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Abstract. In this paper, we outline our effort to enhance the page-
view rates of e-content that online customers read on a popular portal
in Greece. The portal, athensvoice.gr, provides continuous coverage
on news, politics, science, the arts, and opinion columns and its cus-
tomers generate approximately 6 million unique visits per month. Gains
both in terms of advertisement and further e-content market penetration
were the objectives of our effort which yielded the PolyRecs system, in
production for more than a year now. In designing PolyRecs, we were
primarily concerned with the use of pages in real-time and to this end,
we elected to utilize five key criteria to achieve the aforementioned goals.
We selected criteria for which we were able to obtain pertinent statistics
without compromising performance and offered a real-time exploitation
of the user page-views on the go. In addition, we were keen in realizing
not only effective on-the-fly calculations of what might be interesting
to the browsing individuals at specific points in time but also produce
accurate results capable of improving the user-experience. The key fac-
tors exploited by PolyRecs entail features from both collaboration and
content-based systems. Once operational, PolyRecs helped the news por-
tal attain an average increase of 6.3% of the overall page-views in its
traffic. To ascertain the PolyRecs utility, we provide a brief economic
analysis in terms of measured performance indicators and identify the
degree of contribution each of the key factors offers. Last but not least, we
have developed PolyRecs as a domain-agnostic hybrid-recommendation
system for we wanted it to successfully function regardless of the under-
lying data and/or content infrastructure.

Key words: timely delivery of news articles, content-based furnishing
of news, hybrid recommendation systems, real-time content analysis.

1 Introduction

Serving just-on-time pertinent news items has become a key requirement for a broad
range of web portals, online publications and news agencies [1, 2]. Appropriately recom-
mending content in real-time has become the enabler for conducting successful business
in both online dissemination and e-publishing. By being proactive and by furnishing
more accurate suggestions providers undoubtedly benefit as users expend longer pe-
riods of time online, click-through-rates are increased and ultimately, revenue grows
either directly from advertisements or indirectly from ratings [3, 4].
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Until recently, suggestions for further reading for no-global content providers have
been mostly served using either one or a combination of the following criteria: a) time
that an article appeared, b) selection of articles from a single subject category, c) choos-
ing items either with semi- or manual manner, and d) picking items written by the same
author, source, etc. In this paper, we outline an effort to enhance the existing recom-
mendation system of athensvoice.gr, a popular news portal in the country that offers
news, articles on politics, arts, local affairs, opinion columns and user comments; the
portal has been operational for a number of years now and has seen its market share
to increase. We seek to accomplish the aforementioned objective by offering a novel
combined approach of content-based and collaborative filtering [5] along with real-time
analysis for newly arriving news items and improved user-experience through more
effective suggestions of items. To this end, we have improved the operation of the e-
magazine by offering a truly hybrid system for recommendations. To the best of our
knowledge, this is the first system in its kind that is both hybrid in nature and deploys
multiple selection criteria that get to be evaluated in real-time.

An exploratory effort to better understand the specific constraints based on
JavaScript-functions used to provide workbench measurements for PolyRecs’s key func-
tionalities showed that the slack for the time window within which recommendation
can be compiled is approximately 1 second before the user actually sees the corre-
sponding portion of the display. This is clearly a very tight period within which both
computation and displaying have to occur. We should indicate that athensvoice.gr

receives approximately 6 million visitors from unique IPs every month, with an average
of 2.3 pages served per user.

The developed system, termed PolyRecs, has both real-time and off–line compo-
nents. It serves recommendations produced dynamically as a visitor scrolls within a
web-page in a pre-specified portion of the page; the form of latter differs across devices
used to access content from the portal. Our prime objective has been two-pronged as
we seek to: 1) maintain strict requirements for the system’s responsiveness by having
97% of suggestions appearing in less than 1 second; displaying suggestions does call for
computing overheads that include elimination of news items already seen, incorporation
of just-arrived-pieces in the display, and implications due to specific profiling users may
elect to adopt, 2) divide the computational work as effective as possible between the
off–line (initial) component of the portal and the introduced on-line part of PolyRecs.
The off–line work gets done mostly through cron script jobs and they mostly involve
computations that have to do with the re-computation of correlation among subject
categories. In particular the tasks at hand entail computing cosine similarities among
new and old articles, backing up data and purging obsolete ones no longer required for
the engine, and finally, clearing up data from the database table that are considered
noise [6, 7]. This task is a CPU-hog [8] but in short time intervals required by the
average portal user, it contributes to the requisite overhead only incrementally.

