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Abstract. Ongoing worldwide environmental issues along with often-
voiced consumer concerns have paved the way so that governments leg-
islate and help usher into operation alternative-fueled vehicles and per-
tinent infrastructures. In this regard, battery-powered electric vehicles
have been introduced in the last decade and the service industry has
been deploying such trucks in their distribution networks. However, elec-
tric vehicles do impose limitations as far as their traveling range is con-
cerned. Moreover, replenishing the power to the vehicle batteries may
entail lengthy charging visits at respective stations. In this paper, we
examine the problem of routing and scheduling a fleet of electric vehicles
that seek to satisfy dynamic pickup and delivery requests in an urban
environment. We develop a web application to facilitate cooperation be-
tween organizations and individuals involved in urban freight transport.
Geolocation services and mobile devices enable us to manage the fleet
and make timely decisions. Moreover, we propose three heuristic-based
recharging strategies to ensure that electric vehicles can restore their
energy levels in an effective manner. Through detailed simulation exper-
iments, we show that the costs associated with the use of an electric
vehicle fleet concern mainly the size of the fleet. The impact regarding
the total route length traveled is less evident for all our strategies.
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1 Introduction

The always–timely concern for the impact that transportation and logistics have
on the environment, has played a pivotal role in shifting the attention of govern-
ments, commercial actors as well as consumers to practices collectively known as
green logistics. The aim of green logistics is to not only consider economic factors,
but also environmental and social aspects so that communities can progressively
attain production and distribution of goods in a sustainable way [28]. It has been
also established that the cost for achieving noteworthy reductions in greenhouse
effects is by and large modest, especially if such costs are amortized over time [7].
As central and regional governments enforce adopted environmental regulations
and citizens call for the embrace of innovative means for transporting goods,
companies and organizations have been responding by becoming early adopters



of novel green practices [17]. Among all those involved, companies whose main
line of business is in transportation and logistics have respectively shown great
interest and have considered the wide-spread use of Electric Vehicles (EVs) to
comply with environmental state legislation and pertinent city ordinances. As a
matter of fact, a number of companies in the small-package shipping industry
including DHL, DPD and UPS, have been reportedly using electric vehicles for
last-mile delivery for some time already [16].

Logistics companies do face numerous challenges when it comes to fulfill-
ing their distribution tasks and attempting to meet deadlines. Studies indicate
that freight vehicles represent no more than 15% of total traffic flow in urban
areas [1], but due to their size and frequent stops for deliveries have a more sig-
nificant green-house impact than passenger vehicles. Moreover, diesel-powered
freight vehicles generate emissions that are very harmful to people. The total car-
bon dioxide emitted by all forms of transport in London in 2006 was 9.6 tonnes,
of which an impressive 23% was produced by freight vehicles alone [2]. The signif-
icant threat to public health and safety as well as the negative impact that such
emissions have on climate change could be addressed by using vehicles running
on alternative fuel. A further step would be to ideally cut down on the number
of vehicles traveling about urban areas by possibly increasing the refueling rate
of trucks already set in motion. Moreover, traffic congestion, air pollution and
unnecessary costs could all be reduced by minimizing the total mileage needed
to carry out by the fleet of the vehicles involved in the distribution roster.

The numerous and diverse aspects and tasks entailed in the transportation
and distribution of goods are typically modeled using one of the many gener-
alizations of the classic NP-hard vehicle routing problem (VRP) [6]. The main
concern here is to achieve minimization of the total costs incurred during the
transportation. A well studied flavor of the VRP is the Dynamic Pickup and
Delivery Problem with Time Windows (PDPTW) [24]. Advances in Intelligent
Transportation Systems (ITSs) including geolocation and object-tracking have
enabled the use of techniques to address the PDPTW problem in real-world
operational settings. This has been the case with companies offering same-day
pickup and delivery of letters and parcels. As devices and tools become amply
available with the introduction of the Internet of Things, the applicability of
the PDPTW-problem is on the rise. Among the applications that seize such op-
portunities for commercial success, UberPool [32] is likely the most prominent
example as it manages a fleet of vehicles serving simultaneously multiple requests
for pickups and deliveries of passengers.

