Adaptive Live VM Migration in
Share-Nothing IaaS-Clouds with LiveF'S

Nick R. Katsipoulakis, Konstantinos Tsakalozos and Alex Delis
University of Athens, 15784 Athens, Greece
{katsip, k.tsakalozos, ad}@di.uoa.gr

Abstract—Live migration is a versatile option when it comes
to attain load-balancing in JaaS—cloud architectures. Liveness,
reliability and conformance to SLAs may all be achieved by
moving a VM that creates excessive work from its current physical
machine (PM) to a less busy node. Despite its promising features,
live migration is an expensive operation in terms of resources. The
situation gets further exacerbated when the movement involves
PMs working off different file-systems which is often the case
in shared-nothing laaS-cloud infrastructures. In this paper, we
suggest an approach that adapts the migration operation based
on the I/O activity of the originating- VM. We introduce LiveFS, a
FUSE-file system which traps all I/Os and helps determine how
to best ship virtual disk segments across PMs in a share-nothing
IaaS—cloud. Through prototyping and experimentation, we show
that LiveFS can improve the shipment of VMs for diverse types
of workloads. In particular, LiveFS succeeds in reducing the Total
Migration Time by up to 64% compared to the ‘“pre-copy” live
migration technique. Furthermore during migration, we attain
up-to 19% less I/O—-delay if compared to the “post-copy” live-
migration approach.

I. INTRODUCTION

Contemporary IaaS-clouds are being designed as a means
to offer sophisticated computing services without having users
tackle complex maintenance and administration tasks. This
is mostly accomplished by leasing virtual machines (VMs)
running on networked clusters of physical machines (PMs).
By and large, providers would be interested in maintaining
load-sharing among their shared-nothing infrastructures. In-
evitably however, the performance of a single PM will start
to deteriorate due to multitenant applications hosted and/or
the appearance of user flash-crowds. This does affect the co-
existence of VMs in a single node. Live-migration has been
proposed as a way to ameliorate such performance degradation
by moving a busy tenant and its VM to another physical
machine. In an initial approach for VM-migration [1], [2],
[3], a VM was suspended and its main-memory image was
transfered into the destination. Despite the fact that these
approaches could achieve the load balancing among the tenants
of a server, they would impose severe limitations on the
migrating tenant by stopping its execution and making its
service(s) unavailable until the migration would complete.

In an effort to attain minimal downtime, the above “pure
stop-and-copy” or “cold” approach was suceeded by the “live”
or “hot” VM migration. This approach intends on transferring
a VM while it is operating and its feasibility was first presented
in [4]. The “pre-copy” live migration would first transfer the
disk contents of the VM to its destination PM until only a
small set of dirty pages would remain outstanding. Then, the

VM execution was halted and these pages were pushed over
to the target machine along with the CPU state. Finally, the
operation of the VM would commence at the destination node.
Although this method has the advantage that the I/O latency
remains low, in a write-intensive workload the Total Migration
Time has the potential to be significantly lengthy. The “post-
copy” live migration approach [5] manages to reduce the Total
Migration Time for VM memory images and diminish the VM
downtime to near—zero level. In [6], it is shown however that
live migration imposes a considerable amount of performance
degradation. The migration of a VM may take up a large
amount of the resources available to a machine and may affect
other tenants’ response time.

In a shared-nothing IaaS-cloud where a common filesystem
is not always feasible, a VM-migration may involve significant
delays as multiple Gigabytes of a virtual disk(VD) have to be
copied over the network. Moving voluminous disk segments
even through Gbps-rated networks in a way that does not
upset operations and imposes minimal overheads still remains
a challenge. In this paper, we follow a different approach
as we introduce a virtual disk I/O monitoring mechanism
operating even before a migration commences. Over time,
this I/O-monitoring allows for effective compilation of the
“hot” disk segments and enables timely handling of long-
term memory shipment. Our proposal combines the pros of
the pre-/post-copy methods along with the identification of
virtual disk (VD) segments that receive high traffic. In this
respect, the VM operation at the destination PM gets to
start as quickly as it occurs in the “post—copy” method yet
with reduced I/O-request response—time. LiveFS embodies the
above features through the realization of a user-space file-
system. We have developed a prototype and experimented
with a file-system benchmarking suite as well as synthetic
workloads. Our experimentation shows that LiveFS succeeds
in reducing the Total Migration Time by up to 64% compared
to “pre-copy” live migration method and lowering the I/O-
delay during migration up to 19% compared to the “post-copy”
migration approach. Our contributions are the:

e proposal of a hybrid—approach to handle VM live migra-
tion in an adaptive manner.

