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Abstract—Real-life systems involving interacting objects are
typically modeled as graphs and can often grow very large
in size. Revealing the community structure of such systems is
crucial in helping us better understand their complex nature.
However, the ever-increasing size of real-world graphs, and our
evolving perception of what a community is, make the task of
community detection very challenging. One such challenge, is the
discovery of the possibly overlapping communities of a given
node in a billion-node graph. This problem is very common
in modern large social networks like Facebook and LinkedIn.
In this paper, we propose a scalable local community detection
approach to efficiently unfold the communities of individual
target nodes in a given network. Our goal is to reveal the
groupings formed around nodes (e.g., users) by leveraging the
relations of the different contexts the nodes participate in. Our
algorithm, termed Local Dispersion-aware Link Communities
or LDLC, measures the similarity of pairs of links in the
graph as well as the extent of their participation in multiple
contexts. Then, it determines the ordering that we should group
the links in order to form communities. Our approach is not
affected by constraints existent in previous techniques (e.g., the
need for several seed nodes or the need to collapse multiple
overlapping communities to one). Our experimental evaluation
using ground-truth communities for a wide range of large real-
world networks show that LDLC significantly outperforms state-
of-the-art methods on both accuracy and efficiency.

I. INTRODUCTION

Networks are a powerful tool for modeling relations and in-
teractions of entities in the real world. Real-world networks are
continuously growing and are often massive; yet they exhibit
a high level of order and organization, which allows the study
of properties such as the power-law degree distribution and the
small-world structure [6], [8]. Another important characteristic
of networks is the presence of community structures [12].
At a high level, communities are groups of nodes that share
a common functional property or context, e.g., two people
that attended the same school, or two movies with the same
actor. In several cases, communities in a network are distinct,
e.g., Bulls vs. Knicks fans. However, it is often the case that
communities overlap. Figure 1 illustrates the communities of
an individual in a social network, i.e., her family, co-workers,
basketball buddies and friends from college. It is obvious that
the communities may overlap in different ways. For example,
a co-worker may also be a basketball buddy and a friend from
college. Such overlapping communities may have a complex
structure of connections that are not easy to discern and are
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Fig. 1: Illustration of the social circles of an individual. Her
family, co-workers, basketball buddies and friends from college
are distinct yet overlapping communities.

more challenging to identify compared to non-overlapping
ones.

Effectively extracting the community structure of a node in
a network has many useful applications. For example, we can
provide more informative and engaging social network feeds
by better understanding the membership of an individual to
various organizational groups. We can also suggest common
friends of an individual to connect because they share mutual
interests. We can create match-making algorithms for online
players based on the similarity of their game play. Finally, we
can identify groups of customers with similar behavior and
enhance the efficiency of recommender systems.

Early community detection approaches focused either on
grouping the nodes of a network or on searching for links
that should be removed to separate the clusters [9]. However,
these approaches did not consider the fact that communities
may overlap, and ultimately could not provide an accurate
representation of a network’s community structure. Algorithms
that followed [1], [7], [14], [27], [28], [30] allow for nodes
to belong to several overlapping communities by employing
techniques such as link clustering, matrix factorization, and
personalized PageRank vectors. Still, these approaches are
not applicable to the massive graphs of the Big Data era,
as they focus on the entire graph structure and do not scale
with regards to both execution time and memory consumption.
Recent efforts [16], [19], [20] locally expand an exemplary



seed set in the community of interest and manage to scale
to large networks. Such approaches employ random walks to
estimate the likelihood of a node to participate in the target
community. Studies of real-world networks show that two
nodes are more likely to be connected if they share multiple
communities in common [32]. For example, people belonging
to both the co-workers and basketball buddies communities
of Figure 1, are expected to know each other with high
probability. Hence, as the overlapping area is in fact denser
than the actual communities, seed set expansion methods are
driven towards nodes that reside in the overlap. In addition
to this, all scalable methods require multiple seeds to avoid
detecting multiple overlapping communities as a single one.
This is a challenge, as it is usually the case that we are
interested in all communities of a single node, instead of
seeking one community involving multiple predefined nodes.
Finally, seed set expansion approaches are shown to perform
well when detecting relatively large communities, whereas
high quality communities are in fact small [32].

In this paper, we focus on the neighbors of a single node in
the network, i.e., its egonet, and aim at extracting the –possibly
overlapping– communities in which this node belongs to. We
build upon the ideas of link clustering [1], [7] and employ
similarity measures that allow us to effectively handle densely
connected overlaps between communities. Our intuition is that
when grouping pairs of links we should capture the extent to
which a link belongs to multiple overlapping communities. To
this end, we utilize a dispersion-based tie strength measure
that helps us quantify the participation of a link’s adjacent
nodes to more than one communities. Our approach is both
efficient and scalable as we focus on local parts of graphs
featuring a target node and its neighbors. As we show in
our experimental evaluation, we produce a more accurate and
intuitive representation of the community structure around a
node for a number of real-world networks.

In summary, we make the following contributions:

• We propose a local community detection algorithm
that effectively reveals the overlapping nature of real-
world network communities of individual target nodes.

• We operate with less input from the user (one single
seed vs multiple) and generate communities of equal
or better quality.

