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Abstract

The emergence of applications producing continuous
high-frequency data streams has brought forth a large body
of research in the area of distributed stream processing. In
presence of high volumes of data, efforts have primarily
concentrated on providing approximate aggregate or top-k
type results. Scalable solutions for providing answers to
window join queries in distributed stream processing sys-
tems have received limited attention to date. We provide
a solution for the window join in a distributed stream pro-
cessing system which features reduced inter-node commu-
nications achieved through automatic throughput handling
based on resource availability. Our approach is based on
incrementally updated discrete Fourier transforms (DFTs).
Furthermore, we provide formulae for computing DFT com-
pression factors in order to achieve information reduction.
We perform WAN-based prototype experiments to ascertain
the viability and establish the effectiveness of our method.
Our experimental results reveal that our method scales in
terms of throughput and error rates, achieving sub-linear
message complexity in domains that exhibit a geographic
skew in the joining attributes.

1 Introduction
In many modern applications, data from continually-

emitting sources must be cross-referenced rendering the
window join an operation of paramount importance. Typ-
ically, such streams from geographically dispersed sources
must be cross-referenced at multiple locations in order to
answer various queries. For instance, data traffic analysis
for discovering and tracking malicious IP packets calls for
join queries on packets flowing across multiple nodes and
domains [25]. Very large sensor networks deployed for traf-
fic monitoring, tracking of commercial goods, and temper-
ature and humidity measurement for environmental moni-
toring pose similar requirements for joins [21]. In addition,
many financial applications seek to exploit arbitrage situa-
tions by responding in a timely manner to real-time bid/ask

offerings arriving from multiple high-frequency stock ex-
change streams. The efficient and accurate computation of
the window join involving such data originating from multi-
ple and highly dynamic streams is a challenging task. In this
paper, we provide answers to the distributed sliding window
join query [22]; here, the tuples of interest are only those
which have arrived within a pre-defined window. The width
of the window is defined in terms of either time duration,
number of tuples, or a landmark (i.e. until a specific tuple is
observed). Our approach is general, and is not affected by
the specific type of definition used. Thus, without loss of
generality, we assume that the window is measured in num-
ber of tuples. In the remainder of the paper, we refer to the
window join as simply the join.

Recent work on approximating queries in the context
of distributed streams has focused on aggregates which
are single-state operators [3, 6, 9, 26]. Joins are notably
more difficult to compute, especially in distributed envi-
ronments [23]. Our work builds on previous centralized
schemes [8] and, through different analytic techniques, ex-
tends them further to provide approximate materialized an-
swers for distributed join queries. The approximation of
window-join output has been analyzed in centralized en-
vironments, predominantly through sampling approaches
based on various tuple replacement policies [11, 12, 27, 30].
To the best of our knowledge no prior research efforts
have focused on the realization of join-queries in distributed
stream processing (DSP) systems.

The distributed nature of processing the streaming data
makes it problematic to compute joins as the latter require
inter-node communications of high complexity. Namely, in
a distributed system of N nodes, N − 1 data transmissions
per tuple are required in order to carry out the exact join
computation. Consequently, our goal is to provide mini-
mal inter-node communication when answering join queries
over distributed streams. The intuition of our approach is
that the frequency of intra-node messaging should be var-
ied adaptively between different nodes, depending on their
contribution to the final result set. To this end, our contribu-
tions include:
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• mechanisms for constant or logarithmic message com-
plexity for intra-node communications

• resource-dependent message complexity reduction in
skewed data distributions

• worst-case scenario detection under uniform data dis-
tributions

• compression factor thresholds for join result-set esti-
mation

Compared to a baseline scenario with (N − 1) communica-
tion cost, our method achieves:

1. sub-linear message complexity with respect to avail-
able dispersed resources

2. an ǫ-error vs. communication trade-off for window
joins in distributed environments

3. lossless DFT coefficient compression up to a factor of
256 provides reductions in communication costs.

We formalize the problem in Section 2 and describe our
architecture in Section 3. Section 4 gives background in-
formation on DFTs while justifying our choice for their
use. The models and heuristics for communication resource
management are described in Section 5. Our experimen-
tal results are presented and analyzed in Section 6. Related
work is discussed in Section 7 and concluding remarks are
made in Section 8.

2 Problem Definition
We provide a formal definition for the problem of ap-

proximately answering join queries over streams in a dis-
tributed environment. Figure 1 illustrates the distributed
framework in which the stream processing is accomplished.
We base our analysis and experimentation on the following

Figure 1. Framework for Distributed Stream
Processing (DSP).

definition of message complexity:

Definition I. Message complexity is the number of mes-
sages transmitted by a single node for each arriving tuple.

