreate IM/P2P flows from the

Sniffer-captured sessions of section 5.1 9 and feed them into FortiGate with the

help of an in-house developed IPS testing-system called Tester. The above flows

are termed foreground traffic. We generate such foreground traffic by either using a

single-type of IM/P2Ps flow or mixing a number of IM/P2P streams with different

ratios. As our objective is to establish the behavior of our framework in light of

diverse workloads, we also inject non-IM/P2P streams into the testbed of Figure 5.

Non-IM/P2P streams make up what we call background traffic and are generated

with the help of CAW WebAvalanche and CAW WebReflector devices, typically

used for system and network equipment testing 74. CAW WebAvalanche and CAW

WebReflector help create HTTP requests and replies to emulate the behavior of In-

ternet users and “ordinary” traffic characteristics in terms of intensity and duration

of sessions. These HTTP requests and replies feature on average payloads of 200

and 1000bytes respectively 53.

While performing stress-tests with the testbed of Figure 5, we vary the number

of concurrent IM/P2P sessions from 1 to 400,000 and that of HTTP traffic from

10,000 to 750,000 to investigate the scalability of our framework. The selection of

the above session ranges that we experiment with is bounded by the 4Gigabytes

memory used by FortiGate-800. In particular, if nf , nb represent the number of

foreground and background sessions and Sf , Sb express in bytes the main-memory

requirements for managing single foreground/background sessions in our framework,

then the total memory required is M=nfSf+nbSb bytes. Background sessions are

permitted to flow through the device without further inspection from our frame-

work after only a few messages have been analyzed. On the other hand, foreground

sessions may take upto the maximum allocated buffer space if IM/P2P traffic is user-

configured to be logged for forensic analysis k. In the worst case, we may have only

IM/P2Ps traffic coming into the framework requiring M
′

=nfSf bytes; should nf is

1,000,000 and in the average each session uses Sf=4Kbytes, we are faced with buffer

space depletion. In a different scenario where 50% of the concurrent connection are

IM/P2Ps -originated, nf=500,000, ns=500,000, and on average bf=27Kbytes and

Sb=3Kbytes, we exceed the available buffer space. The above analysis underlines

the fact that the memory of FortiGate-800 may become the performance bottleneck

kOtherwise, only the first 3KBytes of an IM/P2P session is recorded.
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once we reach one million concurrent sessions.

In the results we discuss here, we use the Yahoo!–IM session segment depicted

in the second portion of Table 1 to create the foreground traffic. The packets of

this segment are split into two parts: the first containing the normal TCP three-

way handshake process (not shown in Table 1) and packets 1–2. The second part

consists of all remaining packets as well as the normal disconnection procedure (also

not shown in the Table 1). The Tester replays the trace-derived packets to FortiGate

with source and destination IP/port information modified on-the-fly l. We configure

our framework to generate an alert when the TYPE of a session is tentatively marked

as IM/P2P and to yield a second alert when the CONFIRM-ation of a session finally

occurs.

Table 14 presents the results for tests we have carried out in conjunction with

the Yahoo! traffic. We obtained similar results while experimenting with different

types of traffic including MSN, AIM, KaZaA, and Skype as well as combinations but

we restrict our discussion here for brevity. In test case 1, the Tester replays the first

half of the trace and pauses. Then, WebAvalanche opens varying number of HTTP

sessions to WebReflector as shown in the columns of Table 14 (e.g., column “10,000”

indicates ten thousand simultaneously open sessions of background HTTP traffic

lto comply with the actual features of the testbed.
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are generated). WebReflector reciprocates for each request received and responds

with a Web page without any delay. 500ms after its pause, the Tester resumes its

replay procedure by injecting the second half of the foreground traffic into Forti-

Gate. We observe the behavior of FortiGate and compute its detection precision,

which is defined as the ratio between Yahoo! sessions identified by FortiGate and

total replayed Yahoo! sessions. The first row of Table 14 shows the outcome of our

framework as the number of HTTP sessions gradually increases upto 750,000.

# Description 10,000 75,000 100,000 500,000 750,000
1 1 Yahoo! session, no HTTP delay 100 100 100 100 100
2 1 Yahoo! session, HTTP delay 100 100 100 100 100
3 10,000 Yahoo! sessions, no HTTP delay 100 100 100 100 100
4 10,000 Yahoo! sessions, HTTP delay 100 100 100 100 100
5 100,000 Yahoo! sessions, no HTTP delay 100 100 100 100 100
6 100,000 Yahoo! sessions, HTTP delay 100 100 100 100 100
7 200,000 Yahoo! sessions, no HTTP delay 100 100 100 100 100
8 200,000 Yahoo! sessions, HTTP delay 100 100 100 100 100
9 300,000 Yahoo! sessions, no HTTP delay 100 100 100 100 100
10 300,000 Yahoo! sessions, HTTP delay 100 100 100 100 99.90
11 400,000 Yahoo! sessions, no HTTP delay 100 100 100 100 99.80
12 400,000 Yahoo! sessions, HTTP delay 100 100 100 100 99.00

