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Abstract

Ray-tracing based radio wave propagation prediction nsgalaly an important role in the design of
contemporary wireless networks as they may now take intowrdaliverse physical phenomenainclud-
ing reflections, diffractions, and diffuse scattering. Hweer, such models are computationally expen-
sive even for moderately complex geographic environméntthis paper, we propose a computational
framework that functions on a network of workstations (NOMaYl helps speed up the lengthy prediction
process. In ray-tracing based radio propagation predictiodels, orders of diffractions are usually pro-
cessed in a stage-by-stage fashion. In addition, variouse@oints (transmitters, diffraction corners,
or diffuse scattering points) and different ray-paths rexdifferent processing times. To address these
widely varying needs, we propose a combination of the plpasallel and manager/workers paradigms
as the underpinning framework. The phase-parallel commtaseised to coordinate different computa-
tion stages, while the manager/workers paradigm is usealémbe workloads among nodes within each
stage. The original computation is partitioned into mudtipmall tasks based on either raypath-level
or source-point-level granularity. Dynamic load-balamyscheduling schemes are employed to allocate
the resulting tasks to the workers.

We also address issues regarding main memory consumpttenniediate data assembly, and final
prediction generation. We implement our proposed comjmutaktmodel on a NOW configuration by us-
ing the message passing interface (MPI) standard. Our iexgets with real and synthetic building and
terrain databases show that, when no constraint is impas#ueomain memory consumption, the pro-
posed prediction model performs very well and achievedyéaear speedups under various workload.
When main memory consumption is a concern, our model stiivels very promising performance
rates provided that the complexity of the involved compatais high, so that the extra computation and
communication overhead introduced by the proposed modebtidominate the original computation.
The accuracy of prediction results and the achievable sgeedes can be significantly improved when
3D building and terrain databases are used and/or diffitesing effect is taken into account.

Indexing TermsRay-tracing based radio propagation prediction modeljdRaeve prediction model on
Network of Workstations (NOW), Data or control domain degasition, Dynamic workload-balancing
scheduling schemes.

*This work was partially supported by NSF under grant IRI-B5&, the U.S. Department of Commerce under grant 4000186,
and The New York Center for Advanced Technology in Telecomications (CATT).



1 Introduction

Ray-tracing based radio wave propagation prediction nsgolely an prevalent role in the design of modern
wireless networks [32, 50, 77, 46, 58]. The main objectivaswfh models is to efficiently yield accurate
predictions on radio wave propagation pertinent stagisticluding received signal strengths for mobile lo-
cations, delay spread, and angle of arrival. At the same, fiinas been recognized that these models are
computationally very expensive and require a consideratsieunt of processing time to attain reasonable
accurate prediction results [7, 53]. In this context, ityipital that ray-tracing based models take hours
to generate predictions for moderately sized geograpleiasasuch as 1 kh{53, 50]. The core pincush-
ion method (or otherwise known as the shoot-and-bounce adgil the main source for computational
intensity for the models in discussion [46, 53]. In this noethrays are launched with an angular separa-
tion ¢ from source points, which are either transmitters or difitm corners acting as secondary sources.
Each raypath may encounter reflections, diffractionsaptions (transmissions), and diffuse scattering. To
achieve reasonable prediction accuracy, the angular a&é&pad needs to be very small and usually less
than0.6° (or about 0.01 radians [7]). Consequently, the number giatys between base stations and mo-
bile stations may be explosive and extremely long CPU pricggimes are required to examine all the
raypaths in question. As the coverage of a wireless systereases, and the corresponding network envi-
ronment becomes more complex, the interactions betweg@atfay and geometric objects including various
types of buildings, terrain, and vegetation make mattensgvoalling for even more dramatic increases in
computation [32, 7, 50].

A number of approaches have been proposed to shorten theutaiiop time for prediction models. The
complexity of building databases can be reduced by simptfjootprints [16]. Data filtering and cleansing
techniques have been proposed in [50]. Procedure-appativimmethods are also employed to address
the same problem [15]. In these methods, either a subsetypéttzss are processed based on different
requirements for prediction accuracy [15] or different gilbgl phenomena such as vertical plane diffrac-
tions, multi-paths, and existence of vegetation are etgaldio offer balance between prediction accuracy
and computation time [50]. Both data-reduction methods gnodedure-approximation methods have a
common drawback: they trade prediction accuracy for piginggime.

A natural way to overcome the above drawback is to use thdlglaaad distributed computation tech-
niques to speed up computations, while keeping the accumgast [40, 41, 17, 3]. More specifically, the
usage of a network of workstations (NOW) is particularlyattive as such computer system configurations
are readily available at this time. By resorting to such fperdistributed computation methods, our main
objective is to both distribute and/or parallelize varimgsnponents of our ray-tracing prediction model
among multiple nodes in such a way that the processing tifiel@grease proportionally to the number of
nodes involved. Should the latter be feasible, we antieiganificant gains in the radio wave propagation
prediction area. There are many advantages to use NOW-lgagaplutation techniques in a ray-tracing
based radio propagation prediction model. The accuracyemfigtion results is not affected since neither
data reduction nor procedure approximation methods arednted. The relationship between computa-
tion resources (i.e., the number of nodes involved) andigtied time is straightforward as more resources
yield shorter response times. The NOW-based computat@migues also improve overall scalability of
the model used. In the data reduction methods, the predittize is not linear to the data complexity at
hand while in the procedure-approximation methods, thaiség time mostly depends on the accurate es-



timate of each raypath’s contribution to the predictiorutiss Finally, NOW-based ray-tracing models are
much more flexible since new nodes can dynamically join exjssites to help the ongoing computation.
On the other hand, the design and analysis of a NOW-base&fioadnodel involves the examination of a
complex set of interrelated issues such as computatiomalcency, computing unit (task) granularity, task
allocation and scheduling, communication and synchraioizaas well as workload-balancing. It is this di-
versity of frequently competing factors that make the desigd implementation of NOW-based algorithms
for radio propagation prediction a challenging task. Qig#inere are tradeoffs among the above interrelated
factors. Metrics used to measure and evaluate the perfaenaira NOW-based system attempt to capture
and quantify most of such factors and include the nature oklads processed, such as speedup, workload
expansion ratio, and resource utilization.

In this paper, we investigate these interrelated factonsl establish a feasible and effective paral-
lel/distributed computation model for radio wave propagafprediction. We use a combination of phase
parallel and manager/workers paradigms to coordinateshsgnize, and distribute computation, and em-
ploy dynamic load-balancing scheduling scheme to allosatd&load among nodes. The metric of speedup
is the main performance index as our overall design goal getwrate predictions as quickly as possible.
In addition, we monitor other performance indicators idahg workload expansion ratio, efficiency, isoef-
ficiency, and resource utilization. Our experiments shaat the proposed NOW-based radio propagation
prediction model presents consistent performance ratessa@ wide range of workloads, and achieves
almost-linear speedup rates in most examined cases.

The rest of the paper is organized as follows: Section 2 ptegelated work. Section 3 discusses the
baseline ray-tracing based radio propagation predictigarithm and examines the unique characteristics
of the problem at hand. Section 4 outlines our proposed N@géth parallel/distributed computational
model, computation decomposition methods, and workladdrting schemes. Techniques to further im-
prove the efficiency of the proposed model are discusseddticBe5. Section 6 presents a comprehensive
experimental evaluation of our model while concluding rekaand future work can be found in Section 7.

2 Related Work

In order to address computationally intensive problems\WéMave been used in a wide range of fields
including large-scale databases, scientific computatioomputer graphics, multimedia, wave propagation
predictions, and telecommunication systems simulati®8s§2, 54, 56, 2, 39, 71, 59].

The fundamental idea in NOW database systems is to carryimulttaneous I/O operations whenever
possible and to execute highly intensive CPU processingdistebuted fashion [43, 66]. Computationally
intensive problems such as thebody problem have been addressed in the context of NOWammients.
Here, the movement of a set of particles is simulated undemtituence of gravitational, electrostatic and
Vander Waals attractions [69, 10, 36]. Two prevalent forfrte@ /N -body problem known as the Barnes-Hut
and the Fast multi-pole (FMM) methods have been implemeugedy message passing and shared-memory
architectures [11, 31, 54, 74, 47, 57, 37]. In this contexinputation-partitioning and workload-balancing
scheduling approaches have been proposed in [69].

One field closely related to our work is the ray-tracing illnation models used in computer graphics
that are known to generate high-quality images but suff@nftong rendering times [72, 60, 65]. A ray-



tracing illumination model launches a very large numbeagpiaths in a scene consisting of many geometric
objects. Each raypath is tested for intersection with dbjéx determine the visibility of their surfaces,
meanwhile, pixel intensities are generated for the produlceage. Due to the inherent computation costs,
such illumination models have been traditionally usedliof: However, the appearance of networks of
processors or workstations has provided the needed cotigmatiframework for on-line and interactive ray-
tracing illumination models. For instance, an airplane ieagkile simulator uses a 96-processor SGI Power-
Challenge cluster to create real-time effects [55, 56].ilaihyg, the Utah ray-tracing system offers interactive
capability by utilizing a multi-processor supercomputettvstatic workload-balancing scheduling scheme
to minimize synchronization overhead [60]. The parallgtticer proposed in [27, 26] uses a NOW as its
computation platform. Its main assumption is that everyigipating workstation can retain the entire scene
in its main memory at all time. The parallel radiance moddEif] also uses message passing method to
communicate among processors and assumes that the eatieeaf@peration resides in every node’s main
memory throughout the computation. Additional “parallefid interactive ray-tracing systems are discussed
in [65, 45, 63, 64]. All these systems consider their comipartal problem as an (nearly) embarrassingly
parallel one that can be divided into a number of completaligpendent and equally intensive components
and each such component can be designated to any processmdaine). Therefore, the communication
and/or synchronization overhead is considered minimal23&

The ray-tracing based radio wave propagation predictiodehdiscussed in this paper differs significantly
from conventional ray-tracing illumination models in a riven of aspects. First, the objective of illumination
models is to create photo-realistic images that focus amvisffects, such as texture and color while radio
wave propagation prediction systems put great emphaskgeanimerical evaluation of ray qualities, such as
field amplitude and time delay. lllumination models are nydsased on diffuse reflections and occasionally
specular reflections with only a limited number of such evatbng the raypath. On the other hand, radio
propagation prediction models use reflections, diffrandjoand diffuse scattering, and often account for
multiple events along a raypath. The inclusion of diffrantforces prediction models to function in “stages”
(or phases) of computations. There is also a strong caogelatnong different raypaths in radio propagation
prediction models. The energy carried by a raypath can bekmomly after all diffraction corners along the
raypath are found and their strengths are determined. Quasdly, the processing of various raypaths is
not independent as is the case in traditional illuminatiardels. More importantly, the processing time for
different raypaths can be quite different and the variaadarge in radio prediction models compared with
their illumination counterparts. The above charactesskead to the observation that the ray-tracing based
radio propagation prediction problem discussed in thisspépnot an embarrassingly parallel/distributed
problem (not even a nearly embarrassingly parallel/digtéd one) as is the case with illumination models
[60, 55, 56]. Thus, illumination model techniques cannotdirectly applied to radio wave propagation
prediction models.

Modeling three-dimensional sound wave propagation igcatifor applications such as concert hall de-
sign [6, 5, 51], virtual reality [20, 13], and interactivestgms [29, 24]. Ray tracing techniques are widely
used to find the sound wave propagation paths representfegedit sequences of reflections, transmissions,
and diffractions at surfaces of the environment. The effé&uch propagations is the reverberation at the
receiver [52, 48]. In contrast to illumination models, morders of reflections are computed to account for
the large range of audible sound frequencies requiringyheamputations [28]. When the wavelength of
the sound wave is similar to the geometric feature sizeratiffion becomes an essential effect [7, 61]. The



wavelengths of audible sound range between 0.02 and 1731(&e20 KHz and 20 Hz, respectively, with
sound speed of 343 meters per second). Therefore, difiraeffects are considered only for low frequency
sound waves and environments where there are large olsstati@een source and listener [70, 44]. The
diffraction effects and late reverberations are routimalydeled with statistical, perceptual approximations
[68, 1]. Even in ray-tracing based acoustic models, theatiffon effect is applied only to a small portion
of the environments described with little geometric detdihus, most techniques used in traditional illu-
mination models can be applied directly to sound wave mg@&f In contrast, radio wave propagation
models examined in this paper base their computation oredihgnt physical phenomena such as specular
reflections, diffuse reflections, and diffractions [7].