In Figure 1, streams R and S are distributed among N
processing nodes in such a manner that node Ni maintains
a segment Ri and Si of the entire window of each stream.
We wish to compute an approximate result of the window
join R 1 S, given a communication constraint. Assume
that the window size is W at each node in the system. With
N distributed sites participating in the computation, the ef-
fective window size is Ŵ = N × W . Each stream’s win-
dow can be perceived as being partitioned into N discrete
segments R1..N and S1..N . To evaluate the exact result of
R 1 S in the distributed case, N2 joins must be performed
between the partitions [23]: R 1 S = (R1 1 S1) ∪ (R1 1

S2)∪...∪(R1 1 SN )∪...∪(RN 1 SN ). In accord with Def-
inition I, this equates to a message complexity of (N − 1);
i.e. when a tuple arrives at one node it must be forwarded
to the remaining N − 1 nodes in order to provide the com-
plete result of the join. We propose a method for approx-
imate join estimation by bounding the number of joins in
the above equation in the range of O(N) to O(Nlog(N)).
We accomplish this by providing controls for adjusting the
message complexity in the range [O(1), O(log(N))].

Our approach is based on one fundamental principle: in
the above equation, each of the joins of R1..N with S1..N

may contribute a different number of tuples, depending on
the data and frequency distributions of the arriving tuples.
In centralized environments, approximation methods which
seek the goal of maximizing the result-set are classified as
MAX-subset [11]. Our method for approximating this final
result falls in this category, as it takes into account the cross-
correlation characteristics of the joining attributes in order
to restrict the joins to partitions which contribute the largest
number of tuples to the final result, In this regard, if the
materialized result set of the join is Ψ, we measure the error
ǫ as the percentage of tuples that were not reported in the
approximate result set Ψ̂:

ǫ =
(|Ψ| − |Ψ̂|)

|Ψ| (1)

Our goal is to minimize ǫ, while providing message com-
plexities within the bounds of O(1) to O(log(N)). Our
algorithm provides best-effort ǫ reduction depending on
resource availability. We provide analytical and empiri-
cal evidence of the algorithm’s superior performance under
skewed (Zipfian) data distributions of the joining attribute
and show a detection mechanism for the worst-case scenario
with uniform data distributions.

3 System Architecture
Our goal is to create a platform that can effectively

handle multi-stream join queries while exhibiting superior
performance under high-frequency streams in a distributed
platform (Figure 1). Here, a set of interconnected nodes
communicate in order to collaboratively answer window
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join queries on a set of data streams. The communica-
tions architecture is such that every node is able to converse
with every other node. This is different from previous re-
search which employs a central coordinator for query pro-
cessing [8].

For simplicity of the discussion, we assume that each
stream R and S is distributed across all N nodes in the
network and a join-query is disseminated to all networked
nodes which receive streams relevant to the query. We ana-
lyze both cases where the joining attribute distribution is (1)
uniform and (2) skewed across the nodes. For the remain-
der of the paper we refer to these two scenarios simply as
uniform and skewed data distributions.

We measure the flow f between two nodes as the number
of messages transmitted per arriving tuple. The straight-
forward implementation is not scalable since it requires the
transmittal of (N − 1) messages per tuple, or f = 1. The
net flow fNET at each node is (N − 1)× f and since there
are N nodes, the net flow in the entire system is F = N ×
(N − 1) × f ≈ O(N2). Therefore, the growth of the total
number of messages transmitted in the system is polynomial
with the number of nodes. In order for a distributed system
to provide for robust scalability this growth must be linear
with the number of nodes in the system.

Our improvement to the baseline system is to allow each
node to adapt its flow towards every other node in the sys-
tem so that each node’s net flow fNET is in the bounds
[1, log(N)]. A crude method is to limit f to 1/(N − 1).
However, this does not take into consideration tuple distri-
butions and, can result in very large ǫ (Eqn. 1). To reduce
the message complexity without dramatically increasing ǫ,
we identify nodes whose streams exhibit correlated charac-
teristics. Thus, we determine the flow factors for each node
pair individually as shown in Figure 2. For instance, two
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Figure 2. Three node system using restricted
DSP. Each directional communication is re-
stricted according to the statistical proper-
ties of the node’s relationship with the other
nodes.

nodes with very dissimilar streams will ultimately feature
very few joining tuples. In this situation, mutual knowledge
of the most up-to-date join operator state is not required for
the two nodes. In this paper, we quantify a similarity mea-
sure, defined subsequently in Equation 4, for two streams
and propose a technique to adaptively vary the rate of join
state synchronization between the distributed nodes. This
flow filtering is depicted in Figure 2 where the allowable
rate of flow is limited by the probability pi,j that a tuple
will be transmitted from node Ni to node Nj . The efficient
calculation of pi,j is detailed in Section 5.