• We experimentally evaluate our algorithm against
state-of-the-art approaches using publicly available
networks. Our results show that our approach sig-
nificantly outperforms current methods using popular
evaluation metrics.

• We reduce the execution time notably, by focusing
on the neighborhood of a node and thus, manage to
handle billion-edge scale graphs.

Our paper is organized as follows: We first introduce
some definitions and metrics that will be useful in describ-
ing our approach in Section II. In Section III, we describe
our hierarchical overlapping community detection algorithm
named Local Dispersion-aware Link Communities (LDLC).
In Section IV, we extensively evaluate our approach both
qualitatively and quantitatively. Section V reviews related work
and finally, Section VI concludes our paper.

II. BACKGROUND

In this section we review some basic principles and defi-
nitions for our work. First, we provide the definition of the
egonet and then we discuss measures that are used to estimate
the strength of ties in networks. Finally, we give the definition
of partition density and detail the dataset used in our study.

A. Egonet

Large-scale graph mining methods are often based on local
neighborhoods of nodes [13]. The set of nodes that are one
hop away from a given node allows for a variety of scalable
analyses that build intuition about that node and its role. In
the context of social networks, this one hop neighborhood is
frequently called the egonet. Figure 1 depicts such an egonet
of an individual and the overlapping communities she is part
of. We aim at extracting the community structure formed by
the nodes connected to a single target node. Thus, we focus
on the egonets of target nodes and so, we are able to scale to
graphs of extreme volume.

B. Tie Strength Measures

The impact of the closeness between nodes in a network’s
dynamics has been studied extensively [15], [21]. Under-
standing the complex nature of interacting objects calls for
quantifying the strength of ties to distinguish the connections
of particular importance. We outline here the tie strength
measures that we employ in the context of this work:

1) Embeddedness: Intuitively, a large number of shared
neighbors between nodes indicates a strong tie, whereas a few
mutual neighbors indicate a weak tie. Therefore, a frequently
used measure to estimate the tie strength between two nodes
is embeddedness, formally defined as:

emb(i, j) = |N+(i) ∩N+(j)| (1)

where N+(i) is the set of nodes adjacent to i.

2) Jaccard similarity coefficient: The Jaccard similarity
coefficient is a frequently used measure of similarity of two
sets. In the case of two nodes in a network, the Jaccard
similarity coefficient can be applied on the corresponding sets
of neighbors:

J(i, j) =
|N+(i) ∩N+(j)|
|N+(i) ∪N+(j)|

(2)

3) Absolute and Recursive Dispersion: Backstrom and
Kleinberg [2] propose the use of dispersion-based measures
for identifying spouses or romantic partners in a network.
They analyze real data from Facebook and conclude that high
dispersion is indeed present, not only to spouses or romantic
partners, but to people who share multiple relevant aspects of
their social environment in general.

Formally, we consider the egonet Gu of u in G and define
absolute dispersion as:

disp(u, v) =
∑

s,t∈Cuv
s<t

dv(s, t) (3)



TABLE I: Graphs of our dataset reaching up to 1.8 billion edges.

Graphs Type Nodes Edges Av. Degree Av. Community Size
DBLP Co-authorship 317, 080 1, 049, 866 3.31 22.45
Amazon Co-purchasing 334, 863 925, 872 2.76 13.49
Youtube Social 1, 134, 890 2, 987, 624 2.63 14.59
LiveJournal Social 3, 997, 962 34, 681, 189 8.67 27.80
Orkut Social 3, 072, 441 117, 185, 083 38.14 215.72
Friendster Social 65, 608, 366 1, 806, 067, 135 27.53 46.81

where Cuv is the set of common neighbors of u and v
in Gu, and dv(s, t) is a distance function equal to 1 when s
and t are not directly linked themselves and have no common
neighbors in Gu other than u and v, and 0 otherwise.

For a fixed value of disp(u, v), increased embeddedness
is a negative predictor of whether v is close to u. Thus,
absolute dispersion is more effective when normalized using
embeddedness. In addition to this, its performance is found to
strengthen when applying it recursively as follows. First, we
consider xv = 1 for all neighbors v of u. Then, we iteratively
update xv using the formula:

xv =

∑
w∈Cij

x2
w + 2

∑
s,t∈Cij

s<t

dv(s, t)xsxt

emb(u, v)
(4)

The value produced after the third iteration of (4) is
empirically found to perform the best [2]. We will refer to
this value as recursive dispersion of v in Gu for the rest of
this paper.

C. Partition Density

Agglomerative community detection algorithms provide us
with a dendrogram describing the hierarchical organization
pattern of communities. To obtain meaningful communities
from the dendrogram it is necessary to determine the level
at which to cut the tree at. Ahn et al. [1] introduced partition
density D, and cut the dendrogram at the level that produces its
optimal value. Partition density is formally defined as follows:

D =
2

|E|
∑
c∈C

ec
ec − (nc − 1)

(nc − 2)(nc − 1)
(5)

where C is the set of communities discovered, ec is the
number of links in a community c ∈ C, and nc is the number
of nodes all the links in ec touch. Partition density does not
suffer a resolution limit like modularity [10], as every term in
Equation (5) is local in each community c.

