
Fragment and Replicate Algorithms for
Non-Equi-Join Evaluation on Smart Disks

Vassilis Stoumpos
University of Athens,
15784, Athens, Greece

Email: stoumpos@di.uoa.gr

Alex Delis
University of Athens,

15784, Athens, Greece
Email: ad@di.uoa.gr

Abstract—The predicates in a non-equi-join can be anything
but equality relations. Non-equi-join predicates can be assimple
as an inequality expression between two join relation fields, or
as complex as a user-defined function that carries out arbitrary
complex comparisons. The nature of non-equi-join calls for
predicate evaluation over all possible combinations of tuples
in a two-way join. In this paper, we consider the family of
fragment and replicate join algorithms that facilitates non-equi-
join evaluation and adapt it in a Smart Disk environment. We
use Smart Disk as an umbrella term for a variety of different
storage devices featuring an embedded processor that may offload
data processing from the main CPU. Our approach partially
replicates one of the join relations in order to harness all
processing capacity in the system. However, partial replication
introduces problems with synchronizing concurrent algorithmic
steps, load balancing, and selection among different join evalua-
tion alternatives. We use a processing model to avoid performance
pitfalls and autonomously select algorithm parameters. Through
experimentation we find our proposed algorithms to utilize all
system resources and, thus, yield better performance.

Index Terms—database join, non-equi-joins, smart disks, active
disks, fragment and replicate parallelism, array of disks

I. I NTRODUCTION

Join is arguably the most commonly used operator in
database systems. The join operator is invoked with a set of
predicates on two relations. The join predicates determine
whether two tuples, one from each join relation, produce
a match. The type of database join, equi-join or non-equi-
join, is determined by the nature of the predicates involved.
The presence of an equality join predicate, where a field
from one join relation must be equal with a field from the
other relation makes an equi-join. In general, an equi-joinis
efficiently evaluated with hash-based techniques and we do
not consider it in this work [1]. Instead, we consider non-equi-
joins, which is a wider class of join predicates that produce
a join match if, for example, the two relation fields are not
equal, or one is greater than the other. More complicated
non-equi-join predicates follow some user-defined distance
metric and ask for field values to be within some distance in
this metric. In general, any user-defined function can serve
as a join predicate, and therefore, no assumption can be
made about two particular field values being a join match.
To this end, the strong requirement of answering a non-equi-
join query is that the join predicates have to be evaluated on
all tuple combinations from the two relations. This leads to

high volumes of data being retrieved from disks into memory
buffers and processed. Due to limited memory space, multiple
iterations over the same data is the common scenario.

Our goal is to efficiently evaluate non-equi-join over an
array ofSmart Disks. We useSmart Disks as a general term to
describe the wide range of architectures where storage devices
sport data processing capabilities [2]–[5]. The outline ofa
smart disk is presented in Figure 1. The interface controller
in a smart disk manages two types of requests: traditional I/O
requests andsmart I/O requests. As presented in Figure 1, tra-
ditional I/O requests are serviced by copying blocks between
buffers and disk platters. In contrast, smart requests extend
the parameters of traditional I/O requests, so that specificdata
processing occurs as part of the request locally, inside the
device. To this end, smart disks feature embedded processors
and memory buffers in order to carry out the requested data
processing. As an example, assume the smart disk interface
controller receives a smart read request. In response, the smart
disk reads the respective blocks from the disk platters intothe
device buffers, similar to what a traditional read request would
call for. However, the blocks are not forwarded to the caller
until they are processed with the instructions received as part
of the smart request [2]. Then, the data processing output is
forwarded to the caller to complete the request. Likewise, a
smart write request asks for processing the write blocks first,
and then, writing the outcome on the disk platters.

Smart disks follow the general architectural paradigm of
“migrating” processing closer to data [3], [6]. Arguably, there
are applications where pushing data processing on a single

CPU Interface

Controller

Smart I/O Req I/O Req

Fig. 1. A Smart Disk.

smart disk improves the overall performance. However, the
potential for performance gain is greater in high-end data
servers that are build atop arrays of smart disks. The rationale
behind arranging smart disks in an array is twofold: diminish
the size of data transfers over the disk interconnect and use
the array as a massively parallel computing substrate. In the
rest of this paper, we assume an array of smart disks is
available and distinguish betweendisk andhost resources, i.e.
resources available either embedded in the disk array or on the
main system. For simplicity, we assume that all array disks
are attached on a common interconnect network, although in
practice a hierarchy of bus channels is used.

Interestingly, the evaluation of non-equi-join algorithms on
a smart disks array, utilizing the processing capacity of both
host and disk resources is a problem with many operational
parameters. On one hand, the specific system configuration has
to be taken into account, so that, for example, when a high-
speed system bus is available more aggressive parallelization is
pursued. On the other hand, the characteristics of the specific
join evaluation are also important. For example, “migrating”
processing closer to data might not be beneficial, subject tothe
input to output size ratio [3]. If this is the case, the traditional
approach of processing data away from where data is stored
should be pursued. As a third example, an expensive user-
defined join predicate that incurs high processing load, makes
I/O load a secondary issue and calls for processing closer to
data. Consequently, we incorporate all operational parameters
in a processing model in order to estimate the cost of the
possible alternatives. By means of this model, our approach
autonomously selects the least expensive alternative, andthus,
is well-suited for a database system that adapts to workload
changes in a constantly-evolving system.