Table 14. Session identification rates of the proposed framework under diverse workloads

Test case 2 is identical to 1 except that the WebReflector now delays its response

to each HTTP request by half a second, attempting to lengthen the HTTP sessions

and therefore forcing FortiGate to endure a much longer period with sustained con-

current sessions. In case 3, the Tester replays the first portion of Yahoo! traffic

10,000 times simultaneously. When the Tester pauses, the WebAvalanche creates

concurrent HTTP sessions similarly to those of case 1 and the WebReflector re-

sponds for every received request without delay. Subsequently, the Tester resumes

its replay process and feeds the second half of the trace into the testbed 10,000

times. Case 4 builds on 3 but there is a 0.5 second delay between every HTTP reply

and request. Cases 5, 7, 9, and 11 are similar to 3 but the number of Yahoo! sessions

ranges from 100,000 to 400,000. Likewise, cases 6, 8, 10 and 12 are similar to 4 with

the number of IM/P2P sessions varied from 100,000 to 400,000.

The results of Table 14 indicate that our proposed framework correctly identifies

Yahoo! streams as long as active sessions are under one million regardless of the

types and mixtures of the IM/P2P and non-IM/P2P sessions. When the workloads

feature in excess of one million sessions and significant time delays are introduced

between HTTP requests and replies, which effectively lengthens the period of sus-

tained concurrent sessions, FortiGate fails to properly identify a limited number of

Yahoo! sessions (cases 10-12 with 750,000 background sessions). It is worth men-

tioning however that while examining FortiGate’s event-log, we have established

that even missed Yahoo! sessions are still tentatively tagged as such. By simply

using an alternate session eviction policy rather than the default LRU policy and

staging-out sessions with application type non-IM/P2P first, we have attained 100%
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accuracy detection in all above cases.

# Description attempted sess. min. t max. t avg. t
1 no IM/P2P traffic without framework 2,278,563 109 135 115
2 no IM/P2P traffic with framework 2,278,500 109 135 115
3 10Mbps IM/P2P traffic with framework 2,286,445 109 192 120
4 20Mbps IM/P2P traffic with framework 2,281,437 109 377 121
5 30Mbps IM/P2P traffic with framework 2,279,526 109 1,405 124
6 40Mbps IM/P2P traffic with framework 2,280,431 109 2,112 125

Table 15. Framework under constant 200Mbps HTTP-traffic and varying intensity IM/P2Ps traffic

Our next goal is to quantify the impact of our framework on the response time

of normal applications as well as its overhead on non-IM/P2P sessions. We first

remove our IM/P2Ps module from the FortiGate device of Figure 5 so that we

can establish the baseline performance of HTTP traffic created by WebAvalanche

and WebReflector. The HTTP traffic generated by both WebAvalanche and We-

bReflector is sustained at 200Mbps with an average Web page size of 1,000 bytes.

The foreground traffic is generated with the help of the Tester, which repeatedly re-

plays, with the specified rate in the range [0, 40]Mbps, the IM/P2P Sniffer–captured

traces of Section 5.1 and shown at Tables 1, 2, 7, and 9. In addition, our frame-

work is configured to forward all identified IM/P2P sessions. Then, we integrate our

module into FortiGate and repeat the experiments. In both settings, we measure

the time elapsed between the launch of an HTTP request by WebAvalanche and

the time the corresponding WebReflector-originating-reply arrives back. Table 15

shows the number of HTTP-sessions attempted as well as the minimum, maximum

and average response times per request in microseconds. Case 1 of Table 15 shows

the response time when only HTTP traffic is involved and our framework is not

present in the testbed. The results for cases 2–6 are compiled while varying the

intensity of IM/P2P traffic from 0 to 40Mbps in the presence of our framework. In

all our experiments here, there are no failed HTTP-sessions, our framework poses

only minor increases in the average rates compared with the avg. time of case 1,

and the minimum response times appear constant. However, the framework forces

the response time to be occasionally as long as 2,112 microseconds when 40Mbps

of IM/P2P traffic is injected into the testbed. This deviation occurs only when

the IM/P2P traffic accounts for the 17% of the total traffic (i.e., 40/240) and the

combined traffic is 60% of the prorated bandwidth of the device(i.e., 240/400).

5.3. The Effectiveness of Suggested Framework in the Real World

We have evaluated our IM/P2P identification framework in real-world settings and

in this section we discuss representative findings from the deployment of IM/P2P

-identification-enabled FortiGate-800s at the edge of the network of three higher ed-

ucation institutions in France, P.R. of China and the U.S.A. In collecting network-

traffic data, we used the layout of Figure 6 to capture, store and forward both
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confirmed and suspicious IM/P2P sessions to a Threat Analysis Center (TAC) for

further verification and signature crafting purposes. To help discover new types

of attacks and better ascertain the false-negative rate of FortiGate-800, we use a

Suspicious Traffic Logger (STL) module to log streams and/or sessions that are

potential yet not resolved/known IM/P2Ps . Such suspicious IM/P2P traffic is iden-

tified through various criteria including flows to default ports of already known

IM/P2P applications, streams marked tentatively by our framework but lacking

confirmation information, and sessions having obtained with only partial signature

matching. Regional devices periodically transfer data of both detected IM/P2P and

suspicious connections to TAC where the actual sampling and analyses of the traffic

take place.

