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Abstract

Ray-tracing based radio wave propagation prediction models play an important role in the design of
contemporary wireless networks as they may now take into account diverse physical phenomena includ-
ing reflections, diffractions, and diffuse scattering. However, such models are computationally expen-
sive even for moderately complex geographic environments.In this paper, we propose a computational
framework that functions on a network of workstations (NOW)and helps speed up the lengthy prediction
process. In ray-tracing based radio propagation prediction models, orders of diffractions are usually pro-
cessed in a stage-by-stage fashion. In addition, various source points (transmitters, diffraction corners,
or diffuse scattering points) and different ray-paths require different processing times. To address these
widely varying needs, we propose a combination of the phase-parallel and manager/workers paradigms
as the underpinning framework. The phase-parallel component is used to coordinate different computa-
tion stages, while the manager/workers paradigm is used to balance workloads among nodes within each
stage. The original computation is partitioned into multiple small tasks based on either raypath-level
or source-point-level granularity. Dynamic load-balancing scheduling schemes are employed to allocate
the resulting tasks to the workers.

We also address issues regarding main memory consumption, intermediate data assembly, and final
prediction generation. We implement our proposed computational model on a NOW configuration by us-
ing the message passing interface (MPI) standard. Our experiments with real and synthetic building and
terrain databases show that, when no constraint is imposed on the main memory consumption, the pro-
posed prediction model performs very well and achieves nearly linear speedups under various workload.
When main memory consumption is a concern, our model still delivers very promising performance
rates provided that the complexity of the involved computation is high, so that the extra computation and
communication overhead introduced by the proposed model donot dominate the original computation.
The accuracy of prediction results and the achievable speedup rates can be significantly improved when
3D building and terrain databases are used and/or diffuse scattering effect is taken into account.

Indexing Terms:Ray-tracing based radio propagation prediction model, Radio wave prediction model on
Network of Workstations (NOW), Data or control domain decomposition, Dynamic workload-balancing
scheduling schemes.
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1 Introduction

Ray-tracing based radio wave propagation prediction models play an prevalent role in the design of modern

wireless networks [32, 50, 77, 46, 58]. The main objective ofsuch models is to efficiently yield accurate

predictions on radio wave propagation pertinent statistics including received signal strengths for mobile lo-

cations, delay spread, and angle of arrival. At the same time, it has been recognized that these models are

computationally very expensive and require a considerableamount of processing time to attain reasonable

accurate prediction results [7, 53]. In this context, it is typical that ray-tracing based models take hours

to generate predictions for moderately sized geographic areas such as 1 km2 [53, 50]. The core pincush-

ion method (or otherwise known as the shoot-and-bounce method) is the main source for computational

intensity for the models in discussion [46, 53]. In this method, rays are launched with an angular separa-

tion δ from source points, which are either transmitters or diffraction corners acting as secondary sources.

Each raypath may encounter reflections, diffractions, refractions (transmissions), and diffuse scattering. To

achieve reasonable prediction accuracy, the angular separation δ needs to be very small and usually less

than0.6◦ (or about 0.01 radians [7]). Consequently, the number of raypaths between base stations and mo-

bile stations may be explosive and extremely long CPU processing times are required to examine all the

raypaths in question. As the coverage of a wireless system increases, and the corresponding network envi-

ronment becomes more complex, the interactions between raypaths and geometric objects including various

types of buildings, terrain, and vegetation make matters worse calling for even more dramatic increases in

computation [32, 7, 50].

A number of approaches have been proposed to shorten the computation time for prediction models. The

complexity of building databases can be reduced by simplifying footprints [16]. Data filtering and cleansing

techniques have been proposed in [50]. Procedure-approximation methods are also employed to address

the same problem [15]. In these methods, either a subset of raypaths are processed based on different

requirements for prediction accuracy [15] or different physical phenomena such as vertical plane diffrac-

tions, multi-paths, and existence of vegetation are exploited to offer balance between prediction accuracy

and computation time [50]. Both data-reduction methods andprocedure-approximation methods have a

common drawback: they trade prediction accuracy for processing time.

A natural way to overcome the above drawback is to use the parallel and distributed computation tech-

niques to speed up computations, while keeping the accuracyintact [40, 41, 17, 3]. More specifically, the

usage of a network of workstations (NOW) is particularly attractive as such computer system configurations

are readily available at this time. By resorting to such parallel/distributed computation methods, our main

objective is to both distribute and/or parallelize variouscomponents of our ray-tracing prediction model

among multiple nodes in such a way that the processing time will decrease proportionally to the number of

nodes involved. Should the latter be feasible, we anticipate significant gains in the radio wave propagation

prediction area. There are many advantages to use NOW-basedcomputation techniques in a ray-tracing

based radio propagation prediction model. The accuracy of prediction results is not affected since neither

data reduction nor procedure approximation methods are introduced. The relationship between computa-

tion resources (i.e., the number of nodes involved) and prediction time is straightforward as more resources

yield shorter response times. The NOW-based computation techniques also improve overall scalability of

the model used. In the data reduction methods, the prediction time is not linear to the data complexity at

hand while in the procedure-approximation methods, the requisite time mostly depends on the accurate es-
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timate of each raypath’s contribution to the prediction results. Finally, NOW-based ray-tracing models are

much more flexible since new nodes can dynamically join existing sites to help the ongoing computation.

On the other hand, the design and analysis of a NOW-based prediction model involves the examination of a

complex set of interrelated issues such as computational concurrency, computing unit (task) granularity, task

allocation and scheduling, communication and synchronization, as well as workload-balancing. It is this di-

versity of frequently competing factors that make the design and implementation of NOW-based algorithms

for radio propagation prediction a challenging task. Clearly, there are tradeoffs among the above interrelated

factors. Metrics used to measure and evaluate the performance of a NOW-based system attempt to capture

and quantify most of such factors and include the nature of workloads processed, such as speedup, workload

expansion ratio, and resource utilization.

In this paper, we investigate these interrelated factors, and establish a feasible and effective paral-

lel/distributed computation model for radio wave propagation prediction. We use a combination of phase

parallel and manager/workers paradigms to coordinate, synchronize, and distribute computation, and em-

ploy dynamic load-balancing scheduling scheme to allocateworkload among nodes. The metric of speedup

is the main performance index as our overall design goal is togenerate predictions as quickly as possible.

In addition, we monitor other performance indicators including workload expansion ratio, efficiency, isoef-

ficiency, and resource utilization. Our experiments show that the proposed NOW-based radio propagation

prediction model presents consistent performance rates across a wide range of workloads, and achieves

almost-linear speedup rates in most examined cases.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3 discusses the

baseline ray-tracing based radio propagation prediction algorithm and examines the unique characteristics

of the problem at hand. Section 4 outlines our proposed NOW-based parallel/distributed computational

model, computation decomposition methods, and workload-balancing schemes. Techniques to further im-

prove the efficiency of the proposed model are discussed in Section 5. Section 6 presents a comprehensive

experimental evaluation of our model while concluding remarks and future work can be found in Section 7.

2 Related Work

In order to address computationally intensive problems, NOWs have been used in a wide range of fields

including large-scale databases, scientific computations, computer graphics, multimedia, wave propagation

predictions, and telecommunication systems simulations [18, 62, 54, 56, 2, 39, 71, 59].

The fundamental idea in NOW database systems is to carry out simultaneous I/O operations whenever

possible and to execute highly intensive CPU processing in adistributed fashion [43, 66]. Computationally

intensive problems such as theN -body problem have been addressed in the context of NOW environments.

Here, the movement of a set of particles is simulated under the influence of gravitational, electrostatic and

Vander Waals attractions [69, 10, 36]. Two prevalent forms of theN -body problem known as the Barnes-Hut

and the Fast multi-pole (FMM) methods have been implementedusing message passing and shared-memory

architectures [11, 31, 54, 74, 47, 57, 37]. In this context, computation-partitioning and workload-balancing

scheduling approaches have been proposed in [69].

One field closely related to our work is the ray-tracing illumination models used in computer graphics

that are known to generate high-quality images but suffer from long rendering times [72, 60, 65]. A ray-
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tracing illumination model launches a very large number of raypaths in a scene consisting of many geometric

objects. Each raypath is tested for intersection with objects to determine the visibility of their surfaces,

meanwhile, pixel intensities are generated for the produced image. Due to the inherent computation costs,

such illumination models have been traditionally used off-line. However, the appearance of networks of

processors or workstations has provided the needed computational framework for on-line and interactive ray-

tracing illumination models. For instance, an airplane andmissile simulator uses a 96-processor SGI Power-

Challenge cluster to create real-time effects [55, 56]. Similarly, the Utah ray-tracing system offers interactive

capability by utilizing a multi-processor supercomputer with static workload-balancing scheduling scheme

to minimize synchronization overhead [60]. The parallel ray-tracer proposed in [27, 26] uses a NOW as its

computation platform. Its main assumption is that every participating workstation can retain the entire scene

in its main memory at all time. The parallel radiance model in[67] also uses message passing method to

communicate among processors and assumes that the entire scene of operation resides in every node’s main

memory throughout the computation. Additional “parallel”and interactive ray-tracing systems are discussed

in [65, 45, 63, 64]. All these systems consider their computational problem as an (nearly) embarrassingly

parallel one that can be divided into a number of completely independent and equally intensive components

and each such component can be designated to any processor (or machine). Therefore, the communication

and/or synchronization overhead is considered minimal [76, 25].

The ray-tracing based radio wave propagation prediction model discussed in this paper differs significantly

from conventional ray-tracing illumination models in a number of aspects. First, the objective of illumination

models is to create photo-realistic images that focus on visual effects, such as texture and color while radio

wave propagation prediction systems put great emphasis on the numerical evaluation of ray qualities, such as

field amplitude and time delay. Illumination models are mostly based on diffuse reflections and occasionally

specular reflections with only a limited number of such events along the raypath. On the other hand, radio

propagation prediction models use reflections, diffractions, and diffuse scattering, and often account for

multiple events along a raypath. The inclusion of diffraction forces prediction models to function in “stages”

(or phases) of computations. There is also a strong correlation among different raypaths in radio propagation

prediction models. The energy carried by a raypath can be known only after all diffraction corners along the

raypath are found and their strengths are determined. Consequently, the processing of various raypaths is

not independent as is the case in traditional illumination models. More importantly, the processing time for

different raypaths can be quite different and the variance is large in radio prediction models compared with

their illumination counterparts. The above characteristics lead to the observation that the ray-tracing based

radio propagation prediction problem discussed in this paper is not an embarrassingly parallel/distributed

problem (not even a nearly embarrassingly parallel/distributed one) as is the case with illumination models

[60, 55, 56]. Thus, illumination model techniques cannot bedirectly applied to radio wave propagation

prediction models.

Modeling three-dimensional sound wave propagation is critical for applications such as concert hall de-

sign [6, 5, 51], virtual reality [20, 13], and interactive systems [29, 24]. Ray tracing techniques are widely

used to find the sound wave propagation paths representing different sequences of reflections, transmissions,

and diffractions at surfaces of the environment. The effectof such propagations is the reverberation at the

receiver [52, 48]. In contrast to illumination models, moreorders of reflections are computed to account for

the large range of audible sound frequencies requiring heavy computations [28]. When the wavelength of

the sound wave is similar to the geometric feature size, diffraction becomes an essential effect [7, 61]. The
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wavelengths of audible sound range between 0.02 and 17 meters (for 20 KHz and 20 Hz, respectively, with

sound speed of 343 meters per second). Therefore, diffraction effects are considered only for low frequency

sound waves and environments where there are large obstacles between source and listener [70, 44]. The

diffraction effects and late reverberations are routinelymodeled with statistical, perceptual approximations

[68, 1]. Even in ray-tracing based acoustic models, the diffraction effect is applied only to a small portion

of the environments described with little geometric detail. Thus, most techniques used in traditional illu-

mination models can be applied directly to sound wave models[28]. In contrast, radio wave propagation

models examined in this paper base their computation on all pertinent physical phenomena such as specular

reflections, diffuse reflections, and diffractions [7].