In Section II, we present our approach for non-equi-join
evaluation on an array of smart disks that distributes the load
between disk and host resources. We start with describing the
details of partially replicating one relation, and continue with
the description of possible alternatives for join evaluation.
The details of load balancing and the cost estimates for
different execution alternatives are considered in Section III.
In Section IV we describe our experimentation setup and
illustrate how our approach autonomously adapts to different
hardware setups. We give an overview of related work in
Section V and conclude with future work in Section VI.

II. SMART DISK ρ-FRJ

A. Initial Data Layout

We assume the two join relationsR andS are block stripped
on a smart disk array. In this sense, without assuming any
particular tuple order, the first block from a relation is stored
on the first disk, the second block on the second disk, etc. in
a round-robin fashion. We note withRi the part of relation
R on disk i, so that∪iRi = R and∪iSi = S. The blocks
of a relation are evenly distributed to disks, so we can safely
assume|Ri| = |R|/d, where|R| is the number of blocks for
relationR andd is the number of disks.

R1 RrS1

R’1

R2 S2

R’2

Rr R3 S3

R’3

Rr

Fig. 2. Block placement afterρ replication on 3-disk array.

B. Traditional, non Smart Disk Approach

The traditional approach to theR ⊲⊳ S evaluation, which
is smart disk oblivious, calls for Nested Loops Join (NLJ).
In NLJ, blocks from the smaller relation, assumeR, areread
from all disks concurrently into main memory. If|M | blocks
are available in main memory, then if|R| < |M | the relation
is read in one step; otherwise,k = ⌈|R|/|M |⌉ steps are
required. When a read step completes, amatch step follows.
In the match step the entireS is read concurrently, to increase
the overall read rate, and one I/O buffer is reserved in main
memory per disk. . When a block fromS is available in an
I/O buffer, all combinations with the read blocks fromR are
considered and the respective join output is produced. After
computation, the I/O buffer is cleared for the next block to be
read in. In the general case, the total number of I/O blocks
read is|R| + k|S|, wherek = ⌈|R|/|M |⌉.

C. Replication in ρ-FRJ

Our approach aims at using the processing capacity in smart
disks in combination with the host resources. We view all
smart disks as peer processing nodes, while the host represents
a significantly more powerful node in the “network”. The
family of Fragment and Replicate Join (FRJ) algorithms is
suitable for evaluating non-equi-join in distributed or parallel
systems [7]. The skeleton of a FRJ algorithm that evaluates
R ⊲⊳ S is as follows: the smaller relation isreplicated to all
processing nodes; then, each node computes the join between
the local replica and the localfragment of the non-replicated
relation. Consider the initial data placement, where diski holds
the fragmentsRi andSi of the join relations. If we chose to
replicateR, then the entire relation should be copied over
across all disks, since every disk serves as a processing node.
In contrast, the host does not participate in replication, since
the host has access to all disks at the same time. We respond
to this asymmetry in resources and connectivity with our
proposedρ-FRJ method, that depends on the load balancing
factorρ. In the following, we describe how the load balancing
factor alters the replication process. We present the alternatives
to actually evaluate the join result with a given replication in
the next section.

The load balancing factorρ denotes the portion of input,
and therefore processing load, that will be handled by the disk
array, while the remaining(1 − ρ) portion is managed by the

host. To this end,ρ-FRJ creates on every disk apartial replica
Rr of the firstρ|R| blocks ofR. Therefore, after replication,
disk i carries the fragmentsSi and Ri, and also the partial
replicaRr of R. We note withR′

i the part ofRi that was not
replicated, and we note withRf = ∪iR

′
i the part ofR that was

not replicated. In this sense,Ri ∩Rr 6= ∅ andR′
i∩Rr = ∅. In

Figure 2 we present the block layout after replication for a 3-
disk example case. In the example we selectR for replication
and setρ = 0.2, so the first block of allRi is replicated
resulting in a 3-block partial replicaRr on every disk.

D. Execution Alternatives in ρ-FRJ

After theρ-based replication completes, join evaluation can
start. In ρ-FRJ the originalR ⊲⊳ S is split into several
smaller joins of different sizes, respecting the asymmetryin the
processing capacity of nodes.ρ-FRJ processes these smaller
joins independently and concatenates the respective results to
form the finalR ⊲⊳ S outcome. More specifically, every smart
disk i computesRr ⊲⊳ Si independently. At the same time, the
host computesRf ⊲⊳ S, whereRf is the portion ofR that was
not replicated. The host and disk joins are evaluated with NLJ,
using the host and disk resources respectively. Thus,ρ-FRJ
follows the same execution pattern as NLJ, wherek iterations
of read and match steps are carried out. However, inρ-FRJ
multiple joins are involved, so the data flow is different from
the one in NLJ. In Figure 3 we present the steps taken byρ-
FRJ. First, the partial replication step is carried out and then
k iterations follow. In every iteration, the disk and host joins
concurrentlyread blocks into disk and host memory buffers
respectively. A read step is followed by amatch step where
the disk and host joins lookup in the disk and host buffers
respectively for matches. In the following we discuss the
synchronization issues that arise from concurrently executing
disk and host joins and present alternatives to evaluate these
joins. We defer the estimation of the number of iterationsk
until the next section.