e cxploitation of the data—access patterns by VM-tenants so
that we alleviate the workload experienced by PMs cloud
nodes.

II. OVERVIEW OF OUR LiveFS—BASED APPROACH

Fig. 1 depicts the organization of our JaaS-cloud and
shows the key elements that help address the issues of VM

Cloud Middleware
for Shared-Nothing Infrastructure

Load-Balancing | Migration [Migrations
Policy [Tagke | Daemon

Migrations Xen

Migrations Xen
Worker Worker

Migrations

el Worker

LiveFS LiveFS LiveFS

UFS(ext4) UFS(extd) UFS(ext4)

VD2
VD1
VD1
VD2

VD3 VD3
PM Disk PM Disk PM Disk

PM1 PM2 PM3

Fig. 1. High-level view of LiveFS featuring 3 PMs and a VM in migration

migration. At the top, the Cloud-Middleware layer founded
on either Openstack or OpenNebula [8], [9], oversees the
operation of the shared-nothing infrastructure. Each PM-node
maintains its own disk of which a number of virtual disks
(VD) have been defined and are in use by corresponding VMs.
Through the use of a hypervisor such as Xen [10], PMs can
host a number of VMs with which the users of the system
interact. We assume that the Cloud Middleware employs a
Load Balancing Policy [14] capable of determining when a
VM should be transported along with its requisite VD and to
which PM. Typically when a VM’s resource utilization rates
reach a level beyond which degradations appears imminent,
the load-balancing policy selects a destination PM and has the
originating node directly talk to the new PM to host the migrat-
ing VM. The middleware can then initiate a Migration Task.
Every migration task (Fig. 1) entails the VM to be transported,
source and target PMs involved and more importantly, the VD
to be shipped.

Our approach takes action as soon as a migration task
appears in the middleware layer. Our prime objectives are to:
a) reduce VM-handover time; this is the elapsed time between
the initiation of a migration until the respective VM becomes
operational in the new host, and ») minimize the performance
penalty inflicted to the VM’s operation due to the migration
operation. The three salient elements of our approach are the:
Migrations Daemon, LiveFS, and Migration Worker(s). Each
migration task is handled by the Migrations Daemon that
administers VM moves between physical machines. LiveFS is
our special-purpose FUSE-based filesystem [17] that functions
as an abstraction layer between the hypervisor and the local
filesystem. Every PM features its own LiveFS instance that
allows to intercept all I/O operations targeting the virtual disks
on the move, while also maintain data—consistency. Finally, as
Fig. 1 shows, the Migration Worker on each PM works in tan-
dem with LiveFS to accommodate the required data shipment
involved in the migration. In the course of a migration, the
subsequent pieces of action have to be carried out: /) transfer
of the VD content, 2) transfer of the CPU-memory state, and
finally, 3) the VM-handover from the source to the destination
node has to occur. The VM-handover includes forwarding all
application/user requests to the VM’s new host.

A. Migrations Daemon and Workers

The Migrations Daemon of the middleware handles mi-
gration tasks in FIFO fashion. For each job received, the
Migrations Daemon contacts the Migration Worker of the PM
hosting the VM that has to be moved. The daemon dispatches
the ID of the VD-image that will be transported along with
the information of the receiving PM.