Recently, there have been efforts to parallelize/distribute CPU intensive simulation tasks for telecom-

munication systems. An outdoor propagation model for microcells is parallelized by using a Cray T3E

supercomputer in [39, 38]. Message passing and the workpoolparadigm are used to communicate and bal-

ance workload among nodes. However, experimentation showsthat the achieved speedup is far from linear.

In [71, 34], a parallel ray tracing system is used to optimizethe placement of transmitters in an indoor wire-

less system. A 200-node Beowulf NOW with each processor locally having a complete copy of the building

database is employed to carry out the optimization considering only reflections and transmissions (pene-

trations). In [59], theFastScatsystem is proposed to parallelize electromagnetic scattering calculations on

a SGI Origin-2000. The system is implemented in a threaded style assuming a cache-coherent distributed

shared memory. Selected data structures are replicated on every processor and data locality is exploited to

achieve scalability. Experiments show that speedup of 25.9is attained for 32 processors.

3 Observations on Sequential Ray-Tracing Prediction Models

In modern wireless network design, ray-tracing models are used to predict the received powers at various

locations in the coverage area of a base station so that quality of service is guaranteed. To attain good

prediction accuracy, reflection, diffraction, and diffusescattering should be considered. Suppose that a

cellular network is established in Rosslyn, VA as depicted in Figure 1. The base station is located atop a

building at the center of the area (location Tx5) and three receiver locations are marked as spots 1, 2, and

3 respectively. Each of these spots may be “reached” with thehelp of the three propagation planes shown

in Figure 1. However, none of these locations can be reached directly as no line-of-sight (LOS) can be

established between the base station and the receivers [7].A raypath that is part of Plane 2 is essentially

of non-line-of-sight nature consisting of one reflection and one diffraction at an horizontal building edge to

reach spot 2. As no line-of-sight exists between the base station and spots 1 and 3, horizontal or vertical

edge diffraction becomes the dominant contributor to the received power at the spots in question. More

specifically, a raypath that is part of Plane 3 encounters twovertical diffractions in order to finally reach

spot 3. Surfaces illuminated by the base station scatter rays in all directions as well. These scattered rays

may reach receivers and contribute to the received powers.

Algorithm 1 can be used to compile radio wave propagation prediction results in a geographic area (as

the one depicted in Figures 1 and 2). This baseline ray-tracing based prediction algorithm consists of five

distinct stages. In the initialization phase, key user parameters about the prediction settings and operating

environment are obtained. The terrain/building databasesare initialized and locations of transmitters and

receivers, antenna patterns for base stations and mobile stations, carrier frequency, as well as maximum
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Figure 1: Prospective view of buildings in Rosslyn, VA de-
picting three radio propagation planes created by launching
from a base station (at location Tx5)
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Figure 2: Building footprints, 400 re-
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appearing atop of a back-row building in
Figure 1) in Rosslyn, VA

numbers of reflections and diffractions are provided (see Figure 2). The next stage deals with transmitters.

As raypaths from all transmitters are traced, all illuminated receivers and first order diffraction corners are

determined. In the subsequent stage, orders of diffractioncorners are processed. All diffraction corners

found act as secondary sources and are treated as if they weretransmitters themselves. All illuminated

receivers are determined. This step is repeated for each order of diffraction; in practice, two orders of

diffractions are adequate. After that, all diffuse scattering points are determined and processed as if they

were transmitters. The final stage is to generate predictionresults. Intermediate results generated by all

previous phases are assembled to form predictions, such as received powers by all receivers, delay and

angle spreads. Prediction accuracies are found to be adequate for communication system planning–see for

example the comparison of predictions with measurements for low base station antennas in Figures 15,

23–26.

It is rather evident from its description that Algorithm 1 has its own intrinsic characteristics that cannot

be easily distributed and/or parallelized. Both initialization and prediction results generation stages are

rather sequential in nature as they involve I/O operations.The other three stages have to be executed in a

synchronized fashion. For example, the output of the transmitters processing is the input of the diffraction

corners processing and Bernstein’s conditions are formed [41]. There is also control dependency between

different stages. Although it is possible to use pipeline techniques to overlap the executions of different

stages, the complexity of the resulting system will increase dramatically.

Should the function of Algorithm 1 be distributed, a number of hidden costs should be taken into consid-

erations as well. Firstly, additional computational control has to be introduced. Broadcasting of building
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Algorithm 1 Sequential Radio Propagation Prediction Algorithm
1: read building database into main memory, cluster all buildings into grids; read configuration file or get

input about settings from the user interactively
2: for (each transmitter)do
3: trace its raypaths sequentially; determine illuminated receivers and diffraction corners
4: end for
5: for (each diffraction levell) do
6: for (each secondary transmitteri at levell) do
7: trace raypaths emitted byi; determine illuminated receivers and diffraction corners
8: end for
9: end for

10: generate all the diffuse scattering points
11: for (each diffuse scattering point)do
12: treat it as a transmitter and trace its raypaths upto maximumnumber of reflections and diffractions.
13: end for
14: output prediction results

database and configuration parameters, collection of intermediate results from all nodes to a single node or

vice versa are just some examples. The establishment of lookup tables on various computing nodes that

are deemed indispensable in the compilation of radio propagation prediction is another example. Secondly,

some communication overhead is unavoidable when message passing is used. Since the problem we study

is not embarrassingly parallelizable, many inter-node communications have to take place in order to coordi-

nate, synchronize, and exchange information among different sites. Finally, main memory consumption is

of vital importance in a NOW-based solution as the full duplication of data in every site is not necessarily

deemed a viable option at all times. In the course of tracing raypaths, partial data replication is required

since any processing unit ultimately needs information about the same buildings and environmental obsta-

cles involved in a computation. Because of the hidden overheads, it is challenging to achieve speedup rates

that are linearly proportional to the size of NOW.

Without taking any overheads into account, the best achievable speedup for a computation is governed by

the fractionα of the workload that must be executed sequentially as Amdahl’s law points out [4]. Suppose

the portion(1 − α)W of a workloadW can be perfectly parallelized, then the attained speedup isSn =

n/[1 + (n− 1)α]. In the case of a very large NOW withn → ∞, Amdahl’s law yields the best possible

speedup rate ofSn=1/α. The value ofα is determined by the intrinsic features of the specific computation

and in our case mainly by the angular separationδ between neighboring rays. In the presence of tasks

with light CPU requirements, Gustafson’s law [33] offers a flexible mechanism for better use of computing

resources. By pursuing a “higher resolution” setting of theproblem at hand (i.e., by reducing the angular

separation in our case), one can expand the workload and improve the quality of results obtained. Overall,

the ray-tracing based radio propagation prediction problem is parallelizable for the transmitters, diffraction

corners, and diffuse scattering points processing stages.However, it is not embarrassingly parallelizable

due to its intrinsic serial parts and data/control dependence between different stages as well as correlations

between different raypaths or source points (diffraction corners or diffuse scattering points). Therefore, extra

computation and communication overhead is unavoidable. Itis in this context that we propose techniques

that aim to minimize overheads.
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4 Considerations for the NOW-based Propagation Prediction Model

There is a wide array of computational paradigms for parallel/distributed computations including the phase-

parallel, divide and conquer, pipeline, process farm, and work pool [41]. The phase-parallel paradigm

consists of a number of supersteps with each containing a computation phase and an interaction phase. Ev-

ery processing unit performs an independent computation task in the first phase and executes synchronous

communications among all the units in the interaction phase. Since our baseline ray-tracing algorithm func-

tions in stages, it nicely fits the phase-parallel paradigm with the existing constraints of data dependencies

between stages. Each stage can be considered as a “super-step” featuring both a computation and an interac-

tion phase. For instance, in the transmitters processing stage, all raypaths emitted by transmitters are decom-

posed into multiple tasks and each workstation handles a fraction of these tasks in the first phase. During

the interaction phase, all processing units exchange intermediate results to generate the needed information

for the superstep that computes the diffraction corners andreceived powers at the receiver locations.

Computations within each superstep are rather complex as there is a close correlation between different

raypaths and raypaths do require varying processing times.Thus, it is imperative that computations be

partitioned into jobs with fine granularity and be uniformlyassigned to different workstations. The above

does call for synchronization of all participating sites making inter-processor communication required even

during the computation phase. To reduce the inter-processor communication overhead, we adopt the man-

ager/workers paradigm within each stage. One site is appointed the manager and all others are the workers.

The manager is responsible for the input processing, computation task distribution, result generations and

more importantly for coordination among workers. Each worker repeatedly requests new jobs from the

manager, carries out the processing, and ultimately ships back the results to the manager. Evidently, there is

no direct communication among workers. As the manager is aware of the current state of all NOW nodes,

it is capable of best scheduling and load-balancing tasks. In this regard, the manager makes decisions about

workload decomposition and job assignment. Traditionally, two types of decomposition methods have been

used: data domain decomposition and control domain decomposition [18]. The former partitions data into

non-overlapped subsets assigned by the manager to different sites; the latter divides the original computation

into small and disjoint tasks assigned to workstations. Although data domain decomposition is easier to de-

ploy and often features small memory consumption, it has thepotential to generate sizable communication

overheads.

In our problem domain, a raypath may interact with many buildings. Should these buildings be distributed

among various workstations, the tracing of a raypath has to be decided in collaboration with all pertinent

sites potentially incurring communication overheads. Data decomposition does not necessarily lead to well

balanced NOW-nodes. The distribution of raypaths among different data partitions is in all likelihood not

uniform and “hot-spot” data partitions inevitably emerge.Such “hot-spots” which are impossible to deter-

mine a priori often contain numerous raypaths that are of interest to multiple workstations rendering some

NOW-nodes bottleneck points for the prediction computation. Finally in the data domain decomposition,

it is not easy to efficiently determine the termination of a computation as idleness and/or emptiness of job

queues at all sites cannot be used as an indicator [9, 19, 75].In contrast, the control domain decomposition

method overcomes the above drawbacks and has a good termination indication (i.e., all sites finish their

assigned computations and there is no unassigned task left at the manager). Thus, we advocate control do-

main as the computation decomposition method. Next, we talkabout the specific issues of task granularity,
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workload balancing schemes, and overall organization of our NOW-based model.

4.1 Task Granularity

In a NOW, the selection of task granularity is crucial as it presents a trade-off between idle nodes and

excessive communication costs. The expected NOW speedup ispredominantly determined by the site having

the maximum finish time. The latter occurs as all nodes complete their ongoing jobs at the same time and the

last unprocessed task is awaiting assignment. To decrease this maximum finish time gap, the task granularity

should be designated as small as possible while avoiding thepotential network message flooding. The

minimum feasible task granularity is a singleray-segmentthat typically has processing time at the order of

milliseconds. If ray-segment is adopted, the communication overhead will certainly be large and its cost will

surpass the original computation cost. Therefore, the taskgranularity we propose here is either atraypath-

levelor source-point-level. If raypath-level task granularity is used, the computation is decomposed based

on raypaths (a single raypath or a set of raypaths). In the case of source-point-level task granularity, the

computation is divided into tasks based on source points (e.g., transmitters, diffraction corners, or diffuse

scattering points). It can also be a single source point, or aset of source points.

The task granularity also depends on the computation stage as the amount of needed computation per

stage differs. For example, the number of diffraction corners is often much larger than the number of

transmitters [53, 15]. Should the same task granularity be used for different stages, it may lead to lack of

load-balancing throughout the stages of the prediction. Ifthe source-point-level task granularity is used for

both the transmitters stage and the diffraction corners processing stage when the number of transmitters is

less than the number of workstations, a number of sites will remain idle during the entire stage. Similarly, if

we use raypath-level task granularity in all stages, the communication overhead for workload assignments

in the diffraction corners processing stage will be particularly heavy. Therefore, we use raypath-level task

granularity in the transmitters processing stage and source-point-level task granularity during the diffraction

corners and diffuse scattering points processing stages.