In order to evaluateRr ⊲⊳ Si on all disks requires the entire
S = ∪iSi to be read. Therefore,ρ-FRJ synchronizes the on-
disk joins with the host join, so that the blocks from relation
S are read only once. To achieve this performance gain,ρ-FRJ
forces alld+1 joins to take read, and respectively match, steps
the same time. However, the number of steps required by NLJ
to evaluate the host join might be different from the number of
steps for the disk joins, depending on the available memory.In
this case,ρ-FRJ forces all joins to perform the same number of
iterations. Finally, to complete join synchronization, all joins
must use the same relation when reading blocks into memory,
and respectively, when looking for matches in memory. This
means that after the decision for the relation to replicate has
been made,ρ-FRJ has to choose between two alternatives.

replicate read match read match

first iteration second iteration

... read match

k−th iteration

Fig. 3. Steps inρ-FRJ.

(a) Concurrently read blocks fromRr and Rf in the read
steps and then, at match steps, read allS blocks.

(b) Read blocks fromS in the read steps and then, at match
steps, concurrently read blocks fromRr andRf .

In Figure 4, we present the data flow in our running 3-disk
example for scenario (a), where the replicated relation is used
in read steps. Here, the main memory can hold up to nine
blocks, while the disk memory has room for three blocks. In
main memory three of the blocks are reserved for I/O buffers,
one for each disk, while one block is reserved for I/O buffers
in disk-embedded memory. Diski cannot hold the entireRr to
evaluateRr ⊲⊳ Si and similarly, there is no room on the host
for all R′

i, in order to evaluateRf ⊲⊳ S. In this example, the
on-disk join requires two read steps to complete join evaluation
and so does the host join. At the first read step, two blocks
from Rr are read into the smart disk buffers, while six blocks
from R′ are concurrently read from all disks into the main
memory buffers. Then, at the match step, the entireS is read
concurrently on all disks to compute matches (dashed lines).
A block from Si is first read in the I/O reserved buffer in disk
i and the respective output forRr ⊲⊳ Si is produced. Then,
the same block is forwarded to the appropriate I/O reserved
buffer in the host to participate inRf ⊲⊳ S. Note that all on-
disk buffers ofRr have the same content, and also that the
entireS is read one block at a time and contributes to different
joins in a pipelined fashion.

The alternative scenario (b) calls for using the fragmented
relation in the read steps and is presented in Figure 5. Again,
there is not enough room for the entireS to be read in
neither the disk nor host memory. In this case,4 iterations
are necessary in order to evaluate the join. In every iteration,
2 blocks fromSi are read into smart diski buffers, and at
the same time, these2 blocks are also forwarded to fill the
main memory buffers. Then, smart diski reads, one block at
a time, the entireRr and the entireR′

i concurrently into the
appropriately reserved I/O buffers on disk and host (dashed
lines). The blocks fromRr contribute in the join evaluation
of Si ⊲⊳ Rr on disk i, while the blocks fromRf contribute
in the join evaluation ofS ⊲⊳ Rf on the host. Note that the
main memory buffer contains the same tuples as the union of
buffers on all disks.

III. PROCESSINGMODEL

A. Processing Pipeline

We model the algorithmic execution in smart disk envi-
ronments in terms of aprocessing pipeline [3], [8]. This
pipeline comprises sixstages: reading data from disks,on-
disk processing, copy to host over the interconnect network,
host processing, copy to disks, andwriting back to disks. The
pipeline stages operate in parallel and the overall pipeline
speed is determined by the slower stage, termed the pipeline
bottleneck. Therefore, in order to fully evaluate system per-
formance we have to determine the amount of data conveyed
between stages and the rate at which each stage consumes
data. Note however, that one cannot model the entire join

match

RrS1R’1 S2R’2 Rr S3R’3

read

Rr

match

read

match

read

match

readS
m

a
rt

 D
is

k
R

e
s
o
u
rc

e
s

H
o
s
t

R
e
s
o
u
rc

e
s

Interconnect

RrS1

Fig. 4. Read replicaRr andRf in memory. UseS to produce matches.

match

RrS1R’1 S2R’2 Rr S3R’3

read

Rr

match

read

matchmatch

readreadS
m

a
rt

 D
is

k
R

e
s
o
u
rc

e
s

H
o
s
t

R
e
s
o
u
rc

e
s

Interconnect

Fig. 5. ReadS in memory. Use replicaRr andRf to produce matches.

evaluation as a single pipeline, but only as a series of pipelines.
In theρ-FRJ case, we model each step as a different pipeline,
as illustrated in Figure 3. In this sense,ρ-FRJ starts with a
single replication pipeline. Then, a pair of read and a match
pipelines follows. The read pipeline reads blocks from disks
into memory buffers, and when the read pipeline completes,
the match pipeline follows and produces matches. As pre-
sented in Figure 3,ρ-FRJ execution might involve more than
one pair of read and match pipelines. In the following, we offer
a detailed analysis of the trade-offs involved in the pipelines
for replication, read, and match steps. The goal is to form
pipelines in such a way so that bottlenecks are eliminated, or
in other words, to make all pipeline stages last equally long.