Recently, there have been efforts to parallelize/disteb@PU intensive simulation tasks for telecom-
munication systems. An outdoor propagation model for nuells is parallelized by using a Cray T3E
supercomputer in [39, 38]. Message passing and the worlgavalligm are used to communicate and bal-
ance workload among nodes. However, experimentation stiatvshe achieved speedup is far from linear.
In[71, 34], a parallel ray tracing system is used to optintiEeplacement of transmitters in an indoor wire-
less system. A 200-node Beowulf NOW with each processotljolsaving a complete copy of the building
database is employed to carry out the optimization conisigesnly reflections and transmissions (pene-
trations). In [59], theFastScatsystem is proposed to parallelize electromagnetic saagtealculations on
a SGI Origin-2000. The system is implemented in a threaddd assuming a cache-coherent distributed
shared memory. Selected data structures are replicatedeoy grocessor and data locality is exploited to
achieve scalability. Experiments show that speedup of Bma&ained for 32 processors.

3 Observationson Sequential Ray-Tracing Prediction Models

In modern wireless network design, ray-tracing models aegluo predict the received powers at various
locations in the coverage area of a base station so thattyjwélservice is guaranteed. To attain good
prediction accuracy, reflection, diffraction, and diffuseattering should be considered. Suppose that a
cellular network is established in Rosslyn, VA as depictedrigure 1. The base station is located atop a
building at the center of the area (location Tx5) and threeiver locations are marked as spots 1, 2, and
3 respectively. Each of these spots may be “reached” witthéhe of the three propagation planes shown
in Figure 1. However, none of these locations can be reachedtlgt as no line-of-sight (LOS) can be
established between the base station and the receivers [f[Bypath that is part of Plane 2 is essentially
of non-line-of-sight nature consisting of one reflection ame diffraction at an horizontal building edge to
reach spot 2. As no line-of-sight exists between the bas®istand spots 1 and 3, horizontal or vertical
edge diffraction becomes the dominant contributor to tloeived power at the spots in question. More
specifically, a raypath that is part of Plane 3 encountersugrtical diffractions in order to finally reach
spot 3. Surfaces illuminated by the base station scattariragll directions as well. These scattered rays
may reach receivers and contribute to the received powers.

Algorithm 1 can be used to compile radio wave propagatiomliptien results in a geographic area (as
the one depicted in Figures 1 and 2). This baseline rayAgaoased prediction algorithm consists of five
distinct stages. In the initialization phase, key user patars about the prediction settings and operating
environment are obtained. The terrain/building databasesnitialized and locations of transmitters and
receivers, antenna patterns for base stations and mobtlerst, carrier frequency, as well as maximum
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numbers of reflections and diffractions are provided (sgeif€i 2). The next stage deals with transmitters.
As raypaths from all transmitters are traced, all illum@tateceivers and first order diffraction corners are
determined. In the subsequent stage, orders of diffractimners are processed. All diffraction corners
found act as secondary sources and are treated as if theytnaasmitters themselves. All illuminated
receivers are determined. This step is repeated for eadr ofddiffraction; in practice, two orders of
diffractions are adequate. After that, all diffuse scattgpoints are determined and processed as if they
were transmitters. The final stage is to generate predictsnlts. Intermediate results generated by all
previous phases are assembled to form predictions, suchcaived powers by all receivers, delay and
angle spreads. Prediction accuracies are found to be agefguaommunication system planning—see for
example the comparison of predictions with measurememtfofo base station antennas in Figures 15,
23-26.

It is rather evident from its description that Algorithm 1shigs own intrinsic characteristics that cannot
be easily distributed and/or parallelized. Both initiatibn and prediction results generation stages are
rather sequential in nature as they involve 1/0O operatidrige other three stages have to be executed in a
synchronized fashion. For example, the output of the traiters processing is the input of the diffraction
corners processing and Bernstein’s conditions are form&H [There is also control dependency between
different stages. Although it is possible to use pipelinghteques to overlap the executions of different
stages, the complexity of the resulting system will inceediamatically.

Should the function of Algorithm 1 be distributed, a numbEhidden costs should be taken into consid-
erations as well. Firstly, additional computational cohtras to be introduced. Broadcasting of building



Algorithm 1 Sequential Radio Propagation Prediction Algorithm
1: read building database into main memory, cluster all bagdiinto grids; read configuration file or get
input about settings from the user interactively
for (each transmitterio
trace its raypaths sequentially; determine illuminatexbineers and diffraction corners
end for
for (each diffraction level) do
for (each secondary transmitteat levell) do
trace raypaths emitted hiydetermine illuminated receivers and diffraction corners
end for
end for
generate all the diffuse scattering points
for (each diffuse scattering poirdp
treat it as a transmitter and trace its raypaths upto maximumber of reflections and diffractions.
end for
output prediction results

L e =
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database and configuration parameters, collection ofnmgdiate results from all nodes to a single node or
vice versa are just some examples. The establishment ofipotables on various computing nodes that
are deemed indispensable in the compilation of radio prai@y prediction is another example. Secondly,
some communication overhead is unavoidable when messagm@as used. Since the problem we study
is not embarrassingly parallelizable, many inter-node mamications have to take place in order to coordi-
nate, synchronize, and exchange information among diffesiées. Finally, main memory consumption is

of vital importance in a NOW-based solution as the full dogion of data in every site is not necessarily

deemed a viable option at all times. In the course of tracaypaths, partial data replication is required

since any processing unit ultimately needs informatiorualioe same buildings and environmental obsta-
cles involved in a computation. Because of the hidden oeghet is challenging to achieve speedup rates
that are linearly proportional to the size of NOW.

Without taking any overheads into account, the best achievspeedup for a computation is governed by
the fractiona of the workload that must be executed sequentially as Anglkiwl points out [4]. Suppose
the portion(1 — o)W of a workloadW can be perfectly parallelized, then the attained speeddf is
n/[1 4 (n — 1)a]. In the case of a very large NOW with — oo, Amdahl’s law yields the best possible
speedup rate of,,=1/«. The value ofx is determined by the intrinsic features of the specific coon
and in our case mainly by the angular separatidmetween neighboring rays. In the presence of tasks
with light CPU requirements, Gustafson'’s law [33] offersexible mechanism for better use of computing
resources. By pursuing a “higher resolution” setting of pheblem at hand (i.e., by reducing the angular
separation in our case), one can expand the workload andwepine quality of results obtained. Overall,
the ray-tracing based radio propagation prediction probteparallelizable for the transmitters, diffraction
corners, and diffuse scattering points processing stajesvever, it is not embarrassingly parallelizable
due to its intrinsic serial parts and data/control depecddretween different stages as well as correlations
between different raypaths or source points (diffractiomers or diffuse scattering points). Therefore, extra
computation and communication overhead is unavoidablis. ift this context that we propose techniques
that aim to minimize overheads.



4 Considerations for the NOW-based Propagation Prediction M odel

There is a wide array of computational paradigms for pdrditributed computations including the phase-
parallel, divide and conquer, pipeline, process farm, aodkwpool [41]. The phase-parallel paradigm
consists of a number of supersteps with each containing pat@tion phase and an interaction phase. Ev-
ery processing unit performs an independent computatinitathe first phase and executes synchronous
communications among all the units in the interaction ph&sgce our baseline ray-tracing algorithm func-
tions in stages, it nicely fits the phase-parallel paradigth the existing constraints of data dependencies
between stages. Each stage can be considered as a “sygdeataring both a computation and an interac-
tion phase. For instance, in the transmitters processaugsall raypaths emitted by transmitters are decom-
posed into multiple tasks and each workstation handlesctidraof these tasks in the first phase. During
the interaction phase, all processing units exchangenim@iate results to generate the needed information
for the superstep that computes the diffraction cornersaceived powers at the receiver locations.

Computations within each superstep are rather complexeas th a close correlation between different
raypaths and raypaths do require varying processing timidmis, it is imperative that computations be
partitioned into jobs with fine granularity and be unifornagsigned to different workstations. The above
does call for synchronization of all participating sitesking inter-processor communication required even
during the computation phase. To reduce the inter-processumunication overhead, we adopt the man-
ager/workers paradigm within each stage. One site is agabthe manager and all others are the workers.
The manager is responsible for the input processing, catipattask distribution, result generations and
more importantly for coordination among workers. Each wortepeatedly requests new jobs from the
manager, carries out the processing, and ultimately slaigk the results to the manager. Evidently, there is
no direct communication among workers. As the manager iseaofathe current state of all NOW nodes,
it is capable of best scheduling and load-balancing taskthis$ regard, the manager makes decisions about
workload decomposition and job assignment. Traditionay types of decomposition methods have been
used: data domain decomposition and control domain decsitigpo[18]. The former partitions data into
non-overlapped subsets assigned by the manager to diffetest the latter divides the original computation
into small and disjoint tasks assigned to workstationshélgh data domain decomposition is easier to de-
ploy and often features small memory consumption, it hapttential to generate sizable communication
overheads.

In our problem domain, a raypath may interact with many logd. Should these buildings be distributed
among various workstations, the tracing of a raypath hagtddzided in collaboration with all pertinent
sites potentially incurring communication overheads.adcomposition does not necessarily lead to well
balanced NOW-nodes. The distribution of raypaths amorfgreifit data partitions is in all likelihood not
uniform and “hot-spot” data partitions inevitably emer@ach “hot-spots” which are impossible to deter-
mine a priori often contain numerous raypaths that are ef@st to multiple workstations rendering some
NOW-nodes bottleneck points for the prediction computati&inally in the data domain decomposition,
it is not easy to efficiently determine the termination of anpaitation as idleness and/or emptiness of job
gueues at all sites cannot be used as an indicator [9, 19ln/&pntrast, the control domain decomposition
method overcomes the above drawbacks and has a good teomimatication (i.e., all sites finish their
assigned computations and there is no unassigned task te& manager). Thus, we advocate control do-
main as the computation decomposition method. Next, weatadiut the specific issues of task granularity,



workload balancing schemes, and overall organization oN&JW-based model.

4.1 Task Granularity

In a NOW, the selection of task granularity is crucial as egants a trade-off between idle nodes and
excessive communication costs. The expected NOW speegugdsminantly determined by the site having
the maximum finish time. The latter occurs as all nodes cotapieir ongoing jobs at the same time and the
last unprocessed task is awaiting assignment. To decigiasadximum finish time gap, the task granularity
should be designated as small as possible while avoidingpdkential network message flooding. The
minimum feasible task granularity is a singhe/-segmenthat typically has processing time at the order of
milliseconds. If ray-segment is adopted, the communioaticerhead will certainly be large and its cost will
surpass the original computation cost. Therefore, thedesshularity we propose here is eitheraypath-
level or source-point-level If raypath-level task granularity is used, the computaiddecomposed based
on raypaths (a single raypath or a set of raypaths). In the ehsource-point-level task granularity, the
computation is divided into tasks based on source poings, (ansmitters, diffraction corners, or diffuse
scattering points). It can also be a single source point,set af source points.

The task granularity also depends on the computation stagleeaamount of needed computation per
stage differs. For example, the number of diffraction cmne often much larger than the number of
transmitters [53, 15]. Should the same task granularity sl dor different stages, it may lead to lack of
load-balancing throughout the stages of the predictiothdfsource-point-level task granularity is used for
both the transmitters stage and the diffraction cornersgasing stage when the number of transmitters is
less than the number of workstations, a number of sites aflain idle during the entire stage. Similarly, if
we use raypath-level task granularity in all stages, theroamcation overhead for workload assignments
in the diffraction corners processing stage will be patéidy heavy. Therefore, we use raypath-level task
granularity in the transmitters processing stage and sgpomnt-level task granularity during the diffraction
corners and diffuse scattering points processing stages.