4 Background on DFTs
We give a brief overview of discrete Fourier transforms

(DFTs) and justify our choice of DFTs for the proposed
solution of the problem at hand. DFTs map time-series
data into the frequency spectrum. Let us model the value
of the joining attribute as a random variable x. The dis-
crete Fourier transform of the random variable x is X(ω) =∑

∞

n=−∞
x[n]e−jnω, and for a finite data set of size W is

defined as:

X(ω) =

W∑

n=1

x[n]e−jnω (2)

Thus, the DFT can be expressed by the W coefficients pro-
duced from the summation. The original signal can be
reconstructed from the DFT coefficients using the inverse
DFT:

x[n] =
1

W

W∑

k=1

X(k)e
2πj

W
kn (3)

Data reduction can be achieved by discarding low-
energy coefficients of higher frequencies since they do not
contribute significantly in the reconstruction process. A
similar approach is shown to work well in [14], where time-
series data is represented by just a few coefficients for ad-
dressing the subsequence matching problem. In that re-
spect, DFTs can be viewed as means for efficient data com-
pression. We exploit this property to avoid transmitting en-
tire tuple sets.

In contrast, the more commonly used wavelets require all
n coefficients to fully reconstruct a signal [29]. One benefit
of wavelets is that they can be computed incrementally and,
in that respect, they are well suited for streaming data. How-
ever, in the case of DFTs, the advantages of transmitting
n/2 coefficients can be combined with incremental compu-
tation at the cost of a small approximation error on the or-
der of O(10−16) per coefficient [4]. Analytical methods for
determining an application-specific control vector for the
trade-off between computational cost and approximation er-
ror in the DFT coefficients are presented in [28]. Based on
[28], we set the control vector such that the arithmetic com-
plexity is reduced by a factor of 10 with a probability for
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completion of the DFT approximation greater than 0.95. In
our empirical evaluation, computing DFTs did not represent
a significant portion of the CPU utilization for windows of
size up to 1,000,000 tuples. We compare the CPU cost of
computing DFTs, incremental DFTs and AGMS1 sketches
[1], which are commonly used for join-size estimation. The
average over 100 experiments of the times taken to com-
pute the DFT, incremental DFT and AGMS sketches are
reported in Table 1, where we can observe that the per-
formance of the incremental DFT algorithm is comparable
to that of AGMS sketches relative to the DFT algorithm.
Therefore we believe that DFTs are viable means to com-
pute approximate joins in a distributed stream processing
system.

W DFT iDFT AGMS
80,000 9 <1 <1

250,000 34 3.20 2.10
500,000 70 7.40 5.60

1,000,000 149 18.10 12.70

Table 1. CPU time in seconds to compute
DFTs, incremental DFTs (iDFT), and AGMS
sketches on a 400MHz UltraSPARC CPU. The
updates are performed incrementally per tu-
ple over a stream of 100,000,000 tuples.

Since the DFT is essentially a compressed representation
of the original data, remote nodes can use this information
to compute statistics of data which is not present locally. We
use these statistics to create an efficient filtering mechanism
for targeting tuples only to those nodes which can contribute
the most results in the join query.

5 Algorithms
5.1 The Baseline Case

Our baseline model for performance comparison is the
simple case when N nodes transmit N −1 messages for ev-
ery tuple received. This provides complete results for joins,
at a rather excessive cost of message complexity. Such costs
are prohibitive in distributed environments where scalabil-
ity is important. Even in networks with high-speed connec-
tions, such as clusters of workstations or blade servers, the
computing resources cannot cope with applications that re-
quire the processing of very high frequency streams. There-
fore, we propose methods that yield approximate answers in
sub-linear message complexity.