The input to the replication pipeline is the firstρ fraction
of blocks from the replicated relation. Each disk reads it’s
own share of blocks and broadcasts it on the interconnect
network. At the same time, disks create a replica file and
append to it all broadcast blocks they receive, including their
own broadcast. IfR is the replicated relation andρ is the
load balancing factor, thenρ|R| blocks are read and broadcast
on the interconnect, whiledρ|R| blocks are written to disks.
Thus, in the replication pipeline we expect the write stage to be
the bottleneck because it receivesd times larger input than all
other stages, and has the lowest consumption rate. Especially
in the replication pipeline, the pipeline bottleneck cannot be
affected by changing the value ofρ.

B. Read and Match Pipelines

Consider from Section II-D, the twoexecution alternatives
available toρ-FRJ. After replication is complete,ρ-FRJ can
useRr andRf as input to either the read pipeline (Figure 4)
or the match pipeline (Figure 5). In both the read and match
pipelines the block data flow resulting from havingRr and
Rf as input is the same. The blocks fromRf are managed

by the host, while theRr blocks, which are read in parallel,
are handled on-disk. In contrast, ifS is the input to either a
read or a match pipeline, the data flow has theS blocks first
being processed on-disk and then being forwarded and further
processed on host. In light of this observation, we consider
the performance of a read or match pipeline, when eitherS
or the pair ofRr andRf are used as input.

WhenS is used as input to either read or a match pipeline,
the read stage reads|S| blocks and the smart disk array
processes the same|S| blocks. Then, the same number of
blocks is transferred through the interconnect and processed
on the host. The build pipeline produces no output, while the
outcome of the match pipeline is|Rr ⊲⊳ S| + |Rf ⊲⊳ S| =
|R ⊲⊳ S|. Typically, in smart disk environments the output
size is orders of magnitude less than the input size [3], so
the write stage is not expected to slow down the pipeline.
Except from the write stage, all stages have the same input
size, so the bottleneck is the stage with the slower consumption
rate. The processing load during the match pipeline is higher
than during read pipeline, but still not high enough to causea
bottleneck. In practice, even expensive predicates, like distance
between tuples in some metric or string matching, only require
a few CPU instructions, so the processing stages exhibit
high throughput rates. Therefore, the bottlenecks can onlybe
formed in two places: either the read stage or the copy-to-
host stage. In either case, we cannot change the bottleneck
by affecting the load balancing factorρ when S is used as
input to either a read or a match pipeline.

We now consider the case where the read and match
pipelines haveRr andRf as their input. The important change
here is that the total number of blocks readd|Rr| + |Rf |
is higher than|R|, because the same replicasRr are read
locally in all disks. In this sense,ρ-FRJ is expected to read
more blocks than NLJ. However, it is not the total number

of I/Os that determines performance, but the rate at which
data are read. Recall that typically the system bus cannot
sustain the aggregate read rate of a large number of disks.
Consider NLJ where|R| blocks are read fromd disks and
transferred through the system bus. The NLJ performance is
limited by the copy-to-disk stage reading|R| blocks at the
system bus speed. Similarly, inρ-FRJ the copy-to-host stage
transfers|Rf | = (1−ρ)|R| < |R| blocks, which means that the
copy-to-host stage completes faster compared to NLJ. Clearly,
as ρ → 1 and |Rf | becomes smaller, the load placed on the
interconnect network will reduce. However, asρ → 1 the total
number of read blocks increases rendering the read stage a
bottleneck. In this context, we have the opportunity to adjust
the value ofρ so that the performance bottleneck is eliminated.

ρ-FRJ increasesρ up to the point where the read stage
lasts as long as the copy-to-host stage, and hence, is not the
bottleneck. This means that while the system bus is busy
transferring data at full speed, the underutilized disks read
replica blocks in parallel. We useBread and Bbus to denote
the maximum disk read rate and the maximum interconnect
network bandwidth.

d|Rr | + |Rf |

dBread

≤
|Rf |

Bbus

→
dρ + (1 − ρ)

(1 − ρ)
≤

dBread

Bbus

→ ρ ≤ max

{

0,
dBread − Bbus

dBread + (d − 1)Bbus

}

(1)

Although (1) guards against saturating the read stage,ρ-FRJ
uses a complementary mechanism to synchronize the disk and
host joins. This mechanism does not directly depend on the
data flow in the pipeline so we devote the next section for
presenting it.

C. Join Synchronization

As discussed in Section II-D, the reason for join synchro-
nization is the performance gain from reading the fragmented
relation in one pass. In practice, join synchronization requires
all joins to use the same number of steps and execute them
in tandem. As discussed in Section II-B, NLJ always uses
the smaller relation in the read step in order to reduce the
total number of I/Os. Inρ-FRJ, where NLJ is used to evaluate
disk and host joins, the same rule applies, with the exception
that the number of I/O requests is not the only factor to
consider. Instead, the performance of the pipeline bottleneck
is the main criterion. To this end, first we consider the
two execution alternatives and provide the respective analytic
formulae for the number of iterations necessary. Second, we
present the expected number of blocks fed into pipeline stages
and produce cost expressions based on the performance of
pipeline bottlenecks.