4.2 Load Balancing Schemes

As time requirements for processing raypaths cannot be determined a-priori and wide variances exist in

the processing times for both source points and raypaths, static workload assignment schemes [75] are not

suitable for our NOW-based ray-tracing prediction model. Instead, we resort to dynamic load-balancing

scheduling schemes, which partition and allocate the workload according to the progress of the computation

as well as the state-of-affairs of the NOW-nodes. The latteris a function of past and current status of job

execution at nodes as well as the state of the communication substrate. We have considered three load-

balancing schemes functioning at the coordinator site in our adopted manager/workers model: fixed-size-

task, variable-size-task, and hybrid-size-task schemes [26, 64, 69, 41].

In the fixed-size-task approach, the manager always allocates the same fixed number of computation units

G to the requester (worker) no matter who the requester is and when the request is posted. In our model,

a computation unit is a raypath during the transmitters processing stage or a source point at the diffraction

corners or diffuse scattering points processing stages. The manager does not take into consideration factors

such as the current workload, workstation’s CPU clock rate,and the behavior of the requester regarding to
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its past assigned tasks. Should the size of the unassigned computation beTrem computation units, then the

fixed-size-task scheme allocatesA = min (G,Trem) to the current requester, and updatesTrem asTrem−A.

In the variable-size-task scheme, the manager allocates a variable portion of the remaining workload to the

requester. If a NOW consists ofN sites, the size of the pending work isTrem andF is an adjustment

factor (with 0 < F < 1 and F experimentally determined), then the size of the current assignmentA

will be A = ⌈TremF/N⌉. In the hybrid-size-task scheme, the manager uses the variable-size-task scheme

first and checks the size of the current assignment. If it is below a pre-specified thresholdG, the manager

switches to the fixed-size-task scheme with task size ofG. Therefore, the current assignmentA to the

requester isA = min {max (⌈TremF/N⌉, G), Trem}. Each assignment requires a round-trip message (i.e.,

a task-request message and a task-assignment message). Theperformance behavior of the above schemes is

analyzed in Appendix A. We derive the condition under which variable-size-task assignment outperforms its

fixed-size-task counterpart. In addition, the hybrid-size-task scheme does better than the variable-size-task

as long asG ≥ 1.

4.3 The NOW-Based Radio Propagation Prediction Model

To deploy the baseline Algorithm 1 in a NOW, we assume the existence of a coordinator (or manager) that

initially accesses the building/terrain databases and descriptions of transmitters and receivers, accepts user

parameters, and delivers the predictions to the user. For the time being, assume that the entire building

database can be held in the memory of each workstation, as well as the location of transmitters and receivers

and other necessary information1. Based on all above discussion, the NOW-based prediction model works

as follows:

• Initialization stage: The manager reads the geographic terrain into its main memory, partitions it,

and pre-processes all data (e.g., clusters and indexes buildings) that is ultimately broadcasted to all

workers in the NOW. The coordinator undertakes the responsibility to read and alert workers about

additional user-provided input as well as pertinent configuration information.

• Transmitters processing stage: The manager divides the raypaths from all transmitters intodisjoint

computation units (tasks or jobs) with raypath-level task granularity. These tasks are scheduled to

workers by using a dynamic load-balancing scheme. Since theraypath-level task granularity is used

and the processing time for each computation unit (a raypath) is relatively small, large values forF

andG can be used to increase the ratio of the computation time overthe communication time for

each assignment. As soon as all tasks of this phase complete,the manager collects their intermediate

results and generates data about the first order of diffractions. The latter is dispatched to all workers.

• Diffraction corners processing stage: This stage is composed of several supersteps, one for each

order of diffraction. In each superstep, similar procedureas that used in the transmitters processing

stage is followed except that the task granularity is set at source-point-level. To reduce the maximum

finish time gap among all workers, smallF andG should be used.

• Diffuse scattering points processing stage: All diffuse scattering points are determined and treated

as transmitters. The task granularity is set at source-point-level as in this phase we are dealing with

diffuse scattering points.

1In the next section, we relax this assumption.
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• Prediction results generation stage: The manager assembles all intermediate results, compiles

predictions, and delivers the results to the user.

If either the problem size is relatively small or the number of NOW nodes is moderate, the manager site can

assume a dual responsibility by becoming a concurrent worker as well. On the other hand, if the resources

of the coordinator reach saturation, multiple managers canbe used to amortize the overall coordination and

communication overhead.

5 Distributing Data and Computations in a NOW

5.1 Data Partitioning Techniques

If we were to completely eliminate the communication costs due to data movement, we should maintain

an in-memory full copy of the building/terrain databases atevery workstation. This would necessitate the

highest possible memory consumption ofN×B bytes whereN andB are the number of NOW nodes and

the size of database respectively. This is an optimistic scenario as in general nodes may have less thanB

available memory or even the sum of the entire NOW memory may be less thanB bytes. By assumingMi

bytes of memory available at thei-th NOW site, we could identify four distinct cases for our data placement

problem:

1. Case I: B ≤Mi (i = 1, . . ., N ) with every site being able to hold the entire building database in main

memory (mentioned as baseline case in Section 4).

2. Case II: B ≤ Mi for somei andB > Mj for somej with i, j assuming distinct values in[1,N ].

Here, only a subset of workstations can host the entire dataset in memory while the remaining nodes

buffer only a fraction of the data.

3. Case III: Mi < B (i = 1, . . .,N ) and
∑N

i=1 Mi ≥ B. No site can store in its own buffer space the

entire dataset but the collection of NOW memory available islarger thanB.

4. Case IV: Mi < B (i = 1, . . ., N ) and
∑N

i=1 Mi < B. In this case, no site can hold the entire data in

volatile memory and the collective available NOW memory in all sites is less thanB.

With the exception of the first case, the trade-offs between communication overheads and memory consump-

tion have to be examined under the assumption that in generalaccessing data over the network and/or from

local disks takes at least an order of magnitude more time than from main memory [41, 18]. In our control

domain decomposition method, we move data to appropriate computation sites. To reduce the incurred com-

munication costs, each site should store the largest portion of the building database possible. In an effort to

differentiate which portions of the dataset should be core-resident we classify groups of buildings as either

“hot-spots” or “cold-spots”. We adopt this classification as raypaths are not uniformly distributed among

all buildings as limited extent areas often experience heavier concentration of raypaths. In the transmitters

processing stage, buildings located nearby transmitter locations intercept many more launched raypaths and

are expected to be accessed much more frequently than distant ones designating in this manner hot-spots.

As all nodes participate in the processing of transmitter emitted raypaths, it is beneficial if nodes keep in

memory buildings located around transmitters during the transmitters processing phase. We can further pri-

oritize buildings placed in cold-spots according to their spatial relationships to formed hot-spots. Such a

classification would be beneficial when only part of the cold-spot areas can be memory resident with the

remaining cold-spot data stored at the manager’s disk.
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Building hot-spots can be automatically generated as follows: the manager collectsMi (i = 1, . . ., N ) from

all workers and determinesBhot = minN
i=1 Mi. The manager computes the number of buildingsNhot that

can fit inBhot, retrieves theNhot buildings spatially nearest to the transmitters and finallybroadcasts these

buildings to all workers. Naturally, hot-spots can change during the computation process and different nodes

may have different hot-spots especially in the diffractioncorners and diffuse scattering points processing

stages. Workeri can adjust its hot-spot set of buildings dynamically as follows: every time workeri obtains

a new assignment (e.g., a source point), it constructs the hot-spotB
′

hot for the source point based onMi such

thatB
′

hot < Mi and buildings inB
′

hot are those nearest to the source point among all buildings. The worker

then proceeds to examine whether buildings inB
′

hot are already memory resident; if not, the worker fetches

the new hop-spot elements from the manager at one request that ultimately replace outdated hot-spot items.

Different methods for further classification and allocation of buildings in cold-spots among nodes are

adopted for different cases. For example, inCase III, the cold-spots may be divided intoN parts with each

part having sizeBi (in bytes fori = 1, . . ., N ) so thatBi ≤ (Mi−Bhot) and
∑N

i=1 Bi = B−Bhot. Buildings

in cold-spots can be assigned toBi based on their spatial locations. InCase IV, the cold-spot buildings are

subdivided into two parts,Bwarm andBcold. The setBwarm contains buildings aroundBhot and consists of

N components whose size isBi with Bi ≤ (Mi −Bhot) for i=1,. . .,N . TheseN components are delegated

for storage to the available main memory of the NOW nodes. Allremaining buildings are placed inBcold

and are stored on the manager’s disk.

For brevity, we discuss the building database partitioningtechnique forCase II—methods for casesIII and

IV can be derived in a similar manner. By assuming that the manager’s physical memory can accommodate

the entire building database, the method works as follows:

• The manager retrieves the entire building database into itsmemory and collects the sizes of main

memory availableMi (i = 1, . . ., N ) from all workers. It then generates the hot-spotBhot following

the outlined procedure and dispatches it to all other NOW nodes.

• The rest of the building database is sent by the manager to allthose workers whose main memoryMi

satisfiesB ≤Mi.

• For sites whose main memoryMj is less thanB, the manager delivers buildings in cold-spots upon

request. Workers manage and adjust buildings in the hot-spots and cold-spots according to their local

situation. Buildings in cold-spots are replaced with a FIFOpolicy.

• To improve system efficiency, two threads, a computation thread and a communication thread, are

used in all sites. The computation thread is in charge of carrying out CPU intensive tasks such as

tracing raypaths while the communication thread handles requests for building data from/to other

sites.

It is worth pointing out that the above data partition techniques are also used to partition terrain databases

and scatter them to machines in a NOW configuration.

5.2 Computation-Duplication and Computation-Partition

Let us assume that computationC consists of two partsCx andCy in that order withCx being much shorter

thanCy. In addition,Cx-generated results are not only large but are also heavily used byCy. Clearly when

C is to be distributed, it is advantageous to parallelizeCy as much as possible; should a complete copy of

theCx’s results become available at all NOW sites, the entireC would benefit. To obtain a copy ofCx’s
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result at every site, there are two alternatives:

1. Computation duplication: Cx is independently repeated by every node, and its results arestored

locally for subsequent use byCy. This method involved little communication and as the requisite

time for Cx is very small, it is expected that NOW’s performance (especially the speedup) is not

affected noticeably.

2. Computation partition: Cx is treated just as other parts of computation and each node performs only

part of the computation and intermediate results are exchanged among all sites so that each site obtains

a complete copy. Although the computation time spent by eachsite is short (vs. the computation-

duplication method), communication overhead is introduced potentially affecting the speedup.

One candidate for such a computation is the establishment oflookup tables. Lookup tables constitute

an efficient technique in massive computations problems where values of lookup table are used to avoid

time-consuming frequently occurring function calls. In ray-tracing models, the ray-wall-intersection test is

the most frequently used operation and it is known to consumeup more than 85% of the total processing

time [21]. To find out the slope of a line, reflection angle for aray, or intersection point between a ray and

a wall, we need to calculate the tangent or arctangent for a given ray. Performance-wise, it is beneficial to

establish a tangent lookup table before computation commences in every NOW node. In Appendix B, we

derive processing times for the above two methods; based on our formulae we show that when the number

of NOW sites is larger than 2, computation-partition outperforms the computation-duplication method for a

100 Mbps network.

Another candidate for this type of handling is the pre-processing of the building database in order to

improve the ray-wall-intersection test operations. This involves partitioning buildings into clusters (or oc-

trees) [21, 35, 42], setting up the indexing structure for building retrieval, and creating statistical information

about buildings (e.g., size of buildings). In the computation-duplication method, the manager sends the en-

tire building dataset to all sites (it may not be realistic insome cases) and each site may locally pre-process

the building database in an independent and simultaneous fashion. In the computation-partition method, all

sites take part in the pre-processing procedure but each site just performs a portion of the computation, and

exchanges local results with all other sites so that every site gets a complete copy of the results. Similar

analysis and computation can be performed as the case of using lookup tables.