4.2 Load Balancing Schemes

As time requirements for processing raypaths cannot berdeted a-priori and wide variances exist in

the processing times for both source points and raypathti; storkload assignment schemes [75] are not
suitable for our NOW-based ray-tracing prediction modeistéad, we resort to dynamic load-balancing
scheduling schemes, which partition and allocate the warkbhccording to the progress of the computation
as well as the state-of-affairs of the NOW-nodes. The lagterfunction of past and current status of job
execution at nodes as well as the state of the communicatibsirate. We have considered three load-
balancing schemes functioning at the coordinator site imaolopted manager/workers model: fixed-size-
task, variable-size-task, and hybrid-size-task sche2@&i4, 69, 41].

In the fixed-size-task approach, the manager always alie¢che same fixed number of computation units
G to the requester (worker) no matter who the requester is dmhuhe request is posted. In our model,
a computation unit is a raypath during the transmitters ggsing stage or a source point at the diffraction
corners or diffuse scattering points processing stages.nfdnager does not take into consideration factors
such as the current workload, workstation’s CPU clock rael, the behavior of the requester regarding to



its past assigned tasks. Should the size of the unassigmneglutation ber’..,,, computation units, then the
fixed-size-task scheme allocatés= min (G, T, ) to the current requester, and upddtes,, as7, ¢, — A.

In the variable-size-task scheme, the manager allocatagable portion of the remaining workload to the
requester. If a NOW consists @¥ sites, the size of the pending workl$.,, and F' is an adjustment
factor (with0 < F' < 1 and F' experimentally determined), then the size of the curresigasnentA
willbe A = [T, F'/N1]. In the hybrid-size-task scheme, the manager uses théleasae-task scheme
first and checks the size of the current assignment. If it ievb@ pre-specified threshol@, the manager
switches to the fixed-size-task scheme with task siz& ofTherefore, the current assignme#tto the
requester isA = min {max ([Tyen, F'/N |, G), Trem }- Each assignment requires a round-trip message (i.e.,
a task-request message and a task-assignment messagpgrfbnmance behavior of the above schemes is
analyzed in Appendix A. We derive the condition under whiahiable-size-task assignment outperforms its
fixed-size-task counterpart. In addition, the hybrid-d&sk scheme does better than the variable-size-task
as long agz > 1.

4.3 The NOW-Based Radio Propagation Prediction Model

To deploy the baseline Algorithm 1 in a NOW, we assume tha@&xi® of a coordinator (or manager) that
initially accesses the building/terrain databases andriggi®ns of transmitters and receivers, accepts user
parameters, and delivers the predictions to the user. Fotirtie being, assume that the entire building
database can be held in the memory of each workstation, dasvible location of transmitters and receivers
and other necessary informatibnBased on all above discussion, the NOW-based predictiaehworks

as follows:

¢ Initialization stage: The manager reads the geographic terrain into its main merpartitions it,
and pre-processes all data (e.g., clusters and indexalings) that is ultimately broadcasted to all
workers in the NOW. The coordinator undertakes the respoigito read and alert workers about
additional user-provided input as well as pertinent coméijan information.

e Transmitters processing stage: The manager divides the raypaths from all transmittersdigioint
computation units (tasks or jobs) with raypath-level tasknglarity. These tasks are scheduled to
workers by using a dynamic load-balancing scheme. Sinceatfpath-level task granularity is used
and the processing time for each computation unit (a raypsitelatively small, large values fdr
and G can be used to increase the ratio of the computation time teecommunication time for
each assignment. As soon as all tasks of this phase comgpleteyanager collects their intermediate
results and generates data about the first order of diffnagtiThe latter is dispatched to all workers.

¢ Diffraction corners processing stage: This stage is composed of several supersteps, one for each
order of diffraction. In each superstep, similar procedasdhat used in the transmitters processing
stage is followed except that the task granularity is sebatce-point-level. To reduce the maximum
finish time gap among all workers, smallandG should be used.

¢ Diffuse scattering points processing stage: All diffuse scattering points are determined and treated
as transmitters. The task granularity is set at sourcetp@iel as in this phase we are dealing with
diffuse scattering points.

In the next section, we relax this assumption.



e Prediction results generation stage: The manager assembles all intermediate results, compiles
predictions, and delivers the results to the user.

If either the problem size is relatively small or the numbeN®W nodes is moderate, the manager site can
assume a dual responsibility by becoming a concurrent wakevell. On the other hand, if the resources
of the coordinator reach saturation, multiple managersbeamsed to amortize the overall coordination and
communication overhead.

5 Distributing Data and Computationsin a NOW

5.1 Data Partitioning Techniques

If we were to completely eliminate the communication cosis tb data movement, we should maintain
an in-memory full copy of the building/terrain databaseg\ary workstation. This would necessitate the
highest possible memory consumption/ék B bytes whereV and B are the number of NOW nodes and
the size of database respectively. This is an optimistioate as in general nodes may have less tBan
available memory or even the sum of the entire NOW memory negess tham3 bytes. By assuming/;
bytes of memory available at thigh NOW site, we could identify four distinct cases for outadplacement
problem:

1. CaselB < M; (i=1,..., N) with every site being able to hold the entire building datsbin main
memory (mentioned as baseline case in Section 4).

2. Case Il B < M; for somei and B > M; for some; with 4, j assuming distinct values i, N].
Here, only a subset of workstations can host the entire efatasnemory while the remaining nodes
buffer only a fraction of the data.

3. Caselll M; < B(i=1,...,N)and Zﬁil M; > B. No site can store in its own buffer space the
entire dataset but the collection of NOW memory availablarger thanB.

4. CaseIVM; < B(i=1,...,N) andzf\il M, < B. In this case, no site can hold the entire data in
volatile memory and the collective available NOW memorylirsies is less thatB.

With the exception of the first case, the trade-offs betweennaunication overheads and memory consump-
tion have to be examined under the assumption that in geaecaksing data over the network and/or from
local disks takes at least an order of magnitude more time filwen main memory [41, 18]. In our control
domain decomposition method, we move data to appropriaigutation sites. To reduce the incurred com-
munication costs, each site should store the largest poofithe building database possible. In an effort to
differentiate which portions of the dataset should be cestdent we classify groups of buildings as either
“hot-spots” or “cold-spots”. We adopt this classification raypaths are not uniformly distributed among
all buildings as limited extent areas often experience iee@oncentration of raypaths. In the transmitters
processing stage, buildings located nearby transmittatilans intercept many more launched raypaths and
are expected to be accessed much more frequently thantdistas designating in this manner hot-spots.
As all nodes participate in the processing of transmitteittechraypaths, it is beneficial if nodes keep in
memory buildings located around transmitters during thesmitters processing phase. We can further pri-
oritize buildings placed in cold-spots according to thgiat&al relationships to formed hot-spots. Such a
classification would be beneficial when only part of the cepabt areas can be memory resident with the
remaining cold-spot data stored at the manager’s disk.
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Building hot-spots can be automatically generated asvicliaghe manager collect®; (i =1,..., N) from
all workers and determineB;,,; = min{-\il M;. The manager computes the number of buildings; that
can fit in By, retrieves theVy,; buildings spatially nearest to the transmitters and finalbadcasts these
buildings to all workers. Naturally, hot-spots can changerd) the computation process and different nodes
may have different hot-spots especially in the diffractcmmners and diffuse scattering points processing
stages. Workei can adjust its hot-spot set of buildings dynamically asofei: every time workei obtains
a new assignment (e.g., a source point), it constructs mepMB;wt for the source point based a; such
thatB,,,, < M; and buildings inB,,, are those nearest to the source point among all buildings wiiker
then proceeds to examine whether buildinngmt are already memory resident; if not, the worker fetches
the new hop-spot elements from the manager at one requésitihaately replace outdated hot-spot items.

Different methods for further classification and allocatiof buildings in cold-spots among nodes are
adopted for different cases. For exampleCase /] the cold-spots may be divided infé parts with each
part having sizeB; (in bytes fori =1,..., N) sothatB; < (M; — Bpt) andzf\il B; = B— By, Buildings
in cold-spots can be assigned® based on their spatial locations. @ase 1V the cold-spot buildings are
subdivided into two partsB,,q-m andBe,q. The setB,,.-m contains buildings aroun®;,; and consists of
N components whose size 8 with B; < (M; — By,) for i=1,...,N. TheseN components are delegated
for storage to the available main memory of the NOW nodes.réitaining buildings are placed iB..;4
and are stored on the manager’s disk.

For brevity, we discuss the building database partitiotgatpnique foilCase H—methods for casedl and
IV can be derived in a similar manner. By assuming that the neaisgghysical memory can accommodate
the entire building database, the method works as follows:

e The manager retrieves the entire building database intmémory and collects the sizes of main
memory availableVf; (i = 1, ..., V) from all workers. It then generates the hot-spit,; following
the outlined procedure and dispatches it to all other NOWerod

e The rest of the building database is sent by the manager tioomk workers whose main memavy;
satisfiesB < M;.

e For sites whose main memony; is less thani3, the manager delivers buildings in cold-spots upon
request. Workers manage and adjust buildings in the hasgpal cold-spots according to their local
situation. Buildings in cold-spots are replaced with a Fisdlicy.

e To improve system efficiency, two threads, a computatioratirand a communication thread, are
used in all sites. The computation thread is in charge ofygagrout CPU intensive tasks such as
tracing raypaths while the communication thread handlgsests for building data from/to other
sites.

It is worth pointing out that the above data partition tecjueis are also used to partition terrain databases
and scatter them to machines in a NOW configuration.

5.2 Computation-Duplication and Computation-Partition

Let us assume that computatiohconsists of two part€’, andC), in that order withC', being much shorter
thanC,,. In addition,C,-generated results are not only large but are also heawdlgt bgC',. Clearly when
C'is to be distributed, it is advantageous to parallelizeas much as possible; should a complete copy of
the C,’s results become available at all NOW sites, the enfirerould benefit. To obtain a copy @f,’s
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result at every site, there are two alternatives:

1. Computation duplicatian C, is independently repeated by every node, and its resultstared
locally for subsequent use ly,. This method involved little communication and as the reiii
time for C, is very small, it is expected that NOW'’s performance (esghcihe speedup) is not
affected noticeably.

2. Computation partitionC,, is treated just as other parts of computation and each natempe only
part of the computation and intermediate results are exggthamong all sites so that each site obtains
a complete copy. Although the computation time spent by a#tehis short (vs. the computation-
duplication method), communication overhead is introdusetentially affecting the speedup.

One candidate for such a computation is the establishmelaoktip tables. Lookup tables constitute
an efficient technique in massive computations problemseviialues of lookup table are used to avoid
time-consuming frequently occurring function calls. liy+teacing models, the ray-wall-intersection test is
the most frequently used operation and it is known to consummore than 85% of the total processing
time [21]. To find out the slope of a line, reflection angle farg, or intersection point between a ray and
a wall, we need to calculate the tangent or arctangent fovengiay. Performance-wise, it is beneficial to
establish a tangent lookup table before computation cornesem every NOW node. In Appendix B, we
derive processing times for the above two methods; basediofoonulae we show that when the number
of NOW sites is larger than 2, computation-partition outpens the computation-duplication method for a
100 Mbps network.

Another candidate for this type of handling is the pre-pssagg of the building database in order to
improve the ray-wall-intersection test operations. Thislves partitioning buildings into clusters (or oc-
trees) [21, 35, 42], setting up the indexing structure faidg retrieval, and creating statistical information
about buildings (e.g., size of buildings). In the compatatduplication method, the manager sends the en-
tire building dataset to all sites (it may not be realisticsgme cases) and each site may locally pre-process
the building database in an independent and simultanesh®fa In the computation-partition method, all
sites take part in the pre-processing procedure but eaejusitperforms a portion of the computation, and
exchanges local results with all other sites so that eveeygets a complete copy of the results. Similar
analysis and computation can be performed as the case gflosikup tables.

In summary, when the number of NOW nodes is at least threeiteglase attached to a high bandwidth
(at least 100 Mbps), we use the computation-partition ntetlwoestablish lookup tables and pre-process
building/terrain databases. Otherwise, we use the coripatduplication method.