There are a few factors that drive our approach and
are defined at the initialization part of the migration. These
factors are: monitoring time period, migration threshold, and
handover-size. The monitoring time period defines the time
length, in which the source node monitors I/O operations
performed on the data segments of the VD-image to be
transferred. This monitoring phase takes place so that we can
identify the working—set of VD segments the VM uses. During
this period, each segment is assigned a score produced by a
ranking function. If a data segment’s score is higher than the
migration threshold, this segment will be transferred before
the VM-handover phase. As I/O-writes may occur before the
handover of the VM we keep track of these updates and push
them to the destination PM. The handover-size defines the
maximum number of updates that remain to be sent before
the system enters the VM-handover phase. All the above 3
factors are defined by the Migrations Daemon and are sent
over to the source—PM’s Migration Worker to help guide the
migration process.

The Migration Worker component of the source—PM con-
tacts its counterpart at the destination—PM so as to establish
a communication channel through which segments will be
transported. The Monitoring Phase ensues at the source—PM.
By the time Monitoring ends, all accessed segments of the VD
under migration are ranked using our ranking function. All of
the segments that are ranked above the migration threshold
are shipped to the destination node, before the VM-handover
phase. The transferred segments are kept in sync between the
source and destination PMs by applying any update to both
hosts. Finally, the migration enters its final stage where the
remaining segments of the VD-image are sent over to the
destination—PM.

B. LiveFS Design

LiveFS is a FUSE filesystem [17] and enables us to trap
all I/O-operations. Fig. 2 depicts the route every I/O takes
in LiveFS. All VD-images that reside in a PM are stored

Network Ce
VM

VFS

Physical Node I
I

User i{
Soceo LiveFS (")

[libfuse

[glibc

Kernel
Space FUSE

NSF
Disk

Fig. 2. The I/O-route in LiveFS

under a path termed the virtual disk repository. A VM is

SendQueue
LiveFS Migration State

SyncQueue

ReceiveQueue

Monitoring Hash

WriteQueue

LiveFS Structures

Fig. 3. In-memory LiveFS Structures.

deployed so that it does not directly access its virtual disk
image, but to access the disks under LiveFS’s ultimate mount
point. Every time an I/O occurs from the VM to its VD-
image, this operation is routed to the local LiveFS instance
and handled accordingly. The functionalities of LiveFS are to:

a) intercept I/O calls performed from the VM to LiveFSs
mount point and forward them to the actual virtual disk
repository,

b) monitor I/O operations on a soon-to-be-migrated VD-
image,

c) re-send segments that have been updated before the
handover phase commences.

d) at the destination node, if a read eventually asks for a
segment that has not been sent yet, LiveFS has to notify
its local Migration Worker to handle the request at hand.

III. MIGRATION PHASES AND THEIR FUNCTIONALITY

Our approach completes the live-migration procedure in
5 distinct operational phases. The collective goal of these
phases is to ensure that the transfer of a VD-image occurs in
a consistent manner. The LiveFS of a PM-node keeps track
of all specifics of a VD under transfer. Such information
include: identifier of the VD-image, IP and port number at the
destination/source PM, the particular migration stage LiveFS
finds itself in and whether the node acts as either sender
or receiver of the VD. Fig. 3 depicts the various structures
maintained in memory by LiveFS. We outline below the
functionalities of the 5 phases and their interactions with the
above structures.

1) Monitoring I/O—Requests: LiveFS enables the monitoring
of all I/O—operations issued at the source, for time equal
to the value of the monitoring time period parameter. As it
is known [18], [19], keeping track of spatially overlapping
I/Os, especially in the context of virtualized environments
may become too complicated. Since we intended to employ
a lightweight solution, we opted for a more coarse approach:
we divide the VD-image in equal-length disk segments. The
size of each such segment is configurable and presumed to
be bigger than 4KB. This choice allows for easier decisions
when it comes to determining segments that become ‘“hot”
due to multiple writes and reads, what has been transferred
and whether there are outstanding operations for particular VD
portions.

While experimenting with our prototype, we have come
to the conclusion that segments of 64MB size present good
performance of VM-image transfer and a readily manageable
number of segments so that LiveFS’s in-memory structures
grow modestly.