We present the specific multiple criteria that collectively contribute towards rec-
ommendations presented to unique users and outline the PolyRecs functional elements
that place special emphasis on new posts. Clearly, the corpus of diversified content
items for athensvoice.gr does continuously change and/or gets updated. It is worth
mentioning that we have designed and developed both the underlying database and
content delivery system in a way that is agnostic to the particular characteristics of
the portal for which we sought out to increase page-views. In this regard, the salient
features of PolyRecs recommendation engine could be readily incorporated into news
and dissemination portals.
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PolyRecs has been operational for more than an year now and this has given us the
opportunity to carry out extensive experimentation and evaluation of all its key aspects.
To gauge the yield in terms of economic benefit to the site, we introduce a metric to
quantify possible gains; over time, the metric has helped us ascertain the effectiveness
of our overall recommendation strategy in conjunction with the data we obtain from
the Google Analytics Service. The proposed metric uses a visitor’s clicks as its main
factor that helps track the criteria which triggered the produced recommendations.

Our approach has assisted athensvoice.gr to increase on the average the time
visitors stay on the portal by approximately 6% as well as it has yielded improved rates
for content retrieval. To the best of our knowledge, this is the first such production
system, that is both hybrid and uses multiple criteria, deployed and evaluated on
an operational e-content portal. Our paper is organized as follows: Section 2 offers
related work and Section 3 outlines key requirements for the proposed system. Section 4
presents all key aspects of our recommendation approach. Finally, Sections 5 and 6
presents key findings and concluding remarks respectively.

2 Related Work

The emergence of digital forums, e-shops, and modern electronic marketing ecosystems
has ushered in a flurry of activity in developing recommending systems [1, 5, 3, 9, 10].
Moreover, a range of metrics have been proposed to help ascertain the corresponding
value of such prototypes and/or production systems in specific areas of application [11,
12, 13, 14, 4, 5, 6].

Efforts in [5, 1] have focused on recommendations for search engines using ma-
chine learning algorithms for predicting news on the wire [15, 16], expanded vertical
search [17] and crowd-sourcing to better evaluate the learned approaches deployed [1].
In [3] the deployment of a hybrid recommending engine for the Google-News, a news
aggregator, and its comparison with a collaborative filtering approach [9] is carried
out; if only logged–in users are considered, a noteworthy performance improvement is
reported with respect to plain filtering approaches. In [18], the imprecision of the click-
through rates is examined in the context of the Plista news-recommender on hourly
and weekly bases; Plista functions as an aggregator and delivers suggestions to multi-
ple web portals. Our approach combines characteristics from both collaborative [2] and
item/user-based content-based filtering [5, 3]. In this respect, our approach resembles
in part prior efforts [5, 11, 3] when it comes to combining techniques for yielding rec-
ommendations. However, we use diverse criteria that can be dynamically introduced
during the calibration of our system. More importantly, we combine real-time and off–
line characteristics for we strive to comply with short timing requirements to produce
quality suggestions for users.

In [6, 19, 1], a number of metrics were introduced using predominantly click-rates
to derive recommendations; the effectiveness of such metrics is also compared with
that of prior approaches [6, 19, 1]. PolyRecs markedly differs from the above efforts as
we not only exploit clicks users perform but more importantly, we keep track of the
degree by which the used criteria are affected by the dwelling of unique users. This
does lead to a more sophisticated calibration of the overall recommendation engine
used by athensvoice.gr. Moreover, PolyRecs provides a framework for introducing
specialized machine learning approaches in recommending items from the continually
changing content of the portal.
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3 PolyRecs Approach

As we wanted to improve PolyRecs page-views and increase unique visits to the pro-
duction portal, we actively avoided during the design of the engine to provide rec-
ommendations based on widely used heuristics such as articles written by same (or
similar) authors, content in the same category and/or just popular items within the
portal. These techniques although effective at times, fail to consider a reader’s own in-
terests at the time of browsing. In addition, prior stated-preferences may be discarded
and possible correlations among categories might be overlooked.