5.3 Intermediate Results Assembly

Due to data and control dependencies among different staljggout data should be available before a stage
commences. In the course of ray-tracing prediction, theuwutf each stage is information for diffraction
corners (or diffuse scattering points) and raypaths ilhating these source points. The corresponding
numbers of first and second order diffraction corners as agethypaths illuminating each corner are huge
(see Section 6). Therefore, the output of pertinent stagasbe very large and it is a challenge for the
manager to collect data from all workers efficiently.

The use of a superstep’s interaction phase can assist irffitierg collection of results that are to be
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consumed by follow-up stages in the prediction computati@reduce both the complexity of the system
and the communication overhead, NOW sites can employ thegeauworkers paradigm to materialize the
above result assembly in a first-come-first-serve (FCF$)adise. This method is depicted in Algorithm 2.
The manager site is in charge of the assembly operation ahileorkers are idle before and after they ship
out their partial yet locally generated results.

Algorithm 2 First-Come-First-Serve Intermediate Data Assembly Métho
1. if (the current site is the manageéhen
2. S+ D,whereD is the intermediate data at the manager’s site,sigithe assembled data
while (there is unprocessed worket)
receive intermediate daia from the next arriving worker
assemble the received intermediate dataith S, thatisS <« S U D
end while
else
send its local intermediate dafato the manager
end if

To further reduce the idle period each worker may remain atpspose a multi-level assembly method.
A “virtual” binary tree is formed among all NOW sites. Initlig all leaves (sites) are grouped pairwise, that
is, sitesn; andn;; are paired together wheie= 1, ..., [N/2]. Intermediate data is assembled within each
pair of sites and the assembled results are stored at onerof(for example, the site with the lower index).
The assembling operation proceeds for each pair simultesheoNodes currently holding the assembled
results participate in the next round of assembly, whileethremain idle. This procedure is repeated until
all intermediate data are collected and kept in only one nddesnsure that the manager’s site is the final
destination, we designate it with identifief in the above procedure. Algorithm 3 presents our multi{leve
assembling method with each site having a unique identifdkj and the manager assigned-rank equal to
one.

Algorithm 3 Multi-Level Intermediate Data Assembly Method
1. f1 < 1; fo < 2;5 «— D, whereS§ is the assembled data, whil2is the intermediate data at this site
2: while (f; < numberof_nodes(i.e.N)) do

3. if ([(my_rank-1)modulo fo] == 0)then
4 peecrank = myrank + fy;
5: receive intermediate dafa from the site with identifier of pearank
6: S—SubD
7. dse
8: if ([(my_rank-1)modulo fi] == 0)then
9 peerrank = myrank - f1;
10: sendsS to the site with identifier of peerank
11: else
12; exit;
13: end if
14:  end if
15: f1 < fo; fa < 2f2
16: end while

We analytically compare the above two assembly techniquégpendix C and find that the multi-level
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assembly method is preferable to FCFS when at least two N@& carry out the prediction computation.
Hence, the multi-level assembly technique is our choicauimNiOW-deployed model.

5.4 Prediction Results Generation

Our radio wave prediction model produces prediction resukinly related to received signal strengths such
as system coverage, delay spread, and angle spread obbgrieckivers. The signal strength reaching a
receiverR is determined by all the raypaths illuminatidy To reduce processing time and main memory
consumption, we only store a raypath frif its energy P (expressed in dB) is larger thd,,... — Pipd,
whereP,,.; is the maximum energy among all raypaths illuminatiygand P4 is the pre-specified thresh-
old (typically 20dB) [7, 53]. A raypath satisfying the abovegjuirement is called a significant raypath. In
our model, each site processes disjoint sets of raypathstanes illuminating raypaths for each receiver
locally. To ensure that all raypaths kept at different sftasthe same receiver are significant, we prune
all non-significant raypaths. We examine two pertinent prgiriechniques: “one-site-pruning” and “all-
site-pruning”. In the former, all workers dispatch theicddly stored raypaths to the manager, where the
entire pruning takes place. In the “all-site-pruning” teitjue, each site first determines the local maximum
power for each receiver based on its local information. Thiemlocal maximum power data is exchanged
among all sites so that the global maximum power for eachweicean be determined and becomes globally
known. Subsequently, each site prunes its own local ragdatheach receiver based on the global maxi-
mum powers, and locally generates partial predictionsallimall workers send their partial predictions to
the manager that is responsible for their synthesis and itatiop of final predictions.

The crucial step in “all-site-pruning” is to exchange locahxima and determination of global max-
ima among all sites. Since we use the MPI standard [22, 28]gtbbal maximum reduction operation
(MPI _Al 'l r educe( -) with operation code oPl _MAX) can be used to find out the maximum power for
each receiver among all sites and the results are deliver@tdites. Similarly, the global summation reduc-
tion operation Pl _Reduce( -) with operation code df/Pl _SUM can be utilized to perform the assembly
of partial results into the final predictions that are staaedne site only (i.e., the manager site). Appendix D
compares the performance features of the above two metmodshaws that the “all-site-pruning” method
has better performance than the “one-site-pruning” me#isodng as the bandwidth of the network used is
high, and the number of sites in the NOW configuration is nedgt large. Therefore, we select “all-site-
pruning” method to generate final predictions in our model.

5.5 Reduction of Communication Over heads

The communication overhead emanates from informationedigsation initiated by the manager to all
workers, data movements between different sites when rednist are imposed on the main memory con-
sumption, task allocations, intermediate data collestiand final prediction results generation. One way
to reduce the communication overhead is to overlap the carnwation with the computation by using the
asynchronous communication mode (also called nonbloat@mgmunication or immediate communication
mode in [22, 23]). We exploit asynchronous communicatiordenm the deployment of our prediction
model. For instance, in the task allocation procedure, eamtter maintains a local task queue holding
all unprocessed tasks. When the worker dequeues a tasklimtagk queue, it checks whether or not the
task queue is below a specified threshold. If so, it sendskar¢éagiest to the manager by using the asyn-
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chronous communication mode (e @Bl _| send( -) function in MPI application programming interface),
and returns to its on-going computation immediately. Omeedurrent task is finished, the worker exam-
ines whether or not the new task assignment has arrived fiermainager by asynchronous communication
mode (e.g.MPI Mait (), MPI VMaitany(-),orMPl _Testany(-) in MPI API). If a new assignment
is available, the worker fetches and places it into its tagug.

One drawback of the asynchronous communication mode idgts thain memory consumption. The
communication substrate needs extra memory to store thessages generated by the asynchronous com-
munication mode, thereby competing with the ray-tracingdjmtion model for main-memory resources.
Another potential drawback is that it may cause some unbathrmvorkload among sites, which occurs
when all workers request new tasks at the same time. If ondyumrassigned task remains at the manager,
it may happen to be sent to a node already involved in a lengimputation. In this case, the unprocessed
tasks accumulate at a single site, while all others comieiie own tasks and enter idle periods.

The use of piggybacked messages can substantially redouawaication overhead. In our prediction
model, task assignments are carried out by message exchbatyeeen the manager and workers. Task-
request and task-assignment messages are often verythleoet)y other information can be piggybacked
in them. Such information includes non-time-sensitive and-time-critical data that can tolerate some
time delays. They include statistics about computatiog@ss, network status, and some intermediate data
(e.g., the maximum power so far for each receiver).

6 Experimentsand Evaluations

We have implemented our proposed ray-tracing based radie prapagation prediction model on a NOW
cluster consisting of 26 nodes. All machines are homoge&oun Ultra-10 workstations with CPU clock
rate of 400 MHz, main memory of 128 MBytes, and swap area of@Bgtes, inter-networked with a switch

at 100 Mbps bandwidth. The nodes run Solaris 5.7 and the camcation substrate is provided with Mes-
sage Passing Interface (MPI) standard [22, 23]. The C arlddhguages have been used in the development
of our prototype whose sequential version is available fptHthreads and their synchronization primitives
are used for coordinating concurrent activities within @®ftL2]. The main techniques used in each stage
are summarized in Table 1.

We have conducted extensive experiments by using bothifealnd synthetic building/terrain databases.
In all experiments, we assume that only the manager siteamasa the building databases and configuration
files, interact with the user for inputs as well as for pradits display. To simulate constraints on main
memory consumption, a user-defined threshold on the usag®iof memory may be imposed separately
for each site. For the experiments discussed here we havdynmaade use of a 2D ray-tracing system
which is appropriate for low antennas among tall buildin§s43, 7]. When the base station antenna is
at a height close to or above the surrounding buildings, iteisessary to consider rays that go over the
buildings, as well as around them. Ray-tracing systemslimanthis case are similar in structure to the 2D
ray-tracing systems [53, 58, 7], therefore, the conclusidentified by 2D models are directly applicable to
3D ray-tracing prediction models. The building databaslus the 2D ray-tracing system is limited to the
footprints of buildings, the heights for all buildings aesamed to be uniform and infinite, and the terrain
is assumed to be flat for simplicity. To further corroborate analysis, we developed a 3D NOW-based
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| Stage Specific Techniques used per Stage |

Initialization building/terrain data accessed by the manager only
building/terrain preprocessed with computation dupi@abr partition
lookup tables established by computation duplication onatation partition
hot-spots are constructed automatically by the manager
Transmitters processing manger/workers paradigm and dynamic load balancing scheme
raypath-level task granularity

multi-level intermediate data assembly method

MPI and Pthread for inter-node and intra-node communinatio
asynchronous communication mode for task requests

message piggyback to overlap computation and communicatio
Diffraction corners processing source-point-level task granularity (diffraction corger

hot-spots are determined by workers locally and automitica
(other techniques are similar to “transmitters processitage)
Diffuse scattering processing source-point-level task granularity (diffuse scattefirints)
hot-spots are determined by workers locally and automitica
(other techniques are similar to “transmitters processitage)
Prediction results generation| “all-site-pruning” method to prune results

computation-partition method to compute final predictions
prediction results delivered to user by the manager only

Table 1: Summary of stages and techniques in our proposed-Na3ad ray-tracing system

ray-tracing prototype for radio wave propagation predittbased on the Vertical Plane Launching system
[7, 53]. In this prototype, 3D terrain databases are usedlifube scattering is also considered to further
improve prediction accuracy.

6.1 Environmentsused in Experiments

We use four city maps to conduct our experiments. The first imdlpat of Rosslyn, VA (Figure 3) and
contains 79 buildings with 412 walls. Only one transmittesge station) is treated, located at coordinates
(237,656.0, 118,100.0) m. There are 400 receivers (mataiteos locations) that are scattered along several
streets. The second city map is a synthetic Manhattan-likdibg area (Figure 4). There are 56 buildings
and 224 walls in this map. The single transmitter is locate(B40.0, 340.0) m, and 200 receivers are
located on two horizontal streets. The third city map we gdbat of Turin, Italy shown in Figure 5 and it
contains 2,478 buildings with 20,280 vertices. The tratiemis located at (397,910.0, 4,994,980.0) m, and
419 receivers are located around the transmitter. Thelfasithe Dupont Circle area in Washington, D.C.,
shown in Figure 6 which features 3,564 buildings and 23,18lswThe transmitter is located at (322,780.0,
4,308,550.0) m, while 400 receivers are arranged in two maiallel streets.

The frequency of the carrier used to conduct all experimisr@80 MHz, and the physical phenomena we
consider include reflections, diffractions, and diffusatsring. When 2D building databases are used, the
maximum number of reflections each raypath may encounté, srid the maximum number of diffractions
each raypath may undergo is two (2) when city maps of Ros8l\amhattan, and Turin are used, and one
(1) when Dupont Circle map is used (for the sake of shortettiegexperiment time). The corresponding
numbers are 4 and 1 when 3D terrain databases are used. Emaaimeights used by transmitters (base
stations) and receivers (mobile stations) are 10 m and 1reéspectively. All the walls of buildings are
assumed to be made of the same material and have dieleatistacte,, = 6. The pincushion ray tracing

16



Footprints, Tx, and Rx locations in Rosslyn (Tx1a) Locations of buidings, Tx, and Rx in Manhattan
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Figure 3: Locations of buildings, a transmittef~igure 4: Locations of buildings, Tx and Rx in a
Tx1a and receivers Rx in Rosslyn, VA Manhattan-like city

method is used with angular separatiorvef 0.5 unless stated otherwise [7].