5.2 Reducing Message Complexity
Let us assume that a new tuple arrives at node i via

stream R. Node i runs the following algorithm: for each

1AGMS is an acronym of the last names of the authors of [1].

of the remaining N − 1 nodes in the system, transmit the
tuple to node j with probability {pi,j|i 6= j}, as shown in
Figure 2. We use a weighted factor model to adjust the prob-
abilities for the desired message complexity bounds:

wi × pi,j = wi × ρi,j = wi ×
σi,j√
σiσj

(4)

where ρi,j is the cross-correlation coefficient and wi is the
weighing factor for node i. In the above equation, ρi,j is
expressed in terms of the cross-correlation σi,j and the in-
dividual auto-covariances σi and σj of the set of tuples at
nodes i and j, respectively [24]. The cross-correlation co-
efficient ρi,j quantifies the similarity between stream seg-
ments at the two nodes. If two joining streams have high se-
lectivity they are statistically similar and exhibit high cross-
correlation, therefore having a high cross-correlation coef-
ficient. We explain how wi is computed in Section 5.2.2.

In order for node i to compute pi,j , it first calculates the
cross-correlation σi,j . To accomplish this, we first model
the joining attributes of two streams at nodes i and j on
which the join is performed as two discrete random vari-
ables x[n] and y[m] respectively. Therefore, the cross-
correlation σi,j can be expressed probabilistically in terms
of the expected value of the random variables as:

σi,j = Rxy(n, m) = E{x[n]y∗[m]} (5)

where y∗[m] is the complex conjugate of y[m]. Notice how-
ever, that in order for node i to compute σi,j , it must at-
tain knowledge of the tuples y[m] at the remote node j. To
avoid this, we compute RXY from the individual DFTs of
the two streams. This is possible since the DFT is a linear
transformation of the input data [24]. If the DFTs of the
random variables x and y are X and Y , respectively, the
cross-correlation of the DFTs can be expressed as:

RXY (u, v) = E{X(u)Y ∗(v)} (6)

By substituting Equation 2 into Equation 6 and redistribut-
ing the terms we obtain:

RXY (u, v) =
W

X

n=1

e
jn(v−u) ×

W
X

m=1

E{x[n + m]y∗[n]}e−jmu

(7)
Using Equation 5, Equation 7 becomes:

RXY (u, v) =

W
X

n=1

e
jn(v−u) ×

W
X

m=1

Rxy[n + m,m]e−jmu (8)

We can see that the DFT cross-correlation RXY (u, v) is a
linear function of the original data set’s cross-correlation
Rxy. Through the linearity property of the DFT, it is obvi-
ous that the cross-correlation σi,j = Rxy of the two random
variables can be computed from their DFT cross-correlation
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RXY . In a similar fashion, the auto-covariances σi and σj

can be computed from the respective DFTs of the joining
attributes of nodes i and j. For brevity, we omit the de-
tails. Armed with σi,j , σi and σj , we can compute the cross
correlation coefficient ρi,j as defined in Equation 4.

5.2.1 Reducing the Overhead of Calculating DFTs
In practice, the summation

∑W

m=1 Rxy[n + m, m]e−jmu

in Equation 8 is known as the power spectrum Sxy(u) of
two strict sense stationary random variables [24]. Further-
more, if we rewrite

∑W

n=1 ejn(v−u) as 2πδ(u−v) with δ(u)

= 1
2π

∑W

n=1 e−jnu we obtain the simplified version of the
DFT cross-correlation RXY (u, v) = 2πδ(u − v)Sxy(u).
For a DFT of W coefficients, the power spectrum Sxy(u)
can be estimated using fast Fourier transform (FFT) meth-
ods in O(W ) time [7, 19]. As detailed in Section 4, the
DFT coefficients are computed incrementally in constant
time complexity for each newly arrived tuple. At regular
intervals, as specified by the control vector introduced in
Section 4, the DFT is completely recalculated.

5.2.2 Establishing Bounds on Message Complexity
As previously described in Figure 2, node i transmits a tuple
to node j with probability pi,j . Therefore, for every newly
arriving tuple the expected number of messages transmit-
ted by node i is Ti =

∑N−1
j=1 pi,j . To achieve our goal

as set in Section 2, for every node i, we must constrain Ti

to the range [O(1), O(log(N)). To accomplish this we ad-
just Ti individually at each node by introducing the previ-
ously discussed weighting factor wi. This is necessary be-
cause the probabilities pi,j are derived from the correlation
metric and are not controlled variables. Thus, Ti becomes
Ti = wi ×

∑N−1
j=1 pi,j , such that the following inequality

holds:

1 ≤ wi ×
N−1∑

j=1

pi,j ≤ log(N) (9)

Theorem 1. For Ti = 1 (i ∈ [1..N ]), under uniform data
distribution, the upper bound on the error ǫ is (1 − 2

N
).