In summary, when the number of NOW nodes is at least three and sites are attached to a high bandwidth

(at least 100 Mbps), we use the computation-partition method to establish lookup tables and pre-process

building/terrain databases. Otherwise, we use the computation-duplication method.

5.3 Intermediate Results Assembly

Due to data and control dependencies among different stages, all input data should be available before a stage

commences. In the course of ray-tracing prediction, the output of each stage is information for diffraction

corners (or diffuse scattering points) and raypaths illuminating these source points. The corresponding

numbers of first and second order diffraction corners as wellas raypaths illuminating each corner are huge

(see Section 6). Therefore, the output of pertinent stages can be very large and it is a challenge for the

manager to collect data from all workers efficiently.

The use of a superstep’s interaction phase can assist in the efficient collection of results that are to be
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consumed by follow-up stages in the prediction computation. To reduce both the complexity of the system

and the communication overhead, NOW sites can employ the manager/workers paradigm to materialize the

above result assembly in a first-come-first-serve (FCFS) discipline. This method is depicted in Algorithm 2.

The manager site is in charge of the assembly operation whileall workers are idle before and after they ship

out their partial yet locally generated results.

Algorithm 2 First-Come-First-Serve Intermediate Data Assembly Method
1: if (the current site is the manager)then
2: S ← D, whereD is the intermediate data at the manager’s site, andS is the assembled data
3: while (there is unprocessed worker)do
4: receive intermediate dataD from the next arriving worker
5: assemble the received intermediate dataD with S, that isS ← S ∪D
6: end while
7: else
8: send its local intermediate dataD to the manager
9: end if

To further reduce the idle period each worker may remain at, we propose a multi-level assembly method.

A “virtual” binary tree is formed among all NOW sites. Initially, all leaves (sites) are grouped pairwise, that

is, sitesni andni+1 are paired together wherei = 1, . . . , ⌈N/2⌉. Intermediate data is assembled within each

pair of sites and the assembled results are stored at one of them (for example, the site with the lower index).

The assembling operation proceeds for each pair simultaneously. Nodes currently holding the assembled

results participate in the next round of assembly, while others remain idle. This procedure is repeated until

all intermediate data are collected and kept in only one node. To ensure that the manager’s site is the final

destination, we designate it with identifiern1 in the above procedure. Algorithm 3 presents our multi-level

assembling method with each site having a unique identifier (rank) and the manager assigned-rank equal to

one.

Algorithm 3 Multi-Level Intermediate Data Assembly Method
1: f1 ← 1; f2 ← 2; S ← D, whereS is the assembled data, whileD is the intermediate data at this site
2: while (f1 < numberof nodes(i.e.,N )) do
3: if ([(my rank-1)modulo f2] == 0) then
4: peerrank = myrank +f1;
5: receive intermediate dataD from the site with identifier of peerrank
6: S ← S ∪D
7: else
8: if ([(my rank-1)modulo f1] == 0) then
9: peerrank = myrank -f1;

10: sendS to the site with identifier of peerrank
11: else
12: exit;
13: end if
14: end if
15: f1 ← f2; f2 ← 2f2

16: end while

We analytically compare the above two assembly techniques in Appendix C and find that the multi-level
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assembly method is preferable to FCFS when at least two NOW sites carry out the prediction computation.

Hence, the multi-level assembly technique is our choice in our NOW-deployed model.

5.4 Prediction Results Generation

Our radio wave prediction model produces prediction results mainly related to received signal strengths such

as system coverage, delay spread, and angle spread observedby receivers. The signal strength reaching a

receiverR is determined by all the raypaths illuminatingR. To reduce processing time and main memory

consumption, we only store a raypath forR if its energyP (expressed in dB) is larger thanPmax − Pthd,

wherePmax is the maximum energy among all raypaths illuminatingR, andPthd is the pre-specified thresh-

old (typically 20 dB) [7, 53]. A raypath satisfying the aboverequirement is called a significant raypath. In

our model, each site processes disjoint sets of raypaths andstores illuminating raypaths for each receiver

locally. To ensure that all raypaths kept at different sitesfor the same receiver are significant, we prune

all non-significant raypaths. We examine two pertinent pruning techniques: “one-site-pruning” and “all-

site-pruning”. In the former, all workers dispatch their locally stored raypaths to the manager, where the

entire pruning takes place. In the “all-site-pruning” technique, each site first determines the local maximum

power for each receiver based on its local information. Then, the local maximum power data is exchanged

among all sites so that the global maximum power for each receiver can be determined and becomes globally

known. Subsequently, each site prunes its own local raypaths for each receiver based on the global maxi-

mum powers, and locally generates partial predictions. Finally, all workers send their partial predictions to

the manager that is responsible for their synthesis and compilation of final predictions.

The crucial step in “all-site-pruning” is to exchange localmaxima and determination of global max-

ima among all sites. Since we use the MPI standard [22, 23], the global maximum reduction operation

(MPI Allreduce(·) with operation code ofMPI MAX) can be used to find out the maximum power for

each receiver among all sites and the results are delivered to all sites. Similarly, the global summation reduc-

tion operation (MPI Reduce(·)with operation code ofMPI SUM) can be utilized to perform the assembly

of partial results into the final predictions that are storedat one site only (i.e., the manager site). Appendix D

compares the performance features of the above two methods and shows that the “all-site-pruning” method

has better performance than the “one-site-pruning” methodas long as the bandwidth of the network used is

high, and the number of sites in the NOW configuration is relatively large. Therefore, we select “all-site-

pruning” method to generate final predictions in our model.

5.5 Reduction of Communication Overheads

The communication overhead emanates from information dissemination initiated by the manager to all

workers, data movements between different sites when constraints are imposed on the main memory con-

sumption, task allocations, intermediate data collections and final prediction results generation. One way

to reduce the communication overhead is to overlap the communication with the computation by using the

asynchronous communication mode (also called nonblockingcommunication or immediate communication

mode in [22, 23]). We exploit asynchronous communication mode in the deployment of our prediction

model. For instance, in the task allocation procedure, eachworker maintains a local task queue holding

all unprocessed tasks. When the worker dequeues a task from the task queue, it checks whether or not the

task queue is below a specified threshold. If so, it sends a task request to the manager by using the asyn-
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chronous communication mode (e.g.,MPI Isend(·) function in MPI application programming interface),

and returns to its on-going computation immediately. Once the current task is finished, the worker exam-

ines whether or not the new task assignment has arrived from the manager by asynchronous communication

mode (e.g.,MPI Wait(·), MPI Waitany(·), orMPI Testany(·) in MPI API). If a new assignment

is available, the worker fetches and places it into its task queue.

One drawback of the asynchronous communication mode is its high main memory consumption. The

communication substrate needs extra memory to store those messages generated by the asynchronous com-

munication mode, thereby competing with the ray-tracing prediction model for main-memory resources.

Another potential drawback is that it may cause some unbalanced workload among sites, which occurs

when all workers request new tasks at the same time. If only one unassigned task remains at the manager,

it may happen to be sent to a node already involved in a lengthycomputation. In this case, the unprocessed

tasks accumulate at a single site, while all others completetheir own tasks and enter idle periods.

The use of piggybacked messages can substantially reduce communication overhead. In our prediction

model, task assignments are carried out by message exchanges between the manager and workers. Task-

request and task-assignment messages are often very short,thereby other information can be piggybacked

in them. Such information includes non-time-sensitive andnon-time-critical data that can tolerate some

time delays. They include statistics about computation progress, network status, and some intermediate data

(e.g., the maximum power so far for each receiver).

6 Experiments and Evaluations

We have implemented our proposed ray-tracing based radio wave propagation prediction model on a NOW

cluster consisting of 26 nodes. All machines are homogeneous Sun Ultra-10 workstations with CPU clock

rate of 400 MHz, main memory of 128 MBytes, and swap area of 262MBytes, inter-networked with a switch

at 100 Mbps bandwidth. The nodes run Solaris 5.7 and the communication substrate is provided with Mes-

sage Passing Interface (MPI) standard [22, 23]. The C and Perl languages have been used in the development

of our prototype whose sequential version is available at [7]. Pthreads and their synchronization primitives

are used for coordinating concurrent activities within nodes [12]. The main techniques used in each stage

are summarized in Table 1.

We have conducted extensive experiments by using both real-life and synthetic building/terrain databases.

In all experiments, we assume that only the manager site can access the building databases and configuration

files, interact with the user for inputs as well as for predictions display. To simulate constraints on main

memory consumption, a user-defined threshold on the usage ofmain memory may be imposed separately

for each site. For the experiments discussed here we have mainly made use of a 2D ray-tracing system

which is appropriate for low antennas among tall buildings [8, 73, 7]. When the base station antenna is

at a height close to or above the surrounding buildings, it isnecessary to consider rays that go over the

buildings, as well as around them. Ray-tracing systems handling this case are similar in structure to the 2D

ray-tracing systems [53, 58, 7], therefore, the conclusions identified by 2D models are directly applicable to

3D ray-tracing prediction models. The building database used in the 2D ray-tracing system is limited to the

footprints of buildings, the heights for all buildings are assumed to be uniform and infinite, and the terrain

is assumed to be flat for simplicity. To further corroborate our analysis, we developed a 3D NOW-based
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Stage Specific Techniques used per Stage

Initialization building/terrain data accessed by the manager only
building/terrain preprocessed with computation duplication or partition
lookup tables established by computation duplication or computation partition
hot-spots are constructed automatically by the manager

Transmitters processing manger/workers paradigm and dynamic load balancing scheme
raypath-level task granularity
multi-level intermediate data assembly method
MPI and Pthread for inter-node and intra-node communication
asynchronous communication mode for task requests
message piggyback to overlap computation and communication

Diffraction corners processing source-point-level task granularity (diffraction corners)
hot-spots are determined by workers locally and automatically
(other techniques are similar to “transmitters processing” stage)

Diffuse scattering processing source-point-level task granularity (diffuse scatteringpoints)
hot-spots are determined by workers locally and automatically
(other techniques are similar to “transmitters processing” stage)

Prediction results generation “all-site-pruning” method to prune results
computation-partition method to compute final predictions
prediction results delivered to user by the manager only

Table 1: Summary of stages and techniques in our proposed NOW-based ray-tracing system

ray-tracing prototype for radio wave propagation prediction based on the Vertical Plane Launching system

[7, 53]. In this prototype, 3D terrain databases are used anddiffuse scattering is also considered to further

improve prediction accuracy.

6.1 Environments used in Experiments

We use four city maps to conduct our experiments. The first mapis that of Rosslyn, VA (Figure 3) and

contains 79 buildings with 412 walls. Only one transmitter (base station) is treated, located at coordinates

(237,656.0, 118,100.0) m. There are 400 receivers (mobile station locations) that are scattered along several

streets. The second city map is a synthetic Manhattan-like building area (Figure 4). There are 56 buildings

and 224 walls in this map. The single transmitter is located at (340.0, 340.0) m, and 200 receivers are

located on two horizontal streets. The third city map we use is that of Turin, Italy shown in Figure 5 and it

contains 2,478 buildings with 20,280 vertices. The transmitter is located at (397,910.0, 4,994,980.0) m, and

419 receivers are located around the transmitter. The fourth is the Dupont Circle area in Washington, D.C.,

shown in Figure 6 which features 3,564 buildings and 23,181 walls. The transmitter is located at (322,780.0,

4,308,550.0) m, while 400 receivers are arranged in two mainparallel streets.

The frequency of the carrier used to conduct all experimentsis 900 MHz, and the physical phenomena we

consider include reflections, diffractions, and diffuse scattering. When 2D building databases are used, the

maximum number of reflections each raypath may encounter is 10, and the maximum number of diffractions

each raypath may undergo is two (2) when city maps of Rosslyn,Manhattan, and Turin are used, and one

(1) when Dupont Circle map is used (for the sake of shorteningthe experiment time). The corresponding

numbers are 4 and 1 when 3D terrain databases are used. The antenna heights used by transmitters (base

stations) and receivers (mobile stations) are 10 m and 1.5 m,respectively. All the walls of buildings are

assumed to be made of the same material and have dielectric constantǫr = 6. The pincushion ray tracing
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method is used with angular separation ofδ = 0.5◦ unless stated otherwise [7].

