ABSTRACT
A multitude of contemporary applications now involve graph data whose size continuously grows and this trend shows no signs of subsiding. This has caused the emergence of many distributed graph processing systems including Pregel and Apache Giraph. However, the unprecedented scale now reached by real-world graphs hardens the task of graph processing even in distributed environments and the current memory usage patterns rapidly become a primary concern for such contemporary graph processing systems. We seek to address this challenge by exploiting empirically-observed properties demonstrated by graphs that are generated by human activity. In this paper, we propose three space-efficient adjacency list representations that can be applied to any distributed graph processing system. Our suggested compact representations reduce respective memory requirements for accommodating the graph elements up to 5 times if compared with state-of-the-art methods. At the same time, our memory-optimized methods retain the efficiency of uncompressed structures and enable the execution of algorithms for large scale graphs in settings where contemporary alternative structures fail due to memory errors.

Keywords
Graph compression; Pregel; distributed computing.

1. INTRODUCTION
The proliferation of WWW-based applications, the explosive growth of social networks, as well as the continually-expanding WWW-space, have collectively led to systems whose operations routinely deal with voluminous data that are modeled as graphs. The active users of Facebook are more than 1 billion [11] and Google indexes over 1 trillion unique URLs [2]. This ever-increasing requirement in terms of graph vertices has given rise to a number of distributed graph-processing systems [1, 18, 21, 22] that efficiently handle large-scale graphs using commodity hardware [13].

Most of these approaches parallelize the execution of algorithms by dividing graphs into partitions and assigning vertices to workers (i.e., machines) following the “think like a vertex” programming paradigm introduced with Pregel [19]. However, recent studies [9, 13] point out that the proposed frameworks fail to handle the unprecedented scale of real-world graphs due to ineffective memory usage [13]. Thus, memory optimization has become critical when dealing with graphs of such magnitude even in a distributed environment.

Figure 1 illustrates a graph partitioned over three workers. Every vertex is assigned to a single machine and maintains a list of its out-edges. This partitioning hardens the task of compression, as related research efforts have focused on a centralized machine environment and exploit similarities exhibited between vertices [3, 8, 10, 16, 17]. However, this is infeasible when graphs are partitioned on a vertex basis. A major step towards memory optimization was contributed to Apache Giraph [4] by Facebook [11]. However, improvements focused entirely on a more careful implementation for the representation of the out-edges of a vertex; the redundancy exhibited in real-world graphs was not exploited.

In this paper, we follow the Pregel paradigm and partition the graph vertices among the nodes of a distributed computing environment. In this context, we present three novel techniques that 1) offer space efficient-representations of the out-edges of vertices, 2) allow fast mining (in-situ) of the graph elements without the need of decompression, 3) enable the execution of graph algorithms in memory-constrained settings, and 4) ease the task of memory management, thus allowing faster execution. The vertex placement policy that Pregel-like systems follow forces us to store the out-edges of each vertex independently as Figure 1.
graphs depicts. This preserves the locality of reference property, known to be exhibited in real-world graphs \cite{3 20}, and enables us to exploit patterns that arise among the out-edges of a single vertex.

Our first technique, termed BVEdges, applies all methods of \cite{5} that are appropriate for the vertex placement policy of Pregel. BVEdges primarily focuses on identifying intervals of consecutive out-edges of a vertex and employs universal codings to efficiently represent them. To facilitate access without imposing the significant computing overheads of BVEdges, we propose IntervalResidualEdges, which holds the corresponding values of intervals in a non-encoded format. Additionally, we propose IndexedBitArrayEdges, a novel technique that considers the out-edges of each vertex as a row in the adjacency matrix of the graph and indexes only the areas holding edges using byte sized bit-arrays.

Our experimental results show significant improvements on space-efficiency for all proposed techniques. We manage to reduce memory requirements up to 5 times in comparison with currently applied techniques. This eases the task of scaling to billions of vertices and allows us to load much larger graphs than was ever possible before. In settings where earlier approaches were also able to execute graph algorithms, we achieve significant performance improvements in terms of time of up to 31% due to memory optimization, as less time is spent for garbage collection. These findings establish our structures as the undisputed preferable option for web graphs, which offer compression-friendly orderings, or any other type of graph, after the application of a re-ordering that favors its compressibility.