Previous approaches on the Dynamic PDPTW ([24,25,9,26,21,20,3]) predom-
inantly focus on conventional vehicles and do not address the issue of scheduling
refueling stops, as the corresponding time needed is negligible. However, electric
vehicles (EVs) offer limited range which, at the moment, is not sufficient for
the typical delivery tours of logistics and transportation service providers [29].
Consequently, EVs used in such context will require to visit recharging stations
along their route(s) to replenish their power supply. We should point out that the
recharging times needed by EVs might be fairly significant, if compared to that



Fig. 1. Pickup (green) and delivery (red) requests serviced through a fleet of electric
vehicles (orange). Recharging stations (blue) allow vehicles to restore their energy levels
but cost in terms of time and route length. The objective is to assign the requests to
vehicles in an effort to minimize the size of the fleet and the route length.

of conventional vehicles. The use of a fleet of EVs does evidently add another
dimension to the PDPTW problem, by incorporating the possibility of stopping
for a recharge using an appropriate policy. This is evident in Figure 1, which
illustrates three client requests (pickups and deliveries) and four recharging sta-
tions. If conventional vehicles were used, the problem of routing and scheduling
these requests would be to involve the minimum amount of vehicles and assign
the requests to those that minimize the total route length. With the appear-
ance of EVs and their inherent refueling issues, the logistics problem at hand
is certainly more complicated as we now have to cater for lengthier refueling
stops. Gonçalves et al. [14] approached the issue at hand by considering a mixed
fleet of conventional and electric vehicles. However, their model does not con-
sider specific locations for the recharging stations. Instead, recharges are possible
anywhere, which might not be the case for quite a while into the future.

In this paper, we develop a framework for the effective coordination and
monitoring of the parties involved in urban distribution using electric vehicles.
We consider a fleet of EVs equipped with GNSS receivers that satisfies real-
time customer requests submitted through a REST API. Recharging stations
are positioned in specific locations and EVs may visit them while executing
their schedules to perform needed power refueling. Recharging times depend
on the charging level of vehicles. Furthermore, we formally introduce the Elec-
tric Vehicle Dynamic Pickup and Delivery Problem with Time Windows and
Recharging Stations (EV-DPDPTW) and develop an on-line algorithm to find



approximate solutions. We adopt the rolling horizon principle and the drive first
waiting strategy respectively described in [24] and [21], to address the schedul-
ing and routing of client requests. In addition, we propose three heuristic-based
strategies that help address the problem of recharging as currently experienced
by EVs and examine both their pros and cons. The Eager Recharging strat-
egy exploits every opportunity of performing a recharge by visiting all stations
that are close to client requests, regardless of the vehicle’s energy level. The
Lazy Recharging strategy awaits until the battery of each vehicle is close to
exhaustion before scheduling a visit to a recharging station. Finally, our pro-
posed Smart Recharging technique offers a hybrid of the two prior approaches
as it schedules visits to nearby recharging stations before battery exhaustion,
provided that the energy level is below a preset level. We show that the new
dimension of the examined EV-DPDPTW problem, i.e., the need for lengthy
returns to refueling spots, plays a significant role and affects the fleet size re-
gardless of the strategy followed. Through experimentation, we also show that
the Smart Recharging strategy does indeed benefit from the advantages of the
Eager and Lazy Recharging strategies, and outperforms them with regards to
both the fleet size and the route length. Finally, we present results regarding
the average energy level at which each strategy schedules visits to recharging
stations, a choice that has an impact on the lifespan of a vehicle’s battery.

The rest of this paper is organized as follows: Section 2 provides definitions
for the PDPTW problems and requisite notions that are helpful in describing
our approach; the section also offers some background information helpful to
better understand the issues arising from the introduction of the EV fleet. Sec-
tion 3 outlines the architecure of our approach and details our proposed three
strategies. We then present our simulation-derived results in Section 4. Finally,
we review related work and offer concluding remarks and directions for future
work in Sections 5 and 6 respectively.

2 Preliminaries

In this section, we review some basic definitions that are helpful in introducing
our approach and briefly outline technology aspects related to the deployment
of EV fleets. In particular, we place emphasis on vehicles based on batteries.

2.1 The Pickup and Delivery Problem with Time-Windows

We commence by formally outlining the Static and Dynamic versions of the
PDPTW problem and by furnishing key aspects as defined in [20,21].