Table 16 shows session statistics derived with the help of the deployed devices for

traffic ultimately forwarded to TAC during the period of August 1st to 5th, 2006.

The table presents both confirmed and suspected instances of top-ranked IM/P2P

Day 1 Day 2 Day 3 Day 4 Day 5
IM/P2P cfm./susp. cfm./susp. cfm./susp. cfm./susp. cfm./susp.
eDonkey 67981/339908 57280/265785 60470/348007 72013/269200 71259/296284
BT 37604/188022 30572/170400 40642/181011 40185/150980 39461/152523
Gnutella 22884/114420 17774/115476 23320/88193 18500/94026 19032/105366
Skype 7442/37214 6464/35332 7557/32800 7997/34273 7890/28881
KaZaA 4905/24528 4756/18517 3745/22410 4971/26647 4667/24101
Yahoo 2050/10250 1751/9480 1838/9689 1662/8859 1565/11081
IRC 1777/8884 1596/8925 1655/8875 1496/8801 1681/7410
MSN 1727/8635 1845/7356 1750/6840 1699/9114 1320/7408
D-Connect 648/3244 635/2918 661/3181 662/3108 567/2864
AIM 214/1070 204/1086 215/881 193/869 184/1089

Table 16. IM/P2P detected by our framework operating in networks in France, P.R. China and
the U.S.A.

sessions for each observation day in columns cfm. and susp. respectively. The top-

three IM/P2P types of identified sessions are due to eDonkey, BitTorrent (BT), and

Gnutella whose cumulative number of sessions is by far larger than all remaining

systems including KaZaA and Skype. Moreover, streams generated by P2Ps are

exceedingly more voluminous than their IMs counterparts highlighting their ever

increasing popularity and wide-spread use. Table 16 shows that the number of

confirmed sessions for any specific IM/P2P type does not change significantly during

the observation period implying that IM/P2P users have consistent behavior. For

instance, the eDonkey sessions appear with a mean of 65,800 sessions per day and

standard deviation 5,901 sessions. Similar observations are drawn for other IM/P2P

types as well as suspicious sessions. It is worth pointing out that the volume of

IM/P2P traffic in the above environments remains relatively stable on a daily basis

and typically makes up about 10% of the total traffic.

Forwarding captured sessions to TAC offers the opportunity to examine in detail

and verify the nature of sessions. In addition, it helps with the identification of new

strains/versions of IM/P2P systems. As it is clearly infeasible to manually inspect
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every session, we resort to sampling and select 4,000 from those confirmed IM/P2P

sessions. The sample maintains the same ratio of confirmed IM/P2Ps types in the

forwarded traffic; within each type, sessions are selected randomly. For instance, we

select 1,063 sessions from those confirmed BitTorrent flows as overall BitTorrent has

a 27% session-presence (i.e., 188,464 BitTorrent-confirmed over the total number

of 708,966 IM/P2P -confirmed sessions). Through manual examination by domain

experts at TAC, we establish all IM/P2P sessions marked by the framework are

indeed generated by IM/P2P systems.

From the captured sessions in the same period, we also randomly choose 4,000

suspect, yet not identified sessions. We carry out manual inspection and we draw

the following observations:

(1) Sessions not tentatively marked by our framework are verified that they are

unlikely to be generated by known IM/P2P systems.

(2) Among those tentatively marked sessions, 15% use TCP as their transport

service, and most of the TCP sessions use well-known ports such as 80 and

443. Our exhaustive manual evaluation reveals no true IM/P2P steams in these

sessions.

(3) The UDP sessions are approximately five times more common than their TCP-

based counterparts. By and large, these sessions are created by P2P applications

using UDP messages to probe for the availability of servers and/or supernodes.

UDP-probing to inactive nodes, also known as churn effect 75, produces no in-

formation for our framework to conduct traffic correlation and so to successfully

confirm the application type.

In summary, our TAC-based analyses showed that the proposed framework gen-

erates no false positives/negatives for IM/P2P sessions. In its default mode, the

module that implements the framework does not report failed attempts by IM/P2P

applications to establish sessions. However, this can be addressed by configuring the

module to produce alerts for tentatively marked UDP IM/P2P sessions in addition

to all confirmed ones.

5.4. Using Other Open-Source Tools for Detecting IM/P2P

Sessions

A few open-source projects can be used to detect IM/P2P sessions including Snort,

Bro and IPP2P 59,55,21,57. Snort and Bro have been designed as intrusion detec-

tion/prevention systems (IDSs/IPSs) and base their operations on pattern matching

methods. Through specially-crafted signatures, they can also detect IM/P2P traffic.