To evaluate the performance of our prediction model, we mainly use metrics such as speedup, workload

expansion ratio, and resource utilization. Suppose thatTseq is the best finish time achieved when only one

machine is used,ti is the finish time for thei-th node when an-node NOW configuration is used,Tmax

andTavg are the maximum and average finish times, among then nodes, whileTsum is the summation of

finish times for all nodes andToh is the computation and communication overhead, then,Tmax = maxn
i=1 ti,

Tsum =
∑n

i=1 ti, Tavg = (
∑n

i=1 ti)/n, andToh = Tsum − Tseq. The speedupSn, the workload expansion

ratio Wn, and the resource utilizationUn can be computed asSn = Tseq/Tmax = Tseq/maxn
i=1 ti, Wn =

Tsum/Tseq =
∑n

i=1 ti/Tseq, andUn = Tavg/Tmax =
∑n

i=1 ti/(nTmax). In order to more accurately

measure the scalability of our NOW-based model, we employ the metrics of efficiencyEn and isoefficiency

Kn whose respective definitions are:En = Sn/n = 1/(1 + Toh/Tseq) andKn = En/(1 − En) [49, 30].

6.2 Characteristics of the NOW-based Ray-Tracing System

To investigate the core characteristics of our NOW-based 2Dray-tracing system, we use the city maps

for Rosslyn (Figure 3) and Turin (Figure 5) in the following settings: raypath-level and source-point-level

task granularities are employed for the processing of transmitters and diffraction corners respectively. In

addition, we use the hybrid-size-task dynamic load-balancing scheduling scheme. To compromise between

the communication overhead due to task allocation and workload balance among all nodes, the adjustment

factor is set toF=1/3 for the transmitter processing stage, while the valueF=1/4 is used for the diffraction

corners processing stage. To reduce the maximum finish time gap, parameterG is set to two (2) raypaths and

two (2) diffractions corners in the transmitters and diffraction corners processing stages respectively. The

above parameter values are experimentally calibrated and in this way, we assert the validity of our choices.

We conduct experiments while using up to 26 NOW nodes. For brevity, we present detailed results for up
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to 6 nodes and for the case where 26 NOW nodes are in operation.In general, we consistently establish the

same trends independent of the number of nodes used. Tables 2and 3 show the specific statistics obtained

when the nodes ranges from 1 to 6 for Rosslyn and Turin respectively. The number of ray trees and finish

time (wall clock time) for each node in the transmitter processing stage are listed in columns “tx-ray” and “r-

time”. The number of first-order diffraction corners, number of ray trees from these diffraction corners, and

finish time (wall clock time) for each node in the diffractioncorners processing stage are given in columns

“df-cnr(1)”, “ df-ray(1)”, and “df-time”. The number of second-order diffraction corners, number of ray trees

from these diffraction corners, and finish time for the entire prediction procedure (wall clock time) in each

node are listed in columns “df-cnr(2)”, “ df-ray(2)”, and “time” respectively.

Figures 7, 8, and 9 show the results obtained when 26 NOW nodesare employeed for the processing of

Rosslyn; similarly for the case of Turin, our results appearin Figures 10, 11, and 12. In all aforementioned

graphs, we depict 26 unique identifiers (0 to 25 inclusive) along thex-axis–each one of them corresponds to a

distinct workstation used in the NOW configuration. Along they-axis, we depict all the related performance

measurements as those shown in Tables 2 and 3.

We can observe from Tables 2 and 3 that the number of first-order diffraction corners is large, while the

number of second-order diffraction corners is much larger,yet. This is especially true for large databases,

such as Turin where the numbers of first-order and second-order diffraction corners are 327 and 10,802,

respectively. The first-order diffraction corners are formed due to raypaths originating from the transmitters,

while the second-order diffraction corners are generated by rays originating from the first-order diffrac-

tion corners. Although the number of diffraction corners depends on both the density of the area and the

maximum numbers of reflections and diffractions we consider, the number of diffraction corners appears to

exponentially increase with the orders of diffractions. For example in Rosslyn, VA, the numbers of diffrac-

tion corners for the first order and second order are 243 and 373, respectively, which are 59% and 91% of

the total corners in the entire map (whose number is 412). Here, only about half of the building corners are
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# of NOW pid tx-ray r-time df-cnr(1) df-ray(1) df-time df-cnr(2) df-ray(2) time
nodes sec. sec. sec.

1 0 720 3.18 243 127704 193.00 373 322079 279.00
2 0 385 1.60 135 71030 96.66 204 178343 139.82

1 335 1.59 108 56674 96.66 169 143736 139.46
3 0 275 1.42 91 48018 65.62 129 115156 94.72

1 250 1.42 84 43805 65.62 130 112462 94.22
2 195 1.42 68 35881 65.51 114 94461 94.54

4 0 185 1.43 60 31286 49.70 103 85295 71.80
1 90 1.06 68 35062 49.70 96 85049 71.35
2 245 1.42 57 30027 49.40 85 74201 71.57
3 200 1.43 58 31329 49.47 89 77534 71.66

5 0 152 1.27 54 28714 39.94 82 71094 57.75
1 147 1.27 51 26525 39.46 78 67234 57.59
2 152 1.27 52 27175 39.40 75 66928 57.14
3 152 1.27 42 21975 39.94 76 61628 57.59
4 117 1.27 44 23315 39.43 62 55195 57.15

6 0 105 1.22 50 26161 33.79 68 61631 48.65
1 125 1.22 40 21220 32.76 66 55667 48.65
2 150 1.22 38 19598 33.79 62 52179 48.60
3 130 1.22 39 20557 33.10 54 48275 48.37
4 110 1.22 40 21268 33.23 57 51388 48.43
5 100 1.22 36 18900 33.48 66 52939 48.30

Table 2: Statistics for Rosslyn, VA when various NOW configurations are used

reached by rays from the transmitter, but almost all building corners are second order diffraction corners.

The processing time for different stages are quite different and the gaps between them are large. We take

Turin as an example: the processing time for the only transmitter is 5.00 seconds, while it is 6,775.50 seconds

and 31,167.50 seconds for the first-order and second-order diffraction corners, respectively. The average

processing time for a first-order diffraction corner and a second-order diffraction corner are quite different.

For instance in Rosslyn, the average processing times for a first-order and a second-order diffraction corner

are 0.78 seconds2 and 0.23 seconds respectively. The corresponding values for Turin are 20.71 and 2.89

seconds. It is clear that the processing time for a first-order diffraction corner is much larger than that for a

second-order diffraction corner. The main reason is that when tracing the second-order diffraction corners,

it is not necessary to check whether rays illuminate any corner, which turns out to be a time-consuming

process. The processing time for each individual raypath isquite different as the variance is very large no

matter where the raypath comes from (transmitter, first-order diffraction corner, or second-order diffraction

corner). For instance, when the NOW configuration has 6 nodes, within the transmitter processing stage

in Rosslyn, the number of raypaths processed by node 2 is 150,while only 100 are processed by node 5.

The average processing times for raypaths handled by nodes 2and 5 are 0.0081 seconds (i.e., 1.22/150) and

0.012 seconds (i.e., 1.22/100), respectively. Similarly,under the same NOW configuration, for the first-order

diffraction corners in Turin, the numbers of raypaths traced by nodes 2 and 4 are 30,539 and 27,161, while

the average processing times are 0.037 seconds and 0.041 seconds respectively. Should we also examine

Figures 7, 9, 10, and 12, we can draw the same conclusion. For instance in the case of Rosslyn and during

the second-order diffraction corners processing stage, all 26 nodes finish at approximately the same time.

20.78 seconds = (193.00 - 3.18)/243 seconds
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# of NOW pid tx-ray r-time df-cnr(1) df-ray(1) df-time df-cnr(2) df-ray(2) time
nodes sec. sec. sec.

1 0 720 5.00 327 174997 6780.50 10802 5870432 37948.00
2 0 385 2.31 165 88586 3475.88 5480 2980156 19196.06

1 335 2.31 162 86411 3456.81 5322 2890276 19196.08
3 0 385 2.23 108 57961 2274.59 3636 1980445 12660.89

1 160 2.23 114 60815 2257.05 3772 2046122 12660.90
2 175 2.18 105 56221 2274.57 3394 1843911 12660.25

4 0 255 2.23 80 43002 1720.38 2758 1498783 9555.60
1 190 2.11 84 45437 1704.09 2744 1492269 9552.07
2 140 2.23 85 44819 1703.49 2790 1516543 9553.00
3 135 2.18 78 41739 1710.38 2510 1363348 9555.59

5 0 197 2.21 64 33983 1350.36 2215 1204257 7555.63
1 122 2.09 68 36448 1346.05 2172 1185018 7553.18
2 182 2.08 66 35689 1350.35 2298 1242551 7555.57
3 102 2.21 63 33627 1347.15 2091 1138679 7553.44
4 117 2.17 66 35250 1345.24 2026 1100209 7553.79

6 0 125 2.21 52 27812 1139.06 1836 997501 6327.36
1 95 2.15 58 30451 1121.91 1829 995747 6323.72
2 110 2.06 57 30539 1139.05 1866 1010467 6327.31
3 130 2.06 54 29250 1124.96 1861 1012678 6323.66
4 135 2.06 51 27161 1123.09 1729 939605 6323.84
5 125 2.06 55 29784 1133.84 1681 914584 6324.40

Table 3: Statistics for Turin when different NOW configurations are used

However, the number of rays emitting from second-order diffraction corners (depicted by curve “df-ray(2)”

in Figure 9) and processed by each node differs dramaticallybetween a minimum of 9262 (at node 21) and

maximum of 16836 (at node 0).

The processing time for each diffraction corner occasionally presents large variance. For example, when

6 NOW-sites are used in the Turin map, the corresponding numbers of second-order diffraction corners

processed by nodes 2 and 5 are 1,866 and 1,681. Therefore, theaverage processing time for these two

subsets of diffraction corners are 2.78 seconds3 and 3.09 seconds respectively. The same observation can

be made with the help of Figures 7, 8, 10, and 11. In the case of Turin and during the second-order diffraction

corners processing stage, all 26 nodes finish at almost the same time. In contrast, the number of second-order

diffraction corners (as shown by curve “df-cnr(2)” of Figure 11) processed by each node varies significantly,

with minimum of 373 (at node 25) and a maximum of 451 (at node 14).

The maximum finish time gap (difference of finish times among all sites) is very small indicating that

workload is well balanced among all sites. More specifically, it is less than 1 second in all experiments

for Rosslyn (Table 2), while it is less than 4 seconds in all experiments for Turin (Table 3). This is also

evidenced by Figures 7 and 10 where curves representing the finish times of all nodes at different stages are

almost horizontal straight lines. In general, the finish time gap is caused by coarse task granularity, which

in our experiments is set byG = 2 in assigning diffraction corners. For instance in the Turin case, it can be

seen that the average processing time for a second-order diffraction corner,tdiff2, is about 3.00 seconds,

thereby, the maximum finish time gap istdiff2G ≤ 6 seconds. It is expected that if we setG = 1, the finish

time gap will be further reduced. Tables 2 and 3 also show thatthe speedup is nearly linear with the number

3computed as the fraction (6,327.31 - 1,139.05) / 1,866.
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of nodes in the NOW (complete speedup presentation can be found in Figure 16).

In summary, the complexity of computations at different processing stages of the ray-tracing procedure

is quite different, and the processing times for different raypaths, diffraction corners vary dramatically.

However, by using different task granularities for different stages and dynamic load-balancing scheduling

scheme, the finish time gaps among nodes can be reduced and linear speedups can be achieved.