In PolyRecs, we combine a number of techniques so that we can present visitors
with suggestions that not only fall within the realm of their interests but they also are
“fresh”; the notion of being “fresh” pertains to pages that either have not been read
so far or may have appeared on the portal data infrastructure recently. In this context,
a key factor that we had to take into consideration was the very large amount of data
collected within a matter of minutes in user activity. Effectively managing the inflow of
information as well as the outflow of the portal data constitutes a challenge. In an ex-
ploratory phase, we instrumented athensvoice.gr and measured the average dwelling
time for a visitor: we found it consistently to be around 1 second using JavaScript
events. It is within this window of time that recommendations have to be compiled
and be timely shown to the reader so as to increase page-view rates and consequently
time spent on athensvoice.gr. This timing benchmark also indicated that regardless
of the sophistication of the recommendation algorithm, if we take longer times to gen-
erate suggestions this will render the engine ineffective. In this case, the majority of
visitors will fail to receive both personalized and accurate recommendations within the
designated real-time slack. To accommodate the above requirement, PolyRecs’s design
follows a hybrid approach exploiting a variety of key operational aspects by:

1. predominantly focusing on the responsiveness of such an engine,
2. being able to process important data flows and events real-time,
3. profiling both users and incoming pieces of content in a timely manner,
4. deploying effective features from traditional techniques used in the athensvoice.gr

engine to this date,
5. training on–the–fly as much as possible while relegating off–line work for resource-

intensive tasks only,
6. designing a system that can work in a plug-and-play fashion, regardless of the

underlying infrastructure (i.e., database and content management systems used).

All the above features influenced the design of PolyRecs and led us to deploy an
engine that embeds multi-criteria in its core operation with the time slack for all jobs
taken continuously into account. In addition, we deploy a fail-over mechanism that
addresses issues introduced due to new content, users, content category re-alignment,
and classification re-adjustment.

A number of factors influence the way PolyRecs yields its suggestions and include:

– the visitor’s unique profile based on user-id and IP number,
– articles whose categories are strongly related to content currently in browsing,
– the time of day the visitor is browsing the portal,
– articles that share a high textual–similarity to the one currently being accessed,
– articles that are popular on this content–category today.

By default, each of the above criteria may equally contribute –in terms of weight– to the
outcomes computed by PolyRecs. In this regard, we seek to ensure the objectiveness of
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the evaluation while we offer the capability to appropriately gauge the weighting scheme
so as to provide content of timely interest. Moreover, we want to offer warranties that
PolyRecs regardless of the nature of the visitor and/or the item currently in browsing,
we can locate suggestions even if one or more of the contributing criteria fail to produce
suggestions. In this case, the rest of the criteria will kick in and help fill in the required
quota for compiling the list of the suggestions.

We aspire to carry the necessary functionalities in real-time and compute all re-
quired aspects on-the-fly in a way that the user has the time to view recommendations,
evaluate their worthiness and likely proceed to read one of those suggestions. If so, a
new batch of recommendations is computed while user clicks generate valuable input
in term of the navigation provided for our engine.

4 PolyRecs Architecture

This section outlines the overall functional architecture of PolyRecs in a way that
mostly focuses in the flow of data as well as both user-input/output generated. Figure 1
depicts the overall organization in terms of constituent components of PolyRecs as well
as the data/control interactions with the other major components of the athensvoice.

gr. We realize the PolyRecs engine by weaving five key elements together:

1. the database system (DBMS) responsible for storing and querying user traffic
events and requisite (meta-)data,

2. the recommendation engine (RE) responsible for processing the data and executing
our recommendation algorithm,

3. the interface handler (IH ) which appropriately displays results based on the devices
users interact with,

4. the maintenance system (MSys) that performs all necessary off-line computation
work and maintenance operations such as cleaning, staging and archiving,

5. the injector (Inj ) that helps quantify the (financial) benefits of integrating PolyRecs

to the athensvoice.gr by code-instrumenting the suggestions made.