The Static PDPTW Let P+ = {1+, 2+, ..., n+} be a set of pickup loca-
tions, and P− = {1−, 2−, ..., n−} a set of corresponding delivery locations. Pairs
(i+, i−), where i+ ∈ P+ and i− ∈ P−, represent transportation requests for
performing a pickup at location i+ and the associated delivery at location i−.
We denote by dij the distance from location i to location j, by tij the travel time



from i to j, by si the service time at location i, and by [ai, bi] the time window
of a pickup or delivery request i.

The Pickup and Delivery Problem with Time-Windows is about determining
a set of optimal routes and corresponding schedules for a fleet of vehicles in order
to serve these transportation requests with respect to the following constraints:

1. Each route starts at the corresponding vehicle’s embarking position.
2. A pickup and its associated delivery are satisfied by the same vehicle.
3. A pickup is always made before its associated delivery.
4. All time windows are satisfied.
5. A vehicle is allowed to wait at its embarking position or at any pickup or

delivery location.
6. The total distance traveled by vehicles is minimized.

A solution to the PDPTW determines an ordered sequence of locations for each
vehicle route (routing) and the arrival and departure times for all locations of
each route (scheduling). The PDPTW reduces to the Multiple Traveling Sales-
man Problem with Time Windows when the pickup and delivery locations of
every request coincide. The PDPTW is NP-hard, and deciding whether there
exists a feasible solution when the number of vehicles is fixed is NP-complete in
the strong sense [27].

The Dynamic PDPTW The Dynamic version of the PDPTW drops the
assumption that all information is available at the time of planning. Instead,
in the Dynamic PDPTW the problem is to allocate the requests in question to
vehicles in an online fashion. This setting is much more applicable in real-life
situations, where requests are expected to be made dynamically and a priori
planning of operations is not feasible. The real-time allocation of customers
to vehicles yields an array of additional issues when it comes to scheduling;
choices selected by online algorithmic techniques may lead to a total distance
that is larger than the one traveled should all requisite information were known
in advance. Fortunately, heuristic-based approaches are known to offer good
approximate solutions to the Dynamic PDPTW problem [21,20].

2.2 EVs and Battery Developments

EVs are divided into three main types: Battery Electric Vehicles (BEVs), (Plug-
in) Hybrid Electric Vehicles (PHEVs, HEVs), and Fuel Cell Electric Vehicles
(FCEVs). The cost of FCEVs is considered prohibitive at this moment [22].
In this paper, we concentrate on BEVs which display two favorable features:
they do not produce any emissions themselves and cause limited noise while in
operation; both of these features are due to the fact that such vehicles base their
motion and overall function entirely on batteries. These advantages have led to
strong government support on the development of BEV technology, which in
turn is advancing at an unprecedented pace.
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Fig. 2. Architecture of our approach.

The development of commercially viable battery technology has played a
major role in the widespread use of EVs. Although battery energy densities are
expected to triple by 2030 [8], contemporary batteries are far more inferior if
compared to gasoline [15]. This results in noticeably long replenishing times for
car batteries and a relatively low driving range [23]. The preferred option for
BEVs is lithium-ion batteries, as their energy and power density as well as their
battery lifespan are higher in respect to other alternatives, including nickel-metal
hydride and the inexpensive lead-acid batteries [18].

When it comes to operation and management of EV commercial fleets, the
time needed for re-charging EV batteries is crucial. More specifically, this time
period highly depends on the size of the batteries [33] and the type of facility
used; refueling of batteries may last from 30 minutes to multiple hours. Achieving
a full capacity battery recharge may call for a very long –if not outright excessive–
period of waiting time at the re-charging station. The latter is due to the fact that
the final phase of a recharge is not linear with respect to time and can itself last
for several hours [4]. Vehicle range and overall battery life are influenced by the
pattern(s) BEVs are charged and discharged. In particular, frequent discharges
to deep levels shorten their lifespan [19]. Similarly, frequently charging close to
the maximum capacity rapidly leads to battery deterioration [31]. Such usage
patterns do limit the usable battery capacity. BEVs reportedly reach ranges of
150 miles on a single charge, which essentially restricts their usage to urban
areas [11]. The typical delivery tours for logistics and transportation service
providers do surpass this value [29]. Therefore, visits to recharging stations along
routes are deemed necessary in the course of a business day.