6.3 Effects of Task Granularity

To compare the performance of different load-balancing scheduling schemes, we use the city maps of Man-

hattan (Figure 4) and Dupont Circle (Figure 6) while we vary the number of NOW sites from 1 to 26. We

assume that there is no constraint on the amount of main memory a machine can use and the manager ships

the entire building database to all workers at the beginningof the computation. Since the hybrid-size-task

assignment scheme is better than the variable-size-task assignment scheme (as derived in Appendix A), we
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show experimental results only for the fixed-size-task scheme and hybrid-size-task scheme. In the fixed-

size-task scheme, the size of each assignmentG is set to 2 raypaths in transmitter processing stage and 2

diffraction corners in diffraction corners processing stage. In the hybrid-size-task scheme, the adjustment

factor F is 1/3 and 1/4 for the transmitter processing stage and the diffraction corners processing stage,

respectively. The parameterG is the same as that in the fixed-size-task scheme. Figures 13 and 14 depict

the resulting speedup and workload expansion ratios when the fixed-size-task and hybrid-size-task schemes

are used for Manhattan and Dupont Circle maps. Tables 4 and 5 show obtained statistics for Manhattan

and Dupont Circle that include the minimum (earliest), maximum (latest) finish times among all involved

machines (in columns “min-time” and “max-time”), the summation of finish times for all machines (column

“sum-time”), and resource utilization (column “util” ).
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Figures 13, 14, and Tables 4, 5 point out that the speedup achieved by the hybrid-size-task scheme is

better than its fixed-size-task counterpart in most experiments we have conducted. For instance when the

Dupont Circle map is used and the number of sites in NOW is 26, the corresponding speedup rates for the

fixed-size-task and the hybrid-size-task scheme are 23.95 and 25.05. Similar observations can be made for

other NOW configurations that use the Manhattan building database. It is noteworthy to point out that the

relationship between the speedup and the number of sites in the NOW configuration is nearly linear.

The workload expansion ratio is higher for the fixed-size-task scheme than its hybrid-size-task counterpart

(Figure 14), indicating that the latter has lower extra computation and communication overhead. For instance

when 6 NOW-nodes are involved, the workload expansion ratios for the fixed-size-task and the hybrid-

size-task scheme are 1.12 and 1.09 respectively. When the number of NOW sites increases to 26, the

corresponding workload expansion ratios are 1.28 and 1.23.The workload expansion ratio is related to the

complexity of the computation. In general, it is expected that a more complex computation demonstrates

lower workload expansion ratio. Based on experimental results given above, the respective processing times
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# of NOW min-time max-time sum-time util min-time max-time sum-time util
nodes sec. sec. sec. sec. sec. sec.

Manhattan (fixed-size-task) Manhattan (hybrid-size-task)
1 304.00 304.00 304.00 1.0000 304.00 304.00 304.00 1.0000
2 161.54 161.54 323.08 1.0000 152.37 152.38 304.75 1.0000
4 84.47 84.81 338.64 0.9982 79.50 79.85 318.57 0.9974
6 56.62 57.33 341.25 0.9922 55.09 55.48 331.58 0.9961
8 43.00 43.35 345.55 0.9963 42.54 43.02 341.90 0.9948
10 35.22 35.72 354.07 0.9913 34.79 35.00 348.86 0.9961
12 30.40 30.88 366.91 0.9903 29.18 29.75 353.32 0.9897
14 26.01 26.33 367.00 0.9954 25.81 26.52 364.50 0.9717
16 23.51 24.06 380.74 0.9892 23.08 23.52 373.79 0.9934
18 21.01 21.36 381.74 0.9929 20.94 21.43 381.15 0.9910
20 19.10 19.64 386.26 0.9832 18.84 19.26 381.09 0.9873
22 17.47 17.99 388.47 0.9817 17.14 17.57 381.41 0.9877
24 15.79 16.37 383.78 0.9768 15.75 16.22 382.32 0.9836
26 14.83 15.41 390.00 0.9734 14.23 14.80 373.84 0.9813

Table 4: Statistics for Manhattan when the fixed-size-task and hybrid-size-task schemes are used

for Dupont Circle and Manhattan are 2374.00 and 304.00 seconds when only one node is used to carry out

the computation. When 26 nodes take part in the computation,the maximum workload expansion ratios are

1.08 and 1.28, respectively, for Dupont Circle and Manhattan by using the fixed-size-task scheme, while

1.03 and 1.23 by using the hybrid-size-task scheme. It is clear that the workload expansion ratio incurred by

the Manhattan map is larger than that of Dupont Circle. The resource utilization rates are similar for both

scheduling schemes and very close to the ideal utilization rate indicating that all sites spend little time in

idle status.

The maximum finish time gap is very small for both the fixed-size-task and hybrid-size-task schemes.

When the Manhattan map is used, the maximum finish gap of 0.71 seconds occurs when the number of

nodes in NOW is 6 and the fixed-size-task scheme is used. When the hybrid-size-task scheme is used, the

maximum finish gap is also 0.71 seconds, but occurs when the number of sites in the NOW is 14. Similarly,

when Dupont Circle map is used, the maximum finish time gaps are 2.04 and 1.98 seconds, respectively,

for the fixed-size-task scheme and the hybrid-size-task scheme, both occurring when the number of sites

in the NOW is 22. Therefore, the workloads are allocated almost evenly among all sites. Based on the

above observations, we conclude that the hybrid-size-taskassignment scheme outperforms the fixed-size-

task scheme. Figure 15 shows prediction results for transmitter site Tx1a in Rosslyn, VA (as depicted in

Figure 3) along with actual measurements obtained in the field readily establishing the accuracy of our

model.

6.4 Speedup Rates Without Memory Constraints

Experiments thus far for Manhattan and Dupont Circle using hybrid-size-task scheduling scheme at 26

nodes deliver speedup rates of 20.54 and 25.05, respectively. To evaluate the robustness of our proposed

model under varying computation complexities, we also use the city maps for Rosslyn (Figure 3) and Turin

(Figure 5) and conduct experiments while ranging the numberof NOW-nodes from 1 to 26.

Rosslyn and Manhattan essentially constitute our “light computations” as they feature 56 buildings (with
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# of NOW min-time max-time sum-time util min-time max-time sum-time util
nodes sec. sec. sec. sec. sec. sec.

Dupont Circle (fixed-size-task) Dupont Circle (hybrid-size-task)
1 2374.00 2374.00 2374.00 1.0000 2374.00 2374.00 2374.00 1.0000
2 1231.20 1231.21 2462.41 1.0000 1219.09 1219.10 2438.19 1.0000
4 613.49 615.11 2457.06 0.9986 593.53 599.54 2396.80 0.9994
6 407.08 407.60 2444.42 0.9995 397.18 398.84 2386.97 0.9975
8 298.46 299.73 2391.92 0.9975 297.84 298.93 2385.72 0.9976
10 238.66 240.13 2395.44 0.9976 238.34 240.15 2390.59 0.9955
12 199.37 200.67 2399.32 0.9964 198.66 200.00 2391.50 0.9965
14 170.94 172.40 2404.51 0.9962 171.26 172.78 2406.15 0.9947
16 150.28 151.81 2417.54 0.9953 149.42 150.72 2401.18 0.9957
18 134.04 136.06 2425.02 0.9902 133.65 134.92 2415.97 0.9948
20 124.83 126.19 2510.47 0.9947 120.19 121.47 2415.90 0.9944
22 110.37 112.41 2440.81 0.9870 109.75 111.73 2426.64 0.9872
24 101.36 102.63 2447.32 0.9936 100.65 102.11 2430.07 0.9916
26 97.84 99.11 2560.34 0.9936 93.22 94.77 2441.35 0.9908

Table 5: Statistics for Dupont Circle when the fixed-size-task and hybrid-size-task schemes are used

224 vertices) and 79 buildings (with 412 vertices) respectively. The higher building density results in longer

processing time for Manhattan (304.00 seconds) compared with Rosslyn (279.00 seconds) when a single

NOW-node is used. More “intense computations” are those involving Turin (with 2,478 buildings featuring

20,280 vertices) and Dupont Circle (with 3,564 buildings featuring 23,181 vertices). We use two orders

of diffractions in Turin as opposed to a single order in Dupont Circle. Therefore, the processing time for

Turin is much longer than that of Dupont Circle when a single node is used (37,948.00 and 2,374.00 seconds

respectively given in Tables 3 and 5).
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We use the same experimental settings as in Section 6.3 and compute statistics including the sum of
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# of NOW sum-t oh-t iso sum-t oh-t iso sum-t oh-t iso
nodes sec. sec. sec. sec. sec. sec.

Rosslyn (δ = 0.5◦) Rosslyn (δ = 0.1◦) Turin (hybrid)
1 279.00 0.00 ∞ 2350.00 0.00 ∞ 37948.00 0.00 ∞
2 279.28 0.28 435.94 2350.16 0.16 14687.50 38392.14 444.14 85.44
4 286.38 7.38 34.02 2351.01 1.01 225.96 38216.26 268.26 138.29
6 291.00 12.00 21.63 2376.14 26.14 59.67 37950.29 2.29 2348.27
8 298.66 19.66 12.70 2381.15 31.15 50.91 37987.85 39.85 868.77
10 307.26 28.26 8.83 2392.29 42.29 44.01 37980.62 32.62 790.58
12 311.80 32.80 8.04 2398.19 48.19 32.60 38059.16 111.16 287.05
14 305.26 26.26 9.71 2446.10 96.10 17.53 38037.25 89.25 319.70
16 309.58 30.58 8.18 2440.81 90.81 20.05 37967.71 19.71 603.50
18 315.29 36.29 6.15 2455.19 105.19 15.30 38108.93 160.93 187.94
20 317.87 38.87 5.99 2485.11 135.11 12.87 38149.65 201.65 142.98
22 320.36 41.36 5.62 2513.82 163.82 10.10 38307.19 359.19 95.14
24 330.46 51.46 5.04 2513.91 163.91 9.94 38222.58 274.58 119.21
26 333.76 54.76 4.26 2525.12 175.12 8.93 38121.36 173.36 161.07

Table 6: Statistics for Rosslyn and Turin with hybrid-size-task scheme and no memory constraint

finish times (column “sum-t” in Table 6), the computation and communication overhead (column “oh-t”),

isoefficiency (column “iso”), speedup (Figure 16), workload expansion ratio (Figure 17), as well as effi-

ciency (Figure 18). The speedup rates are similar for Rosslyn and Manhattan as their processing needs are

comparable. The attained speedup for Turin is slightly higher than Dupont Circle; when a 26-node NOW

is involved, the corresponding rates for Turin and Dupont Circle are 25.84 and 25.05. This indicates that

speedup improves as the computation becomes more complex and the duration of I/O and results delivery

phases is small if compared to the parallelizable part. Here, the serial fractionα in Amdahl’s law is small

yielding a sizable speedup.

The maximum finish time gap tends to increase with the complexity of the computation. The maximum

finish time gaps are 0.70, 0.71, 1.98, and 4.15 for Rosslyn, Manhattan, Dupont Circle, and Turin respectively.

The workload tends to skew when the complexity of the computation increases. However, the workload

expansion ratio decreases with the complexity of computation. For example, when a 26-node NOW is used,

the maximum workload expansion ratios are 1.20, 1.26, 1.03,and 1.01 for Rosslyn, Manhattan, Dupont

Circle, and Turin, respectively. Therefore, the extra computation and communication overhead (measured by

the workload expansion ratio) decreases with the computation complexity as Figure 17 depicts. In addition,

Figure 18 shows that the efficiency of our model improves as the computation complexity increases.

Figure 16 clearly shows that the speedup achieved for Rosslyn is less than linear whenδ = 0.5◦. For

instance, when the number of nodes in NOW is 26, the speedup is21.06 only. Since the computation is

relatively small (processing time is 279.00 seconds), whenthe number of sites is large, the communication

overhead becomes significant and slows down the progress of computation. We use Gustafson’s law in

the Rosslyn context to expand the workload by changing the angular separationδ from 0.5◦ to 0.1◦. The

resulting statistics are shown in Table 6. Figure 16 shows that with angular separationδ of 0.1◦, the speedup

improves in comparison with that forδ = 0.5◦. For example, when 10 NOW sites are present, the speedup

rates are 9.78 and 8.98 forδ = 0.1◦ and 0.5◦, while at 26-nodes, the speedup rates are 23.38 and 21.06,

respectively.