D. Networks of our Dataset

In this work, we employ all six of the real-world networks
with available ground-truth communities that are provided by
the Stanford Network Analysis Project (SNAP).1 In particular,
our evaluation is based on the top-5, 000 highest quality
communities of each of these networks [29]. Table I provides

1https://snap.stanford.edu/data/#communities

the details of our dataset. DBLP is a co-authorship network
and ground-truth is formed from authors who published in the
same journal or conference. Amazon is a product co-purchasing
network and the annotated communities associated with it are
based on the categories of the products. Finally, Youtube, Live-
Journal, Orkut, and Friendster are all social networks and user-
defined groups are considered as ground-truth communities.
We observe in Table I, that our dataset features a graph that
exceeds 1.8 billion edges, namely Friendster. We also see that,
the average community size of most networks is relatively
small, with the exception of Orkut with an average size of
215.72.

III. LOCAL DISPERSION-AWARE LINK COMMUNITIES

In this section we describe in detail our approach for
local community detection. We commence by examining the
coverage ratio of egonets on the ground-truth communities of
the networks in our dataset. We then discuss the difficulties
that existing methods based on seed set expansion and link
clustering face, due to the nature of real-world overlapping
communities. We show that the use of dispersion-based mea-
sures of tie strength can alleviate such issues. Finally, we
present our algorithm along with a brief analysis.

A. Egonet Coverage Ratio

Community detection methods that focus on the global
structure of graphs fail to scale to the massive volume that real-
world networks reach. We aim at detecting communities for
large-scale graphs efficiently. To this end, we begin discussing
our approach by investigating the fraction of nodes of ground-
truth communities that are part of egonets of nodes that belong
to the corresponding communities.

Figure 2 illustrates the coverage ratio of egonets regarding
the ground-truth communities of the networks of our dataset.
For every ground-truth community of all six networks of
our dataset, we examined the coverage of the egonets of
each of the nodes belonging to the community. The average
coverage ratio depicted in Figure 2, results from the egonets
of the nodes with the largest coverage for each ground-truth
community. We observe that the coverage ratio is very high
for all networks, ranging from 87% to 97%, with the exception
of Orkut at slightly under 67%. The lower coverage ratio
of Orkut is attributed to the larger average community size
of this network, and it remains low even when using the 2-
step geodesic neighborhood of nodes, as reported in [16]. Our
findings are aligned with the empirical observations of Yang
and Leskovec [32], who report that high quality communities
usually consist of no more than 100 nodes and community



 0

 0.2

 0.4

 0.6

 0.8

 1
C

o
ve

ra
g

e 
P

er
ce

n
ta

g
e

DBLP
Amazon
Youtube

LiveJournal
Orkut

Friendster

Fig. 2: Egonet coverage ratio for the ground-truth communities
of the different graphs provided by SNAP. We show that the
coverage ratio for all graphs, with the exception of Orkut, is
above 87%. The ratio is lower for Orkut due to its large average
ground-truth community size.

members tend to organize themselves around hub node(s) that
are linked with most of the nodes in the community.

The large coverage ratio of egonets on ground-truth com-
munities verifies our intuition that high quality communities
can be detected when focusing on egonets of nodes. This
allows us to significantly reduce complexity by focusing on
a small part of a possibly extremely large network. Even in
the case of nodes with extremely high-degree, dealing with
the corresponding egonet instead of the global structure of the
graph is beyond comparison with regard to efficiency. Space
complexity is also reduced greatly, as the memory footprint
of the egonet is insignificant when compared to the whole
network.

B. Effective Detection of Overlaps Using Hierarchical Link
Clustering and Dispersion-based measures

Studies on the structure of real-world networks have re-
vealed that there is an increasing relationship between the
number of shared communities and the probability of nodes
being linked with an edge [32]. Hence, the nodes residing in
overlapping parts of communities are more densely connected
than the nodes residing in the non-overlapping parts. Moreover,
connector nodes, i.e., nodes linked with most of the members
of a community, belong to the overlap [32].

Recent local community detection methods [16], [19],
[20] expand seed sets by utilizing the dynamics of random
walks initiating from the seeds. The participation of a node
in the target local community is determined by the corre-
sponding probability score that results from these random
walks. Naturally, nodes that reside in the dense overlapping
area of multiple communities of a particular node have high
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Fig. 3: Social communities in the egonet of an individual (10)
in a social network. Using a force-directed layout we can easily
identify two well-connected groups of acquaintances. A special
tie between (10) and (6) is evident, as (6) is the only vertex
having links (red colored) towards both communities.

probability scores for random walks starting off this node. In
addition to this, nodes outside the overlapping area that are
selected in the resulting community due to their probability
scores, do not necessarily belong to the same community,
as each random walk starting from a seed node is likely
to reach a different community. Hierarchical link clustering
approaches [1], [7] examine the similarity of pairs of links, and
thus, avoid grouping nodes that actually belong to disparate
communities. However, they are also unable to handle overlaps
appropriately, as they consider that communities in whole
are more densely connected themselves than their overlapping
parts [31].