Snort’s steadily increasing user-group has created a wealth of pattern signatures.

From such signatures currently available in the “out-of-the-box” configuration, only

2% can help in the detection of IM/P2P activity generated by AIM, Yahoo!, and

BitTorrent. Table 17 in Appendix 8 presents a number of such Snort signatures. In

its official build, Bro can only detect Gnutella and IRC and its capability of iden-

tifying IM/P2P traffic heavily relies on signatures imported from Snort; Table 18
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shows pertinent signatures. On the other hand, the main objective of IPP2P has

been to exclusively detect P2P systems exploiting telltale patterns that appear in

ensued traffic. A few rules that IPP2P uses to carry out its session identification

appear in Table 19. While experimenting with the signatures of Tables 17, 18 and 19

in both synthetic workloads and traces, we observe the following regarding Snort,

Bro, and IPP2P:

• their capabilities mostly focus on the transport packet level rather than the

application layer messages. Despite the fact that both Snort and Bro have built-

in TCP reassembly features, their IM/P2P -related signatures do not exploit

such features inevitably affecting their identification accuracy.

• their IM/P2P –related signatures are by and large designed to detect traf-

fic on specific ports so that false positives are avoided. For example,

source/destination ports are required in Snort signatures 1991, 2450, and 1382;

the same applies for Bro signatures as well. Clearly, this is disadvantageous.

• they are ineffective when it comes to detecting IM/P2Ps system that of-

fer different services via multiple transport mechanisms; the latter create di-

verse traffic characteristics any time different services are invoked. This is the

case with KaZaA that produces entirely different traffic patterns in the lo-

gin/authentication phase and the file downloading operations. In this regard,

none of the Snort, Bro, and IPP2P can entirely block all KaZaA communica-

tions.

• they are “blind” to IM/P2Ps that use encryption to obfuscate their streams. In

its official signature database, Snort provides no signature for TCP-based sig-

nalling traffic generated by KaZaA and Skype; similarly, IPP2P has no attempt

to identify such traffic, either.

• they offer weak traffic correlation capabilities. Traffic correlation can be used to

enhance IM/P2P identification accuracy, especially when uni-directional traf-

fic signatures prove ineffective. Only, Snort provides limited traffic correlation

functionality demonstrated by signatures 6000 and 6001 of Table 17.

It is worth pointing out that packet-based signatures also demonstrate different

degree of effectiveness across the tools. For example, Bro signature s2b-1631-8 m

offers improved detection accuracy over the Snort signature 1631 as it searches

for a longer pattern. Compared to Snort signature 1383, IPP2P may yield better

accuracy for KaZaA downloading traffic; Snort rule 1383 can only identify KaZaA

downloading traffic connecting to TCP port 1214. Moreover, rule 1383 only checks

the first four bytes of the packet to be “GET ”. In contrast, IPP2P detects KaZaA

media transfer traffic based on content instead of using fixed ports; furthermore,

IPP2P not only ensures that the packet should begin with string “GET ” but

also contain either “X-Kazaa-Username:” or ”User-Agent: PeerEnabler” reducing

false positive/negative rates. In comparison to the above options, our framework

avoids the use of fixed-ports, does not exclusively focus on packet-based signature

mthat is derived from Snort signature 1631
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detection and exploits traffic correlation in a concerted effort to eliminate false

positives/negatives. Last but not least, its extensibility through the use of plug-and-

play analyzers enables the comprehensive treatment of both IM and P2P sessions

in a unified manner.

6. Related Work

IM/P2Ps demonstrate traffic patterns that are very different from those created

by traditional WWW-applications 23,2,78. Although IM/P2Ps still heavily rely on

the client/server paradigm for delivering services including authentication and au-

thorization, they mainly follow the peer-to-peer paradigm when it comes to func-

tionalities such as file sharing and signalling for the management of overlay net-

works 76,31,42,1. Due to their “symmetric” communications, long data transfer times,

and geographically dispersed resources, nodes in IM/P2P systems show significant

consumption on both computational resources and network bandwidth 65,45,31. The

popularity of IM/P2Ps has also made them prime target for attacks including DOS

attacks, disclosure of sensitive data, loss of data integrity, and host compromise or

crash 6. P2P systems including KaZaA, Grokster, and Morpheus suffer from spoofing

identity attacks in their file request handling 6 and are vulnerable to DOS attacks,

should malicious hosts repeatedly send large numbers of messages, and demonstrate

buffer overflow problems in super-node packet handlers 6. P2Ps appear to have a

close relationship with spywares such as adwares, browser hijackers, keyloggers,

and spybots 63. Piggybacked on P2Ps and silently installed on clients, spywares can

modify browser settings, track client’s activities, display targeted advertisements,

and even record passwords 33.