When the fragmented relationS is used in the read steps,
the number of iterationskS is the maximum of iterations NLJ
requires for the disk and host joins.

kS = max

{⌈

|S|

d|Md|

⌉

,

⌈

|S|

|Mh|

⌉}

(2)

Similarly, whenRr and Rf are used in the read steps, disk
i has to maintain|Rr| blocks, while the host maintains|Rf |.

Thus,ρ-FRJ uses the maximum number of iterations for the
two cases according to NLJ.

kR = max

{⌈

ρ|R|

|Md|

⌉

,

⌈

(1 − ρ)|R|

|Mh|

⌉}

(3)

In order to enhance performance,ρ-FRJ adjustsρ in (3) so
that the number of iterations is reduced.

⌈

ρ|R|

|Md|

⌉

=

⌈

(1 − ρ)|R|

|Mh|

⌉

−→ ρ ≈
|Md|

|Md| + |Mh|
(4)

In light of this, ρ-FRJ has to combine (1) and (4); the first
equation guards against the read stage becoming the bottle-
neck, while the second minimizes the number of iterations.

Note that so far we have not made the assumption that|R| <
|S|. In fact, as the following cost expressions indicate, it is
possible to decrease cost by replicating the larger relation.
ρ-FRJ first considers eitherR or S for replication. Then, a
second decision has to be made for which relation will be
used in the read steps, making a total of four alternatives. The
cost of the four alternatives is estimated beforeρ-FRJ starts
execution, so that the least expensive alternative is followed.

C = min{
Crepl(R, ρR) + Cread(Rr, Rf) + kRCmatch(S/d, S),
Crepl(R, ρR) + Cread(S/d, S) + kSCmatch(Rr, Rf),
Crepl(S, ρS) + Cread(Sr, Sf) + kSCmatch(R/d, R),
Crepl(S, ρS) + Cread(R/d, R) + kRCmatch(Sr, Sf)} (5)

The values ofkR and kS are taken from (3) and (2). The
cost of replication is governed by the write stages bottleneck:
Crepl(X, q) = q|X|

Bwrite
. The cost of reading relationsD andH

respectively to disk and host memory buffers is determined by
the bottleneck in the copy-to-host stage:Cread(D, H) = |H|

Bbus
.

Similarly the cost for the match pipeline isCmatch(D, H) =
|H|

Bbus
. Considering (1) and (4) we use a range ofρ values for

(5), so we note withρR andρS the best values for replicating
R andS respectively.

IV. EXPERIMENTAL RESULTS

We conduct detailed simulation experiments that enable
us to examineρ-FRJ features and empirically evaluate the
trade-offs involved. The nature of smart disks renders experi-
mentation with prototypes a challenging problem on its own.
In light of this, we resort to simulating all components of
a smart disk architecture on par with prior efforts [2], [8],
[9]. We developed our smart disk system simulator atop the
CSIM discrete event simulation library. We simulate all smart
disk system components: disks, processors, memory modules,
and buses. In order to simulate entire smart disk systems
we appropriately configure and combine components together.
In our experiments, system components are configured to
operate according to the parameters presented in Tables I and
II. The implementation of join algorithms make use of the
simulated system resources according to their needs. So at
runtime, join algorithms use various simulated resources and
simulator statistics are updated accordingly. Join algorithms
operate on generated relation data and fully evaluate and store
to simulated disks the join outcome.

TABLE I
SMART DISK PARAMETERS

Parameter Value
Read Rate 80 MB/sec
Write Rate 60 MB/sec

CPU Speed 400 MHz
Memory 100 MB

TABLE II
SYSTEM PARAMETERS

Parameter Value
CPU Speed 2 GHz

Memory 500 MB
System Bus 300 MB/sec

Disks on Bus 8

 0

 20

 40

 60

 80

 100

1 2 4 8 12 16 20 24 28 32

R
es

po
ns

e
T

im
e

[s
ec

]

Smart Disks

AD-FRJ

NLJ

ρ-FRJ

Fig. 6. Join evaluation time for different number of disks.

A. Baseline Experiment

In the baseline run, we evaluate the join of a1 GB relation
(3, 5 million tuples) with a5 GB relation (20, 1 million tuples)
that produces a223 MB relation (394, 000 tuples). The join
predicate accepts tuples that are within a distance threshold,
in the euclidean metric space. In the following we consider
three different algorithms. The first is our proposedρ-FRJ
that considers all execution alternatives and uses the load
balancing factorρ according to our description in the previous
section. The second algorithm is NLJ that does not use the
smart disk processing resources. Although we implemented
NLJ as a separate algorithm, its behavior is identical toρ-
FRJ for ρ = 0. We actually compared the behavior of NLJ
and ρ-FRJ with ρ = 0 as a sanity check for our testbed
and verified that their results matched. The third algorithm
we consider isActive Disk FRJ (AD-FRJ) [9]. The AD-FRJ
algorithm fully replicates the smaller relation across disks, so
its behavior is identical toρ-FRJ forρ = 1. As with NLJ, we
implemented AD-FRJ separately and compared it’s behavior
with ρ-FRJ forρ = 1, only to found they completely match.
In all algorithm implementations, the necessary read and write
buffers were allocated in disk and host memory as described
in Section II. After I/O buffer allocation was complete, the
remaining memory was available to the algorithms.