2. RELATED WORK

Our work lies in the intersection of distributed graph processing and compressed graph representations. In this regard, we outline here pertinent aspects of these two areas.

Google’s proprietary Pregel \cite{19} is a graph processing system that enables scalable batch execution of iterative graph algorithms. As the source code of Pregel is not publicly available, a number of graph processing systems that follow the same data flow paradigm have emerged. Apache Giraph \cite{1} is such an open-source Java implementation with contributions from Yahoo! and Facebook, that operates on top of HDFS. Our work focuses on Pregel-like systems and extends Giraph’s implementation. GPS \cite{21} is a similar Java open-source system that proposes the large adjacency list partitioning technique for high-degree vertices. Pregel+ \cite{22} is implemented in C++ and uses MPI processes as workers to achieve high efficiency. Unlike the aforementioned systems, GraphLab \cite{18} does not follow the Pregel paradigm but rather supports asynchronous execution and adopts a data-pull model with a shared memory abstraction. Our work is orthogonal to these approaches as our compressed representations can be readily applied to all above systems.

The field of graph compression has yielded significant research results after the work presented in \cite{20}. Randall et al. exploit the locality of reference as well as the similarity property that is unveiled in web graphs when their links are ordered lexicographically. The seminal work on web graph compression is that of Boldi and Vigna \cite{5}, who introduce a number of sophisticated techniques to further reduce the hits per link ratio. Following efforts present improved results with regard to space \cite{8}, study the compressibility characteristics of social graphs \cite{10}, and employ adjacency matrix representations to reduce access time of the graph’s elements \cite{16 17}. All the above approaches focus on providing a compact representation of a graph to be loaded in the memory of a single machine. Hence, they exploit the presence of all edges in a centralized computing node, which is not suitable for Pregel-like systems offering distributed execution.

To the best of our knowledge, Gbase \cite{14} is the only approach that considers compressed graph representations in a distributed environment. Kang et al. consider the case of a graph stored over HDFS. Gbase uses block compression to efficiently store graphs by splitting the respective adjacency matrices into regions. The latter are compressed using several methods including Gzip and Gap Elias’-γ encoding. We should note, however, that Gbase does not follow the vertex-centric model we have adopted in this work.

3. BACKGROUND

In this section we outline Pregel and Apache Giraph, and offer definitions for the encodings that we use for our suggested compression techniques.

3.1 Pregel & Apache Giraph

Pregel \cite{19} is a computational model suitable for large scale graph processing, inspired by the Bulk Synchronous Parallel programming model. Pregel encourages programmers to “think like a vertex” by following a vertex-centric approach. The input to a Pregel algorithm is a directed graph whose vertices, along with their respective out-edges, are distributed among the machines of a computing cluster. Pregel algorithms are executed as a sequence of iterations, termed supersteps. During a superstep, every vertex independently computes a user-defined list of actions and sends messages to vertices that are to be used during the following superstep. A synchronization barrier between supersteps is used to ensure that all messages are delivered at the beginning of the next superstep. A vertex may vote to halt at any superstep and will be reactivated upon receiving a message. The algorithm terminates when all vertices are halted and there are no messages in transit. Pregel loads the input graph and performs all associated computations in-memory. Thereby, Pregel only supports graphs whose edges entirely fit in main-memory.

Apache Giraph \cite{1} is an open-source implementation of Pregel. The default Giraph structure for holding the out-edges of a vertex is that of ByteArrayEdges \cite{11}. This representation is realized as a byte array, in which target vertex ids and their respective weights are held consecutively, as Figure 2 illustrates. The bytes required per out-edge are determined by the data type used for its id and weight; for integer numbers 4 + 4 = 8 bytes are required. ByteArrayEdges are impractical for algorithms involving mutations as they deserializе all out-edges to perform a removal.

3.2 Codings for Graph Compression

Over the last two decades studies of real-world graphs have revealed the presence of common properties \cite{5 15 20}.
In this work we exploit two of these properties, namely the heavy-tailed degrees’ distribution and the locality of reference, to achieve effective compression. The former property implies the sparsity of such graphs, while due to the latter, the majority of the edges of a graph link vertices that are close to each other in the order. The locality of reference is evident in web graphs whose vertices are ordered lexicographically, and can be surfaced in other types of graphs by applying the reordering algorithm of [4].