As computing infrastructures are undoubtedly affected by the resource-intensive

and security-vulnerable IM/P2P applications, organizations have opted for restrict-

ing and/or blocking such traffic 56,52 and a number of approaches have been pro-

posed. Fixed-port IM/P2P classification methods, widely used by firewalls and traf-

fic filters, base their operations on the assumption that IM/P2P applications al-

ways use their default ports 51,69,64,25. Heuristics have been also used to extract

P2Ps packet patterns based on associations between source and destination IP-

addresses/ports 39, However, the rapid IM/P2P development along with the adop-

tion of port hopping and message encapsulation render fixed-port approaches inef-

fective 70,48. Signature-based IM/P2P identification methods have been proposed to

classify traffic according to unique patterns appeared in various data streams 18,70.

Streams are pronounced to be P2P as long as their traffic contains respective tell-

tales. Unfortunately, such methods can only recognize IM/P2P traffic as far as their

file downloading activity is concerned and fail to identify encrypted streams and

signalling communications often used for maintaining overlay networks 18,70. In ad-

dition, the packet-based pattern searching used in 70 is rather ineffective when a

pattern spreads over multiple packets. The traffic monitor proposed in 38 examines

sequences of bits to identify P2P signalling traffic from eDonkey, Gnutella, and Bit-
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Torrent. However, packet-based pattern matching and inspection on first 44 bytes

of each packet only make the proposed method vulnerable to false positives and

negatives. In 32, an attempt to automatically generate signatures is discussed and

aims at reducing costs often necessitated by the use of domain experts.

Statistical methods have been also proposed to identify IM/P2P traffic based on

the aggregate behavior of data streams instead of the content of their flows. To this

effect, both statistical and structural aspects of messages are used in conjunction

with Markov process models and common substring graphs to characterize appli-

cation streams in 48. In 18, a classification system for the identification of Internet

relay chat (IRC) systems is discussed based on packet-size statistics in addition

to fixed-port and telltale pattern matching. P2P statistical characteristics such as

the percentage of failed connections as well as the ratio of initiated over received

connections are used to identify P2Ps as well 3. Furthermore, distributions of the

packet inter-arrival time in flows are exploited by IM/P2P classifiers 39,79. Machine

learning techniques such as Bayesian analysis have been also applied to IM/P2P

traffic classifications 50. Although statistical and machine learning techniques may

assist in identifying traffic with encryption and encapsulation, the level of granu-

larity such approaches operate in is coarse and often such method are unable to

distinguish among various IM/P2Ps that take place simultaneously 48. In addition,

significant amounts of data in flows should be observed in order to ensure the

validity of aggregated properties and subsequently their classification. The latter

implies that the use of statistics and machine-learning-based approaches might not

be an effective choice, should near-real-time manipulation of networking sessions is

required 40,79,15.

Among other functions, intrusion detection/prevention systems (IDSs/IPSs) at-

tempt to classify traffic of IM/P2P applications and subsequently manage it 59,71,40.

In order to deliver counter-actions on identified IM/P2P flows, IPSs typically employ

hybrid approaches using port- and signature-based detection methods. For instance,

with specially-crafted signatures, Snort, an open-source IPS, may identify IM/P2Ps

including AIM and Gnutella, and its counter-measures on detected sessions include

packet-dropping, session blocking, and/or connection termination 59,73. A number of

products also provide IM/P2P traffic identification and manipulation functionalities

including RealSecure, UnityOne and WatchDog 77,56. RealSecure may identify and

block some IM/P2P traffic by predominantly using fixed ports and pattern match-

ing 56. The Peer-to-Peer Piracy Prevention module of UnityOne can restrict P2P

traffic by setting policies and quotas for users based on fixed IP addresses and/or

application types 77. When integrated with firewalls and/or IPSs, WatchDog can

detect, shape, and block P2P sessions 52. In summary, most IM/P2P traffic classifi-

cation methods identify IM/P2Ps control/data streams based on fixed port-numbers

and packet-based inspection, and may generate false positives/negatives. In addi-

tion, many techniques can only identify IM/P2P media traffic but fail to recognize

critical IM/P2P signalling messages. More importantly, they are not designed to

be flexible and extensible to account with ease for new flavors of IM/P2P traffic
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without major rework in their internals.

7. Conclusions and Future Work

Sessions generated by Instant Messaging and Peer-to-Peer (IM/P2Ps) systems now

constitute a significant portion of Internet traffic consuming network bandwidth

and computing resources. Although IM/P2Ps present readily exploited vulnerabili-

ties, users often consider them harmless and use them to share private information

and sensitive data. Thus, it becomes imperative for organizations be able to iden-

tify, monitor, and manipulate IM/P2P traffic. The unique features of such traffic

make detection increasingly difficult as new-breed IM/P2Ps systems resort to traffic

hiding, security penetration techniques, port hopping, message encapsulation, and

information encryption. In this paper, we propose a comprehensive framework to

identify and control IM/P2P traffic in real-time. We resort to traffic re-assembly,

stateful inspection, data stream correlation, application layer analysis as well as

session-based pattern matching to classify traffic.