Although PolyRecs is embedded in the athensvoice.gr portal and essentially interacts
with the respective Apache web-server and Drupal CMS, we have followed a highly
modular design so that it can function with any other portal layout. In what follows, we
discuss the operation of the key PolyRecs components and indicate their interactions.

4.1 The Database (DBMS)

MySQL is deployed to help store data and realize queries in PolyRecs while using two
schemas: the main schema that essentially hosts all real-time data and a backup schema
in which we stage data deemed stale yet potentially useful for forthcoming retrieval(s).
The more critical of the tables existing in the PolyRecs database main schema man-
ages all data that are generated by data flows incurred by the user activity. The table
stores facts such as user-ids involved in accessing portal content, time-stamps and URLs
visited. Once acquired through the click-through activity of users, these data have
to be further processed and passed along to other database tables holding respective
information. In this context, every URL gets analyzed to its ingredients that are: the
article-id (information shared between the DBMSs of both portal and PolyRecs), cate-
gory classification, as well as time-stamp of the click. The main table termed init data,
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Fig. 1: PolyRecs Functional Overview in the context of athensvoice.gr

rapidly builds volume due to all recorded input/output operations performed on the
portal’s Apache-server on a daily basis. Apparently, the way we handle this table may
affect the performance of our engine and is deemed an enabler for furnishing timely
responses to user queries.

Overall, the main schema of our MySQL database features tables that predomi-
nantly store processed information accumulated over time, and statistics that are fed
to PolyRecs’s recommendation engine to assist in creating suggestions. Among others,
these tables include: 1) the users profile table, 2) the categories profile table, 3) day
time profile table, 4) article to article similarity table, 5) popular articles per day table.
We should point out that the information maintained by the above tables has to do
mostly with meta-data of articles and items whose actual content resides in the por-
tal’s database. The design of the backup schema is identical to that of the main for its
hosts dated, less useful or occasionally obsolete information and gets to be occasionally
purged.

4.2 PolyRecs Recommendation Engine (RE)

The engine undertakes the task to produce within the time slack permitted, suggestions
for a specific visitor. Its function highly depends on the database and essentially works
as a go-between the interface and MySQL. Given as input the unique identifier for a
visitor in conjunction with the current URL he/she is viewing (from which the article-id
and category are derived), the engine returns a predefined number of suggestions. The
input in discussion is used by the RE as follows: a) the visitor’s id is utilized to fetch
and enrich his/hers profile in terms of favorable categories, pieces of content already
read, preferences, etc, b) the URL currently being viewed is marked as seen and is used
to “select” a category of items so that similar items are suggested, and c) PolyRecs

by design imposes an upper-limit on the number of suggestions displayed to its user
interface; this can lighten the work carried out by the database in its effort to produce
top-k items for queries on suggestions.

After a lengthy empirical evaluation and detailed study of user-cases, we set this
k=15 for predominantly two reasons: i) the portion of the web-page reserved for these
suggestions could not exceed this limit for this would not effectively facilitate the user
view of the results, and ii) as we mainly derive recommendation using 5 criteria in our
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RE (see below), we wanted to adopt a viable yet proportional representation of these
criteria when it came to their respective contributions into the list of suggestions. By
and large, this limit for k may be highly dependent on the choices made by the portal
and so, it can be reconfigurable.

The 5 distinct and likely weighted categories PolyRecs depends on to create its
recommendations are the following:

1. A visitor’s favorite categories (weight w1),
2. Articles whose categories appear to be “strongly related” to the current category

being read (w2)
3. The time of day a visitor browses a specific piece of content on the portal (w3),
4. Articles that share a high cosine–similarity value to the one currently in ac-

cess (w4), and finally,
5. Articles that are popular today (w5).

PolyRecs stores aggregated data associating each visitor with the number of times she
has accessed a specific category. Using such counters, pieces of content are fetched that
are tagged with categories present on the top 85% of her most frequent reads. The
above percentage was set after observing that the lowest 15% of the categories a visitor
views, usually have very low counters indicating negligible impact.