In Figure 6 we present the join evaluation time of the three
algorithms we consider, in systems with a varying number
of attached disks, ranging from1 to 32 disks. Note that
for every 8 disks, we use a separate300Mb/sec disk bus.
In all cases, AD-FRJ lasts longer than the other algorithms.
The main problem with AD-FRJ is that the cost of a full
replication overshadows any benefit from fast join evaluation.
In addition, even when only a few smart disks are employed
AD-FRJ places the entire join evaluation load on them leaving

the host processor underutilized. NLJ places all load on the
host which delivers better performance than AD-FRJ. Still,the
performance of NLJ is limited by the interconnect network
bandwidth, which is over 98% utilized. Note that the NLJ
response time is the same when the number of disks is20
or 24 (3 disk buses), as well as when the disks are28 and
32 (4 disk buses). In these two cases, although the number of
disks increases the interconnect is saturated and becomes the
pipeline bottleneck in the read and match pipelines.

In ρ-FRJ, the interconnect network is also the bottleneck in
the read and match pipelines. However,ρ-FRJ exploits this
fact and sends more I/O requests on the disks which are
underutilized. During the NLJ read pipeline, disk utilization
is less than20%, when more than8 disks are used, while
ρ-FRJ utilizes60% of disk throughput rate. In this context,
ρ-FRJ performance on the host is comparable to the NLJ
performance. However,ρ-FRJ uses the smart disk buffers, and
thus, requires less iterations for join evaluation. In thissetup,
NLJ requires3 steps, whileρ-FRJ requires2 due to the extra
smart disk embedded buffers. On average, NLJ lasts25% more
compared toρ-FRJ.

B. Time Spent in Steps

In Figures 7 and 8 we present the total time spent in the
replication, read, and match steps when, respectively,8 and16
disks are employed; in Table III we list in the corresponding
component utilization. We see in both figures that although
the replication cost of AD-FRJ is prohibitively high, the read
and match steps are faster in AD-FRJ compared with the
other two algorithms. The read and match steps inρ-FRJ
exhibit almost100% disk utilization, which means that as more
disks are added the steps will require less time to complete.
However, putting more disks in the system will not decrease
the replication cost, as AD-FRJ replicatesd|R| blocks.

In contrast, NLJ has no replication and places all processing
on the host, which means voluminous data has to go through
the interconnect. Therefore, the bus becomes the bottleneck as
it is over90% utilized. This is the window of opportunity for
ρ-FRJ: while NLJ stalls the disks waiting for the bus transfers
(disk utilization< 13%), ρ-FRJ places more read requests on
disks (disk utilization> 30%), and thus, allows for more data
to be processed at no extra cost. Note in Figures 7 and 8 that
the read steps inρ-FRJ and NLJ last the same, althoughρ-FRJ
reads more data. As more data is read during the read step,
the less iterations are necessary for join evaluation. In this
particular case, whereρ-FRJ requires2 iterations, while NLJ
requires3, the match steps inρ-FRJ are50% faster than the
match steps of NLJ. Overall, NLJ is35% slower thanρ-FRJ
in the 8-disk case and25% slower in the16-disk case.

As more disks are put to the system the interconnect
bandwidth increases, so the match steps last shorter and the
performance gain is limited. However, the available host mem-
ory to algorithms decreases as more disks are added, because
the number of I/O buffers increases. Constantly adding more
disks will eventually lead NLJ to more iterations that will
rapidly drop its performance.

TABLE III
COMPONENTUTILIZATION FOR 8 AND 16 DISKS

8-disks 16-disks
Algorithm Step Disk Disk-CPU Bus CPU Disk Disk-CPU Bus CPU
NLJ repl 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
NLJ read 11.64% 0.00% 94.42% 8.02% 11.84% 0.00% 92.05% 15.69%
NLJ match 12.79% 0.00% 99.79% 14.65% 12.85% 0.00% 99.55% 29.22%
AD-FRJ repl 99.62% 1.68% 16.36% 0.00% 99.55% 1.46% 8.25% 0.00%
AD-FRJ read 79.48% 22.77% 0.00% 0.00% 78.55% 22.22% 0.00% 0.00%
AD-FRJ match 75.70% 38.64% 0.00% 0.00% 75.92% 38.16% 0.00% 0.00%
ρ-FRJ repl 98.80% 1.66% 16.20% 0.00% 98.57% 1.45% 8.17% 0.00%
ρ-FRJ read 30.18% 5.07% 97.14% 8.27% 47.75% 9.84% 94.48% 16.09%
ρ-FRJ match 13.32% 6.78% 99.81% 15.13% 13.56% 6.76% 99.60% 30.18%