It is also noticeable that the isoefficiencyKn is much higher forδ = 0.1◦ than 0.5◦ (Table 6) indicating
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that the former is more efficient and features better scalability. However, the isoefficiency for both cases

decreases rapidly as the number of machines increases in theNOW configuration. It is expected that the

isoefficiency may reach zero as the number of sites in the NOW goes up further (e.g., beyond 50). On the

other hand, the isoefficiency variation for Turin is not so dramatic raising expectations for better scalability.

The same conclusion can also be established with the help of Figure 17. Due to a much lower workload

expansion ratio, it is expected that a better scalability will be achieved for Turin.

6.5 Speedup Rates With Memory Constraints

When the entire building database cannot reside in memory, machines can manage database elements using

the hot/cold-spot classification discussed in Section 5.1.For brevity, we only offer experimental results

pertinent toCase II(Section 5.1) that is certain to generate a very large numberof message exchanges for

fetching building elements. In this context, we discuss twoscenarios: in the first, we impose no limit on

main memory consumption for NOW machines but with the manager partitioning the building database into

two equal parts. The first contains the hot-spots (buildingsaround the transmitters) while all other buildings

make up the cold-spots. The manager sends the first part to allworkers at the beginning of the computation,

while buildings in the second part are delivered to workers upon request. When a worker fetches buildings

in the second part from the manager, it keeps them in its main memory during the remaining computation.

In the second scenario, only the manager can hold the entire building database in its main memory during

the entire computation, while all workers can only hold a fraction i% (i = 97, 95, 90, 85) of the buildings

(including both hot-spots and cold-spots) in their main memory. The manager only sends the hot-spot

part to all workers at the beginning of the computation, while elements of the cold-spots are delivered to

workers on request. If needed, a worker selects a victim building (using FIFO) to accommodate an newly
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requested/arrived element. For each of the abovei% settings (i.e.,i = 100, 97, 95, 90, 85), we vary the

number of sites in the NOW configuration from 1 to 26, and run our model for Rosslyn and Dupont Circle.

We compute speedup and workload expansion ratio for each execution and present them in Figures 19, 20

for Rosslyn, and Figures 21, 22 for Dupont Circle.

0

2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30

sp
ee

du
p

# of machines

100%
97%
95%
90%
85%

Figure 19: Speedup rates with memory con-
straints for Rosslyn

1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20 25 30

ex
pa

ns
io

n 
ra

tio

# of machines

100%
97%
95%
90%
85%

Figure 20: Workload expansion ratios with mem-
ory constraints for Rosslyn

Our results show that the effects of main memory constraintson computations are closely related to the

complexity of the computations. The lower the complexity, the more the speedup deteriorates. For instance,

when each site can only hold 85% of the entire building database in its main memory and the number of

nodes in the NOW is 26, the speedups are 2.42 and 23.38, respectively, for Rosslyn and Dupont Circle. The

performance for Rosslyn is poor as the net effect of using 26 machines to carry out the computation under

this main memory constraint is only equivalent to that of using 3 nodes with no constraint at all. However,

for Dupont Circle, the speedup only decreases from 25.05 to 23.38 when the number of nodes in the NOW is

26. Speedup rates proportionally deteriorate when lower percentages of the database were memory-resident

at nodes. The main reason for this deterioration is the communication overhead due to fetching of buildings.

At some point, the communication overhead dominates the computation and becomes the bottleneck of the

system, as can be seen from the change of the workload expansion ratio. We use Rosslyn under the main

memory constraint of 90% as an example. When the number of nodes in the NOW is less than 6, the

workload expansion ratio is about 2, which is equivalent to solving a problem twice the size of the original

one. Similarly, when the number of nodes in the NOW is between16 and 22, the workload expansion ratio

is about 5, it is expected that its speedup is only about 1/5 ofthat without main memory constraint.

In the first scenario outlined above (curves under “100%” in Figures 19, 21), speedup rates are also

affected noticeably for all city maps. For example, under the 26-node NOW configuration, the speedups

are 20.84 and 24.74, respectively, for Rosslyn and Dupont Circle, while in the case where the manager

sends the entire building database to all workers at the beginning of the computation, the speedups are

21.06 and 25.05, respectively (see Figures 16 and 13). Overall, if main-memory is limited, workers should
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Figure 22: Workload expansion ratios with mem-
ory constraints for Dupont Circle

accommodate hot-spots in memory while fetching other database elements on demand in order to reduce

communication overhead. In addition, if the complexity of agiven computation is low in the presence of

limited memory, it is not beneficial to use a large-sized NOW configuration.

6.6 Enhancements With Diffuse Scattering

The diffuse scattering effect is a critical physical phenomenon in radio wave propagation. Here, we classify

building surfaces into two types, namely Lambertian and reflection surfaces. A surface is Lambertian if it

can establish a line-of-sight (LOS) path and is within a pre-specified distance (e.g, 30 m in the following

experiments) to the base or mobile stations. Otherwise, a surface is considered a reflection surface. If

a raypath hits a reflection surface, only a reflection path is generated. However, if a raypath intersects a

Lambertian surface, the latter re-emits rays uniformly in all directions along with a reflection ray [14, 7].

We only consider the receiver side diffuse scattering. EachLambertian surface is partitioned into small

meshes (in the following experiments, the size of a mesh is 3×3 m2) and the centroid of the mesh is used as

the diffuse scattering point that is traced as if it were a transmitter.

We investigate the impact of diffuse scattering in the context of 3D ray-tracing using a 3D terrain database

and compare performance rates with those derived for 2D ray-tracing. To accomplish this, we use the

building database for Rosslyn, VA (see Figure 3). Figure 27 depicts its building height distribution with

maximum and average values at 99.62 m, and 29.37 m; this is a typical high-core city with most buildings

ranging from 3 to about 25 stories. Base stations and antennas with different heights are placed in a number

of locations (see columns “ID for base stations”, “locations”, and “antenna” of Table 7). To create realistic-

terrain conditions in the database, we partition the coverage of the wireless network into a grid of small

uniform-sized cells (e.g., with size of 10×10 m2) and then for each such cell we randomly generate this

cell’s terrain height in the range of [0, 5] m. All the buildings and receiver locations within this grid are
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recomputed based on the terrain information; the recomputed dataset is the entry to our NOW-based radio

wave propagation prediction model. For brevity, we trace each raypath upto 4 reflections and 1 diffraction.

IDs for base locations (x, y, z) in (m,m,m) antenna 2D 3D (no diffuse) 3D (diffuse)
stations m sec. sec. sec.
Tx1a (237,656.0, 118,100.0, 21.63) 10 279.00 1726.29 11562.11
Tx5 (237,621.0, 117,816.0, 72.00) 2 261.55 1569.30 7610.34
Tx6 (237,518.0, 117,952.0, 73.20) 2 271.68 1793.10 7947.76
Tx4a (237,655.0, 117,998.0, 23.30) 5 409.31 2619.65 16372.79
Tx4b (237,655.0, 117,998.0, 23.30) 10 300.61 2104.27 13361.18
Tx10 (237,567.0, 117,737.0, 37.00) 10 250.33 1627.15 9491.62

Table 7: Prediction times for 2D/3D Rosslyn, VA database (with or without diffuse scattering effect)

While retaining identical parameter settings with those ofSection 6.3, we first conduct experiments with

a single machine and compile the results appearing in Table 7for a) 2D ray-trace only; b) 3D ray-trace

without diffuse scattering effect; and, c) 3D ray-trace with diffuse scattering effect. When base station Tx1a

is used, the prediction results generated by cases (a) and (b) along with the measurements obtained from

the field are shown in Figure 23. Predictions generated by cases (b) and (c) are depicted in Figure 24. We

also provide the prediction results (and corresponding actual measurements) for cases (b) and (c) when base

stations Tx4b and Tx10 (with their locations shown in Figure7) are used in Figures 25 and 26 respectively.
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Figure 24: Comparison of measurements and pre-
dictions with and without diffuse scattering with
3D building database (Rosslyn, Tx1a)

Next, we conduct the same experiments on a NOW whose number ofnodes vary from 1 to 26. Figure 28

shows the obtained speedup rates for all three settings whenbase station Tx1a is used. Results in Table 7

clearly point out that, when a 3D ray-trace is used, prediction times increase significantly; this increase

becomes even more notable when diffuse scattering is taken into account. For example, when base station

Tx1a and 3D ray-tracing are used, the required processing times are 1,726.29 seconds and 11,562.11 seconds
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Figure 26: Comparison of measurements and pre-
diction with/without diffuse scattering in Rosslyn,
VA for base station Tx10

without and with diffuse scattering effect. These values are 6.19 and 41.44 times higher if compared to that

needed to process the 2D setting. This is the reason that the curve corresponding to diffuse scattering in

Figure 28 demonstrates the best overall speedup.

The accuracy of prediction results is generally, but not necessarily better for 3D ray-tracing if compared

with those derived with 2D ray-tracing. In the latter, the height of buildings is assumed to be infinity, thereby

causing reflection of raypaths that in 3D would pass over the tops of buildings. This effect can cause the 2D

predictions to be higher than those obtained in 3D in some locations, and lower in other locations.

Diffuse scattering improves the prediction accuracy significantly as shown in Figures 24–26. The im-

provement of prediction accuracy is at the cost of prediction time. The workload is much heavier when we

consider diffuse scattering. A larger workload helps to improve the speedup rates as indicated in Figure 28.

It is clear that the speedup achieved by using 3D building database is better than that of the 2D dataset, while

it is much better when diffuse scattering effect is taken into account.

7 Conclusions and Future Work

In this paper, we address the computationally expensive problem of radio wave propagation and we propose

a NOW-based ray-tracing model to overcome long response times in attaining accurate prediction results.

Our model combines both phase parallel and manager/workersparadigms to offer scalable performance.

As the ray-tracing process is carried out in stages due to inherent data and control dependencies, we em-

ploy the phase parallel paradigm to provide coordination between computational stages. The phase parallel

paradigm presents the best match to the characteristics of our overall radio wave propagation prediction pro-

cess. The manager/workers paradigm is used within each stage to control, coordinate, and synchronize the
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computation and communication among different nodes. To decompose a computation into small units, we

use the control domain decomposition method that allows forthe partition of a computation based on task

granularity. In particular, we use raypath-level task granularity for transmitter processing and source-point-

level task granularity for diffraction corner and diffuse scattering point processing. To allocate workload

uniformly among all sites, we utilize a dynamic hybrid-size-task scheduling scheme that takes into account

both the state-of-affairs at NOW-nodes and progress of the on-going computation. To further improve the

efficiency of our model, we investigate and design suitable techniques for intermediate results collection,

final predictions generation, and reduction of extra computation and communication overhead.

Main memory consumption is a crucial issue when control domain decomposition methods are used to

partition the problem in consideration. When the building database is large, it can be automatically parti-

tioned into hot-spot and cold-spot parts. The hot-spot consists of those buildings around the transmitters,

diffraction corners, or diffuse scattering points, while other buildings are designated as the non-hot-spot

(cold-spot) area. During the entire computation, workers always store hot-spot part in their main memory,

while other non-hot-spot buildings are fetched from the manager on demand, and may be replaced by other

newly fetched buildings based on a replacement policy (e.g., FIFO).