Figure 3 illustrates the egonet of an individual (10) in a
social network. The use of a force-directed layout enables us
to easily identify the organizational groups shaped around this
node. In particular, we observe that the neighbors of node
10 form two well-connected groups. We also notice, that the
only node in the egonet that maintains links (red-colored) with
nodes of both groups other than 10, is 6. The relationship
between nodes 10 and 6 is a particular case of a strong
tie which is frequent in networks and has to be considered
when identifying overlapping communities. Node 6 acts as a
connector in the egonet of 10 and is linked with nodes that
are not themselves well-connected, as they belong to different
organizational groups.

We address the task of local community detection by
merging pairs of links in the egonet of a target node. Links
often depict a particular relation, e.g., a friendship between
two nodes, whereas nodes are usually part of multiple groups.
Thus, grouping links instead of nodes allows for the par-
ticipation of nodes into multiple overlapping communities.
To quantify the relevance of two edges eik and ejk, we
can properly adopt the Jaccard similarity coefficient in the
context of links [1]. The use of the common node k of
the two links would introduce bias without providing useful
information. Therefore, using Equation (2), the similarity of
the pair (eik, ejk) is defined as:



J(eik, ejk) = J(i, j) =
|N+(i) ∩N+(j)|
|N+(i) ∪N+(j)|

(6)

where i and j are both adjacent to k.

The communities that result after performing link cluster-
ing in the egonet of Figure 3 using Equation (6), and cutting
at the level of optimal partition density, are: (0,1,2,3,4,5,10),
(6,7,8,9,10) and (2,5,6,7,8,9,10). We see that the third commu-
nity groups numerous nodes that are not linked together (2,5
with 7,8,9). This behavior is exhibited due to the use of the
Jaccard similarity coefficient, as this measure is unable to cap-
ture how well the neighbors of two nodes are interconnected.

Here, we propose the use of the recursive dispersion
measure along with the Jaccard similarity coefficient in order
to estimate the relevance of pairs of links. Dispersion-based
measures fit perfectly in the task of overlapping community
detection. Through their use, we are able to single out con-
nector nodes that lie in overlapping parts of communities. For
example, using Equation (3) we obtain that node 6 exhibits the
highest absolute dispersion in the egonet of 10 with a value
of 4. Hence, we can favor groupings of pairs of links with
adjacent nodes that share a lot of common neighbors (high
Jaccard similarity coefficient) only if these neighbors are also
well interconnected (low recursive dispersion). In this way,
connector nodes are involved in groupings at a higher level of
the resulting dendrogram, which then depicts more accurately
the hierarchical structure of the communities in the egonet.
Formally, we define the similarity S of two pairs of links
(eik, ejk) to be:

S(eik, ejk) =
J(eik, ejk)

rec(i) + rec(j) + rec(k)
(7)

where rec(i) is the recursive dispersion of i in the egonet
of the target node.

Returning on the exemplary egonet of Figure 3, using
Equation (7) instead of (6) we detect through hierarchical
link clustering the communities: (0,1,2,3,4,5,10), (7,8,9,10),
(2,5,6,10), and (6,8,9,10). We observe that the nodes of all
communities are much more well-connected. Moreover, node
6 is featured in two communities, in which every two distinct
vertices are adjacent, i.e., they form cliques. Thus, through
Equation (7), we are able to penalize the high dispersion that
node 6 exhibits in this egonet, and avoid forming communities
featuring nodes of different organizational groups.

C. Our Proposed LDLC Algorithm

We present here the LDLC algorithm for finding local
communities in large-scale graphs. LDLC is a hierarchical
agglomerative clustering algorithm that detects the commu-
nities of a target node in a network by progressively merging
pairs of links in the corresponding egonet of this node. The
order in which we select these pairs of links is determined
by their ranking according to Equation (7). When all pairs are
merged, a dendrogram is produced and depicts the hierarchical
organization of the communities the target node belongs to. We
may cut this dendrogram at the level that produces the optimal

Algorithm 1: LDLC(G, u)

input : An undirected network G = (V,E) and a node u ∈ V .
output : A dendrogram depicting the hierarchical (possibly overlapping)

communities of Gu.
1 begin
2 Gu(Vu, Eu)← egonet(G, u);
3 rec← dict();
4 foreach v ∈ Gu, v 6= u do
5 rec[v]← 1;

6 for iteration← 1 to 3 do
7 foreach v ∈ Vu, v 6= u do

8 rec[v]←

∑
w∈Cuv

x2
w+2

∑
s,t∈Cuv

s<t

d(s,t)xsxt

emb(u,v)
;

9 similarities← heap();
10 for k ∈ Vu do
11 for (eik, ejk)← combinations(N+(k), 2) do
12 J(eik, ejk)←

|N+(i)∩N+(j)|
|N+(i)∪N+(j)| ;

13 S(eik, ejk)←
J(eik,ejk)

rec[i]+rec[j]+rec[k]
;

14 similarities← (S(eik, ejk), (eik, ejk));

15 foreach (similarity, (eij , ejk)) ∈ similarities do
16 join clusters(eik, ejk);
17 if len(clusters) == 1 then
18 break;

partition density, or alternatively, we can cut it at the level that
produces the desired number of communities.