LiveFS features a comprehensive repertoire of calls in-
cluding the live_read() and live_write() calls. As soon as the
monitoring time period commences, LiveF'S-calls constitute the
mechanism to record I/O activity on the VD. To accomplish
this, we maintain an in-memory monitoring hash table. The
FUSE library offers the capability to translate an access to
a specific VD address into an offset; this number provides
the distance from the first byte of the virtual disk. Given a
fixed (and configurable) size of segments, the segment—id can
be computed using the above offset. We use the segment-id
as a means to store/access records in the hash-table and in
each such record we maintain read and write counters. Every
time there is an invocation of the read/write calls and while
in monitoring phase, the corresponding counter is augmented.
If a call spans multiple segments, then counters of respective
segments are properly adjusted.

At the end of the monitoring time period, the hash-table
is scanned so that the traffic received by each VD-segment
can be ranked. Our ranking function takes into account both
read and write operations and computes a weighted average
for both types:
w1 * nreads(segid) + wa * nwrites(segid)

2

where nreads() and nwrites() are functions that return the two
counters for a specific segment identifier and w; + we = 1
(default values wi=w2=0.5). This function involves all needed
information for the popularity of a VD-segment after the
migration process has started. We only track 1I/O operations that
are forwarded to the filesystem (and in turn to the VD of a VM)
as only these operations are crucial in the successful LiveFS
migration. Every segment that scores above the configurable
migration threshold is transferred during phases 2 and 3 while
the remaining segments are transported during phase 5.

f(segid) =)

2) Pre-copy Phase: the scope of this phase involves the
shipment of all those “hot” segments to the destination PM.
The Migration Worker component of the source node places
these segments in SendQueue for dispatch (Fig. 3). SendQueue
consists of segment identifiers whose cardinality remains un-
changed through the migration procedure. Segments referenced
by SendQueue get transported to the appropriate PM in FIFO
discipline as soon as the pre-copy stage starts. Knowledge of
the set of segment-ids in SendQueue is also essential to settle
matters after VM-handover occurs.

As updates can take place, some of the segments in
SendQueue may be (re-)written while this phase progresses.
We use SyncQueue to place ids of such dirty segments. Every
time a write() call is executed, LiveFS examines if it refers
to a segment that is sent during phase 2 (i.e., placed in
SendQueue). Should the segment has been already sent out, the
corresponding update is noted with a record on the SyncQueue.
The write is subsequently carried out to VD.

At the destination—PM, every segment received during this
phase is written on the respective VD and its id is placed
at ReceiveQueue; the latter maintains the identifiers of all the
received segments before the VM handover. ReceiveQueue is a
key structure as it helps the local instance of LiveFS determine
the segments that have not been received yet.

3) Pre-Copy Synchronization Phase: in this stage all the items
at SyncQueue are dispatched to the destination—PM. Updates

that arrive for segments being part of SendQueue, are placed in
SyncQueue (only if the just-written segment does not already
exist in the latter).

The processing of segments continues until the number
of elements in SyncQueue is less or equal to the handover-
size; this represents a relaxation level from strict segment
consistency before VM-handover.

4) CPU-Memory Transfer and Handover Phase: the hypervisor
is instructed by the Migrations Daemon to perform the VM
CPU and main-memory migration to the target PM. The
segment identifiers found at SyncQueue are sent as a string to
target PM. Next, the source PM’s Migration Worker informs
the Migrations Daemon to perform the “handover” of the VM
through the facilities of the hypervisor. In our implementation,
we use Xen’s migrate command with its “~live” option.

5) Post Handover Phase: the source Migration Worker has to
send the remaining segments to the destination—PM. This set
termed need-to-be-sent, consists of all those “cold” segments
of the VD ranked below the migration threshold as well as
those found in SyncQueue. All VD segments except those
in SendQueue make up the “cold” area of the virtual disk
under shipment. The Migration Worker initiates the transfer
of the segments in the need-to-be-sent set in an eager manner.
Moreover, the Migration Worker of the original PM is ready to
serve segment requests called on demand by the destination—
PM.