In order to compress the data in our structure, we can use various encoding approaches; below, we provide the definitions of Elias’ γ and ζ codings that we employ in Section 4.1.1. We also furnish the definitions of unary and minimal binary coding that help define the first two codings. Let x denote a positive integer, b its binary representation and l its length. The aforementioned codings are defined as follows:

1. Unary coding: the unary coding of x consists of $x - 1$ 0s followed by a 1.
2. Minimal binary coding over an interval: consider the interval $[0, z - 1]$ and let $s = \log z$. If $x < 2^s - z$ then x is coded using the x-th binary word of length $s - 1$ (in lexicographical order), otherwise, x is coded using the $(x - z + 2^s)$-th binary word of length s.
3. Elias’ γ coding [12]: the γ coding of x consists of l in unary, followed by the last $l - 1$ digits of b.
4. ζ coding with parameter k [6]: given a fixed positive integer k, if $x \in [2^{hk}, 2^{(h+1)k} - 1]$, its ζ_k-coding consists of $h + 1$ in unary, followed by a minimal binary coding of $x - 2^{hk}$ in the interval $[0, 2^{(h+1)k} - 2^{hk} - 1]$.

In the context of graph compression, Elias’ γ coding is preferred for the representation of rather small values of x, whereas ζ coding is more proper for potentially large values.

4. OVERVIEW OF OUR APPROACH

In this section we detail our compressed data structures for the representation of a vertex’s neighbors in a graph.

4.1 Representations based on intervals

The locality of reference property is evident through the adjacency lists of the graphs of our dataset, all of which tend to have a lot of neighbors with consecutive ids. We can exploit this property by applying a technique similar to the one introduced in [5]. In particular, [5] distinguishes between the neighbors whose ids form some interval of consecutive ids, and the rest. To reconstruct all the edges of the intervals only the leftmost neighbor id and the length of the interval needs to be kept. This information is further compressed using gap Elias’ γ coding. The rest of the edges, termed residuals, are compressed using ζ coding. We build on these ideas and introduce two vertex-centric representations that exploit locality of reference in a similar fashion.

4.1.1 BVEdges

Our first representation, namely BVEdges, focuses solely on compressing the neighbors of a vertex, at the cost of computing overheads. Therefore, we simply adjust the method of Boldi and Vigna [5] to the requirements imposed by Pregel’s model. The compressed data structure discussed in [5] considers the whole graph and exploits the current vertex’s id during compression. However, this information is not available in the level where adjacency lists are kept in the Pregel model. To overcome this issue, we use the first neighbor id we store in our structure as a reference to proceed with gap encoding. We use Elias’ γ coding for intervals, and ζ coding for residuals. Elias’ γ coding is most preferable for intervals of at least 4 elements [5]; shorter intervals are more compactly stored as residuals.

Definition 1 (BVEdges): Given a list l of a node’s neighbors, BVEdges is a sequence of bits holding consecutively: the number of intervals in l of length at least 4; for each such interval, the smallest neighbor id in it and the γ-coded difference of the interval length minus 4; a ζ coding for each of the remaining neighbors, its argument being either the difference x between the current node’s id and the previous node id which was encoded to be stored in the sequence minus 1, or, in case $x < 0$, the quantity $2|x| - 1$.

Example 1: Consider the following sequence of neighbors to be represented: $(2, 9, 10, 11, 12, 14, 17, 18, 20, 127)$. We employ BVEdges as illustrated in Figure 3. Here, there is only one interval of length at least equal to 4: $[9..12]$. We first store the number of intervals in unencoded binary form. Then, we store the leftmost id of the interval, i.e., 9, again using its unencoded binary representation. We proceed with storing a representation of the length of the interval to enable the recovery of the remaining elements. In particular, we store the γ coding of the difference of the interval length minus the minimum interval length, which is 4 − 4 = 0 in our case. Then, we append a representation for the residual neighbors. For each residual, we store the ζ coding of the difference of its id with the id of the last node stored, minus 1 (as each id appears at most once in the neighbors’ list). The residual id 2 is smaller than the smallest id of the first interval, so we store the residual neighbor 2 as $\zeta(13)$, since $2(2|2|) − 1 = 13$, and the residual 14 as $\zeta(11)$, since $14 − 2 = 11$. Similarly, we store 17, 18, 20 and 127 as $\zeta(2), \zeta(0), \zeta(1)$ and $\zeta(106)$, respectively.