To evaluate the performance of our prediction model, we aise metrics such as speedup, workload
expansion ratio, and resource utilization. SupposeZhatis the best finish time achieved when only one
machine is used;; is the finish time for the-th node when a:.-node NOW configuration is used;,,..
andT,, are the maximum and average finish times, among:thedes, whileT’,,,,,, is the summation of
finish times for all nodes arif,, is the computation and communication overhead, tign, = max} , ¢;,
Tsum = Y ie1 tis Tavg = Ooieq ti)/n, and Ty, = Toum — Tseq- The speedupyy,, the workload expansion
ratio 17,,, and the resource utilizatiali,, can be computed &, = Tscq/Tmaz = Tseq/max]_; t;, W, =
Tsum/Tseq = dim1 ti/Tseq, and Uy, = Toug/Tmae = >oieq ti/(nTimaez). N order to more accurately
measure the scalability of our NOW-based model, we empleyrtatrics of efficiency,, and isoefficiency
K,, whose respective definitions atk;, = S, /n = 1/(1 + T4 /Tseq) and K, = E, /(1 — E,,) [49, 30].

6.2 Characteristics of the NOW-based Ray-Tracing System

To investigate the core characteristics of our NOW-based&pbtracing system, we use the city maps
for Rosslyn (Figure 3) and Turin (Figure 5) in the followingtngs: raypath-level and source-point-level
task granularities are employed for the processing of tnaters and diffraction corners respectively. In
addition, we use the hybrid-size-task dynamic load-batenscheduling scheme. To compromise between
the communication overhead due to task allocation and wadkbalance among all nodes, the adjustment
factor is set toF'=1/3 for the transmitter processing stage, while the vélaé/4 is used for the diffraction
corners processing stage. To reduce the maximum finish tqmegogrametet is set to two (2) raypaths and
two (2) diffractions corners in the transmitters and diffian corners processing stages respectively. The
above parameter values are experimentally calibratedratinisi way, we assert the validity of our choices.

We conduct experiments while using up to 26 NOW nodes. Faiitlgreve present detailed results for up
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Locations of footprints, Tx, and Rx in Turin Environment(Buildings, Txs, Rxs) for Dupont Circle
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Figure 5: Locations of buildings, Tx (at center)Figure 6: Locations of buildings, Tx and Rx in
and Rx (around center) in Turin, Italy Dupont Circle, Washington D.C.

to 6 nodes and for the case where 26 NOW nodes are in operatigeneral, we consistently establish the
same trends independent of the number of nodes used. Tahles 2 show the specific statistics obtained
when the nodes ranges from 1 to 6 for Rosslyn and Turin resplct The number of ray trees and finish
time (wall clock time) for each node in the transmitter pisgiag stage are listed in columrig-tay’ and “r-
time’. The number of first-order diffraction corners, number @y trees from these diffraction corners, and
finish time (wall clock time) for each node in the diffractionrners processing stage are given in columns
“df-cnr(1y, “ df-ray(1), and “df-tim€’. The number of second-order diffraction corners, numieaptrees
from these diffraction corners, and finish time for the enprrediction procedure (wall clock time) in each

L]

node are listed in columngf-cnr(2y, “ df-ray(2)’, and “time’ respectively.

Figures 7, 8, and 9 show the results obtained when 26 NOW rem@esmployeed for the processing of
Rosslyn; similarly for the case of Turin, our results apgadfigures 10, 11, and 12. In all aforementioned
graphs, we depict 26 unique identifiers (0 to 25 inclusivehglthex-axis-each one of them corresponds to a
distinct workstation used in the NOW configuration. Alongyhaxis we depict all the related performance
measurements as those shown in Tables 2 and 3.

We can observe from Tables 2 and 3 that the number of first-aiffeaction corners is large, while the
number of second-order diffraction corners is much larget, This is especially true for large databases,
such as Turin where the numbers of first-order and secorel-aiffraction corners are 327 and 10,802,
respectively. The first-order diffraction corners are fechtlue to raypaths originating from the transmitters,
while the second-order diffraction corners are generaiedaips originating from the first-order diffrac-
tion corners. Although the number of diffraction cornerpeieds on both the density of the area and the
maximum numbers of reflections and diffractions we consither number of diffraction corners appears to
exponentially increase with the orders of diffractionsr Example in Rosslyn, VA, the numbers of diffrac-
tion corners for the first order and second order are 243 aBdrggpectively, which are 59% and 91% of
the total corners in the entire map (whose number is 412)e Hely about half of the building corners are

18



#of NOW | pid | tx-ray | r-time | df-cnr(1) | df-ray(1) | df-time | df-cnr(2) | df-ray(2) | time
nodes sec. sec. sec.
1 0 720 | 3.18 243 | 127704| 193.00 373 | 322079 279.00
2 0 385 | 1.60 135 71030| 96.66 204 | 178343| 139.82
1 335 | 1.59 108 56674 | 96.66 169 | 143736 139.46

3 0 275 | 1.42 91 48018| 65.62 129 | 115156| 94.72
1 250 | 1.42 84 43805| 65.62 130 | 112462| 94.22

2 195| 1.42 68 35881 65.51 114 94461 | 94.54

4 0 185| 1.43 60 31286 49.70 103 85295| 71.80
1 90| 1.06 68 35062 | 49.70 96 85049 | 71.35

2 245 | 1.42 57 30027 | 49.40 85 74201| 71.57

3 200 | 1.43 58 31329 49.47 89 77534| 71.66

5 0 152 | 1.27 54 28714| 39.94 82 71094| 57.75
1 147 | 1.27 51 26525| 39.46 78 67234| 57.59

2 152 | 1.27 52 27175| 39.40 75 66928| 57.14

3 152 | 1.27 42 21975| 39.94 76 61628| 57.59

4 117 | 1.27 44 23315| 39.43 62 55195| 57.15

6 0 105| 1.22 50 26161| 33.79 68 61631| 48.65
1 125| 1.22 40 21220| 32.76 66 55667 | 48.65

2 150 | 1.22 38 19598| 33.79 62 52179| 48.60

3 130 | 1.22 39 20557 | 33.10 54 48275| 48.37

4 110 | 1.22 40 21268| 33.23 57 51388 | 48.43

5 100 | 1.22 36 18900| 33.48 66 52939| 48.30

Table 2: Statistics for Rosslyn, VA when various NOW confajioms are used

reached by rays from the transmitter, but almost all bugdiorners are second order diffraction corners.

The processing time for different stages are quite diffeael the gaps between them are large. We take
Turin as an example: the processing time for the only tratbtems 5.00 seconds, while itis 6,775.50 seconds
and 31,167.50 seconds for the first-order and second-oiffexction corners, respectively. The average
processing time for a first-order diffraction corner and eosel-order diffraction corner are quite different.
For instance in Rosslyn, the average processing times fostaofider and a second-order diffraction corner
are 0.78 secondsand 0.23 seconds respectively. The corresponding valueRufin are 20.71 and 2.89
seconds. Itis clear that the processing time for a firstradifraction corner is much larger than that for a
second-order diffraction corner. The main reason is thanithacing the second-order diffraction corners,
it is not necessary to check whether rays illuminate anyeamnvhich turns out to be a time-consuming
process. The processing time for each individual raypatjuite different as the variance is very large no
matter where the raypath comes from (transmitter, firseiodiffraction corner, or second-order diffraction
corner). For instance, when the NOW configuration has 6 noditkin the transmitter processing stage
in Rosslyn, the number of raypaths processed by node 2 isviltik only 100 are processed by node 5.
The average processing times for raypaths handled by noaled 2 are 0.0081 seconds (i.e., 1.22/150) and
0.012 seconds (i.e., 1.22/100), respectively. Similamyger the same NOW configuration, for the first-order
diffraction corners in Turin, the numbers of raypaths tchbg nodes 2 and 4 are 30,539 and 27,161, while
the average processing times are 0.037 seconds and 0.@tdseespectively. Should we also examine
Figures 7, 9, 10, and 12, we can draw the same conclusionngiamnice in the case of Rosslyn and during
the second-order diffraction corners processing sta§j@6ahodes finish at approximately the same time.

20.78 seconds = (193.00 - 3.18)/243 seconds
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#of NOW | pid | tx-ray | r-time | df-cnr(1) | df-ray(1) | df-time | df-cnr(2) | df-ray(2) time
nodes sec. sec. sec.
1 0 720 | 5.00 327 | 174997| 6780.50 10802 | 5870432| 37948.00
2 0 385| 2.31 165 88586 | 3475.88 5480 | 2980156| 19196.06
1 335| 2.31 162 86411| 3456.81 5322 | 2890276| 19196.08
3 0 385| 2.23 108 57961| 2274.59 3636 | 1980445 12660.89
1 160 | 2.23 114 60815| 2257.05 3772 | 2046122| 12660.90
2 175| 2.18 105 56221| 2274.57 3394 | 1843911| 12660.25
4 0 255| 2.23 80 43002| 1720.38 2758 | 1498783| 9555.60
1 190 2.11 84 45437 | 1704.09 2744 1492269| 9552.07
2 140 | 2.23 85 44819| 1703.49 2790 | 1516543| 9553.00
3 135| 2.18 78 41739| 1710.38 2510| 1363348| 9555.59
5 0 197 2.21 64 33983| 1350.36 2215| 1204257 7555.63
1 122 2.09 68 36448| 1346.05 2172| 1185018| 7553.18
2 182 | 2.08 66 35689| 1350.35 2298 | 1242551| 7555.57
3 102 2.21 63 33627 | 1347.15 2091 | 1138679| 7553.44
4 117 | 2.17 66 35250| 1345.24 2026 | 1100209| 7553.79
6 0 125 2.21 52 27812| 1139.06 1836| 997501| 6327.36
1 95| 2.15 58 30451| 1121.91 1829 | 995747| 6323.72
2 110| 2.06 57 30539| 1139.05 1866 | 1010467 6327.31
3 130 | 2.06 54 29250| 1124.96 1861 | 1012678 6323.66
4 135| 2.06 51 27161| 1123.09 1729| 939605| 6323.84
5 125| 2.06 55 29784 | 1133.84 1681 | 914584| 6324.40

Table 3: Statistics for Turin when different NOW configuoais are used

However, the number of rays emitting from second-orderafifion corners (depicted by curvdf-ray(2)
in Figure 9) and processed by each node differs dramatiballyeen a minimum of 9262 (at node 21) and
maximum of 16836 (at node 0).

The processing time for each diffraction corner occaslgmaksents large variance. For example, when
6 NOW-sites are used in the Turin map, the corresponding esndf second-order diffraction corners
processed by nodes 2 and 5 are 1,866 and 1,681. Thereforaydhege processing time for these two
subsets of diffraction corners are 2.78 secohdad 3.09 seconds respectively. The same observation can
be made with the help of Figures 7, 8, 10, and 11. In the casaraf @nd during the second-order diffraction
corners processing stage, all 26 nodes finish at almost the t#@e. In contrast, the number of second-order
diffraction corners (as shown by curvdf*cnr(2)’ of Figure 11) processed by each node varies significantly,
with minimum of 373 (at node 25) and a maximum of 451 (at node 14

The maximum finish time gap (difference of finish times amohgites) is very small indicating that
workload is well balanced among all sites. More specificatlys less than 1 second in all experiments
for Rosslyn (Table 2), while it is less than 4 seconds in afleginents for Turin (Table 3). This is also
evidenced by Figures 7 and 10 where curves representingitbl fimes of all nodes at different stages are
almost horizontal straight lines. In general, the finishetigap is caused by coarse task granularity, which
in our experiments is set by = 2 in assigning diffraction corners. For instance in theifease, it can be
seen that the average processing time for a second-ordrctidn cornertq; s, is about 3.00 seconds,
thereby, the maximum finish time gaptig; oG < 6 seconds. It is expected that if we set 1, the finish
time gap will be further reduced. Tables 2 and 3 also showtktieaspeedup is nearly linear with the number

3computed as the fraction (6,327.31 - 1,139.05) / 1,866.
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of nodes in the NOW (complete speedup presentation can Inél fauFigure 16).

In summary, the complexity of computations at differentgessing stages of the ray-tracing procedure
is quite different, and the processing times for differesygpaths, diffraction corners vary dramatically.
However, by using different task granularities for diffierstages and dynamic load-balancing scheduling
scheme, the finish time gaps among nodes can be reduced eaddpeedups can be achieved.