Experiments with our NOW prototype show that when no constraint is imposed on the main memory

consumption, the proposed prediction model can achieve speedup nearly-linear to the number of partici-

pating nodes. Our model is robust under computations featuring different complexity and processing time

requirements. The workload expansion ratio increases slowly along with the number of nodes in the NOW

configuration indicating that our model has reasonable computation/communication overheads and good

scalability. The scalability of the proposed NOW-based model can be further verified by its isoefficiency

metric. The resource utilization is close to the ideal value, implying that all nodes spend little time in the idle

state during the entire computation process. When main memory consumption is a concern, the proposed

prediction model still delivers very good performance whenthe duration of undertaken computations is long.
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In this setting, the introduced extra computation and communication overheads do not dominate the original

computation. Our experimental results also show that the speedup rates can be significantly improved when

3D building/terrain databases are used. Finally, when diffuse scattering is considered, our model not only

offers predictions closer to actual measurements but also further improves the obtained speedup rates.

We plan to extend our work in the field of radio wave propagation prediction by pursuing a number of is-

sues: first, we intend to investigate the deployment of our model in a heterogeneous networked environment

(not necessarily a NOW) where contributing nodes might display varying characteristics; second, further

examine the performance of our prototype with wide-area GISdatabases; and finally, study the viability

of our model in modern computational environments where resources may join and/or depart the on-going

computations in a dynamic manner.
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A Load-Balancing Scheduling Schemes

We consider three scheduling schemes used by the manager to assign tasks to workers, the fixed-size-task, the variable-

size-task, and the hybrid-size-task assignment schemes. Suppose that the number of computation units for the original

problem isT , the number of remaining computation units isTrem, the number of nodes in the NOW configuration is

N , the size of each assignment isG computation units in the fixed-size-task scheme and the hybrid-size-task scheme,

the adjustment factor isF (0 < F < 1) when the variable-size-task scheme or the hybrid-size-task scheme is used.

We defineAf , Av, andAh as the sizes of the current assignment by these three schemes, respectively. We also define

Nf , Nv, andNh as the number of assignments by these three schemes. Then (⌈x⌉ is the smallest integer larger than

x), Af = min (G, Trem), Av = ⌈TremF/N⌉, andAh = min {max (⌈TremF/N⌉, G), Trem}. It is easy to show that

Nf = ⌈T/G⌉. To computeNv, we letTi be the number of remaining tasks at thei-th assignment andAi be the size

of thei-th assignment, then,T1 = T andAi = ⌈FTi/N⌉. For simplicity, we drop the constraint of⌈⌉ in the following

derivation. After thei-th assignment, the number of remaining tasksTi+1 becomesTi+1 = Ti −Ai = (1− F/N)iT .

Suppose that at thek-th step,Ak ≤ 1, butAi > 1 for all i < k, then

Ak =
FTk

N
≤ 1; Tk ≤

N

F
; (1−

F

N
)k−1T ≤

N

F
; k ≥

log N
FT

log (1− F
N

)
+ 1
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The remaining tasks areTk and are assigned to the workers by using size of 1. So, the total number of assignments

Nv is

Nv = (k − 1) + Tk ≥
log( N

FT
)

log(1− F
N

)
+ Tk ≈

log( N
FT

)

log(1− F
N

)
+

N

F

Similarly, to calculateNh, we letTi be the number of remaining tasks at thei-th assignment andAi be the size of the

i-th assignment, thenAi = min
{

max (⌈FTi

N
⌉, G), Ti

}

. Again, for simplicity, the constraint of⌈⌉ is dropped in the

following calculation. After thei-th assignment, the number of remaining tasksTi+1 becomes

Ti+1 = Ti −Ai = Ti −
FTi

N
= (1−

F

N
)Ti = (1−

F

N
)2Ti−1 = . . . = (1−

F

N
)iT1 = (1 −

F

N
)iT

Suppose that at thek-th step, the size of the assigned tasks isAk ≤ G, butAi > G for all i < k, then

Ak =
FTk

N
≤ G; Tk ≤

GN

F
; (1−

F

N
)k−1T ≤

GN

F
; k ≥

log(GN
FT

)

log(1 − F
N

)
+ 1

For the remaining tasks (Tk), the fixed-size-task scheme withG is used. Therefore, the total number of assignments

Nh is

Nh = (k − 1) +
Tk

G
≥

log(GN
FT

)

log(1− F
N

)
+

Tk

G
≈

log(GN
FT

)

log(1− F
N

)
+

N

F
= Nv +

log G

log(1− F
N

)

Under the condition

N

FT
≥ (1 −

F

N
)(

T

G
−

N

F
)

It is easily shown thatNv ≤ Nf . Therefore, the performance of the variable-size-task scheme is better than that of

the fixed-size-task scheme in terms of assignment rounds, while the hybrid-size-task scheme performs better than the

variable-size-task scheme as long asG ≥ 1.

B Computation-Duplication and Computation-Partition

Suppose that the lookup table to be established isM = (mi,j)n×n, mi,j is a double-precision floating point number

(i, j = 1, 2, . . . , n), N is the number of nodes in NOW, the cost of broadcasting eachmi,j is tb (in seconds), the

cost of computing eachmi,j is tp (in seconds). Then, for the Sequential method, we further let Tseq andWseq be

the processing time and the total workload when the computation is carried out by only one node, it is easy to show

that,Tseq = tpn
2 andWseq = tpn

2. For the computation-duplication method, we letTdup, Wdup, Sdup andRdup be

the finish time, the total workload, speedup and the workloadexpansion ratio. Since each node carries out the same

computation independently and proceeds simultaneously, thenTdup = tpn
2, Wdup = Ntpn

2, Sdup = Tseq/Tdup =

tpn
2/(tpn

2) = 1, andRdup = Wdup/Wseq = (Ntpn
2)/(tpn

2) = N .

For the computation-partition method, we letTpar, Wpar, Spar andRpar be the finish time, total workload, speedup

and workload expansion ratio. Also letTp andTc be the computation time and time spent on communication, since

the computation of the lookup table is distributed uniformly among all nodes, each node processesn2/N elements of

M , then broadcasts the results to other nodes. Therefore,Tp = tpn
2/N , Tc = tb(n

2/N)N = tbn
2, Tpar = Tp +Tc =

tpn
2/N + tbn

2, Wpar = NTp + Tc = Ntpn
2/N + tbn

2 = (tp + tb)n
2, Spar = Tseq/Tpar = 1/N + tb/tp, and

Rpar = Wpar/Wseq = 1 + tb/tp.

The difference betweenTpar andTdup is Tpar − Tdup = n2 [tp(1/N − 1) + tb]. It is clear thatTpar < Tdup when

tp > tb andN > tp/(tp − tb). Tpar ≥ Tdup otherwise.
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C Intermediate Results Assembly

We consider two intermediate result assembling methods here, the first-come-first-serve (FCFS) method and multi-

level assembly method. In FCFS assembly method, every worker sends its intermediate results to the manager, the

manager collects and merges the intermediate results according to the policy of ”first come first serve”. While in the

multi-level assembly method, a binary tree is formed among all sites. The assembly process begins at the leaf level

where every site is a leaf node, Nodes are grouped pairwise and assembly proceeds simultaneously among all node-

pairs. The assembled data within each pair is stored at only one node, and the latter will take part in the next round

of assembly, while the other in the same pair will be idle fromthen on. This procedure is repeated until all data are

assembled at one site (i.e., the manager site).

We assume that the number of sites in the NOW configuration isN , the size of intermediate data held by each site

before assembly is the same and is denoted asL (in bits), all intermediate data are distinct (i.e., no overlap), the cost

of sending one bit through the network istc (in seconds), the cost of processing one bit data istp (in seconds),Tfcfs

andTml are the processing time for the FCFS method and multi-level assembly method, then,Tfcfs andTml can

be calculated as follows. For the FCFS assembly method, we let Tc, Tp be the communication and data-processing

overheads, respectively, then

Tc = tcL(N − 1); Tp = tp[2L + 3L + 4L + ... + NL] =
1

2
(N2 + N − 2)Ltp

Tfcfs = Tc + Tp = tcL(N − 1) +
1

2
(N2 + N − 2)Ltp

For the multi-level assembly method, we tag the binary tree with level identifier by denoting the leaf level as level 1,

and the root is at levellog2(N). Let ci anddi be the total communication time and data-processing time atlevel i, and

li be the size of the assembled data, then

c1 = tcL; d1 = tp(2L); l1 = 2L;

c2 = tc(2L); d2 = tp(2
2L); l2 = 22L;

c3 = tc(2
2L); d3 = tp(2

3L); l3 = 23L;

. . .

clog
2
(N) = tc(2

log
2
(N)−1L); dlog

2
(N) = tp(2

log
2
(N)L); llog

2
(N) = 2log

2
(N)L = NL

Tml =

log
2
(N)

∑

i=1

(ci + di) =

log
2
(N)

∑

i=1

[

tc(2
i−1L) + tp(2

iL)
]

= tcL(N − 1) + 2tpL(N − 1)

The difference betweenTml andTfcfs is Tml−Tfcfs = −tpL(N −1)(N −2)/2. It is clear that as long asN ≥ 2,

we then haveTml ≤ Tfcfs. Therefore, the multi-way assembly method is always betterthan FCFS assembly method.

D Prediction Results Generation

We consider two methods to generate predictions by collecting and assembling information scattering among all

sites, the “one-site-pruning” method and the “all-site-pruning” method. In the first method, the removal of all non-

significant raypaths for receivers is performed by the manager only. While in the second method, all sites take part in

the elimination of non-significant raypaths, generate partial predictions, and the final predictions are assembled by the

manager. The 4-step procedure for the “all-site-pruning” method by using collective communication functions is:
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1. Exchange maximum powers for receivers. All sites computethe maximum power for each receiver based

on their local information, then exchange this informationamong themselves, and find out the global max-

imum power for each receiver by using the global reduction operation with operation ofMPI MAX in

MPI Allreduce(·) function. The reduction results are returned to all sites.

2. Eliminate non-significant raypaths. Each site removes all non-significant raypaths for each receiver based on

the global maximum power generated at the previous step.

3. Generate partial predictions. Each worker computes partial predictions based on its local information.

4. Generate the final predictions. By using another collective communication function,MPI Reduce(·) with

operator ofMPI SUM, all sites deliver their partial predictions to the managerand the final predictions are

formed at the manager’s site.

To calculate the processing time for these two methods, we assume that the number of sites in the NOW configura-

tion isN , the number of receivers isNrec, at each site, each receiver is illuminated byNray raypaths, each raypath can

be described byBray (in bits),fray of Nray are significant raypaths, the cost of sending one bit throughthe network is

tc (in seconds), the cost of processing one bit of input data or generating one bit data for predictions istp (in seconds),

the cost of processing one bit data in the global reduction operation istg (in seconds), the power strength and the

prediction parameter can be described by a double-precision floating-point number and has size ofBp (in bits), and

Tone andTall are the processing time for the “one-site-pruning” method and “all-site-pruning” method, respectively,

then, for the “one-site-pruning” method, by denotingTc, Tr, andTp as the costs for communication, non-significant

raypath removal, and predictions generation, respectively, we have

Tc = (N − 1)tcNrecNrayBray; Tr = NtpNrecNrayBray; Tp = NtpfrayNrecNrayBray

Tone = Tc + Tr + Tp = [(N − 1)tc + N(1 + fray)tp] NrecNrayBray

While for the “all-site-pruning” method, by denotingTi as the processing time for theith step (i = 1, 2, 3, 4) in the

4-step procedure for the ”all-site-pruning” method presented above, we have

T1 = tgNrecBp; T2 = tpNrecNrayBray;

T3 = tpfrayNrecNrayBray; T4 = tgBp;

Tall =

4
∑

i=1

Ti = tgNrecBp + tpNrecNrayBray + tpfrayNrecNrayBray + tgBp

= tg(Nrec + 1)Bp + (1 + fray)tpNrecNrayBray

The difference betweenTall andTone is

Tall − Tone = tg(Nrec + 1)Bp + (1 + fray)tpNrecNrayBray

− [(N − 1)tc + N(1 + fray)tp] NrecNrayBray

= tg(Nrec + 1)Bp

{

1−
(N − 1) [tc + (1 + fray)tp]

tg

NrecNrayBray

(Nrec + 1)Bp

}

It is very easy to achieveTall ≤ Tone in (1) as long as the network bandwidth is high andN is relatively large.
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