The respective values computed in each step are written using a bit stream. This, combined with the fact that values have to be encoded, renders the operation costly. We also investigated the idea of treating all neighbors as residuals to examine if the re-construction of intervals was more expensive. However, we experimentally found that the resulting larger bit stream offered worse access time. Accessing the out-edges of a vertex requires the following procedure: first, we decode the intervals and create an iterator using them. After this iterator returns all its elements, we create a second one that decodes the residuals one by one.

4.1.2 IntervalResidualEdges

Our second representation, namely IntervalResidualEdges, also incorporates the idea of using intervals and residuals. However, to avoid costly bit stream writes and reads, we propose a different structure. In particular, we opt to keep the value of the leftmost id of an interval unencoded, along with a byte that is able to index up to 256 consecutive neighbors. Residuals are then also kept unencoded. Clearly,
any consecutive length of length at least equal to 2 are represented more efficiently using an interval rather than two or more residuals. Therefore, we set the minimum interval length with IntervalResidualEdges equal to 2. Due to the locality of reference property, this one byte allows us to compress the adjacency list significantly, while also avoiding the use of expensive encodings and bit streams. We note here that all ids are stored in binary form.

Definition 2 (IntervalResidualEdges): Given a list \(l \) of a node’s neighbors, IntervalResidualEdges is a sequence of bits holding consecutively: the number of intervals in \(l \); the smallest neighbor id and the length of each such interval; the id of each of the remaining neighbors.

Example 2: The representation of the aforementioned sequence of neighbors \((2, 9, 10, 11, 12, 14, 17, 18, 20, 127) \) using IntervalResidualEdges is illustrated in Figure 4. In this case there are two intervals of at least 2 consecutive neighbors, namely \([9...12]\) and \([17, 18]\). We first store the number of intervals, and then use one 5-byte element for each interval, consisting of a 4-byte representation of the smallest neighbor id in it (i.e., \(9\) and \(17\)), plus a byte holding the number of neighbors in this interval (4 and 2 respectively). Finally we append a 4-byte representation for each residual neighbor.

This representation delivers its elements through the following procedure: while there are still unread intervals, the procedure reads 5-bytes, i.e., the leftmost element of the interval and its length, and produces one by one the elements of the interval. When all intervals are processed, the procedure reads in the residuals directly as integers.

4.2 IndexedBitArrayEdges

Our first two representations exploit the consecutivity exhibited among the neighbors of a vertex. Here we propose IndexedBitArrayEdges, which takes advantage of the concentration of edges in specific areas of the adjacency matrix, regardless of whether these edges are in fact consecutive. IndexedBitArrayEdges uses a single byte to depict eight possible out-edges. Using a byte array, we construct a data structure of 5-byte elements, one for each interval of neighbor ids having the same quotient by \(8\). The first 4 bytes of each element represent the quotient, while the last one serves as a set of 8 flags indicating whether each possible edge in this interval exists. As the neighbor ids of each node tend to concentrate within a few areas, the number of intervals is small and the compression achieved is exceptional.

Definition 3 (IndexedBitArrayEdges): Given a bit-array \(r \) representing a list of a node’s neighbors, IndexedBitArrayEdges is a sequence of 5-byte elements, each one holding an octet of \(r\) that contains at least one 1: the first 4 bytes hold the distance in \(r\) of the first bit of the octet from the beginning of \(r\); the last one holds the octet.