Proof. Because each tuple has an equal probability of join-
ing with the same number of tuples at any node, the ex-
pected contribution of each node is equal, say ω. The size
of the complete result-set is therefore |Ψ| = ωN . The ac-
tual result set consists of the ω tuples produced from joining
the two streams at the local node, and ω tuples from the join
with the stream at the one remote site to which the tuple was
sent. Therefore, the reported number of tuples is |Ψ̂| = 2ω
and using Equation 1, we get ǫ = ωN−2ω

ωN
.

A uniformly distributed set of joining attributes is the
worst case scenario since a tuple is sent to only one out of
N − 1 sites that contain 1/N of the joining tuples. This
means that ǫ is unbounded and will grow with N . This is

the worst case scenario for any distributed join algorithm.
Fortunately, nodes in our system independently detect this
case by observing the variance of pi,j for each neighbor j. A
very small variance in the filter probabilities indicates equal
correlation with all neighbors. Unfortunately, the only so-
lution in this worst case scenario is to revert to a heuristics
based method, such as round-robin, for directing tuples to
neighbor nodes.

Theorem 2. For Ti = log(N), under uniform data distri-
bution, the error bound is (1 − 1+log(N)

N
).

The proof is along the same lines as in Theorem 1 and we
omit it for brevity. Figures 3 (a) and (b) display the analyt-
ical error bounds and message complexities under uniform
data distribution as defined in Theorems 1 and 2. Although
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Figure 3. Message complexity and error
bounds for our theoretical limits with uniform
data distribution (worst case).

the error rate ǫ in Figure 3 (a) grows quickly with the num-
ber of nodes for both Ti = 1 and Ti = log(N), in Figure
3 (b) we can see a three-fold reduction in the number of
messages transmitted with Ti = log(N). As previously ex-
plained, this is the worst case scenario and the error rates
may be unacceptable for systems composed of large num-
bers of nodes. Our algorithm detects such a situation and
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provides for a fall-back tuple distribution policy such as
round robin.

The true benefit of our approach is revealed when the
tuple distribution is non-uniform across the sites. This is
commonly accepted as the case for real-world applications
[13, 23, 24]. Under such distributions, assuming statisti-
cal significance of the correlation coefficients, the tuples
are transmitted to sites that are more likely to produce the
largest number of joining tuples.

Theorem 3. Under Zipfian data distribution with skew
α the error bounds for message complexities O(1) and
O(log(N)) are 1.0 −

∑2
i=1 αi/N and 1.0 − (α −

αlog(N)+1)/(1 − α), respectively.

These limits can be observed in Figure 4 for a distributed
system composed of up to 20 sites. The significance of this
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Figure 4. Error bounds for our theoretical lim-
its with Zipfian data distribution (α = 0.4).

observation is that, unlike in the case of uniform distribu-
tion, with O(log(N)) message complexity ǫ can asymptot-
ically approach zero as the number of participating nodes
increases.

In summary, we have shown that individual nodes can
efficiently and incrementally calculate DFTs of their stream
segments. Once the initial DFTs are computed, each node
sends its DFT coefficients to all sites that maintain segments
of the joining streams. Consequently, each site uses its DFT
and the remote site’s DFT to compute the probabilities pi,j .
Thus, each node takes a probabilistic approach in determin-
ing how to distribute tuples to the remaining nodes.

5.3 Tuple Matching using DFTs
The second benefit that DFTs give us is the ability to

reconstruct the original data set from the DFT coefficients
as per Eqn. 3. By reconstructing a remote node’s joining
attributes, a node can test its tuples for membership in the
remote data set. The only information exchanged is a set of
W/κ DFT coefficients, where κ is the compression factor.
We will further refer to this method as DFTT.

The process of calculating the inverse DFT from a set
of coefficients produces results of decimal nature due to di-
vision and exponentiation operators. These values are ap-
proximations of the initial data set and are mapped to the
discrete integer space. Therefore, we round off the output
of the inverse DFT formula to generate the final approxi-
mated set. If the results from the inverse DFT deviate from
the correct values by no more than 0.5, no information loss
is accrued due to the round off and we can completely re-
produce the initial attribute set. The amount of deviation, or
error, can be controlled by tuning the number of coefficients
used to represent the initial data set. For the remainder of
this section we concentrate our discussion on how to ad-
dress this trade-off and provide formulae for estimating a
value for κ which maximizes compression for a given range
of allowable error.