A similar task to what we discuss above is performed by
the LiveF'S at the destination—PM. This LiveFS instance has to
be aware of the VD segments that are not yet present in its
local disk. The corresponding need-to-be-received set consists
of all the segments in the VD except those in ReceiveQueue as
well as the segment ids dispatched by the source PM during
phase 4. As soon as the Migration Worker at the destination—
PM has noted a receipt of a segment, it removes the segment-id
from the need-to-be-received set.

Any time an I/O targeting the VM occurs, the LiveFS has
to first establish whether the sought segment has been already
received. This can be readily determined with the help of
the need-to-be-received set. Should the segment be already
transported, the I/O proceeds unhindered to the local disk.
Otherwise, the LiveFS asks for it on the fly (and possibly
out of sequence) from the source PM. Read—I/Os to missing
segments are synchronous since the target PM has to wait for
the segment to arrive. Write—I/Os to received segments simply
go through to the VD. On the other hand, write—I/Os to missing
segments are stored in the writeQueue — an in-memory LiveFS
structure that maintains segment-id, offset as well as content
of the modification. By the time a segment ultimately arrives
at destination—PM all the updates that refer to it (and are kept
at writeQueue) have to be replayed.

IV. HANDLING OF ERRORS DURING MIGRATION

The Migrations Daemon does not only oversee the mi-
gration process but also monitors the liveness of the partici-
pating PMs at all times (with the use of “still-alive” polling
messages). As senders maintain open connections with their
receiver counterparts, it is also easy to determine the receivers’
status. If both PMs become incapacitated, then the Migrations

Daemon detects the error and may decide to start the migration
anew. Fig. 4 shows how matters progress timewise for both a
sending and a receiving PM. In this timeline, we sketch possi-

sender

phase 1 phase 3 phase

phase 5
receiver 4

-

Fig. 4. Timeline of phases for both sender and receiver PMs.

ble errors that may occur at the LiveFS-level and outline ways
to overcome such defficiencies. Regarding data—consistency,
we follow the notion of logical clocks [20] for updates that
happen on a VD under migration.

e Phase 1: If an error occurs in either sender or receiver, the
I/0 monitoring has to start anew as soon as the respective
PMs become again operational.

e Phase 2: If the LiveFS of the sender fails, then the entire
procedure has to start from phase 1 all over again. If
on the other hand the receiver fails, the sender can help
successfully restart the receiver from phase 2.

e Phases 3 and 4: should one of the two parties fail,
the still-alive PM aids its counterpart to restablish the
content of its SendQueue/ReceiveQueue. As soon as the
sender populates its SyncQueue with the segment-ids of
its SendQueue, phase 3 starts over again.

e Phase 5: if the receiver fails, the sender can selectively
ship segments not passed over before the failure. Updates
that have occured at the receiver can be only facilitated
through a logging mechanism. On the other hand should
the sender fail, the receiver asks on demand for all missing
segments that a re-established sender can now provide.

V. EVALUATION

During our evaluation, we measure the performance of
LiveFS as we tune its migration parameters and we estab-
lish the operational overheads of our approach. LiveFS is
implemented in C with pthreads and FUSE [17] framework
v2.9.2. We migrate a VM between two PMs while a workload
is being executed within the VM. We employ two separate
workloads on different evaluation scenarios. The first workload
is produced by the Bonnie++ benchmark [21] and the second
by our own variation of AFS [22]. With Bonnie++, we examine
how long it takes to perform the VM handover under heavy
load, while with our AFS-like benchmark we assess the effect
that the Monitoring Time Period parameter has on the average
I/O-delay during phase 5. In our set up, the PMs are two
Intel(R) Xeon Servers with 8GB of RAM, connected with a
1Gbps Ethernet—switch. The employed hypervisor is the Xen
v4.0.1 while the VM under migration runs a Linux Debian
v6.0 and is equipped with 512MB of RAM and a 6GB virtual
disk image.