3 Overview of our Approach

We present here our framework for managing a fleet of EVs handling dynamic
pickup and delivery requests. Our architecture, depicted in Figure 2, features a



Fig. 3. REST API

{"requests": [{
"lat": 43.56,

"lon": 26.54,

"type": "PICKUP",

"item": 2333

}, {
"lat": 43.26,

"lon": 26.14,

"type": "PICKUP",

"item": 2391

}, {
"lat": 43.22,

"lon": 26.11,

"type": "DELIVERY",

"item": 2391

}, {
"lat": 43.23,

"lon": 26.19,

"type": "RECHARGE",

"item": null

}, {
"lat": 43.19,

"lon": 26.17,

"type": "DELIVERY",

"item": 2333

}]}

Fig. 4. JSON response

Web Application that employs an on-line algorithm specifically designed for the
EV-DPDPTW. A REST API handles communication with vehicles equipped
with GNSS receivers and customers that have access through desktops, laptops
or mobile devices. Information submitted to the Web Application is persisted to
a database.

We present in Figure 3 part of our REST API.1 Actions listed under ‘Re-
quests’ in Figure 3, enable authenticated customers to submit, edit and view
(their) requests. Submitted requests are passed to the on-line algorithm in or-
der to be assigned to a vehicle. Additionally, users with administrative priveleges
are authorized to monitor the delivery process throught the ‘Vehicles’ actions. In
particular, issuing a GET ‘/vehicles’ or ‘/vehicles/{id}’ request provides
a view of the status of all vehicles or the one specified with the ‘id’ param-
eter, respectively. We provide illustrations of such views in Figure 5. We can
see that OpenStreetMap2 powered maps report the position of the vehicle at
any time, as well as the customer requests asssociated with the vehicle. Vehicles
are also enabled to communicate with the Web Application through the REST
API. Their scheduling information can be retrieved through an authenticated
GET ‘/vehicles/{id}’ requesting JSON content. Moreover, vehices may up-
date their current state through a PATCH ‘/vehicles/{id}’ specifying their
location or list of itmes. An exemplary response to the first request is illustrated
in Figure 4. We can see that the vehicle is scheduled to pickup and deliver 2
items requests and will visit a recharging station in between.

Scheduling infromation is derived from our on-line algorithm for the EV-
DPDPTW. We employ the rolling horizon principle and the Drive First waiting
strategy, described in [24] and [21], respectively. Moreover, we propose heuristics
to address the additional issues that arise due to the use of BEVs, as well as the

1 Our REST API is documented using raml2html.
2 http://www.openstreetmap.org/

http://www.openstreetmap.org/


Algorithm 1: On-line algorithm for the EV-DPDPTW.

input : Incoming requests P+ ∪ P−.
output : Routing and scheduling information.

1 begin
2 while true do
3 select the eligible unassigned requests;
4 foreach eligible request (i+, i−) do
5 foreach available vehicle do
6 find the best insertion;
7 if insertion triggers recharge then
8 schedule recharge visit for the vehicle;

9 if there are vehicles that can serve (i+, i−) then
10 select the best insertion;
11 insert the request in the selected vehicle;

12 else
13 assign the request to a new vehicle;

14 update scheduling information;

presence of limited recharging stations. Algorithm 1 provides pseudo-code for
our on-line approach, which extends the cheapest insertion procedure described
in [21] in order to handle visits to recharging stations as well. Our algorithm
awaits for incoming requests (2). Once a request arrives, we examine all possible
pairs of feasible slots in each route to schedule the request’s pickup and delivery
(6). Insertions in these slots may trigger a need for a visit to a recharging station
to restore the charging level of the vehicle’s battery (7-8). If there are vehicles
that can accommodate this request, the algorithm selects the one that minimizes
the total route length (10) and inserts the request (11). If, however, there are
no vehicles that can handle the request, we extend our fleet with a new vehicle,
and insert the request to it (13). Finally, we update the scheduling information
associated with our fleet (14). Lines (7-8) outline the operations needed to as-
certain if a recharge is needed and ensure that the vehicles of the fleet remain in
operational state with regards to their battery charging level. We note that we
consider the uncapacitated version of the problem, that is applicable in cases of
carriers transporting small parcels or letters. Our algorithm is easily extensible
to the capacitated version simply by adding a corresponding constraint.

In what follows, we define three heuristic-based recharging strategies, namely
Eager, Lazy, and Smart Recharging, that we use to decide when to schedule a
visit to a recharging station.