We outline our suggested LDLC in Algorithm 1. The algo-
rithm accepts a graph G(V,E) and a node u ∈ V as its input
and produces a dendrogram depicting the rich hierarchical
structure of u’s (possibly overlapping) communities. We start
by loading in memory the egonet of u, i.e., node u, its adjacent
nodes, and the edges among them (Line 2). Every edge e ∈ Eu

is initially considered to be a community of its own, with the
two adjacent nodes as its members.

Lines 3–8 compute the recursive dispersion of all neighbors
of u, v ∈ Vu using Equation (4). Afterwards, for every
node in the egonet, we examine the similarity of all possible
pairs of its links. The use of a heap allows us to maintain
the similarities of pairs of links sorted (Line 9). We first
calculate the distance of two links using the Jaccard similarity
coefficient (Line 12), and then we balance this distance using
the previously calculated recursive dispersion measure, as
specified in Equation (7). In particular, we divide the value
of Jaccard similarity coefficient with the sum of the recursive
dispersion of the nodes involved in the links (Line 13), and
insert the result in the heap holding the similarities of all pairs
(Line 14).

Finally, we iterate through the sorted similarities and group
the respective links (Lines 15–16). At every grouping stage,
we keep track of the action that takes place to allow for
the construction of the dendrogram. Moreover, we calculate
the partition density using Equation (5), to determine at the
end the best level at which to cut the tree at. When the tree
is built, i.e., when we are left with a single cluster, LDLC
terminates (Lines 17–18). The dendrogram we produce reveals
the overlapping nature of the network’s communities through
a rich and intuitive hierarchical structure.



IV. EXPERIMENTAL EVALUATION

We compare LDLC against three local community detection
algorithms based on seed set expansion, namely LEMON [20],
LOSP [16], and HeatKernel [19]. We first discuss the
specifications of our experimental setting. Then, we proceed
with the evaluation of our LDLC by answering the following
questions:

• How well does LDLC overcome the need of constraints
other methods have, such as requiring multiple seeds
to avoid mixing-up multiple overlapping communities,
and detecting mostly large communities?

• How well does LDLC perform in detecting communi-
ties compared to other methods?

• How efficient is LDLC when compared to other local
community detection approaches?

A. Experimental Setting

Our dataset comprises six social, co-authorship, and co-
purchasing networks of different sizes, which are outlined in
Section II-D. We implemented LDLC using Python 2.7 and
the Snap.py interface2 for the SNAP system. Our algorithm is
publicly available.3 We conducted our timing experiments on a
Dell PowerEdge R630 server with an Intel R©Xeon R© E5-2630
v3, 2.40 GHz with 8 cores, and a total of 256GB of RAM. Our
approach could be easily run in parallel as each node can act
unilaterally, but we restricted to using only one core to avoid
treating the rest of the approaches unfairly.

B. Qualitative Evaluation

We begin our discussion on experimental results by il-
lustrating the behavior of our LDLC against LEMON, when
discovering the communities of a target node in the DBLP
co-authorship network.

Figure 4 depicts the egonet of the target node which we use
as a seed to both algorithms (white colored node), as well as
the communities detected by the two algorithms. The force-
directed layout we use to enhance the visualization, reveals
that the nodes form two well-connected groups. The nodes of
the grouping in the right actually belong to one of DBLP’s
high quality ground-truth communities to which none of the
nodes of the left grouping belongs to. Moreover, we observe,
that the pink colored node is part of the left group but features
a link with a node that is part of the right group and is not
connected with any of the pink node’s neighbors other than the
white node. This results to a high value of absolute dispersion
for the pink node in the egonet of the white node.

Figure 4a illustrates part of the community that is detected
using LEMON. In particular, providing the white colored node
as a seed to LEMON, results in a detected community of
81 nodes in total, featuring all the neighbors of the seed
node, as well as nodes that are only connected to the target’s
neighbors. The numbers on the nodes in Figure 4a indicate
their ranking according to their likelihood to belong to the
target community. The community detected by LEMON exhibits

2https://snap.stanford.edu/snappy/index.html
3https://bitbucket.org/panagiotisl/ldlc

unexpected or undesired attributes. First, high quality ground-
truth communities are reported to be much smaller than the
community detected by LEMON. In particular, the high quality
communities of DBLP have an average community size of
22.45 nodes, as shown in Table I. Second, using the target
node as the single seed results in the participation in the
detected community of nodes that belong to different social
circles. In particular, LEMON performs random walks starting
from the target node to calculate the likelihood of a node
belonging to the detected community. Naturally, nodes of
different social circles are likely to exhibit high likelihood
and LEMON is unable to distinguish between the different
and possibly overlapping communities of the target node. This
behavior is evident in Figure 4a. We observe that nodes ranked
from 2 to 7 according to their likelihood, reside in the middle
part of the left well-connected group of the seed’s neighbors.
The node that LEMON adds to the community immediately
after, ranked 8th, does not share a single link with these nodes,
and clearly belongs to another community. Similarly, LEMON
continues to add nodes in the detected community from diverse
areas around the seed node, until it meets a stopping criterion.
Therefore, we see that LEMON favors nodes that reside in dense
areas regardless of their relevance to one another. Overcoming
this issue would require multiple cherry-picked seeds that
would increase the likelihood of nodes that are actually part
of the same community. This is equally true for other methods
that employ random walks for seed set expansion, including
LOSP.4 Last, the pink colored node continues to exhibit high
dispersion in the community detected by LEMON.