The effectiveness of our of VM live-migration approach
is compared against the pre—copy and post—copy techniques.
LiveFS can effectively emulate both of these approaches by
properly setting its migration threshold and monitoring time
period parameters. For the pre—copy operation, we set LiveFS’s
migration threshold and monitoring time period to zero; for the
post—copy approach, the length of the monitoring time period

T T
Pre-Copy —&—
LiveFS-Adaptive ---&---

Total Migration Time (seconds)

500 [

0 10 20 30 40 50 60 70 80
Handover Size

Fig. 5. Fluctuation of Total Migration Time as handover-size increases.

is set to zero and the migration threshold is set to its maximum
value (the maximum value of an unsigned long integer).

e Bonnie++ benchmark in LiveFS: Bonnie++’s I/O footprint
involves creation and deletion of files as well as a number of
read and write operations. We execute the benchmark within
the VM-under-migration and measure the migration comple-
tion time. In this experiment, the handover-size parameter
ranges from 0 to 80 segments and the disk segment size is
fixed at 64MB.

Fig. 5 shows that the LiveFS Total Migration Time remains
unaffected. This is because the working set of Bonnie++
is fixed and the number of updates is less than or equal
to the handover-size. When LiveF'S is configured to operate
similar to the pre—copy approach, any updates performed
have to be continuously pushed to the destination machine.
Hence, if the handover-size is small, the Total Migration Time
increases dramatically. The decrease of Total Migration Time
compared to the pre—copy approach is on average 30.1%, with
a maximum value of 64%.

Fig. 6 shows how the VM-handover is affected by the
handover-size and the monitoring time period length. As
depicted, the handover time increases linearly along with
the monitoring time period; also the VM-handover time is
neither affected by the time LiveFS takes to send segments
(in SyncQueue) that need synchronization nor by the time
required by Xen to complete the live-migration of CPU and
main memory state. In this setting and for all our experiments,
the time required by LiveF'S to go through to the end of phase 4
is dominated by the monitoring period (i.e., phase 1).

e The AFS workload: To monitor how LiveFS benefits
from re—occurring data—access patterns, we implemented a
synthetic workload inspired by the AFS benchmark. AFS
benchmark constructs a directory tree, copies files in it, scans
the directory recursively and gets its contents status. As a final
step, the benchmark reads all the files and issues a make
command. Each of the aforementioned operations corresponds
to a number of Load Units [22]. A Load-Unit refers to the
load placed on a server by a single workstation client. Hence,
in order to emulate a multi—user environment, multiple threads
are instantiated, each one performing its own set of operations
for a predefined number of rounds R. The set of operations
remains unchanged for each worker—thread in order to produce
a recurring workload. In our implementation of the AFS
benchmark, the client threads only read from the VD-image

Handover Time (sec)

Fig. 6. VM-handover time as a function of handover-size and monitoring
time period.
160
150
@
2140
8
]
E 130
=
)
3
Q120
]
110}
100 10 20 30 40 50 60 70 80
Monitoring time period (seconds)
Fig. 7. Avg. I/O-delay improvement as monitoring time period increases.

and they do not perform any updates. In this way, we are able
to quantify the I/O-delay caused by fetching disk segments
from the source PM immediately after the VM-handover.

In every execution round, each worker—thread accesses the
same set of blocks within the file in question. Using our
AFS benchmark, we examine the effectiveness of LiveFS in
identifying a working set of segments and reducing the I/O-
delay during phase 5. Here, the migration threshold is set to
1,000 accesses, the handover-size to 30 and we produce 200
worker-threads each one reading a 1MB block for a 1,000
times.