6.3 Effectsof Task Granularity

To compare the performance of different load-balancingdaling schemes, we use the city maps of Man-
hattan (Figure 4) and Dupont Circle (Figure 6) while we vdrg humber of NOW sites from 1 to 26. We
assume that there is no constraint on the amount of main nyesrmmiachine can use and the manager ships
the entire building database to all workers at the beginpiniipe computation. Since the hybrid-size-task
assignment scheme is better than the variable-size-tanasent scheme (as derived in Appendix A), we
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show experimental results only for the fixed-size-task sehand hybrid-size-task scheme. In the fixed-
size-task scheme, the size of each assignréeist set to 2 raypaths in transmitter processing stage and 2
diffraction corners in diffraction corners processinggstaln the hybrid-size-task scheme, the adjustment
factor F' is 1/3 and 1/4 for the transmitter processing stage and fifraation corners processing stage,
respectively. The parametét is the same as that in the fixed-size-task scheme. Figureadl34adepict

the resulting speedup and workload expansion ratios wleefixied-size-task and hybrid-size-task schemes
are used for Manhattan and Dupont Circle maps. Tables 4 ahd\® sbtained statistics for Manhattan
and Dupont Circle that include the minimum (earliest), maxin (latest) finish times among all involved
machines (in columnstiin-time and “max-timé), the summation of finish times for all machines (column
“sum-timé&), and resource utilization (columrutil”).
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Figure 13: Speedups for Manhattan and Dupofigure 14: Workload expansion ratios for Man-
Circle when the fixed-size-task and hybrid-sizehattan and Dupont Circle when the fixed-size-task
task schemes are used and hybrid-size-task schemes are used

Figures 13, 14, and Tables 4, 5 point out that the speedug\azhiby the hybrid-size-task scheme is
better than its fixed-size-task counterpart in most expamisiwe have conducted. For instance when the
Dupont Circle map is used and the number of sites in NOW ist&5corresponding speedup rates for the
fixed-size-task and the hybrid-size-task scheme are 231@2%.05. Similar observations can be made for
other NOW configurations that use the Manhattan buildingloke. It is noteworthy to point out that the
relationship between the speedup and the number of sitbe INOW configuration is nearly linear.

The workload expansion ratio is higher for the fixed-sizétscheme than its hybrid-size-task counterpart
(Figure 14), indicating that the latter has lower extra catapjon and communication overhead. For instance
when 6 NOW-nodes are involved, the workload expansion s&to the fixed-size-task and the hybrid-
size-task scheme are 1.12 and 1.09 respectively. When timdaruof NOW sites increases to 26, the
corresponding workload expansion ratios are 1.28 and T.88.workload expansion ratio is related to the
complexity of the computation. In general, it is expecteak th more complex computation demonstrates
lower workload expansion ratio. Based on experimentallt®given above, the respective processing times
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# of NOW | min-time| max-time| sum-time| util min-time | max-time| sum-time| util
nodes sec. sec. Sec. sec. sec. sec.
Manhattan (fixed-size-task) Manhattan (hybrid-size-task)
1 304.00 | 304.00 304.00 | 1.0000| 304.00 | 304.00 304.00 | 1.0000
2 161.54 161.54 323.08 | 1.0000| 152.37 152.38 304.75 | 1.0000
4 84.47 84.81 338.64 | 0.9982| 79.50 79.85 318.57 | 0.9974
6 56.62 57.33 341.25 | 0.9922| 55.09 55.48 331.58 | 0.9961
8 43.00 43.35 345,55 | 0.9963| 42.54 43.02 341.90 | 0.9948
10 35.22 35.72 354.07 | 0.9913| 34.79 35.00 348.86 | 0.9961
12 30.40 30.88 366.91 | 0.9903| 29.18 29.75 353.32 | 0.9897
14 26.01 26.33 367.00 | 0.9954| 25.81 26.52 364.50 | 0.9717
16 23.51 24.06 380.74 | 0.9892| 23.08 23.52 373.79 | 0.9934
18 21.01 21.36 381.74 | 0.9929| 20.94 21.43 381.15 | 0.9910
20 19.10 19.64 386.26 | 0.9832| 18.84 19.26 381.09 | 0.9873
22 17.47 17.99 388.47 | 0.9817| 17.14 17.57 381.41 | 0.9877
24 15.79 16.37 383.78 | 0.9768| 15.75 16.22 382.32 | 0.9836
26 14.83 15.41 390.00 | 0.9734| 14.23 14.80 373.84 | 0.9813

Table 4: Statistics for Manhattan when the fixed-size-tagklaybrid-size-task schemes are used

for Dupont Circle and Manhattan are 2374.00 and 304.00 sklscahen only one node is used to carry out
the computation. When 26 nodes take part in the computatiernmaximum workload expansion ratios are
1.08 and 1.28, respectively, for Dupont Circle and Manimakig using the fixed-size-task scheme, while
1.03 and 1.23 by using the hybrid-size-task scheme. It & theat the workload expansion ratio incurred by
the Manhattan map is larger than that of Dupont Circle. Tlseuece utilization rates are similar for both

scheduling schemes and very close to the ideal utilizatb@ indicating that all sites spend little time in

idle status.

The maximum finish time gap is very small for both the fixecediask and hybrid-size-task schemes.
When the Manhattan map is used, the maximum finish gap of @@dnsls occurs when the number of
nodes in NOW is 6 and the fixed-size-task scheme is used. Wiedybrid-size-task scheme is used, the
maximum finish gap is also 0.71 seconds, but occurs when tind@wof sites in the NOW is 14. Similarly,
when Dupont Circle map is used, the maximum finish time gap2d&04 and 1.98 seconds, respectively,
for the fixed-size-task scheme and the hybrid-size-taskraeh both occurring when the number of sites
in the NOW is 22. Therefore, the workloads are allocated atnewenly among all sites. Based on the
above observations, we conclude that the hybrid-size-dasignment scheme outperforms the fixed-size-
task scheme. Figure 15 shows prediction results for tratesnsite Tx1a in Rosslyn, VA (as depicted in
Figure 3) along with actual measurements obtained in thd fesdily establishing the accuracy of our
model.

6.4 Speedup Rates Without Memory Constraints

Experiments thus far for Manhattan and Dupont Circle usiprid-size-task scheduling scheme at 26
nodes deliver speedup rates of 20.54 and 25.05, respgctiVelevaluate the robustness of our proposed
model under varying computation complexities, we also heecity maps for Rosslyn (Figure 3) and Turin
(Figure 5) and conduct experiments while ranging the nurobBIOW-nodes from 1 to 26.

Rosslyn and Manhattan essentially constitute our “liglmhpatations” as they feature 56 buildings (with
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# of NOW | min-time| max-time| sum-time| util min-time | max-time| sum-time| util
nodes sec. sec. sec. sec. sec. sec.

Dupont Circle (fixed-size-task) Dupont Circle (hybrid-size-task)
1 2374.00| 2374.00 | 2374.00| 1.0000| 2374.00| 2374.00 | 2374.00 | 1.0000
2 1231.20| 1231.21| 2462.41| 1.0000|| 1219.09| 1219.10| 2438.19 | 1.0000
4 613.49 | 615.11 | 2457.06 | 0.9986| 593.53 | 599.54 | 2396.80 | 0.9994
6 407.08 | 407.60 | 2444.42| 0.9995| 397.18 | 398.84 | 2386.97 | 0.9975
8 298.46 | 299.73 | 2391.92 | 0.9975| 297.84 | 298.93 | 2385.72 | 0.9976
10 238.66 | 240.13 | 2395.44 | 0.9976| 238.34 | 240.15 | 2390.59 | 0.9955
12 199.37 | 200.67 | 2399.32| 0.9964| 198.66 | 200.00 | 2391.50 | 0.9965
14 170.94 | 172.40 | 2404.51| 0.9962| 171.26 | 172.78 | 2406.15| 0.9947
16 150.28 | 151.81 | 2417.54| 0.9953| 149.42 | 150.72 | 2401.18 | 0.9957
18 134.04 | 136.06 | 2425.02| 0.9902| 133.65 | 134.92 | 2415.97 | 0.9948
20 124.83 | 126.19 | 2510.47| 0.9947| 120.19 | 121.47 | 2415.90 | 0.9944
22 110.37 | 112.41 | 2440.81| 0.9870| 109.75 | 111.73 | 2426.64 | 0.9872
24 101.36 | 102.63 | 2447.32| 0.9936| 100.65 | 102.11 | 2430.07 | 0.9916
26 97.84 99.11 2560.34 | 0.9936| 93.22 94.77 | 2441.35| 0.9908

Table 5: Statistics for Dupont Circle when the fixed-sizgktand hybrid-size-task schemes are used

224 vertices) and 79 buildings (with 412 vertices) respebtti The higher building density results in longer
processing time for Manhattan (304.00 seconds) compartdRagsslyn (279.00 seconds) when a single
NOW-node is used. More “intense computations” are thoselvivg Turin (with 2,478 buildings featuring
20,280 vertices) and Dupont Circle (with 3,564 buildingatfeing 23,181 vertices). We use two orders
of diffractions in Turin as opposed to a single order in DupGircle. Therefore, the processing time for
Turin is much longer than that of Dupont Circle when a singldenis used (37,948.00 and 2,374.00 seconds

respectively given in Tables 3 and 5).
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We use the same experimental settings as in Section 6.3 andute statistics including the sum of
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#of NOW| sum-t | oh-t iso sum-t oh-t iso sum-t oh-t iso

nodes Sec. Sec. sec. Sec. sec. Sec.
Rosslyn § =0.5%) Rosslyn § = 0.1°) Turin (hybrid)

1 279.00| 0.00 00 2350.00( 0.00 0 37948.00| 0.00 0
2 279.28| 0.28 | 435.94| 2350.16| 0.16 | 14687.50|| 38392.14| 444.14| 85.44
4 286.38| 7.38 | 34.02 || 2351.01| 1.01 225.96 || 38216.26| 268.26| 138.29
6 291.00| 12.00| 21.63 || 2376.14| 26.14 59.67 37950.29| 2.29 | 2348.27
8 298.66| 19.66| 12.70 || 2381.15| 31.15 50.91 37987.85| 39.85 | 868.77
10 307.26| 28.26| 8.83 || 2392.29| 42.29 44.01 37980.62| 32.62 | 790.58
12 311.80| 32.80| 8.04 || 2398.19| 48.19 32.60 38059.16| 111.16| 287.05
14 305.26| 26.26| 9.71 || 2446.10| 96.10 17.53 38037.25| 89.25 | 319.70
16 309.58| 30.58| 8.18 || 2440.81| 90.81 20.05 37967.71| 19.71 | 603.50
18 315.29| 36.29| 6.15 || 2455.19| 105.19| 15.30 38108.93| 160.93| 187.94
20 317.87| 38.87| 5.99 || 2485.11| 135.11| 12.87 38149.65| 201.65| 142.98
22 320.36| 41.36| 5.62 || 2513.82| 163.82| 10.10 38307.19| 359.19| 95.14
24 330.46| 51.46| 5.04 || 2513.91| 163.91 9.94 38222.58| 274.58| 119.21
26 333.76| 54.76| 4.26 || 2525.12| 175.12 8.93 38121.36| 173.36| 161.07

Table 6: Statistics for Rosslyn and Turin with hybrid-stask scheme and no memory constraint

finish times (column Sum-t in Table 6), the computation and communication overheadu(an “oh-t’),
isoefficiency (column i50"), speedup (Figure 16), workload expansion ratio (Figurg hs well as effi-
ciency (Figure 18). The speedup rates are similar for Rosaty Manhattan as their processing needs are
comparable. The attained speedup for Turin is slightly éighan Dupont Circle; when a 26-node NOW
is involved, the corresponding rates for Turin and Dupomti€iare 25.84 and 25.05. This indicates that
speedup improves as the computation becomes more complekeuduration of I/0O and results delivery
phases is small if compared to the parallelizable part. Haeeserial fractiornv in Amdahl’'s law is small
yielding a sizable speedup.