Figure 4b illustrates the communities discovered in the
egonet of the white colored node using LDLC. We cut the
tree produced by LDLC at the level that produces the optimal
partition density and observe that our algorithm detects two
communities, depicted with pink and teal color, respectively.
The pink community has a size of 12 nodes, and the teal
community a size of 33 nodes. The average size of the two
communities of LDLC (22.5) is very close to the average
size of the ground-truth communities of this network. Both
detected communities are well-connected. In addition, the
pink-colored community is a very accurate detection of an
actual ground-truth community. Finally, the pink-colored node
is featured in both detected communities and does not exhibit
high dispersion in either community.

We saw that previous approaches may not detect com-
munities well in situations like the one that we described in
this qualitative evaluation. Of course, there are other examples
where previous approaches can accurately identify commu-
nities. Our goal was to show the strengths of our method
through a concrete example. To measure performance more
objectively, we now turn to comparing the accuracy of previous
local community detection techniques and LDLC by using our
ground truth datasets.

C. Evaluation via Ground-Truth

Evaluating and comparing communities detected by dif-
ferent algorithms is not a trivial task. Large networks exhibit
extremely complex organization and cannot be visualized in

4As the authors show in [16] (Figure 2) the presence of three seeds is
essential to enable LOSP to distinguish between two overlapping cliques.
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Fig. 4: The egonet of a node in the DBLP graph. LEMON’s detected community (4a) features, among others, all the nodes in the
egonet. Numbers indicate the LEMON’s ranking of the nodes according to their likelihood to belong to the detected community.
LDLC uses hierarchical link clustering in the egonet of the target node and penalizes the links with nodes exhibiting high
dispersion to come up with two communities, colored teal and pink (4b).

meaningful ways. However, we can measure the accuracy
of a community detection algorithm given the presence of
ground-truth communities [32]. In particular, we can quantify
the similarity of a detected community C and a ground-truth
community T using F1 score, which is defined as:

F1(C, T ) =
2 ∗ Precision(C, T ) ∗Recall(C, T )

Precision(C, T ) +Recall(C, T )
(8)

where precision is the fraction of detected nodes that are

relevant and recall is the fraction of relevant nodes that are
retrieved:

Precision(C, T ) =
|C ∩ T |
|C|

(9)

Recall(C, T ) =
|C ∩ T |
|T |

(10)

As there is no standard way of selecting a seed, we



TABLE II: F1 Score comparison.

Algorithm DBLP Amazon Youtube LiveJournal Orkut Friendster
LDLC 0.843 0.894 0.560 0.876 0.438 0.688

LEMON [20] 0.525 0.910 0.190 - 0.170 -

LOSP [16] 0.691 0.845 0.413 0.674 0.216 -

HeatKernel [19] 0.257 0.325 0.177 0.131 0.055 0.078

followed the procedure performed in [19]. In particular, we
execute LDLC for all ground-truth communities of each net-
work of our dataset, using every single node as an individual
seed. For each ground-truth community, we kept the seed that
produced the community with the highest F1 score. Table II
shows the average F1 score of LDLC for all ground-truth
communities of each network. In addition, we present results
of 3 state-of-the-art local community detection algorithms on
the same datasets. In particular, we used the publicly available
implementation of LEMON5 to perform experiments through
the same exhaustive procedure. We also executed LEMON
using 3 random seeds as suggested in [20]. The results we
obtained are worse than the ones reported in [20] for both
cases, as the optimal initialization setting of LEMON differs
for the various networks of our dataset. Therefore, we opt to
present in Table II the results reported in [20] instead. The
implementation of LOSP is not publicly available. Therefore,
we include the results of LOSP on the same dataset reported
in [16]. Finally, we also report results of HeatKernel
from [19]. We note that the results of LOSP and HeatKernel
are obtained using a subset of only 500, and 100 ground-truth
communities for each network, respectively.

We see in Table II that our LDLC manages to outperform
all three state-of-the-art algorithms for all the networks of our
dataset, with the exception of the Amazon co-purchasing graph
for which LEMON is slightly better. The average F1 score
of LDLC is significantly larger for all other networks, and
the improvement is more evident on the social networks of
our dataset, i.e., Youtube, LiveJournal, Orkut, and Friendster.
For DBLP, Youtube, and LiveJournal the results of LDLC
are impressive and much more accurate than all three other
methods. Regarding Orkut, accurate detection is a particularly
hard task, as the size of the ground-truth communities is
unusually large in this network. Nonetheless, LDLC is much
more effective than the other methods. For the friendship
graph of the Friendster social network, we employed SNAP in
order to load the graph in our infrastructure. Friendster almost
reaches 2 billion edges and both LEMON and LOSP have failed
to report results for this graph due to memory consumption.
HeatKernel employs pylibbvg6 and also manages to load
graphs of this scale. We see in Table II that LDLC is able
to achieve an F1 score of 0.688, which clearly outperforms
HeatKernel. The results regarding the Amazon network
differentiate due to the particular nature of its communities,
which allows all 4 algorithms to achieve high accuracy. More
specifically, Amazon is a co-purchasing network and, thus, does
not feature any connector nodes [32]. In addition, the overlap-
ping ground-truth communities of Amazon are usually nested

5https://github.com/YixuanLi/LEMON
6https://pypi.python.org/pypi/pylibbvg

communities, that are subsets of other communities [32].