The above is not a straight-forward task as the allow-
able error in the coefficients is dependent on the data dis-
tribution. If the data distribution P is known a-priori, it is
possible to use an estimation model to derive the correct
compression factor necessary to provide an upper bound on
the estimation error. Below, x̂ is the estimate of the joining
attributes reconstructed from the W/κ DFT coefficients, us-
ing the inverse DFT formula:

x̂[n] =
κ

W

W∑

k=1

βW
κ

(k)X̂(k)e
2πj
W

kn (10)

where X̂ is the DFT of the remote stream, approximated
from W/κ coefficient, and βW

κ
(k) is a binary function that

equals to 1 for k < W
κ

and to 0 otherwise. The mean square
error (MSE) of x̂[n] is

MSE = E[(x[n]−x̂[n])2] =
∑

n

(x[n]−x̂[n])2P (n) (11)

Substituting x and x̂ with their corresponding DFTs and
combining the terms, Equation 11 becomes:

MSE =
X

n

"

1

W

W
X

k=1

“

X(k)− κβ W
κ

(k)X̂(k)
”

e
2πj
W

kn

#2

P (n)

(12)
where the difference inside the square brackets represents
the residual W (1 − 1

κ
) DFT coefficients.

In Figure 5 we show the absolute values (i.e. not per-
centage) of the square errors for each join attribute value
reconstructed from one of our sample stock data streams
from W/1024, W/256, and W/64 coefficients. Since we
represent the stream attribute values by a set of integers, it
suffices to err in our DFT reconstruction by less than 0.5.
This means that the expected value of the mean square er-
ror must be less than 0.25 (i.e. E[MSE ] < 0.25) in order
to losslessly reproduce the original values [24]. From Fig-
ure 5, we can see that when we use 1/256’th of the orig-
inal dataset’s DFT coefficients we introduce marginal loss
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of information. In Figure 6 we plot the mean and one stan-
dard deviation (y-error bars) of the mean square error for a
range of compression factors. The horizontal line is drawn
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at y = 0.25. For κ = 256 the expected mean square error
is below this line with the y-error bar extending to a 20%
probability for errors. This corresponds to Figure 5 (mid-
dle) where 80% of the MSEs are below 0.25. In practice,
this means that the transmittal of 1,000,000

256 = 3, 906 coef-
ficients will allow us to accurately estimate 800,000 of the
original join attribute values. We believe that this trade-off
justifies the use of DFTs for remote join attribute value re-

construction.
Our modified algorithm, termed DFTT, not only extracts

a correlation coefficient for the two streams, but also recre-
ates an approximation of the remote set of joining attributes.
This set is used to test the local window for joins. Matching
tuples must still be transmitted over the network in order to
provide the complete result but this final step is necessary
in any distributed system. The steps of the algorithm are
depicted in Figure 7. First, we incrementally calculate the

PROCESSTUPLE(TUPLE τ , DFT myDFT ,
DFT DFT0..N−1 , FLOWFACTORS f0..N−1 )

1: newDFT ← IncrementalUpdate(myDFT , τ )
2: newCoef ← ExtractCoeff(myDFT , newDFT )
3: myDFT ← newDFT

4: for i = 0 to N − 1 do
5: PiggyBackDFTChanges(i, newCoef )
6: joinAttributesi ← InverseDFT(DFTi)
7: if JoinEstimate(τ , joinAttributesi) then
8: SendTuple(τ , Ni)
9: else if ChooseSite(newDFT , DFTi, fi) then

10: SendTuple(τ , Ni)

Figure 7. Tuple processing DFTT algorithm.

new DFT coefficients and extract those that have changed
since the last calculation (lines 1 and 2). These changes are
piggy-backed onto tuple messages transmitted to each site
in the system (line 5). If a tuple message was not sent to
some site for a long period, the batch of updates are trans-
mitted on their own. This period is dynamically determined
as a multiple of the current rate of tuple arrivals. Lines 6-8
distinguish the DFTT algorithm from the DFT algorithm.
The inverse DFT in line 6 is obtained from a lookup table
of the current inverse DFTs of each site. This lookup table
is updated as new coefficients arrive from other sites. The
JoinEstimate() function in line 7 is responsible for allow-
ing tuples to be forwarded only to those sites which pro-
duce the largest number of estimated joins as inferred from
the inverse DFTs. The core of the probabilistic calculation
based on the current set of weighted correlation coefficients
is performed in line 9 with the function ChooseSite(), as per
Equation 4. Thus, lines 9 and 10 are common to both the
DFT and DFTT algorithm. For brevity, the algorithm does
not display the case when a low variance in the flow factors
f0..N−1 is detected, which would trigger alternate distribu-
tion policies to handle this worst-case scenario.