The maximum finish time gap tends to increase with the conitgleX the computation. The maximum
finish time gaps are 0.70, 0.71, 1.98, and 4.15 for Rosslymhétian, Dupont Circle, and Turin respectively.
The workload tends to skew when the complexity of the comjmrtancreases. However, the workload
expansion ratio decreases with the complexity of commrtafror example, when a 26-node NOW is used,
the maximum workload expansion ratios are 1.20, 1.26, 1afd,1.01 for Rosslyn, Manhattan, Dupont
Circle, and Turin, respectively. Therefore, the extra catappon and communication overhead (measured by
the workload expansion ratio) decreases with the computatbmplexity as Figure 17 depicts. In addition,
Figure 18 shows that the efficiency of our model improves astdmputation complexity increases.

Figure 16 clearly shows that the speedup achieved for Rossliess than linear whe#h = 0.5°. For
instance, when the number of nodes in NOW is 26, the speed2p.@6 only. Since the computation is
relatively small (processing time is 279.00 seconds), whemumber of sites is large, the communication
overhead becomes significant and slows down the progressngbutation. We use Gustafson’s law in
the Rosslyn context to expand the workload by changing tigellan separatio from 0.5 to 0.1°. The
resulting statistics are shown in Table 6. Figure 16 shoaswith angular separationof 0.1°, the speedup
improves in comparison with that féar= 0.5°. For example, when 10 NOW sites are present, the speedup
rates are 9.78 and 8.98 fér= 0.1° and 0.5, while at 26-nodes, the speedup rates are 23.38 and 21.06,
respectively.

It is also noticeable that the isoefficiendy, is much higher fo§ = 0.1° than 0.8 (Table 6) indicating
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Figure 17: Workload expansion ratios for Ross- Figure 18: Efficiency (speedup divided by the
lyn, VA and Turin, Italy under the hybrid-size- number of NOW nodes) for Rosslyn and Turin
task scheme (hybrid scheme)

that the former is more efficient and features better sdi#labHowever, the isoefficiency for both cases
decreases rapidly as the number of machines increases Qe configuration. It is expected that the
isoefficiency may reach zero as the number of sites in the NO®¥g gp further (e.g., beyond 50). On the
other hand, the isoefficiency variation for Turin is not sardatic raising expectations for better scalability.
The same conclusion can also be established with the helpgofé=17. Due to a much lower workload
expansion ratio, it is expected that a better scalabilit{/lva achieved for Turin.

6.5 Speedup Rates With Memory Constraints

When the entire building database cannot reside in memaghmes can manage database elements using
the hot/cold-spot classification discussed in Section $.4r. brevity, we only offer experimental results
pertinent toCase Il(Section 5.1) that is certain to generate a very large numberessage exchanges for
fetching building elements. In this context, we discuss seenarios: in the first, we impose no limit on
main memory consumption for NOW machines but with the manpgsitioning the building database into
two equal parts. The first contains the hot-spots (buildargsind the transmitters) while all other buildings
make up the cold-spots. The manager sends the first partioeders at the beginning of the computation,
while buildings in the second part are delivered to workgrsrurequest. When a worker fetches buildings
in the second part from the manager, it keeps them in its mamaony during the remaining computation.

In the second scenario, only the manager can hold the emiidiriy database in its main memory during
the entire computation, while all workers can only hold a&fi@n :% (: = 97, 95, 90, 85) of the buildings
(including both hot-spots and cold-spots) in their main mgm The manager only sends the hot-spot
part to all workers at the beginning of the computation, whklements of the cold-spots are delivered to
workers on request. If needed, a worker selects a victindimgjl (using FIFO) to accommodate an newly
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requested/arrived element. For each of the ahéyesettings (i.e.; = 100, 97, 95, 90, 85), we vary the
number of sites in the NOW configuration from 1 to 26, and runroadel for Rosslyn and Dupont Circle.
We compute speedup and workload expansion ratio for eactugae and present them in Figures 19, 20
for Rosslyn, and Figures 21, 22 for Dupont Circle.
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Figure 19: Speedup rates with memory conFigure 20: Workload expansion ratios with mem-
straints for Rosslyn ory constraints for Rosslyn

Our results show that the effects of main memory constraintsomputations are closely related to the
complexity of the computations. The lower the complexitg more the speedup deteriorates. For instance,
when each site can only hold 85% of the entire building da@bia its main memory and the number of
nodes in the NOW is 26, the speedups are 2.42 and 23.38, tespedor Rosslyn and Dupont Circle. The
performance for Rosslyn is poor as the net effect of using a6himes to carry out the computation under
this main memory constraint is only equivalent to that ohgss nodes with no constraint at all. However,
for Dupont Circle, the speedup only decreases from 25.08.@882vhen the number of nodes in the NOW is
26. Speedup rates proportionally deteriorate when lowergpgages of the database were memory-resident
at nodes. The main reason for this deterioration is the camation overhead due to fetching of buildings.
At some point, the communication overhead dominates thepatation and becomes the bottleneck of the
system, as can be seen from the change of the workload egpaiagio. We use Rosslyn under the main
memory constraint of 90% as an example. When the number adshmdthe NOW is less than 6, the
workload expansion ratio is about 2, which is equivalentdieiag a problem twice the size of the original
one. Similarly, when the number of nodes in the NOW is betwkgand 22, the workload expansion ratio
is about 5, it is expected that its speedup is only about 1ibaifwithout main memory constraint.

In the first scenario outlined above (curves under “100%” iguFes 19, 21), speedup rates are also
affected noticeably for all city maps. For example, under 26-node NOW configuration, the speedups
are 20.84 and 24.74, respectively, for Rosslyn and DupordieCiwhile in the case where the manager
sends the entire building database to all workers at thenhiggj of the computation, the speedups are
21.06 and 25.05, respectively (see Figures 16 and 13). veéraain-memory is limited, workers should
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accommodate hot-spots in memory while fetching other daalelements on demand in order to reduce
communication overhead. In addition, if the complexity ajigen computation is low in the presence of
limited memory, it is not beneficial to use a large-sized NOMifiguration.

6.6 Enhancements With Diffuse Scattering

The diffuse scattering effect is a critical physical pheeoion in radio wave propagation. Here, we classify
building surfaces into two types, namely Lambertian anceotitbn surfaces. A surface is Lambertian if it
can establish a line-of-sight (LOS) path and is within a gpecified distance (e.g, 30 m in the following
experiments) to the base or mobile stations. Otherwise rfacglis considered a reflection surface. If
a raypath hits a reflection surface, only a reflection patheisegated. However, if a raypath intersects a
Lambertian surface, the latter re-emits rays uniformlylirdaections along with a reflection ray [14, 7].
We only consider the receiver side diffuse scattering. Haambertian surface is partitioned into small
meshes (in the following experiments, the size of a mestxB®8?) and the centroid of the mesh is used as
the diffuse scattering point that is traced as if it were agnaitter.

We investigate the impact of diffuse scattering in the cxindé 3D ray-tracing using a 3D terrain database
and compare performance rates with those derived for 20remyrg. To accomplish this, we use the
building database for Rosslyn, VA (see Figure 3). Figure @@ias its building height distribution with
maximum and average values at 99.62 m, and 29.37 m; this @&athigh-core city with most buildings
ranging from 3 to about 25 stories. Base stations and antemitia different heights are placed in a number
of locations (see columns “ID for base stations”, “locagrand “antenna” of Table 7). To create realistic-
terrain conditions in the database, we partition the c@eaf the wireless network into a grid of small
uniform-sized cells (e.g., with size of ¥a0n?) and then for each such cell we randomly generate this
cell’s terrain height in the range of [0, 5] m. All the buildjs and receiver locations within this grid are
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recomputed based on the terrain information; the recondpidg¢aset is the entry to our NOW-based radio
wave propagation prediction model. For brevity, we tracghagaypath upto 4 reflections and 1 diffraction.

IDs for base| locations (x, Y, z) in (m,m,m) antenna| 2D 3D (no diffuse)| 3D (diffuse)
stations m sec. sec. sec.
Txla (237,656.0,118,100.0,21.63) 10 279.00 1726.29 11562.11
Tx5 (237,621.0,117,816.0,72.00) 2 261.55 1569.30 7610.34
Tx6 (237,518.0,117,952.0,73.20) 2 271.68 1793.10 7947.76
Tx4a (237,655.0,117,998.0,23.30) 5 409.31 2619.65 16372.79
Tx4b (237,655.0,117,998.0,23.30) 10 300.61 2104.27 13361.18
Tx10 (237,567.0,117,737.0,37.00) 10 250.33 1627.15 9491.62

Table 7: Prediction times for 2D/3D Rosslyn, VA databaseh{wr without diffuse scattering effect)

While retaining identical parameter settings with thos&ettion 6.3, we first conduct experiments with
a single machine and compile the results appearing in Talide &) 2D ray-trace only; b) 3D ray-trace
without diffuse scattering effect; and, c) 3D ray-tracehadiffuse scattering effect. When base station Tx1a
is used, the prediction results generated by cases (a) aradofig with the measurements obtained from
the field are shown in Figure 23. Predictions generated byscé® and (c) are depicted in Figure 24. We
also provide the prediction results (and correspondingahcheasurements) for cases (b) and (c) when base
stations Tx4b and Tx10 (with their locations shown in Figtiyare used in Figures 25 and 26 respectively.
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Figure 23: Comparison of measurements and preigure 24: Comparison of measurements and pre-
dictions without diffuse scattering with 2D anddictions with and without diffuse scattering with
3D building databases (Rosslyn, Tx1a) 3D building database (Rosslyn, Tx1a)

Next, we conduct the same experiments on a NOW whose humioedetk vary from 1 to 26. Figure 28
shows the obtained speedup rates for all three settings bdmm station Tx1a is used. Results in Table 7
clearly point out that, when a 3D ray-trace is used, preaalictimes increase significantly; this increase
becomes even more notable when diffuse scattering is tateraccount. For example, when base station
Txla and 3D ray-tracing are used, the required processirgstare 1,726.29 seconds and 11,562.11 seconds
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Figure 25: Comparison of measurements and preigure 26: Comparison of measurements and pre-
diction with/without diffuse scattering in Rosslyn,diction with/without diffuse scattering in Rosslyn,
VA for base station Tx4b VA for base station Tx10

without and with diffuse scattering effect. These values@i9 and 41.44 times higher if compared to that
needed to process the 2D setting. This is the reason thautkie corresponding to diffuse scattering in
Figure 28 demonstrates the best overall speedup.

The accuracy of prediction results is generally, but noessarily better for 3D ray-tracing if compared
with those derived with 2D ray-tracing. In the latter, thégie of buildings is assumed to be infinity, thereby
causing reflection of raypaths that in 3D would pass overdpe of buildings. This effect can cause the 2D
predictions to be higher than those obtained in 3D in somatilags, and lower in other locations.

Diffuse scattering improves the prediction accuracy $igamtly as shown in Figures 24-26. The im-
provement of prediction accuracy is at the cost of predictime. The workload is much heavier when we
consider diffuse scattering. A larger workload helps toriowe the speedup rates as indicated in Figure 28.
Itis clear that the speedup achieved by using 3D buildinglttee is better than that of the 2D dataset, while
it is much better when diffuse scattering effect is taken atcount.

7 Conclusions and Future Work

In this paper, we address the computationally expensivielgmoof radio wave propagation and we propose
a NOW-based ray-tracing model to overcome long responsestimattaining accurate prediction results.
Our model combines both phase parallel and manager/wopaegligms to offer scalable performance.
As the ray-tracing process is carried out in stages due teramt data and control dependencies, we em-
ploy the phase parallel paradigm to provide coordinatidmvben computational stages. The phase parallel
paradigm presents the best match to the characteristiag ofverall radio wave propagation prediction pro-
cess. The manager/workers paradigm is used within eacé &iagpntrol, coordinate, and synchronize the
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computation and communication among different nodes. Tomigose a computation into small units, we
use the control domain decomposition method that allowshiempartition of a computation based on task
granularity. In particular, we use raypath-level task gfanty for transmitter processing and source-point-
level task granularity for diffraction corner and diffuseafiering point processing. To allocate workload
uniformly among all sites, we utilize a dynamic hybrid-stask scheduling scheme that takes into account
both the state-of-affairs at NOW-nodes and progress of tlhgaing computation. To further improve the
efficiency of our model, we investigate and design suitabiiques for intermediate results collection,
final predictions generation, and reduction of extra comjarh and communication overhead.