3.1 Eager Recharging

The Eager Recharging strategy requires a vehicle to perform a recharge after
every delivery request it satisfies, given that the delivery location is close to a



recharging station. In particular, having found the best insertion of a request
in a route, we additionally investigate the possibility of scheduling a stop to
a recharging station by estimating the distance between the delivery location
and its closest recharging station. In the case that this distance is smaller than
a predefined limit, we additionally schedule the recharging stop. A visit to a
recharging station is also scheduled in case the energy level of the vehicle is not
sufficient for further client requests.

Figure 5a illustrates a route formed after following the Eager Recharging

strategy. We observe that our online algorithm schedules visits to recharging
stops after two of the three deliveries that are assigned to a particular vehicle,
as the distance of the corresponding station from delivery locations is small. The
third delivery location does not have a nearby recharging station and the energy
level of the vehicle is sufficient for new requests due to the previous recharges.

The intuition behind the Eager Recharging strategy is that long recharging
stops may have a negative impact on the number of vehicles required to satisfy
the customer requests. Recharging of a battery is (up to a point) linear with
respect to time [4], and thus, vehicles that fully wind up their batteries need
to spend more time in recharging stations. Given the current range of electric
vehicles, we expect them to require visits to recharging stations along their
routes. Therefore, allowing vehicles to exhaust their energy levels is likely to
lead to multiple vehicles being detained simultaneously, and, inevitably, to an
unnecessary expansion of the fleet.

Furthermore, the Eager Recharging strategy favors the dispersion of vehi-
cles in different locations of an area in a way similar to the waiting strategy
of Mitrović-Minić and Laporte [21] by extending their stay close to recharg-
ing stations. As the case is with the waiting strategy, we expect that this will
have a negative impact on the size of the fleet, but may result to better vehicle
assignments for specific clients with pickups close to a recharging station.

The main drawback of the Eager Recharging strategy is that it does not
allow a lot of reordering to occur. As new clients arrive, our algorithm exam-
ines the possibility of serving them in between requests that have already been
scheduled, as long as the time windows are not violated. The Eager Recharging

strategy leads to multiple small visits to recharging stops which essentially limit
the opportunities of re-evaluating scheduling decisions.

3.2 Lazy Recharging

The Lazy Recharging strategy requires a vehicle to perform a recharge only in
cases when the battery charging level is not enough to service any more incoming
requests. As there is a risk of exhausting the battery of a vehicle before ever
reaching to a station, this strategy acts proactively. In particular, with Lazy

Recharging a visit to a recharging station is scheduled at the end of every
current route but is consolidated only when there is no eligible request that can
feasibly be serviced before the scheduled recharging stop. Until then, the visit
is re-scheduled after the latest delivery planned in the route every time a new
request is placed in the end of the route.



Figure 5b depicts the impact of the Lazy Recharging strategy. We see that
although the vehicle is scheduled to pass nearby recharging station locations,
it is not scheduled to visit one of them. A visit to a recharging station occurs
only when the battery of the vehicle is close to being exhausted, even though
there is not a recharging station close by. Moreover, we observe that the order in
which the pickups and deliveries occur is slightly different than with the Eager

Recharging strategy. This is due to the fact that there were no delays due to
recharges early on, and thus, alternative routing choices were examined and a
better route was eventually realized.

There are several reasons that make the Lazy Recharging strategy promis-
ing:

Allowing vehicles to exhaust their batteries enables the scheduling policy to
consider alternative plans for a longer time. This maximizes the probability that
client requests that would best be served together, i.e., nearby client requests,
are actually assigned to the same vehicle. Moreover, visiting recharging stations
only when it is absolutely necessary limits the number of total visits, as some
vehicles may avoid the need for a recharge along their route. This limits the total
route length, as each visit to a recharging station is associated with a distance
cost. Exploiting the full battery capacity of each vehicle limits the probability
that a second visit to a recharging station is needed for the same vehicle, which
limits the total route length as well.

On the downside, the Lazy Recharging strategy does not consider proxim-
ity when scheduling visits to recharging stations. This can lead to routes that
schedule visits to recharging stations after deliveries that are located faraway
from any available recharging station. Therefore, vehicles may have to traverse
long distances in order to restore the energy level of their batteries.