Example 3: The representation of the aforementioned sequence of neighbors \((2, 9, 10, 11, 12, 14, 17, 18, 20, 127) \) using IndexedBitArrayEdges is illustrated in Figure 5(a). The bit-array representation of this adjacency list is shown in Figure 5(b). The quotient and remainder of each node id divided by \(8\) give us the approximate position (octet) and the exact position, respectively, of the node in the bit-array; hence, as depicted in Figure 5(b), the neighbors are grouped in four sets: \(\{2\}\), \(\{9, 10, 11, 12, 14\}\), \(\{17, 18, 20\}\), \(\{127\}\). All ids in each set share the same quotient when divided by \(8\), which will be referred as index number henceforth. For instance, the index number of the third set is 2, and is stored in binary form, denoted by \(2_2\), in the first part of the third element. Moreover, the remainders of the ids 17, 18 and 20 divided by 8 are 1, 2, and 4 respectively, and so the 2nd, 3rd and 5th flags from the right side of the same element are set to 1 to depict these neighbors.

Accessing the out-edges of a vertex requires the following procedure: first, we read a 5-byte element. Then, we recover out-edges from the flags of its last byte and reconstruct the neighbor ids using the first 4 bytes. After we examine all flags of the last byte, we proceed by reading the next 5-byte element and repeat until we retrieve all out-edges.

5. EXPERIMENTAL EVALUATION

We implemented our techniques using Java and compared their performance against ByteArrayEdges using a number of well-studied web and social network graphs reaching up to 2 billion edges. We first present the dataset and detail the specifications of the machines used in our experiments. Then, we proceed with the evaluation of our out-edge representations by answering the following questions: (i) How much more space-efficient is each of our three compressed out-edge representations compared to ByteArrayEdges? (ii) Are our techniques competitive speed-wise when memory is not a concern? (iii) How much more efficient are our compressed representations when the available memory is constrained? (iv) Can we execute algorithms for large graphs in settings where it was not possible before?

3https://goo.gl/TSWcyO
Table 1: Memory requirements for the small and large-scale graphs of our dataset.

<table>
<thead>
<tr>
<th>graph</th>
<th>vertices</th>
<th>edges</th>
<th>ByteArrayEdges</th>
<th>BVEdges</th>
<th>IntervalResidualEdges</th>
<th>IndexedBitArrayEdges</th>
</tr>
</thead>
<tbody>
<tr>
<td>uk-2007-05@1000000</td>
<td>100,000</td>
<td>3,050,015</td>
<td>22.01MB</td>
<td>6.41MB</td>
<td>7.92MB</td>
<td>8.91MB</td>
</tr>
<tr>
<td>uk-2007-05@10000000</td>
<td>1,000,000</td>
<td>41,247,159</td>
<td>279.16MB</td>
<td>67.36MB</td>
<td>82.53MB</td>
<td>97.79MB</td>
</tr>
<tr>
<td>indochina-2004</td>
<td>7,414,866</td>
<td>194,199,311</td>
<td>1,511.67MB</td>
<td>442.34MB</td>
<td>646.05MB</td>
<td>554.23MB</td>
</tr>
<tr>
<td>hollywood-2011</td>
<td>2,180,759</td>
<td>228,985,632</td>
<td>1,381.91MB</td>
<td>287.53MB</td>
<td>613.52MB</td>
<td>676.88MB</td>
</tr>
<tr>
<td>uk-2002</td>
<td>18,520,486</td>
<td>298,113,762</td>
<td>2,733.6MB</td>
<td>1,092.82MB</td>
<td>1,224.07MB</td>
<td>1,255.67MB</td>
</tr>
<tr>
<td>arabic-2005</td>
<td>22,744,080</td>
<td>693,949,258</td>
<td>4,820.09MB</td>
<td>1,428.97MB</td>
<td>1,574.75MB</td>
<td>1,849.83MB</td>
</tr>
<tr>
<td>uk-2005</td>
<td>39,439,925</td>
<td>930,364,282</td>
<td>7,401.88MB</td>
<td>2,383.54MB</td>
<td>2,728.74MB</td>
<td>2,928.31MB</td>
</tr>
<tr>
<td>sk-2005</td>
<td>50,636,154</td>
<td>1,949,412,601</td>
<td>14,829.64MB</td>
<td>4,889.85MB</td>
<td>5,657.79MB</td>
<td>6,354.17MB</td>
</tr>
</tbody>
</table>

5.1 Experimental Setting

Our dataset consists of 8 web and social network graphs, whose properties are detailed in Table 1. We run our experiments on a cluster that comprises 8 virtual machines with 13GB of virtual RAM each, running on a Dell PowerEdge R630 with an Intel® Xeon® E5-2630 v3, 2.40 GHz with 8 cores and 128GB of RAM. We set up Apache Hadoop 1.0.2 with 1 master and 8 slave nodes and a maximum per machine JVM heap size of 10GB. Lastly, we used Giraph 1.1.0.