D. Execution Time comparison

We further evaluate LDLC as far as the execution time is
concerned. In particular, for every graph of our dataset we
executed LDLC for 5, 000 random nodes of the graph, and
report here the average execution time needed. We perform
the same experiment using LEMON.

Table III shows the results we obtained for the two algo-
rithms and restate the results as reported in [16] for LOSP,
as its implementation is not publicly available. We observe
that LDLC is significantly faster than both other methods. In
particular, we are able to respond in real-time for the commu-
nities of all the graphs of our dataset, including Friendster
that comprises 1, 806, 067, 135 edges. We see in Table III
that LDLC significantly outperforms both LEMON and LOSP
with regard to execution time. This is expected, as LDLC
operates only on the egonet of a target node. To produce the
egonet we simply need to apply intersection on the sets of
neighbors of all neighbors of the target node. Instead, LEMON
and LOSP perform multiple random walks to generate a local
neighborhood around the target node, a procedure that is much
more costly timewise. In addition, the local neighborhood of
LEMON or LOSP is usually significantly larger than the egonet
of the target node. Therefore, LDLC is applied on a much
smaller portion of the original graph, compared to LEMON and
LOSP. We note, that the average execution time of LDLC for
the Friendster graph is smaller than that for LiveJournal and
Orkut, as the egonets of the first are sparser. Thus, LDLC has
to iterate over fewer pairs of links in the grouping phase for
the graph of Friendster and terminates faster.

V. RELATED WORK

The problem of identifying communities emanates from
research on graph partitioning, which has been active since
the 1970s [18]. Girvan and Newman, with their seminal paper
on community detection [12], build on Freeman’s betweeness
centrality measure [11] and define edge betweeness as the
number of shortest paths between pairs of vertices that run
along an edge. Using this measure, they iteratively remove the
edges with high betweeness, as they have a tendency to connect
different clusters, and thus, reveal the underlying community
structure of a network. The algorithm is computationally
expensive, but this work sparked significant research in the
field of community detection [9].

Many clustering methods aim at maximizing modularity,
a measure introduced by Newman and Girvan [23]. Modu-
larity captures the quality of a specific proposed division of



TABLE III: Execution time comparison.

Algorithm DBLP Amazon Youtube LiveJournal Orkut Friendster
LDLC 0.0063 sec 0.0007 sec 0.0048 sec 0.1471 sec 0.3742 sec 0.0642 sec

LEMON 9.2781 sec 9.9206 sec 12.2579 sec - 13.1432 sec -

LOSP 0.38 sec 0.04 sec 3.85 sec 1.47 sec 4.74 sec -

a network into communities, by examining how higher the
internal cluster density is than the external cluster density. One
such method is that of Clauset et al. [4]. There, the proposed
algorithm discovers a hierarchical community structure and
identifies the best level to cut the tree at as the one that pro-
duces the division that maximizes modularity. Blondel et al. [3]
propose Louvain, another greedy modularity maximization
algorithm. Nodes are iteratively aggregated into communities
as long as such a move locally improves modularity. Methods
of this class are know to suffer from a resolution limit [10].

Another popular direction in the field of community de-
tection, is the use of random walks. Pons and Latapy [25]
use random walks to measure the similarity between vertices.
In another line of work, Infomap [26] finds the shortest
multilevel description of a random walker to get a hierarchical
clustering of the network.

The previous methods, hierarchically nested or else, do
not take into account the fact that communities in networks
may overlap [24]. Palla et al. [24], propose the Clique
Percolation Method, a local approach based on k-
cliques. Overlaps between communities are allowed as a given
node can be part of several k-clique percolation clusters at
the same time. A revolutionary idea in overlapping commu-
nity detection was introduced in two approaches that were
developed almost simultaneously [1], [7]. The core of these
approaches is that instead of focusing on grouping nodes,
communities should be formed by considering groups of links.
This allows for a natural incorporation of overlaps between
communities while also retaining a hierarchical community
structure. Ahn et al. [1] additionally report a comparison of
their proposed algorithm with previous approaches, proving
that it outperforms all of them.

Later research efforts focused on providing more scalable
approaches. Coscia et al. [5] use egonet analysis methods and
propose DEMON that allows nodes to vote for the communities
they see locally in an effort to improve the quality of overlap-
ping partitions. Yang and Leskovec [28] report that, contrary
to previous belief, community overlaps are more densely
connected than the non-overlapping parts. This relaxes the
assumption that governed all previous efforts on overlapping
community detection. Building on their empirical observations,
they also propose BIGCLAM [30], a community detection
method that uses matrix factorization to detect communities.
BIGCLAM requires as an input the number of communities
to look for, or else should be guided with the minimum and
maximum number of communities as well as the number of
tries it should make. Gleich and Seshadhri [14] formalized
the problem of community detection as finding vertex sets
with small conductance, where conductance of a cluster is
a measure of the probability that a one-step random walk
starting in that cluster, leaves the cluster. They proposed the

use of personalized PageRank vectors to identify communities
with good conductance scores. A similar approach is investi-
gated in [27], where a number of alternative seeding phases
before the use of personalized PageRank vectors is examined.
However, minimizing conductance leads to the identification
of dense areas of a network as single communities, when they
are in fact overlapping parts of multiple communities [31].
These approaches are more efficient than previous overlapping
methods but fail to handle massive scale graphs.