3.3 Smart Recharging

Our last strategy, termed Smart Recharging, is a combination of the Eager and
Lazy Recharging strategies, aiming to capitalize on the advantages of both. In
particular, this strategy attempts to exploit the capacity of the vehicle’s battery
and the proximity of delivery requests to recharging stations. To this end, the
Smart Recharging strategy schedules proximity-driven visits to recharging sta-
tions. However, decisions based on proximity are only taken when a significant
part of a vehicle’s battery capacity is exhausted. That is, the Smart Recharging

strategy examines the possibility of visiting a recharging station, even though the
energy level of the vehicle’s battery allows for subsequent requests, if the charg-
ing level is below 35%. As the case is with both Eager and Lazy Recharging

strategies, a visit to a recharging station is scheduled when the battery is close
to being exhausted with Smart Recharging as well.

Figure 5c shows a route formed after following the Smart Recharging strat-
egy. We observe that this strategy led to a route that resembles the route formed
with the Lazy Recharging strategy in its first part, and the route formed with
the Eager Recharging strategy in its second part. In particular, the recharging
station close to the first delivery location was ignored, as the energy level of the



(a) (b)
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Fig. 5. Routing of a vehicle using Eager (5a), Lazy (5b), and Smart Recharging (5c)
strategies, as depicted in our Web Application. Smart Recharging allows room for
better routing decisions, while also favoring the avoidance of costly visits to faraway
recharging stations that necessarily occur when the battery of a vehicle is exhausted.

vehicle was more than half full. This allowed for the better routing that occurred
with Lazy Recharging. The recharging station close to the second delivery lo-
cation is, however, visited, as the energy level at that stage is lower than 35%.
This recharge restores the energy level of the vehicle, and a costly visit to a
recharging station after the third delivery is avoided, as the case is with Eager

Recharging as well.

4 Experimental Evaluation

We first present the experimental environment, the dataset and the settings
that we applied to evaluate our on-line algorithm. Then, we proceed with the



evaluation of all our proposed recharging strategies by answering the following
questions:

– How many vehicles does each strategy require for the instances of our dataset?
– How close to the solution that does not consider the need for visits to recharg-

ing stations is each one of our strategies with regard to the total mileage of
the fleet?

– What is the average level of battery that each strategy opts to perform a
visit to a recharging station at?

– How many visits to recharging stations does each strategy schedule?

4.1 Experimental Setting

We implemented and ran our on-line algorithm and the associated recharging
strategies using Java 8. The experiments were carried out on a computer with an
Intel R© CoreTM i5-4590, with a CPU frequency of 3.30GHz, a 6MB L3 cache and
a total of 16GB DDR3 1600MHz RAM and the Linux Xubuntu 14.04.03 (Trusty
Tahr) x86 64 OS. The dataset that was used for the experiments comprises the
10-hour instances of Mitrović-Minić et al. [20] and is publicly available3. The set
contains a total of 40 instances with 100, 300, 500, and 1, 000 client requests. The
service area is 60×60 km2, with few delivery locations (around 6%) outside this
area. The vehicle speed is 60 km/h. The vehicle fleet is empty at the beginning
of the algorithm and vehicles are added as client requests arrive. The initial
point of each vehicle (depot) is set to be (20, 30), as in [20], to ensure that all
transportation requested are serviced.

Given one of these instances, we determine the locations of seven recharging
stations by placing one in the depot and the other six in two quadrants of the
service area, in a random manner. The latter, serves the purpose of considering
areas that do not provide access to recharging stations, which is expected in
real-life situations. The maximum distance of a recharging station from a deliv-
ery location, at which the Eager and Smart Recharging strategies allow visits
before battery exhaustion is set to 2.0 km. This value, was experimentally found
to consistently allow more but not excessive recharges when compared to the
Lazy Recharging strategy. For the parameters associated with the batteries of
electric vehicles we adopt the criteria specified by Schneider et al. [29]. In par-
ticular, we set the battery capacity to the maximum of the following two values:
(1) the charge needed to travel 60% of the average route length of the solu-
tion using our algorithm without energy constraints, and (2) twice the amount
of battery charge needed to travel between a customer location and a station.
Thus, we ensure that some vehicles will require a visit to a recharging station.
Table 1 depicts the average values used for our dataset, expressed in terms of
vehicle range (km). The consumption rate of the vehicles is set to 1.0. Finally,
we consider batteries that recharge linearly with time and set the time needed

3 http://www.sfu.ca/~snezanam/personal/PDPTW/TestInstances/Rnd6_

1h-2h-4h-6h-7h-Req/.

http://www.sfu.ca/~snezanam/personal/PDPTW/TestInstances/Rnd6_1h-2h-4h-6h-7h-Req/
http://www.sfu.ca/~snezanam/personal/PDPTW/TestInstances/Rnd6_1h-2h-4h-6h-7h-Req/


Table 1. Vehicle range and route length comparison.