C. Load Factor ρ

In Figure 9 we present the execution time forρ-FRJ in
the 8-disk and16-disk system, with a fixed load balancing
factor ρ and a fixed execution alternative. More specifically,
we vary theρ value from0 to 1 and forceρ-FRJ to replicate
the smaller relation and use the replica during the read step.
This is the execution alternative thatρ-FRJ chooses when self-
adjusting theρ value. Note that the x-axis in Figure 9 is in
logarithmic scale. We see that for both the8-disk and the16-
disk systems a load factor less than0.003 does not reduce
the join evaluation time. However, forρ between0.05 and0.2
the evaluation time drops by30%. Then, for greater values
of ρ the performance significantly deteriorates. Note that NLJ
performance is on the leftmost part of the graph, forρ = 0,
while the AD-FRJ performance on the rightmost, forρ = 1.
Note that, the AD-FRJ performance in Figure 9 is much worse
compared to Figures 7 and 8. This is due toρ-FRJ using a
fixed execution alternative in this experiment. Should all four
execution alternatives were enabled,ρ-FRJ would select to
replicate the smaller relation, but then use it in the match step,
which is the case in Figures 7 and 8.

This indicates that, equations (1) and (4) are guidingρ-FRJ
to the right direction. First,ρ-FRJ restrictsρ, according to (1),
to beρ < 0.124 for 8 disks, andρ < 0.169 for 16 disks. In
this value range forρ, blocks are read into disk buffers “for
free”, as long as the system bus is saturated. Second,ρ-FRJ
adjustsρ according to (4) so that the number of iterations is
minimum. For the8-disk system0.030 < ρ < 0.192, while
for the 16-disk system0.062 < ρ < 0.192. We conclude that
the two equations serve as good heuristics to guideρ-FRJ to
autonomously adjust the join evaluation load. Note however,
that the underlying model is flexible enough to cover a much
wider case of system and application parameters.

V. RELATED WORK

The Smart Disk architecture favors filter-type algorithms,
therefore applications like data mining, multimedia applica-
tions, data warehousing, large string database search, and
decision support systems are well suited for Smart Disks [2],
[3], [10], [11]. A different line of research uses smart disks
to transparently reorganize the disk data structures used by a
file system or a database system, based on information about
how these systems use their data [12], [13]. More radical
approaches push to disks the file system implementation [14],

security and user authentication [15], or convert disks from
block stores into object stores [16]. In addition, Smart Disks
improve the performance of database systems, especially in
the case of filter-type operators, like table scan, sorted batch
construction in merge sort, and top-k queries [5], [9], [17],
[18]. However, binary matching operators, like join, pose
different problems due to the large number of comparisons
between the inputs. Subject to the available buffer space,
joins are completely different from filter-type algorithmsin
that joins scan their input multiple times and flush to disk
potentially voluminous intermediate data [1].

Parallel join algorithms fall in two categories according to
the technique for data reorganization:symmetric partitioning
and fragment and replicate [7]. The symmetric partitioning
approach on a smart disk array hashes input relations in bucket
pairs that are processed independently on smart disks [9]. A
more general approach considers both disk and host resources
in join evaluation [8]. Our algorithm is different in that it
is capable to evaluate any join predicate, not only equality
predicates. Nevertheless,ρ-FRJ borrows theρ load balancing
scheme [8] in order to achieve high component utilization.
Fragment and replicate techniques are the only choice in
cases of non-equi-join evaluation. AD-FRJ that falls in this
category replicates the smaller relation across all disks,so
that independent on-disk joins can follow [9]. In addition,
a variation of AD-FRJ employs bit-vector filters to avoid
replication of tuples that are guaranteed to have no match,
but this variation only applies to equi-join predicates. Our
proposedρ-FRJ, which falls in this category is a generalized
version of AD-FRJ that performs partial replication and deals
with synchronization issues, alternative execution plansand
load distribution.

We use the termSmart Disks as an umbrella term for
different proposals in the literature.Active Disks [2], [3] and
Intelligent DISKs [4], constitute one realization of the Smart
Disk architecture, where hard disk drives come equipped with
embedded general-purpose programmable processors and extra
memory dedicated to data processing. Another Smart Disk
architecture example isNetwork-Attached Secure Disks [15],
and Clusters of Smart Disks [5]. Here, disks are attached to
some device that exports a network interface. This network
interface is a mediator that features sophisticated protocols
that, either directly or not, forward requests to disks. Clearly,
the traditional storage device interface of read/write requests is

 0

 10

 20

 30

 40

 50

 60

R
es

po
ns

e
T

im
e

[s
ec

]

8 Smart Disks

Match
Read
Replicate

AD-FRJ NLJ ρ-FRJ

Fig. 7. Time of steps for 8 disks.