5.2 Space Efficiency Comparison

We present here our results regarding space efficiency for the web and social network graphs of our dataset. We compare our methods involving compression with Giraph’s default representation, namely ByteArrayEdges.

Table 1 lists the memory required by all four representations in MB. We observe that our techniques require significantly less memory compared to ByteArrayEdges. BVEdges outperforms all representations, as expected. In particular, BVEdges always needs less than 40% of the requirements of ByteArrayEdges, and reaches much smaller figures in certain cases, e.g., 20.08% for hollywood-2011. However, we see that our novel IntervalResidualEdges, that does not impose any computing overheads, also manages to achieve equivalent space-efficiency, with its requirements ranging from 29% to 44% compared to those of ByteArrayEdges. Finally, the results of our IndexedBitArrayEdges are impressive as well, as its requirements are usually less than 40% and always below 50% of those of ByteArrayEdges.

5.3 Execution Time Comparison

In this section, we present results regarding the execution time of the PageRank algorithm for the graph indochina-2004 using 2, 4, and 8 workers.

5.3.1 Comparison using small-scale graphs

We begin by investigating the performance of the different out-edge representations in settings where memory is sufficient. Figure 6 depicts the total time needed for each of the four techniques when executing the PageRank algorithm on setups of 2, 4, and 8 workers for the graph indochina-2004.

We observe that IndexedBitArrayEdges and IntervalResidualEdges do not impose any latency in the process. In particular, using either of our two novel representations we achieve execution times that are slightly better than those of ByteArrayEdges for all three setups. BVEdges is inferior speed-wise due to the computationally expensive access of the out-edges offered through this structure which requires decoding Elias-γ and ζ-coding values. Thus, the computing overheads imposed by the techniques of are not negligible and simply adopting them proves to be inefficient.

5.3.2 Comparison using large-scale graphs

For graphs which are equivalent to or smaller than indochina-2004 the performance was similar. In particular, for all three setups IndexedBitArrayEdges and IntervalResidualEdges managed to execute the PageRank algorithm in slightly less time than that of ByteArrayEdges. On the contrary, BVEdges required more time for each superstep.

Figure 6: Execution time of PageRank algorithm for the graph indochina-2004 using 2, 4, and 8 workers.
The performance difference of the four representations with regard to the total execution time of PageRank is evident in Figure 7 (left). The executions using IndexedBitArrayEdges and IntervalResidualEdges are faster by 31.1% and 27.54% than the one with ByteArrayEdges, respectively. We observe that under these settings IntervalResidualEdges performs worse than both BVEdges and IndexedBitArrayEdges. As we can see in Table 1 the latter requires more memory than IntervalResidualEdges to represent the out-edges of uk-2005. However, the retrieval of out-edges using IndexedBitArrayEdges is more memory-efficient than that of IntervalResidualEdges. Therefore, execution spends much less time performing garbage collection with IndexedBitArrayEdges which results in it being 37.42% faster than IntervalResidualEdges under these settings.

6. CONCLUSIONS

In this paper, we propose and implement three compressed out-edge representations for distributed graph processing, termed BVEdges, IntervalResidualEdges, and IndexedBitArrayEdges. We focus on the vertex-centric model that all Pregel-like graph processing systems follow and examine the efficiency of our structures by extending one such system, namely Apache Giraph. Our techniques build on empirically-observed properties of real-world graphs and offer significant memory optimizations that are applicable to any distributed graph compressing system that follows the Pregel paradigm. Our IntervalResidualEdges and IndexedBitArrayEdges representations outperform Giraph’s default representation, namely ByteArrayEdges, and are able to execute algorithms over large-scale graphs under very modest settings. Furthermore, our representations are clearly superior than ByteArrayEdges when memory is an issue, and are capable of successfully performing executions in settings where Giraph fails due to memory requirements.

7. REFERENCES

[2] We knew the web was big... https://goo.gl/ugjWul