Our focus in this experiment is the effect of monitoring
time period. This period reduces the I/O-delay on the destina-
tion machine during phase 5 of our approach. Figure 7 depicts
how the I/O-delay decreases as we increase the monitoring
time period. We represent the “post-copy” approach’s perfor-
mance with 0 monitoring time period. The largest reduction
occurs when the monitoring time period is set to 15 seconds.
For this specific period length, the single most—accessed VD-
segment scored above the migration threshold. This fact calls
for the transfer of the segment in question to the target PM
during phase 2. Therefore, the segment becomes available
immediately after the VM-handover. The small increase in I/O-
delay observed between 20 and 30 seconds (z-axis) is because
not all accessed segments are dispatched to the target and the
maximum delay for a few of those is high. As a result, a higher
average I/O—delay is recorded. As soon as the monitoring time
period nears and goes beyond the 70 seconds mark, all of

the segments in the working set of the worker—threads are
sent over during phase 2. This is the main reason why we
experience fairly stable I/O-delays at this range. The largest
decrease on I/O—delay is monitored on monitoring time period
55 and at that point, the difference between the “post-copy*
and our approach experiences 19% less 1/O—delay.

e LiveF'S memory requirements: LiveFS maintains a number
of in-memory structures. During the evaluation of the proto-
type, the maximum amount of memory that LiveFS consumed
has been noted to decrease as the segment size increases. In
fact, we monitored that when the VD segment used is greater
than 32MB, the memory consumption remains below 6KB.
However, we note here that the memory consumption of the
writeQueue depends entirely on the workload present. Further
analysis on this matter is avoided due to page limitations.

VI. RELATED WORK

Process migration can be considered as preceding work
to VM migration. A thorough survey can be found in [23].
Several approaches that employ the “stop-and-copy” paradigm
have been introduced in [1], [2], [3]. In those, a VM would be
suspended and its entire state would be moved to a destination
node. Finally, its operation would commence on the new
machine. Live migration of VMs is tackled in [4] where 3
distinct phases are introduced to help facilitate the efficient
movement of CPU state and main memory pages. Despite the
fact that downtime is greatly reduced, the total migration time
remains high. In [5], an alternative approach is presented where
only the CPU state is transferred before handover occurs. The
dynamic self-ballooning mechanism is suggested as the means
to deal with page faults and speed-up migration. The evolution
of live-storage techniques is presented in [7] and the problem
of remote disk migration is addressed. In our work, we attempt
to avoid lengthy delays especially when multi-GByte VDs
have to move in a shared-nothing environment. We accomplish
this by monitoring I/O traffic to VD segments and adaptively
handle recent modification of hot and cold segments. A lot of
research has been conducted in database live migration [24],
[25]. These approaches employ “pre-copy” migration methods
on multi-tenant database nodes experiencing high load.

VII. CONCLUSIONS

We address the problem of efficiently transporting not only
VMs but also their voluminous virtual disks (VDs) in an
IaaS share-nothing infrastructure. We present the design and
implementation of a novel and adaptive approach to VM Live
Migration. Its main objectives are to rapidly move “hot” VD-
segments across the network and enable rapid handover in the
new PMs when the need arises. PMs have their own physical
storage and run a VM hypervisor such as Xen. Our multi-phase
approach is facilitated by an instance of LiveFS at each node.
LiveFS is an abstraction layer between the hypervisor and the
underlying local filesystem and features a number of tunable
parameters that can help adapt the type of the migration (i.e.,
pre-/post-copy and/or strict/relaxed hot-segment consistency).
In this way, the needs of clients can be more effectively
addressed. Moreover, instances of LiveFS monitor I/O-traffic to
segments of the VD-under migration so that recently-accessed
segments can be shipped faster. Experimentation with our

prototype using a number of workloads has shown that our
approach can effectively complete the execution of VM live
migration by up to 64% faster than “pre-copy” migration
approaches. On workloads that present recurrent I/O-patterns,
our approach can reduce its I/O-delay by up to 19% if
compared with “post-copy” VM live-migration techniques.

Acknowledgements: this work has been partially supported
by the Sucre and iMarine EU FP7 ICT projects.

REFERENCES

[1] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and M. Rosenblum,
“Optimizing the Migration of Virtual Computers,” SIGOPS Oper. Syst. Rev., vol.
36, no. SI, pp. 377-390, Dec. 2002.

[2] M. Kozuch and M. Satyanarayanan, “Internet Suspend/Resume,” in Proc. of the
2002 Workshop on Mobile Computing Systems and Applications, Callicoon, NY,
June 2002, pp. 40-46.