Our framework consists of four core-modules that operate synergistically,

namely: Session Manager, Traffic Assembler, IM/P2P Dissector, and Traffic Ar-

bitrator. The Session Manager organizes TCP/UDP connections so that sessions

information can be efficiently managed. The Traffic Assembler re-constructs data

within a stream so that they can be effectively handled as a sequence of application

messages instead of a set of independent transport packets. We use splay/interval

trees to organize the voluminous IM/P2P sessions and their associated streams with

each stream likely consisting of numerous packets. The operation of the IM/P2P Dis-

sector module is based on specific protocol analyzers that can be deployed in an

plug-and-play fashion. The analyzers interpret each application message according

to protocol specifications defined by individual IM/P2P services. This analysis goes

beyond conventional syntactic inspection as it exploits semantics including order

and relationships of messages in different directions of the flows. We have designed

analyzers for a wide range of IM systems such as AIM, MSN, Yahoo!, and Jabber,

as well as for P2P systems including Gnutella, KaZaA, eDonkey, BitTorrent, Di-

rectConnect, and Skype. As soon as our framework identifies an IM/P2P session,

the Traffic Arbitrator module helps control and/or manipulate the corresponding

streams with counter-measures including packet dropping and connection termi-

nation in a configurable manner. We have implemented our framework and tested

it in a wide range of settings to demonstrate its capabilities. Our experiments in

both controlled settings and real networks show that our prototype raises no false

positives or false negatives, identifies IM/P2P traffic correctly when traffic is encap-

sulated or encrypted. Finally, our framework does not affect system performance

noticeably in terms of throughput and response time.

In the future, we intend to enhance our framework with analyzers for other

IM/P2P systems such as Winny, WinMX, and EarthStation. In addition, we also

continuously update our framework to identify new-breed IM/P2P systems and their
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variances, especially the upcoming versions of the very popular Skype system. We

anticipate that a very large number of coexisting analyzers may put significant

strain on our framework implementation that has to be addressed. We also intend

to thoroughly evaluate the framework’s requirements on resources, and its behavior

under conditions of unusual traffic load.

8. Appendices

8.1. Snort-rules for Identifying IM/P2P Sessions

Signature-based traffic classification methods are widely used in IM/P2P session detec-

tion, which mostly entails searching for telltale patterns in data flows, specific message

exchange styles, and/or abnormal values in various protocol fields. In this regard, Snort,

an open-source IDS/IPS, is a good example 73,59. Pattern matching is the predominant

IM/P2P detection methods employed by Snort and some of such IM/P2P -specific signa-

tures are presented in Table 17, here, each signature is assigned an identifier presented in

column “sid”. Signature 1631 identifies an AIM login session by matching the packet’s des-

tination IP address with one of those AIM servers provided in variable $AIM SERVERS

(e.g., 64.12.24.0/24, 64.12.25.0/24, where /24 is the network mask). Qualified packets

are further inspected to ensure that their TCP-payload start with character sequence of

“*|01|”. This rule fails to detect an AIM session connecting to servers not included in

$AIM SERVERS; in addition, AIM sessions escape Snort detection when message bound-

aries are not honored by the underlying transport services. False positives may also occur

as the rule only checks the first two bytes of the packet payload. The intend of signa-

tures 1991 and 2450 is to trap MSN and Yahoo! IM sessions, respectively. However, by

inspecting only TCP-sessions with destination ports 1863 or source port 5050, these rules

miss all sessions with source/destination ports latching to ports rather than their default

ones. For instance, both MSN and Yahoo! provide port hopping mechanism to locate

servers, the former sweeps ports 1863 and 80, while the latter scans ports 23, 80, 25, 119,

and 20 in addition to its default port 5050. Furthermore, Signatures 1631, 1991, and 2450

may generate false alarms as they check only traffic in one-direction.

If string GNUTELLA CONNECT is found within the first 40 bytes of a TCP-packet

sent to a server, signature 556 marks the session involved as Gnutella. KaZaA sessions used

for file downloads can be detected with signature 1383 only if such sessions happen to use

the default TCP port 1214, such traffic is rare in nowadays KaZaA networks. In contrast

to the above signatures that function individually and independently, signatures 6000 and

6001 are crafted to work together in order to identify Skype login sessions. By monitoring

traffic from client to server, signature 6000 verifies that the packet starts with pattern

“|16 03 01 00 CD|”, if so, the session will be marked as Skype, but no alert is generated

yet at this stage. The session is declared as true Skype only after conditions specified in

signature 6001 are also satisfied by the traffic from server to client of the same session; the

conditions in signatures 6001 state that the packet must start with pattern “|16 03 01 00

CD|” and the session in question has been marked as Skype by signature 6000. In essence,

signatures 6000 and 6001 attempt to correlate the packets exchanged between client and

server, but in a coarse granularity as they operate on packet level instead of IM/P2P
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sid rule explanation
1631 tcp $HOME NET any − > $AIM SERVERS any In established TCP sessions,

(msg:“CHAT AIM login”; flow:to server,established; find pkts to AIM servers (e.g.,
content:“*|01|”; depth:2;) 64.12.24.0/24), start with “*|01|”