A category’s strong or weak relation to one another, is generated based on the
number of times one has been read after the other. Tracking each visitor’s behavior
throughout athensvoice.gr, PolyRecs is able to create this correlation between cate-
gories of the portal and return pieces of content from pertinent categories. Each visitor’s
click in the portal is also associated with the time at which it occurred. This allows
PolyRecs to associate categories frequently accessed at specific times of day (e.g., ar-
ticles that describe recipes, or restaurants are more frequently read during midday).
In PolyRecs DBMS data concerning the popularity of each piece of content is stored.
This allows the RE to suggest articles that show a high popularity today. The criterion
utilizing the similarity between articles is based on the cosine similarity value. Having
this value available for each piece of content present on athensvoice.gr, PolyRecs can
recommend articles that share a high value to the one a visitor is currently reading.

In the above 5 categories, we should have that Σ(wi) = k holds true at all times.
Although we could use an equal-weighted approach for these wi, in the context of
athensvoice.gr, we empirically found that a slightly different weight vector does work
more effectively in our applications setting; this vector is w =< 4, 3, 3, 3, 2 >.

We should also point out that content that has been already browsed by the user
at any point in her dwelling on the portal is explicitly excluded from the suggestions.
In the final compilation of recommendation, we also do carry out duplicate elimination
and if needed our engine brings in additional results to appropriately fill in the list
of suggestions. As items are continually introduced to the portal through the Drupal
CMS, their meta-data pass on to the PolyRecs database and so they immediately
become available for the computations performed by RE.

4.3 PolyRecs Interface Handler (IH )

IH is responsible for the presentation of the recommendations coming from the core of
PolyRecs and helps with the rendering of this result set on specific devices. Initially, the
interface handler receives the triplet of data generated during the browsing of an article
and passes this information as input to PolyRecs. With its turn, the engine sends out
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the recommendation list for the article in question and the IH manages the generation
of the required HTML snippet; the snippet also contains style-sheet rules as well as
automatically generated JavaScript event-functions. The snippet is then transported
to the consuming Apache web-server for final dispatching to the user device (Figure 1).

Figure 2 depicts how the result-sets for recommendations appear to either a desktop
or mobile device. Evidently, when the outcome of a presentation may have multiple
forms which are generated with the intervention of the IH. The specifics of the rendering
involved here are exclusively an assignment taken over by the interface handler. In
addition to the suggestions, each specific recommendation on the user-device is escorted
by a specific JavaScript event function whose goal is to inform the PolyRecs database
if and where a user elects to click and go further. This JavaScript mechanism provides
the capability for PolyRecs to very accurately account for clicks induced from the lists
of provided recommendations.

(a) Recommendations Area for Desktop/Tablet Visitors

(b) Recommendations Area for Mobile Device Visitors

Fig. 2: Recommendation Areas for Various Devices
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4.4 PolyRecs Maintenance System (Msys)

The maintenance component consists of a number of php–scripts that get executed
within PolyRecs and are mostly cron-jobs. Among those tasks, the most important
are:

• User Profile Reset cleanses a user’s profile from data that are at some point considered
noise. These data are about category reads that rank significantly low to make it into
the output. To this end, they have essentially ceased to characterize a visitor’s active
preferences.

• Content Similarity Generation performs the respective computations among pieces
of content. As this is a computationally intensive task [8], we perform it as a cron-job
every 20 minutes; over long periods of time we have ascertained that every 20 minutes
a new article appears on the average on athensvoice.gr.

• Plasticity Solver aims at addressing the problem of rigid preferences attributed over
time to a user. The problem appears in content–based or collaborative filtering rec-
ommendation algorithms and occurs when after some time, the preferences of a user
are practically impossible to change despite the fact that her unique visits to article
has been documented. To prevent this phenomenon, MSys runs this solver to reduce
the counters stored in cumulative tables by 25% for those values that display a big
difference (e.g., >80%) with other rows in the respective tables. Typically, the solver
is run every few days.