Main memory consumption is a crucial issue when control dordacomposition methods are used to
partition the problem in consideration. When the buildirgadbase is large, it can be automatically parti-
tioned into hot-spot and cold-spot parts. The hot-spotistsf those buildings around the transmitters,
diffraction corners, or diffuse scattering points, whillaer buildings are designated as the non-hot-spot
(cold-spot) area. During the entire computation, workdén&gs store hot-spot part in their main memory,
while other non-hot-spot buildings are fetched from the aggm on demand, and may be replaced by other
newly fetched buildings based on a replacement policy,(EI§O).

Experiments with our NOW prototype show that when no condtria imposed on the main memory
consumption, the proposed prediction model can achievedsypenearly-linear to the number of partici-
pating nodes. Our model is robust under computations fegtalifferent complexity and processing time
requirements. The workload expansion ratio increaseslslawng with the number of nodes in the NOW
configuration indicating that our model has reasonable coatipn/communication overheads and good
scalability. The scalability of the proposed NOW-based el@dn be further verified by its isoefficiency
metric. The resource utilization is close to the ideal vaigplying that all nodes spend little time in the idle
state during the entire computation process. When main meoamsumption is a concern, the proposed
prediction model still delivers very good performance wttenduration of undertaken computations is long.
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In this setting, the introduced extra computation and comgation overheads do not dominate the original
computation. Our experimental results also show that thedyrp rates can be significantly improved when
3D building/terrain databases are used. Finally, whemskffscattering is considered, our model not only
offers predictions closer to actual measurements but atsloer improves the obtained speedup rates.

We plan to extend our work in the field of radio wave propagapicediction by pursuing a number of is-
sues: first, we intend to investigate the deployment of oullehim a heterogeneous networked environment
(not necessarily a NOW) where contributing nodes mightldisparying characteristics; second, further
examine the performance of our prototype with wide-area @fibases; and finally, study the viability
of our model in modern computational environments wherewees may join and/or depart the on-going
computations in a dynamic manner.
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A Load-Balancing Scheduling Schemes

We consider three scheduling schemes used by the managsida tasks to workers, the fixed-size-task, the variable-
size-task, and the hybrid-size-task assignment schemepoSe that the number of computation units for the original
problem isT, the number of remaining computation unitgis,,,, the number of nodes in the NOW configuration is
N, the size of each assignmentiscomputation units in the fixed-size-task scheme and theidingdire-task scheme,
the adjustment factor i8' (0 < F' < 1) when the variable-size-task scheme or the hybrid-sigk$cheme is used.
We defined;, A,, andA; as the sizes of the current assignment by these three schesesctively. We also define
Ny, N,, andN,, as the number of assignments by these three schemes. [ieis (he smallest integer larger than
z), Ay = min (G, Tyem), Ay = [TremF /N, andA;, = min {max ([Trem F'/N|,G), Trem }. Itis easy to show that
Ny = [T/G]. To computeN,, we letT; be the number of remaining tasks at thln assignment and,; be the size

of thei-th assignment, thefl; = T andA; = [F'T;/N]. For simplicity, we drop the constraint ¢f in the following
derivation. After the-th assignment, the number of remaining tafks, becomed’;,; = T; — A; = (1 — F/N)'T.

Suppose that at thieth step,A;, < 1, butA4; > 1 forall i < k, then
FT N F N log %

A= — < 1T < —: (1—-=)"1T< — k>
k N _77€—F7( )

k2 +1
N - F log (1 - £)
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The remaining tasks afg, and are assigned to the workers by using size of 1. So, thiemataber of assignments
N, is

log( 2% log( 25 N
Nv:(k_l)‘f'TkZM‘f‘Tk%M‘F—

log(1 — &) log(1- %) F

Similarly, to calculateVy, we letT; be the number of remaining tasks at thié assignment and; be the size of the
i-th assignment, thed; = min {max((F]@‘] G),T;}. Again, for simplicity, the constraint of] is dropped in the
following calculation. After the-th assignment, the number of remaining ta®ks, becomes

FT; F _ Foo. F F,
v (- hi=0-5)Tia=...=( )Tl 1-3)'T

Suppose that at thieth step, the size of the assigned taskdjis< G, but4; > G for all i < k, then

Tiy1 =T, — A =

Ak:@<GTk GN (I—E)k 1T<

GN > log(%)
N F N

Ly i A
F log(1— £)

For the remaining taskgY,), the fixed-size-task scheme withis used. Therefore, the total number of assignments
Ny, is

T, _ log($F)  Tn  log($F) N 1
Nh:(k_1)+_k>M+_k%Og(¢+_ N—‘,—LGF
F log(1 - %)

Under the condition

- >
FT —
It is easily shown thatV, < N;. Therefore, the performance of the variable-size-taskmsghis better than that of

the fixed-size-task scheme in terms of assignment roundk thle hybrid-size-task scheme performs better than the
variable-size-task scheme as longas 1.

B Computation-Duplication and Computation-Partition

Suppose that the lookup table to be established is= (m; ;)nxn, M4 ; iS @ double-precision floating point number
(¢,7 = 1,2,...,n), N is the number of nodes in NOW, the cost of broadcasting eachis ¢, (in seconds), the
cost of computing eachs, ; is ¢, (in seconds). Then, for the Sequential method, we furtheflg, andW,., be

the processing time and the total workload when the comiputét carried out by only one node, it is easy to show
that, T, = t,n? andWs., = t,n>. For the computation-duplication method, weT&t,,, Waup, Saup and Rq., be

the finish time, the total workload, speedup and the workkgehnsion ratio. Since each node carries out the same
computation independently and proceeds simultaneob&y,,, = t,n%, Waup = Ntpyn?, Saup = Tseq/Taup =
tpn?/(tpn?) = 1, andRaup = Waup/Wseq = (Ntpn?)/(tpn?) = N.

For the computation-partition method, weTgt,,., Wpar, Spar andR,,, be the finish time, total workload, speedup
and workload expansion ratio. Also I&} and7, be the computation time and time spent on communicationgsin
the computation of the lookup table is distributed unifgrminong all nodes, each node processesV elements of
M, then broadcasts the results to other nodes. Theréfpre,t,n? /N, T, = ty(n?/N)N = tyn?, Tpar = T+ 1. =
tyn?/N + tyn?, Wypar = NT, + T, = Nt,n? /N + tyn? = (t, + ty)n?, Spar = Tseq/Tpar = 1/N + tp/t,, and
Rpar = par/Wseq =1+ tb/tp.

The difference betwe€h, ., andT .y iS Tpar — Taup = n? [t,(1/N — 1) + t3]. Itis clear thatl,,, < Ty, When
tp >ty andN > t,/(t, — tp). Tpar > Taup Otherwise.
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C Intermediate Results Assembly

We consider two intermediate result assembling methods, tilee first-come-first-serve (FCFS) method and multi-
level assembly method. In FCFS assembly method, every wsddals its intermediate results to the manager, the
manager collects and merges the intermediate resultsdiongdo the policy of "first come first serve”. While in the
multi-level assembly method, a binary tree is formed amdhgjtas. The assembly process begins at the leaf level
where every site is a leaf node, Nodes are grouped pairwg@assembly proceeds simultaneously among all node-
pairs. The assembled data within each pair is stored at ardynode, and the latter will take part in the next round
of assembly, while the other in the same pair will be idle fribran on. This procedure is repeated until all data are
assembled at one site (i.e., the manager site).

We assume that the number of sites in the NOW configuratid ihe size of intermediate data held by each site
before assembly is the same and is denoteH és bits), all intermediate data are distinct (i.e., no d&p}), the cost
of sending one bit through the networktis(in seconds), the cost of processing one bit datg {&n seconds)] .t
and7),, are the processing time for the FCFS method and multi-lessdmbly method, thed); s, and7},; can
be calculated as follows. For the FCFS assembly method, WE.|d’, be the communication and data-processing
overheads, respectively, then

1
1
Treps = TetTp=teL(N =1)+ 5(N° + N - 2)Lt,

For the multi-level assembly method, we tag the binary trik level identifier by denoting the leaf level as level 1,
and the root is at levébg, (V). Letc¢; andd; be the total communication time and data-processing tinevat:, and
l; be the size of the assembled data, then

c1 = t.L; di =t,(2L); Iy = 2L;
co =t.(2L);  dy =1,(2°L); Iy = 2%L;
c3 =1.(2°L);  dy =1,(2°L); I3 = 2°L;

Clog, () = te(2°2 N TIL); gy, () = 122 NVL); gy, vy = 292V L = NL

log, (N)

log, (V)
Ti= Y (citdi)= > [te(27'L)+1,(2'L)]
=1 =1

— t.L(N — 1) + 2t,L(N — 1)

The difference betwe€f,,; andT . fs IS T — Teps = —tp L(IN —1)(N —2)/2. Itis clear that as long a¥ > 2,
we then havd,,; < Tt.fs. Therefore, the multi-way assembly method is always béten FCFS assembly method.

D Prediction Results Generation

We consider two methods to generate predictions by callgadind assembling information scattering among all
sites, the “one-site-pruning” method and the “all-sitesging” method. In the first method, the removal of all non-
significant raypaths for receivers is performed by the managly. While in the second method, all sites take part in
the elimination of non-significant raypaths, generateiglgrtedictions, and the final predictions are assemblediby t
manager. The 4-step procedure for the “all-site-pruningthrod by using collective communication functions is:
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1. Exchange maximum powers for receivers. All sites compluagemaximum power for each receiver based
on their local information, then exchange this informataonong themselves, and find out the global max-
imum power for each receiver by using the global reductioerapon with operation ofvPl _MAX in
MPI _Al'l r educe( -) function. The reduction results are returned to all sites.

2. Eliminate non-significant raypaths. Each site removiesaal-significant raypaths for each receiver based on
the global maximum power generated at the previous step.

3. Generate partial predictions. Each worker computeggbaredictions based on its local information.

4. Generate the final predictions. By using another colfeatommunication functionyPl _Reduce(-) with
operator ofMPI _SUM all sites deliver their partial predictions to the managed the final predictions are
formed at the manager’s site.

To calculate the processing time for these two methods, sgnas that the number of sites in the NOW configura-
tionis IV, the number of receivers i¥,..., at each site, each receiver is illuminated¥y,, raypaths, each raypath can
be described by, (in bits), f,., of N,.., are significant raypaths, the cost of sending one bit thrélugnetwork is
t. (in seconds), the cost of processing one bit of input dat@pegating one bit data for predictiongjs(in seconds),
the cost of processing one bit data in the global reducticeraion ist, (in seconds), the power strength and the
prediction parameter can be described by a double-predisiating-point number and has size 8f (in bits), and
Tone andTy;; are the processing time for the “one-site-pruning” methiod ‘@ll-site-pruning” method, respectively,
then, for the “one-site-pruning” method, by denotifig 7;., andT,, as the costs for communication, non-significant
raypath removal, and predictions generation, respegtiwa have

Tc = (N - 1)tchechayBray; Tr = thNrechayBray; Tp = thfraerechayBray
Tone = Tc + TT + Tp = [(N - 1)tc + N(l + fray)tp] NT@CNT@?JBTU«?J

While for the “all-site-pruning” method, by denotirfg as the processing time for thth step ( = 1, 2, 3, 4) in the
4-step procedure for the "all-site-pruning” method preésdrabove, we have

Ty = tgNrecBp; Ty = tyNyeeNyay Bray;
5 = tpfraerechayBray; Ty = t4Bp;
4
Tall = Z Tl = threch + terechayBray + tpfraerechayBru,y + thp

i=1
= tg(Nrec + 1)Bp + (1 + fray)terechayBray

The difference betwe€h,;; andT,,,. is

Tall - Tone = tg(Nrec + 1)Bp + (1 + fray)terechayBray
- [(N - 1)tc + N(l + fray)tp] NrechayBray

(N - 1) [tc + (1 + fray)tp] NrechayBray }
tg (NT@C + 1)BP

= tg(Nyee +1)By {1 —

Itis very easy to achievg,;; < T,,. in (1) as long as the network bandwidth is high ads relatively large.
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