6 Experiments
To evaluate empirically the performance of the proposed

algorithms, we developed a working prototype of a DSP
system in C++. We simulated a wide-area network (WAN)
environment on a cluster of twenty Sun workstations in-
terconnected through a 100 Mbps Ethernet network. To
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simulate geographically distributed nodes, a latency of 20-
100 milli-seconds was artificially imposed on each mes-
sage transmitted, and a 90 kbps bandwidth was emulated
by pausing every 90 kilobits transmitted for one second.
Each workstation runs on a 400MHz UltraSPARC CPU
with 128MB of main memory.

We explore two variations of our algorithm: DFT only
performs flow filtering based on the DFT correlation co-
efficients, while DFTT also reconstructs tuples from the
compressed coefficients. We compare the performance of
these algorithms to those using different summarization
techniques (BLOOM, SKCH) as detailed below and to the
naive approach (BASE), which gives complete results. As
a main indication for scalability and performance, we fo-
cus on three metrics: ǫ-error = percentage of tuples not re-
ported in the join result; messages per result tuple = the
total number of messages transmitted for each result tuple;
throughput = number of tuples processed per second. The
transmission of DFT coefficients is implicitly accounted for
since the coefficients are piggy-backed onto regular mes-
sages. In size, the overhead of DFT coefficients constituted
between 1.38 and 2.84% of the net data transmitted. Figure
8 shows how this ratio changed with the number of nodes in
the system while running the DFT algorithm with Zipfian
data distribution. The relative size of the DFT coefficient
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Figure 8. DFT coefficient updates as a per-
centage of the size of the net data transmitted
(κ = 256).

updates compared to the net amount of data transmitted de-
creases with increasing number of nodes, we postulate that
this overhead does not affect the scalability of the system.

We compare the performance of our algorithm with
two algorithms which use set membership approximation
(BLOOM) [5] and join-size approximation (SKCH) [1]. In
BLOOM, a counting Bloom filter is constructed at each site.
The Bloom filter is transmitted to remote sites where arriv-
ing tuples are tested for membership against the filter. The
flow factors are determined from the number of positive fil-
ter hits that tuples generate. Another approach is to use ran-
domized sketches to estimate the size of the joins between
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Figure 9. Number of messages per tuple with
uniform (top) and Zipfian (bottom) data distri-
bution.

different stream partitions. We use this estimate to weight
the flow factors so that a tuple is more likely to be transmit-
ted to those nodes which produce the most join results. We
use the Sketches Library [20] for implementation of count-
ing Bloom filters and AGMS sketches. For FFT calcula-
tions, we used a modified version of the FFTW library [15].
For all experiments, we adjust the size of the Bloom filters,
sketches and DFT coefficients to be the same. For sketches,
we preserve a 5:1 ratio between s0 and s1, for the chosen
value of the sketch size s.

We used two types of data, synthetically generated and
real-world data. The synthetic data consisted of 10,000,000
integers generated in the range [1 : 219] according to two
distributions: (1) UNI - uniform distribution, and (2) ZIPF -
Zipfian distribution with parameter α = 0.4. The two real-
world data sets consist of (a) 1,800,000 traces of financial
data including buy/sell trades (FIN) and (b) 2,200,000 net-
work packet traces (NWRK) accumulated in a day 2. Un-
less otherwise noted, for brevity, we display only the results
of the real-data workloads, which were very similar to the
Zipfian-distribution synthetic data sets with α = 0.4.

In Figure 9 we show the number of messages transmit-
ted per matching join tuple in the entire system with fixed
error rate ǫ = 15%. This plot reveals how efficient each
of the algorithms is. Under uniformly distributed data, all

2http://cs-people.bu.edu/jching/icde06/

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00  © 2007



 0

 10

 20

 30

 40

 50

 2  4  8  16  32  64  128  256  512  1024

%
 N

on
-r

ep
or

te
d 

tu
pl

es

Compression factor m

N = 10 nodes

BLOOM
DFT

SKCH
DFTT

(a)

 0

 10

 20

 30

 40

 50

 2  4  6  8  10  12  14  16  18  20

E
rr

or
 R

at
e 

(%
)