• Delayed Updater gets to execute updates needed mostly for non-critical data and pro-
duces aggregates of information at the end of the business day. Over time, we observed
that during peak-periods, PolyRecs used to produce recommendations at a slower pace.
To remedy this, we opted to stage less critical data update operations to a batch file
that was ultimately executed once a day in off-peak hours. For example, there is no
urgency to increment values of statistics for category correlation that are already high;
this operation receives delayed treatment by being relegated to the Delayed Updater.

4.5 PolyRecs Injector (Inj )

This component furnishes a mechanism that is very essential in the evaluation of
PolyRecs effectiveness. The RE module produces its recommendations based on the 5
earlier-stated criteria. It is however crucial that a feedback mechanism be established
so that PolyRecs ultimately becomes aware of which suggestions as well as the corre-
sponding criteria were ultimately used out of the recommendation list. In this respect,
Inj maintains statistics in terms of counters and instruments the list of recommen-
dations bound for the IH by automatically adding JavaScript code for every item on
this list. A JavaScript event function is generated on-the-fly and gets attached to every
recommendation produced.

Figure 3 shows the result of Inj ’s instrumentation of the recommendations; this out-
come will finally make it through the IH and Apache web-server to the user’s browser.
As Figure 3 indicates, this function takes as input 3 parameters: 1) the visitor-id for
whom the recommendations were created, 2) the id of the article being recommended,
and 3) the criterion-id (i.e., numbers 1..5) by which the suggestion was generated. If
a browsing user clicks a recommendation, the accompanied JavaScript code-snippet
is executed. As a consequence, the aforementioned 3 pieces of information along with
the time-stamp of the click are inserted into PolyRecs’s DBMS to be evaluated at a
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later stage. The evaluation is performed to measure the performance of each criterion
integrated into PolyRecs.

Fig. 3: PolyRecs Injector Snippet Addition

We have found that this method of providing instrumentation for evaluation does
offer two clear advantages:

1. By tracking the clicks of each visitor, we can more effectively evaluate the PolyRecs
performance and analyze the possible benefits in terms of CTR (click-through-
rate).

2. By keeping track of the criterion by which every click was produced, we can better
quantify the effect each criterion has on PolyRecs.

In addition, this approach does offer opportunities for extensions by for instance be-
ing able to integrate seamlessly in the future more sophisticated techniques (such as
machine-learning) to help automatically compute the weights for each criterion over
time.

5 Evaluation

In evaluating the PolyRecs prototype, we aim at establishing the effectiveness of our
overall approach, in pointing out the benefits of our hybrid proposal and in assessing
PolyRecs’s contribution to the overall running of the athensvoice.gr portal. Using
Google’s Analytics and having access to both PolyRecs-enabled and stand-alone versions
of the production portal, we are able to present page-view rates over lengthy periods of
observation. Google’s Analytics is an independent service commonly used by web-based
systems to gain insight on operational trade-offs and evaluate performance. In this
section, we also gauge the merit of integrating PolyRecs into the production portal
through a succinct cost/benefit analysis.

5.1 Analysis with Google’s Analytics

We commence by examining the number of page-views the portal received over a 1-
month period while using the PolyRecs engine and compare these page-views with their
counterparts that occurred a year before. In this, we investigate the traffic generated
by both desktop/tablet and mobile devices. We are interested in this grouping for two
reasons: firstly, the web-page lay out is different for these two types of machinery and
secondly, user-behavior has been shown to differ when hand-held devices are used for
browsing [20].

The reported time periods are those of 24/07/2015-24/08/2015 and 24/07/2014-
24/08/2014. We selected this specific day-span so as to remain as much as possible
unaffected by user behavior; by and large, this period coincides with the summer va-
cations in the country.
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Table 1 depicts the increase observed in page-views per session for the two classes
of devices used for access. We should note here that we have managed to augment the
rates despite a 9.58% experienced drop in the unique number of visitors over the 2015
period. On average, PolyRecs manages to deliver an increase of 45.81% in combined
page-views per session.