[3] A. Whitaker, R.S. Cox, M. Shaw, and S.D. Grible, “Constructing Services with
Interposable Virtual Hardware,” in Proc. of the 1st USENIX Symp. on NSDI, San
Francisco, CA, 2004, pp. 1-14.

[4] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live Migration of Virtual Machines,” in Proc. of the 2nd USENIX
Symp. on NSDI, Boston, MA, 2005, pp. 273-286, USENIX Assoc.

[5] M.R. Hines, U. Deshpande, and K. Gopalan, “Post-copy Live Migration of Virtual
Machines,” ACM SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 14-26, July 2009.

[6] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual Machine
Live Migration in Clouds: A Performance Evaluation,” in Proc. of the st IEEE
Int. Conf. on Cloud Computing (CloudCom), Beijing, China, December 2009.

[71 A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The Design and Evolution
of Live Storage Migration in VMware ESX,” in Proc. of the 2011 USENIX ATC,
Portland, OR, 2011.

[8] OpenStack, “http://www.openstack.org,” May 2013.
[9] OpenNebula, “http://www.opennebula.org,” May 2013.
[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.L. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in Proc. of 19th
ACM SOSP Conf., Bolton Landing, NY, October 2003, pp. 164-177.

[11] Red Hat, “GlusterFS,” http://www.gluster.org/, May 2012.

[12] S.A. Weil, S.A. Brandt, EL. Miller, D.E. Long, and C. Maltzahn, “Ceph: A
Scalable, High-Performance Distributed File System,” in Proc. of OSDI Conf.,
Seattle, WA, Nov. 2006, pp. 307-320.

[13] K. Kunchithapadam, W. Zhang, A. Ganesh, and N. Mukherjee, “Oracle Database
Filesystem,” in Proc. of the ACM-SIGMOD Conf., Athens, Greece, June 2011.

[14] C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic Performance Tuning for the
Virtualized Cluster System,” in Proc. of the 29th IEEE ICDCS, Montreal, Canada,
June 2009.

[15] P. Pradeep, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem, “Adaptive Control of Virtualized Resources in Utility Computing
Environments,” in Proc. of the EuroSys Conf., Nuremberg, Germany, 2007, pp.
289-302.

[16] VMware, “VMware DRS - Dynamic Scheduling of System Resources,”
http://www.vmware.com/products/drs/overview.html, Oct. 2009.

[17] FUSE, “Filesystem in Userspace,” http:/fuse.sourceforge.net/, April 2013.

[18] M.D. Flouris, S.V. Anastasiadis, and A. Bilas, “Block-level Virtualization: How
Far Can We Go?,” in 2nd Int. Symp. on Global Data Interoperability: Challenges
& Technologies, Sardinia, Italy, June 2005.

[19] S.V. Anastasiadis, S. Gadde, and J.S. Chase, “Scale and Performance in Semantic
Storage Management of Data Grids,” Int. Journal on Digital Libraries, vol. 5,
no. 2, pp. 84-98, April 2005.

[20] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[21] R. Coker, “Bonnie++ file system benchmark,” URL: http://www.coker.com.au/
bonnie++/, May 2012.

[22] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N.
Sidebotham, and M.J. West, “Scale and Performance in a Distributed File System,”
Feb 1988, vol. 6, pp. 51-81.

[23] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, “Process
Migration,” ACM Comput. Surv., vol. 32, no. 3, pp. 241-299, Sept. 2000.

[24] S. Barker, Y. Chi, H.J. Moon, H. Hacigumus, and P. Shenoy, “’Cut Me Some
Slack™: Latency-Aware Live Migration for Databases,” in Proc. of the 15th Int.
Conf. on EDBT, Berlin, Germany, 2012, pp. 432-443.

[25] A.J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: Live Migration
in Shared Nothing Databases for Elastic Cloud Platforms,” in Proc. of the ACM
SIGMOD Conf., Athens, Greece, 2011, pp. 301-312.