No. of
Range

Unlimited Eager Lazy Smart
clients Battery Recharging Recharging Recharging
100 146.78 2, 780.94 3, 694.72 3, 677.31 3, 677.31

300 165.03 6, 907.15 8, 806.8 8, 770.21 8, 756.77

500 183.63 10, 408.55 12, 987.84 12, 797.54 12, 783.14

1,000 199.54 17, 895.83 22, 454.87 22, 055.74 22, 016.45

for a complete recharge to be equal to three times the average customer service
time of the respective instance.

4.2 Fleet Size Comparison

We begin our evaluation by examining the impact of all proposed strategies on
the minimization of the fleet size. We observe in Figure 6a that all three strategies
which consider visits to recharging stations require significantly more vehicles to
serve the customer requests than what would be needed if the battery capacity
was not a concern. In particular, using vehicles that do not require recharging
along their routes, we would need a fleet of approximately 45% less vehicles for
the instances of all client request sizes.

Figure 6a also depicts that the Eager Recharging strategy requires the
largest fleet in most cases. This indicates that attempting to reduce the fleet size
by recharging sooner, and thus, performing more but smaller visits to recharging
stations is not a good strategy in the long term. The Lazy Recharging strat-
egy is more competitive, offering mild improvements over Eager Recharging.
However, Smart Recharging proved to be the most successful strategy with re-
gards to the fleet size, by outperforming Lazy Recharging in all cases, with the
exception of the 100 client request instances, where there was a tie.

4.3 Route Length Comparison

We proceed by examining the impact of our strategies on the minimization of
the route length. Table 1 shows the total mileage required for each of our three
strategies, as well as the case of using battery with unlimited capacity, to service
the client requests of our dataset. We observe that the increase inflicted upon
the total route length due to visits to recharging stations is not as significant
as the increase in the size of the fleet. This shows that all three strategies are
still able to limit the total mileage spent; the time vehicles spend in recharging
stations to restore their energy levels is more costly than the time needed to
actually visit a recharging station.

The Smart Recharging strategy again stands out and outperforms both
Eager and Lazy recharging. Therefore, we observe that Smart Recharging ex-
hibits the best performance with respect to both the fleet size and the route
length. This confirms our intuition that Smart Recharging benefits from the
positive aspects of both Eager and Lazy recharging.
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Fig. 6. Comparison of the fleet size needed (6a), the energy level of vehicles (6b),
and the average number of recharges performed (6c) when using our three proposed
strategies and a strategy without battery constraints. We observe that the impact
of visiting recharging stations is significant, and that the Smart Recharging strategy
stands out by outperforming Eager and Lazy recharging.

4.4 Battery Level & Total Recharges Comparison

The lifespan of batteries is susceptible to frequent discharges to deep levels [19].
Therefore, when maintaining an electric vehicle fleet it is important to adopt
policies that slow down the reduction of usable battery capacity to extend the
battery life and preserve the vehicle range. Figure 6b depicts the average percent-
age of the energy level of vehicles just before they visited a recharging station.
The results regarding the Lazy Recharging strategy are alarming. There were
cases when this strategy led to critically low energy levels (below 2%) before
scheduling recharges. This indicates that although the Lazy Recharging strat-
egy is very competitive, it may have a negative impact on the lifespan of the
batteries of vehicles. The Eager and Smart Recharging strategies maintained
a higher average energy level than Lazy Recharging. Therefore, they both may
contribute to the reduction of the fleet’s maintenance costs in the long term.

For reasons of completeness, we also present in Figure 6c the total number
of visits to recharging stations the vehicles performed when following each of
the three strategies, for all the instances of our dataset. As was expected, we
observe that the Eager Recharging strategy led to more visits than the Smart

Recharging strategy, which in turn, led to slightly more visits than the Lazy

Recharging strategy.

5 Related Work

Problems related to transportation, such as traffic congestion and air pollution,
are increasingly troubling city authorities. This has led to the development of
urban economy solutions that benefit on cloud-computing and the use of mobile
devices to offer systems that minimize transportation cost [30,13].