Table 1: Increasing Page-Views/Session through PolyRecs(Month Period)

Page-Views/Session Desktops Mobile
with PolyRecs enabled & Tablets Devices

Page-Views/Session Increase +73.81% +17.81%

Figure 4 shows how the page-views/sessions fared for each day of the observation
period when only desktop and tablet traffic was taken into consideration. Clearly, there
exists an indisputable positive effect from the deployment of PolyRecs as the curve
from the 2015 remains consistently higher at all times from that of 2014. Similar results

Fig. 4: Chart for Average Daily Page-View/Session for Desktop/Tablet Users

can be seen in Figure 5 that depicts the respective curves when we analyze activity
generated only by mobile devices. The PolyRecs-enabled curve invariably produces
improved page-views per session rates throughout the month.

In an effort called “4-day experiment”, we seek to ascertain the value of PolyRecs

within a short and recent period of time. Hence, we collected operational statistics
for two days (9/22-9/23) while having PolyRecs activated and then, we repeated the
same exercise with the engine not in operation. on the same days of the following
week (9/29−9/30). Table 2 shows an aggregation of the results obtained. We establish
an increment in page-views/session rates for both desktop/tablet and mobile classes
when PolyRecs is enabled although the gain in the mobile devices is limited. Overall,
PolyRecs demonstrates its value by offering a higher by 6.3% average page-views per
session. Figure 6 depicts an overview of the change in terms of the page-views/session
metric for all portal users in the above 4-day experiment. The metric does remain
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Fig. 5: Chart for Average Daily Page-Views/Session for Mobile Devices Visitors

Table 2: Page-Views/Session and Unique Visitors

Desktop/Tablet Desktop/Tablet Mobile Devices Mobile Devices
without PolyRecs with PolyRecs enabled without PolyRecs with PolyRecs enabled

9/29-9/30 9/22-9/23 9/29-9/30 9/22-9/23

Page-Views/Sess. 2.83 3.18 1.42 1.46
Unique Visitors 167,240 148,921 117,003 128,784

higher during the period that the engine is on. It is also worth pointing out that during
the period of 9/22-9/23 all rates are higher for both user groups than those attained
in 9/29-9/30.

Fig. 6: Google’s Analytics-chart Comparing Page-Views/Session for the 4-day Exper.

Table 3 outlines the “deactivation effect” in terms of percentages for both page-
view/session as well as average dwell time on the portal (delivered by Google’s Analyt-
ics). By in-activating the recommendation engine, the page-view/session rates do fall
but more importantly, visitors spent less time reading content from the portal.
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Table 3: PolyRecs Deactivation Effect

Desktop/Tablet Mobile Devices
Class Class

Page-Views/Session -10.95% -2.85%
Average Time Spent -17.76% -10.49%

5.2 Assessing the Impact of the Recommendation Criteria

In this section, we analyze the impact the 5 criteria used by the engine in the compila-
tion of recommendation lists. For this endeavor, we use data harnessed by the portal in
a 12-day period of 10/10/2015–10/22/2015. Through the use of JavaScript functions,
we were able to collect accurate statistics on how impactful the 5 criteria are.

Figure 7 shows how each of the criteria used (x-axis) fared in terms of clicks (y-
axis) given that the two classes of user-devices were used for accessing. As anticipated,
numbers of recommendations served by each criteria do differ. During the above period
of monitoring, a total of 74, 030 number of clicks were logged. From those approximately
40, 000 were originated by mobile devices and the rest were coming from both desktop
and tablet users.

In general, the first two criteria (1 and 2) contribute a great deal in the suggestions
offered. Much help also comes from criterion 5 despite the fact that is assigned a
smaller weight (w5=2). Desktop and tablet visitors show a strong preference for the
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Fig. 7: PolyRecs Criteria Impact

criterion that profiles the categories of articles (2). The number of clicks produced by
this criterion, is almost double of the next best which is that of the most popular
content (5). For the mobile device group of visitors, the user profile criterion (1) ranks
first in for the number of clicks generated; also, criterion 2 comes a close second whereas
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the remaining three come in close with each other with an average of approximately
3, 300 clicks a piece. It is worth noting that in for the “user profile” category (i.e., 1),
there is an impressive difference between the clicks of mobile and desktop users; while
desktop/tables contribute 5, 956 clicks, the mobile devices generate 16, 040 clicks.