Recent approaches depart from the direction of detecting
communities on the global graph structure. Instead, they
detect local communities in time functional to the size of
the community, and provide support for large scale graphs.
Kloster and Gleich [19] propose a deterministic local algorithm
to compute heat kernel diffusion and study the communities
it produces. The authors compare with PageRank diffusion
on real-world datasets and report that their approach is able
to detect smaller, more accurate communities, with slightly
worse conductance. Li et al. [20] propose LEMON that uses
seeds to perform short random walks and form an approximate
invariant subspace termed local spectra. Then, LEMON looks
for the minimum 1-norm vector in the span of this local
spectra such that the seeds are in its support. Building on
the findings of LEMON, He et al. propose LOSP [16] that is
additionally able to detect small communities and performs
better when initiated with a single seed. In another line of
work, Metwally et al. [22] employ general purpose clustering
algorithms to detect click rings that launch advertising traffic
fraud attacks. However, their techniques are not applicable on
single graphs, as they use multi-faceted graphs, where each
facet is a set of edges that represents the relationships between
the nodes in a specific context. Our approach focuses on local
communities but employs hierarchical clustering of pairs of
links in the egonet of a target node, using tie strength measures
that effectively handle networks with dense overlapping parts
of communities. Thus, we efficiently reveal a more accurate
hierarchical community structure in large scale networks.

VI. CONCLUSION

In this paper we propose and develop LDLC, a novel
local community detection algorithm for large scale graphs.
LDLC focuses on the egonet of a target node and performs
hierarchical agglomerative clustering on the egonet’s pairs of
links. We investigate measures that evaluate the strength of ties
in networks, building on the notion that mutual neighbors of
nodes may be or may be not well interconnected. The nodes
involved in ties that belong in the second category, act as
connector nodes between overlapping communities. Therefore,
in a hierarchical approach they should be considered for
grouping when the higher levels of the respective dendrogram
are forming. We achieve that, by using the recursive dispersion



measure to balance the similarity of two links and prioritize
the grouping of pairs of links with mutual neighbors that
function in a single context. Thus, our approach is able to
handle overlapping communities appropriately and provides
increased accuracy, while also revealing the rich hierarchical
structure of the communities of a node in the network. We
compare LDLC with three state-of-the-art local community de-
tection methods to highlight the effectiveness of our approach
when handling overlapping areas of multiple communities.
Moreover, we examine the accuracy of all algorithms against
ground-truth communities and find that LDLC significantly
outperforms all of them for a wide range of publicly available
networks. Finally, we conduct timing experiments to showcase
the improved efficiency LDLC offers for large scale graphs.

In the near future, we plan to investigate the performance
of LDLC by exploiting node attributes to assign weights to
links of networks, and adopting the Tanimoto coefficient [1]
to capture the importance of weighted links. For example, we
can assume that members of a social network group of a high
school’s alumni should be linked strongly in case they are born
in the same year. We believe that a comparison of LDLC’s
performance on the respective unweighted and weighted net-
works will be extremely interesting. Furthermore, a drift from
the currently available ground-truth communities depicting
metadata groups [17] to communities that better portray the
functional roles of a network’s nodes, will allow for a more
accurate comparison of community detection techniques. To
this end, we will collect data from social network groups where
membership signifies affinity.
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[24] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[25] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in Computer and Information Sciences-ISCIS
2005, 2005, pp. 284–293.

[26] M. Rosvall and C. T. Bergstrom, “Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated
systems,” PloS one, vol. 6, no. 4, p. e18209, 2011.

[27] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping community
detection using seed set expansion,” in Proc. of the 22nd ACM Int. Conf.
on Information & Knowledge Management, 2013, pp. 2099–2108.

[28] J. Yang and J. Leskovec, “Community-affiliation graph model for
overlapping network community detection,” in Proc. of the 12th IEEE
International Conference on Data Mining, 2012, pp. 1170–1175.

[29] ——, “Defining and evaluating network communities based on ground-
truth,” in Proc. of the 12th IEEE International Conference on Data
Mining, 2012, pp. 745–754.

[30] ——, “Overlapping community detection at scale: a nonnegative matrix
factorization approach,” in Proc. of the 6th ACM int. Conf. on Web
Search and Data Mining, 2013, pp. 587–596.

[31] ——, “Overlapping communities explain core–periphery organization
of networks,” Proc. of tihe IEEE, vol. 102, no. 12, 2014.

[32] ——, “Structure and overlaps of ground-truth communities in net-
works,” ACM Transactions on Intelligent Systems and Technology,
vol. 5, no. 2, p. 26, 2014.