1991 tcp $HOME NET any − > $EXTERNAL NET 1863 In established TCP sessions,
(msg:“CHAT MSN login attempt”; flow:to server, find pkts to servers at port 1863,
established; content:“USR ”; depth:4; nocase; containing cmd “USR” and
content:“ TWN ”; distance:1; nocase;) “TWN” (security package)

2450 tcp $EXTERNAL NET 5050 − > $HOME NET any In established TCP sessions, spot
(msg:“CHAT Yahoo! IM successful logon”; flow: packets from servers at port 5050,
from server,established; content:“YMSG”; depth:4; starting with “YMSG” and having
nocase; content:“|00 01|”; depth:2; offset:10;) service type 1 (i.e., “LOGON”)

556 tcp $HOME NET any − > $EXTERNAL NET any Check TCP pkts to any port of
(msg:“P2P Outbound GNUTella client request”; external network connecting to
flow:to server, established; content: “server”, having “GNUTELLA
“GNUTELLA CONNECT”; depth:40;) CONNECT” at first 40 bytes

1383 tcp $EXTERNAL NET any − > $HOME NET 1214 in established TCP session,
(msg:“FastTrack (kazaa) GET request”; check pkts from client to server
flow:to server,established; content:“GET ”; depth:4;) on port 1214 and contain “GET ”

6000 tcp $HOME NET any − > $EXTERNAL NET any traffic from client to server;
(msg:“P2P Skype client login startup”; flow:to server, starts with specified pattern;
established; content:“|16 03 01 00 CD|”; depth:5;
flowbits:set,skype.alternate.login; flowbits:noalert;) mark session as Skype;

6001 tcp $EXTERNAL NET any − > $HOME NET any traffic from server to client;
(msg:“P2P Skype client login”; flow:to client,
established; flowbits:isset,skype.alternate.login; Skype is marked already by 6000;
content:“|17 03 01 00 D9|”; depth:5; ) starts with specified pattern;

Table 17. Rules used in Snort to detect IM/P2P sessions

message level. However, compared to signatures that only inspect uni-directional data

stream of sessions, such stream correlation techniques definitely improve IM/P2P traffic

classification accuracy. Overall, state-of-the-art devices identify IM/P2Ps traffic based on

packet boundaries in the transport layer instead of using divisions at the application level.

Signatures based on standard and fixed ports are likely to miss all IM/P2Ps sessions due

to use of port hopping and message encapsulation.

8.2. Detecting IM/P2P Sessions using Bro

A Unix-based IDS, Bro passively monitors network traffic and may detect suspicious activ-

ities by parsing/extracting application-level telltale patterns 55,54,43. Bro has been devel-

oped primarily as a research platform and thus, it is used either for experimental purposes

or to help verify results of other IDS systems. Developed around the libpcap library, Bro

carries out filtering of packet streams based on policies, then its event-engine classifies

filtered streams into events which are finally processed by its script interpreter. Suspicious

activities designated by user-authored policy scripts are ultimately recorded by the script

interpreter. The IDS counter-actions include generation of e-mail/paging messages, ter-

mination of connections and shaping of traffic with the help of external programs. Bro

features only a few signatures and policy scripts as far as IM/P2P traffic is concerned.

In its most recent version (1.1d), only portions of IRC and Gnutella traffic can be de-

tected in Bro’s default configuration. Due to the esoteric nature of Bro scripting, the most

convenient way to use the tool is through importation of Snort rules.

Table 18 shows a few signatures imported from the Snort rule set version 2.4 depicted
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in Bro’s format. Signature s2b-1631-8 is used to detect traffic generated by the AIM login

signature rule explanation
s2b-1631-8 ip-proto == tcp; tcp-state established,originator; TCP pkt begins with

event “CHAT AIM login”; payload \x17\x00\x06/; “*|02|”;
/\x02.{4}.{0,4}\x00 then “|00 17 00 06|;

s2b-2452-4 ip-proto == tcp; dst-port == 5050; tcp-state TCP pkt to port 5050;
established,originator; event “CHAT Yahoo IM ping”; with two given strings;
payload /[yY][mM][sS][gG]/; payload /.{9}\x00\x12/;

s2b-2586-2 ip-proto == tcp; dst-port == 4242; tcp-state TCP pkt to port 4242;
established,originator; event “P2P eDonkey transfer”; pkt starts with 0xE3;
payload /\xE3/;

s2b-1699-7 ip-proto == tcp; tcp-state established,originator; established TCP session’s
event “P2P FastTrack kazaa/morpheus traffic”; payload pkt begins with “GET”;
/GET/; payload /.*UserAgent\x3A KazaaClient/; contains string “User...”;

s2b-2180-2 ip-proto == tcp; tcp-state established,originator; TCP pkt to server;
event “P2P BitTorrent announce request”; payload contains three strings:
/.{0,1}GET.{1}.*\/announce/; payload /.{3}.* “GET”, “info...”,
info hash=/; payload /.{3}.*event=started/; and “event=...”

s2b-2181-2 ip-proto == tcp; dst-port >= 6881; dst-port <= 6889; TCP pkt to [6881, 6889];
tcp-state established,originator; event “P2P BitTorrent contains given string:
transfer”; payload /\x13BitTorrent protocol/; “BitTorrent ...”