Number of Nodes

m = 256

BLOOM
DFT

SKCH
DFTT

(b)

Figure 10. Evaluation of compression factor,
error rate and throughput under Zipfian data
distribution.

algorithms perform similarly, which agrees with our anal-
ysis. The obvious discrepancies occur when the data is
skewed. We can see that, due to DFTT’s ability to determine
locally whether remote tuples join, much fewer messages
are transmitted per tuple. DFT lacks this ability and per-
forms worse than BLOOM and SKCH. Similarly, BLOOM
has the advantage of testing tuples for membership in the
remote stream locally and, therefore, incurs less messages
than SKCH. DFTT is 1.6 to 2 times more efficient in tuple
transmittal than any of its counterparts.

Next we analyze how the system performs under dif-
ferent compression factors κ. For the purpose, we fixed
the window size at W = 524, 288 = 219 and varied κ
from 2 to 1024, resulting in summaries of sizes in the range
[512 : 262144]. We can see in Figure 10 (a) that DFTT
scales the best, while BLOOM performs the worst. SKCH
performs similarly to DFTT but its error rate increases ex-
ponentially for smaller sketch sizes. Overall, with DFTT it
is possible to obtain consistent error rates of 15% with only
4,096 DFT coefficients, which is 1.6 to 2.6 times better than
any of the other algorithms.

To account for scalability in terms of expanding number
of nodes, we fixed the compression factor at 256 and mon-
itored the error rate as we increased the number of nodes
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Figure 11. Throughput performance

from 2 to 20. The results are shown in Figure 10 (b). All
four algorithms performed well for fewer than 15 nodes,
with DFTT maintaining a 15% error as compared to 20-
28% for the other algorithms. We can further see from Fig-
ure 10 (b) that beyond 15 nodes, again DFTT’s rate of error
increase was the slowest, performing 1.6 to 2.4 times better
than the other algorithms.

We measured throughput as the number of joining tuples
reported per second with ǫ fixed at 15%. The results are
shown in Figure 11. With the efficiency of the DFTT algo-
rithm, it is not surprising that it provides the best throughput
of up to 3500 tuples per second. With the other algorithms,
the large number of messages necessary to maintain this er-
ror rate contend for bandwidth with the actual result tuple
messages. In the case of the BASE algorithm, the (N − 1)
message complexity renders it ineffective in such an envi-
ronment where scalability is important. It is worth indicat-
ing that only the DFTT algorithm is able to continuously
sustain low error rates, while exhibiting throughput charac-
teristics which outperform all other algorithms. We postu-
late that this is due to the provision for both mathematical
stream correlation expression and set representation inher-
ent in the discrete Fourier transform. Overall, our DFTT
algorithm is able to maintain the lowest error rates while
transmitting the least number of messages. This makes it a
viable tool for performing approximate joins in a distributed
system.

7 Related Work
Computing aggregates on a number of distributed

streams using the idea of sliding windows appeared in [17].
A centralized method for approximate set cardinality esti-
mation of distributed streams is proposed in [10]. Algo-
rithms for top-k monitoring of streams that are transported
data volume conscious in a distributed environment are ex-
amined in [2]. A distributed approach for computing holis-
tic aggregates is discussed in [9]. Extensions for support
of join and multi-join aggregates (COUNT) are presented
in [8]. The use of randomized sketches in [8] is similar to
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our approach in the sense that, just like DFT coefficients,
sketches provide concise frequency representation of the
data set. However, the sketches in [8] are transmitted to a
central site responsible for tracking the aggregate queries.
In [18], a rudimentary approach is taken by partitioning
one of two streams among the processing nodes, whereas
the other stream is replicated to all nodes. Previously, ap-
proaches based on precomputed relation synopses have only
been explored in the context of OLAP queries [16]. Our
approach has two main characteristics which differentiate
it from previous research: it is completely distributed and
does not rely on any central coordinators, and it is based on
inexpensive incremental DFT calculations.

8 Conclusions
We propose an approach which exploits the combina-

tion of correlation characteristics of distributed streams and
compressed tuple-attribute representation to provide best-
effort error estimates under a pool of geographically dis-
tributed nodes. Our approach is based on discrete Fourier
transforms and provides a clean trade-off for message com-
plexity versus approximation error in the size of the output,
while scaling linearly with the addition of resources to the
cluster. We verify our hypotheses by experimenting with
a C++-based prototype system functioning in a cluster of
twenty SUN-workstations.
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