The ever-increasing interest of companies in green logistics practices has
driven carriers to the adoption of EVs. As typical delivery tours surpass the
range these vehicles are able to provide, and their recharging time is consider-
able, scheduling policies must also handle visits to recharging stations. Gonçalves
et al. [14] make a first attempt towards the investigation of the additional con-
straints imposed in a vehicle routing problem when BEVs are taken into account.
While focusing on the PDPTW, [14] considers a mixed fleet of battery-powered
EVs and conventional vehicles and assumes a limited driving range and a real-
istic charging time for vehicles. However, the proposed model allows BEVs to
recharge anywhere, i.e., the locations of the recharging stations are not specified.

Erdoğan and Miller-Hooks [10] propose the Green VRP (G-VRP) that fo-
cuses on alternative fuel-powered vehicle fleets and study the effects of limited
vehicle driving ranges in conjunction with limited refueling infrastructure. The
G-VRP is formulated as a mixed integer linear program and features two con-
struction heuristics: the Modified Clarke & Wright Savings heuristic as well as
the Density-Based clustering algorithm working along with a customized im-
provement technique. However, as the G-VRP emphasizes on alternative fuel
vehicles and not specifically on BEVs, the charging delays experienced by EVs
are not considered.

Conrad and Figliozzi [5] introduced the Recharging Vehicle Routing Prob-
lem (RVRP). Vehicles have limited range and charging times are considered.
However, recharging can only occur at certain customer locations. Schneider et
al. [29] examine the electric vehicle routing problem with time windows and
recharging stations. The assumptions are similar to those presented in [5]. How-
ever, the recharging stations of [29] are not located at customer locations. The
proposed approach combines a variable search neighborhood algorithm with a
tabu search heuristic. Regarding the recharging stations, [29] uses a new problem-
specific neighborhood operator, called stationInRe, that performs insertions and
removals of recharging stations.

To the best of our knowledge, this is the first work to consider dynamic
pickups and deliveries that are serviced with the help of an EV fleet and whose
vehicles require visits to recharging stations positioned at specific locations dis-
persed along a urban area. We address the problem by proposing three novel
strategies, namely Eager, Lazy, and Smart Recharging for handling the vehi-
cles while on traveling. We evaluate them experimentally and present the merits
of each of the aforementioned choices.

6 Conclusion and Future Work

In this paper, we focus on urban distribution using electric vehicles and develop
a system for the coordination and monitoring of the different parties involved in
it. In compliance with introduced policies for green logistics and for economic
reasons, transportation and logistics companies intend on deploying –or have
already introduced– EVs in their pickup and delivery fleets. A vehicular fleet
made up entirely of EVs adds several new dimensions to the classic vehicle rout-



ing problems. To this end, vehicles portray limited traveling range and call for
power recharges along their routes to designated stations or service centers. The
expected average charging time for replenishing the power supply to a vehicle
may last for several hours. Also, recharging stations are far less common than
gas stations and this is not expected to change soon. Therefore, routing and
scheduling an EV fleet to satisfy dynamic transportation requests is far from
trivial.

We build a system that enables communication with both customers and
vehicles and propose three heuristic-based recharging strategies to tackle this
problem. The first two, namely Eager and Lazy Recharging reflect two ex-
treme situations: eagerly seeking nearby recharging stations to avoid lengthy
visits to faraway stations, and exhausting the full battery capacity of vehi-
cles before scheduling a recharge, respectively. Our third strategy termed Smart

Recharging, combines advantages from both Eager and Lazy Recharging, and
manages to outperform them in terms of both size of the fleet and total route
length. We also study the impact that our proposed strategies have on the lifes-
pan of batteries, and verify our intuition that Lazy Recharging may indeed
speed up battery deterioration; the other two strategies are however likely to
extend the lifetime of batteries.

We could further explore the potential of each of our three proposed strategies
by additionally employing tabu-search heuristics [12]. In particular, we can peri-
odically perform a tabu-search procedure after our cheapest insertion procedure,
to examine which strategy benefits the most from reassigning requests to other
vehicles. Furthermore, our algorithm does not currently consider deviations from
customer time windows, which may occur in real-life situations. We can handle
such cases by incorporating a penalty proportional to these deviations in our
objective function.
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14. F. Gonçalves, S. R. Cardoso, S. Relvas, and Barbosa-Póvoa. Optimization of a
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