Table 18. Rules used in Bro to identify IM/P2P traffic

procedure; it monitors the TCP stream to the server that starts with pattern “*|02|”

followed by string “|00 17 00 06|”. Compared to Snort signature with sid 1631 of Table 17,

we can observe that both signatures try to identify the same AIM traffic, however, they

inspect different telltale patterns. The reason is that signature s2b-1631-8 is derived from

Snort rule with revision 8, while sid 1631 of Table 17 is with revision 6. Clearly, Snort

revises its rules progressively in order to improve its detection accuracy. Similarly, Snort-

rule sid 2450 and Bro signature s2b-2452-4 identify Yahoo! IM traffic. However these

two signatures search for different Yahoo! IM service types; s2b-2452-4 looks for the ping

service, while 2450 inspects the login service. Both signatures s2b-2180-2 and s2b-2181-2

are designed to identify BitTorrent’s tracker and peer communications; the former searches

for patterns “GET”, “/announce”, “info hash=”, and “event=started”, while the latter

looks for pattern “|13|BitTorrent protocol”. As Bro mainly relies on signatures imported

from Snort, its capabilities can only be as powerful as those of Snort. Moreover, Bro is

further limited as it does not support Snort’ flow correlation and byte-wise operations.

8.3. IPP2P-signatures for Detecting P2P Sessions

IPP2P builds its functionality around the combined use of iptables and netfilter and searches

for telltales unique to P2P flows 57. The tool can impose traffic logging, packet dropping,

traffic shaping to limit both bandwidth and system resource consumption. A noteworthy

limitation of IPP2P is that it cannot deal with P2Ps that may create diverse stream

types such as Skype. Also, IPP2P only recognizes some of the UDP-signalling of KaZaA

and is completely “blind” to all KaZaA TCP-based signalling messages. Version 0.8.2 of

IPP2P can recognize twelve P2P systems when it comes to their TCP traffic (including

Gnutella, eDonkey, and BitTorrent) and five UDP-traffic generating packages (including

Direct Connect, BitTorrent, and KaZaA).
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Table 19 outlines a few rules used by IPP2P for pattern matching at packet level.

Should a DirectConnect command be delivered in multiple TCP packets as it happens

traffic type traffic characteristics inspected
TCP-based P2P traffic

eDonkey protocol tag (1 byte); message length (2 bytes); message type (1 byte)
and should be “Hello” or “Hello-Answer”

DirectConnect packet starts with “$” and ends with “|”; command after “$” should be
either “Lock” or “MyNick”;

Gnutella packet ends with characters “carriage return (0x0D)” and “new line (0x0A)”;
pkt starts with “GNUTELLA CONNECT/”, “GNUTELLA/”, or “Get /get/”;
for the latter, packet should further contain “X-Gnutella-” or “X-Queue:”;

KaZaA packet ends with characters “carriage return (0x0D)” and “new line (0x0A)”;
packet starts with “GIVE ” or “GET /”; for the latter, packet should further
contain “X-Kazaa-Username: ” or “User-Agent: PeerEnabler/”;

BitTorrent packet starts with “|13|BitTorrent protocol” or “GET /”; for the latter,
packet should further contain “scrape?info hash=” or “announce?info hash=”;

UDP-based P2P traffic
eDonkey checked fields: protocol tag (1 byte); message type (1 byte); packet length;

not detect eMule and Overnet
DirectConnect pkt starts with “$” and ends with “|”; command after “$” should be “SR ”

or “Ping ”;
Gnutella packet starts with “GND” or “GNUTELLA ”;
KaZaA packet ends with “KaZaA|00|”;
BitTorrent mainly check packet length and some fields with constant values; for instance,

when payload is 16 bytes, first 8 bytes should be |00 00 04 17 27 10 19 80|;

Table 19. Rules used in IPP2P to identify TCP/UDP P2P traffic

frequently, then the command start and end delimiters $ and | may appear in different

packets. The latter will evade the check carried out by IPP2P and will ultimately lead to

false negative. Another known limitation of IPP2P is that it identifies only a limited set of

message types for any specific P2P system. For example, among the eDonkey’s more than

100 message types, only two can be successfully dealt by IPP2P. Furthermore, IPP2P only

attempts to identify KaZaA’s downloading data flows, while for its signalling traffic, IPP2P

detects UDP-based signalling messages, letting KaZaA TCP-based signalling traffic go

completely undetected. Finally, due to lack of any traffic correlation, IPP2P may generate

false positives. To go beyond the packet-based telltale examination, IPP2P have to jointly

work with other packages such as CLASSIFY and CONNMARK to process P2P streams

at the session level.
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