The pie-chart of Figure 8 depicts how the criteria used in the engine fared regard-
less of the class of user devices. Approximately 35% of the user clicks to PolyRecs

recommendations were attributed to the “category criterion” (e.g., 2) with another
30% coming off the “user profile” criterion (1); all other three criteria scored below
15%.

29.96 %

User Profile

35.57 %

Category Profile

7.11 %

Time Profile

14.49 %

Popular Content

12.85 %

Similar Content

Fig. 8: Percentages of User Clicks due to 5 Recommendation Criteria

5.3 Benefits of Integration

To establish the financial benefits of having PolyRecs incorporated in athensvoice.gr,
we provide a cost/benefit analysis based on two scenarios: the best in which all clicks
made out of recommendations furnished by PolyRecs and a worst scenario in which
only 25% of clicks in discussion finally occurred.

We should also approximately calculate the number of impressions (i.e., page-views)
produced for a month period using the aforementioned 12-day period of monitoring.
In this, PolyRecs logged 74, 000 impressions. By extrapolation, we derive a total of
185, 000 new page views. athensvoice.gr features 6 slots for for advertisement banners
into every page (1 skin, 1 728x90 banner, 3 300x250 banners, 1 text link). These
slots, if sold by the advertisement department, have an average CPM (cost per million
impressions) of 1.50e; every slot’s cost is determined by the position it has on the web-
page. Figure 9 shows the benefit reaped by integrating PolyRecs into the portal. On a
yearly basis, the respective values become 4, 994e in the worst case and 19, 980e in the
best case–a sizable benefit in either case. We should also take into account the expenses
needed for PolyRecs’s hosting, which is at 69e on a monthly basis; approximately the
revenue from one advertising banner in the worst case scenario.

The above projected benefits are highly dependent of the following factors: a) should
PolyRecs be integrated with a portal enjoying a higher traffic, it would bring in higher
income, b) the limited number of recommendations served by the RE and their style/-
format, c) the placement of PolyRecs’s recommendation on the page rendered. Without
doubt, the slot within which the suggestion appears, plays a key role in the viewing
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Revenue Per Month Worst Case (46,250 impr.) Best Case (185,000 impr.)

1 banner 69.38e 277.50e
6 banners 416.30e 1,665.00e

Fig. 9: Economic Benefit derived in Best/Worst Case Scenarios

and the likely clicking by the users, and d) the total number of advertisement slots on
web page and the average expected CPM.

6 Conclusions and Future Work

In this paper, we present PolyRecs, a hybrid recommendation system that deploys
multiple criteria to produce suggestions for a popular news, politics, arts, opinion ar-
ticles and discussion portal in Greece. We have placed particular emphasis on the
requirement that recommendations have to be delivered within very strict time con-
straints in order to realize a viable approach for improving pages-views and traffic for
the athensvoice.gr publication. We have developed PolyRecs in a way that it can be
successfully integrated with any contemporary data infrastructure consists of modern
CMS and database systems. We have deployed the prototype and have used the resulting
production system to collect statistics and ascertain the utility of our proposal. While
observing the behavior of the prototype, we have established that the use of PolyRecs
in the AthensVoice portal has led to average in increase of 6.3% in the page-views
consumed by visitors. In terms of numbers, there was a total of almost 74, 000 clicks
increase in a period of 12 days.

In the future, we would like to extend PolyRecs in a number of ways. More specif-
ically, we plan to: a) embed social media features and so become able to access
demographic characteristics for visitors; this can clearly offer a wealth of personal-
ized information for creating more effective suggestions, b) exploit user location and
use geographically-pertinent articles to furnish more focused recommendation criteria,
c) experiment with spots for listing recommendations to further enhance CTR-rates,
and d) use machine learning approaches on the accumulated statistics to drive the
weighting scheme in a more sophisticated and likely more effective way.

Acknowledgements: we are grateful for the reviewer comments received; partial sup-
port for this work has been provided by the GALENA EU Project and Google.
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