 0

 10

 20

 30

 40

 50

 60

R
es

po
ns

e
T

im
e

[s
ec

]

16 Smart Disks

Match
Read
Replicate

AD-FRJ NLJ ρ-FRJ

Fig. 8. Time of steps for 16 disks.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.0001 0.001 0.01 0.1 1

R
es

po
ns

e
T

im
e

[s
ec

]

Load Factor

16 disks
8 disks

Fig. 9. Total time for different load balancing factorρ.

inadequate to support application-pertinent on-disk processing.
One interface extension models processing as a chain of filters,
or disklets [2] that are installed on disks. In this context,
applications are asked to specify the input source, the chain
of disklets for processing, and the output target. A second
extension assumes devices store objects (as opposed to blocks)
with methods that the caller can invoke [19]. This extension
is more radical as it expects applications to change their
viewpoint from storing data to storing objects, with types,
methods, and potentially inheritance properties from other
objects. In this environment, applications start data processing
by means of a method call, that might lead to other method
calls, forming a complex invocation graph.

VI. CONCLUSIONS

We use fragment and replicate techniques to evaluate non-
equi-joins in parallel on Smart Disks arrays. Non-equi-joins
cover a wide range of user-defined join predicates, for which
the database management system cannot perform any op-
timization. In this work for example, we consider a join
predicate that matches tuples within a distance threshold in the
euclidean metric space. This type of query cannot be evaluated
by hashing tuples or partitioning in ranges of values. In this
context, our proposedρ-FRJ performs a partial replication
of the first ρ fraction of one of the join relations. Partial
replication enablesρ-FRJ to harness disk and host resources,
and hence, evaluate join faster than NLJ, that uses only host
resources, and AD-FRJ, that uses only disk resources.

However, partial replication introduces challenging prob-
lems. The processing load has to be balanced between disks
and host without forming performance bottlenecks. In addi-
tion, disk and host joins have to be synchronized, so that the
non-replicated relation is read in one pass. This opens four
different execution alternatives toρ-FRJ, with no alternative
being the best choice in all cases. To this end,ρ-FRJ follows
a detailed processing model that adjustsρ without forming
bottlenecks, evaluate the cost of alternatives, and equally place
load on disks and host.

REFERENCES

[1] L. Shapiro, “Join Processing in Database Systems with Large Main
Memories,”ACM TODS, vol. 11, no. 3, pp. 239–264, 1986.

[2] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Programming Model,
Algorithms and Evaluation,” inProcs. of the 8th Int. Conf. on ASPLOS,
1998, pp. 81–91.

[3] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active Storage for Large-
Scale Data Mining and Multimedia,” inProcs. of 24th VLDB Int. Conf.,
August 1998, pp. 62–73.

[4] K. Keeton, D. Patterson, and J. Hellerstein, “A Case for Intelligent Disks
(IDISKs),” SIGMOD Record, vol. 27, no. 3, pp. 42–52, 1998.

[5] G. Memik, M. T. Kandemir, and A. Choudhary, “Design and evaluation
of smart disk architecture for dss commercial workloads,”International
Conference on Parallel Processing, p. 335, 2000.

[6] J. Gray, “Put Everything in the Storage Device,” Talk at the NASD
Workshop on Storage Embedded Computing, 1998.

[7] G. Graefe, “Query Evaluation Techniques for Large Databases,”ACM
Computing Surveys, vol. 25, no. 2, pp. 73–170, 1993.

[8] V. Stoumpos and A. Delis, “Grace-based joins on active storage devices,”
Distributed and Parallel Databases, vol. 20, no. 3, pp. 199–224,
November 2006.

[9] E. Riedel, C. Faloutsos, and D. Nagle, “Active Disk Architecture for
Databases,” Carnegie Mellon University, Tech. Rep. CMU-CS-00-145,
April 2000.

[10] W. Hsu, A. Smith, and H. Young, “Projecting the performance of
decision support workloads on systems with smart storage (smartstor),”
Proceedings of the Seventh International Conference on Parallel and
Distributed Systems (ICPADS’00), p. 417, 2000.

[11] R. Chamberlain, R. Cytron, M. Franklin, and R. Indeck, “The Mercury
system: Exploiting truly fast hardware for data search,”Int. Workshop
on Storage Network Architecture and Parallel I/Os, pp. 65–72, 2003.

[12] M. Sivathanu, V. Prabhakaran, F. Popovici, T. Denehy, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau, “Semantically-smart disksystems,”
in Proceedings of the FAST ’03 Conference on File and Storage
Technologies. USENIX, March 31 - April 2 2003.

[13] M. Sivathanu, L. Bairavasundaram, A. Arpaci-Dusseau,and R. Arpaci-
Dusseau, “Database-aware semantically-smart storage,” in Proceed-
ings of the FAST ’05 Conference on File and Storage Technologies.
USENIX, December 13-16 2005.

[14] H. Lim, V. Kapoor, C. Wighe, and H. David, “Active disk file system:
A distributed, scalable file system,”Proceedings of the Eighteenth IEEE
Symposium on Mass Storage Systems and Technologies, 2001.

[15] G. Gibson, D. Nagle, K. Amiri, J. Butler, F. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka, “A cost-effective,
high-bandwidth storage architecture,” inASPLOS-VIII: Proc. of the 8-th
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, 1998, pp. 92–103.

[16] M. Mesnier, G. Ganger, E. Riedel, and C. Mellon, “Object-based
storage,”Communications Magazine, IEEE, vol. 41, no. 8, pp. 84–90,
2003.

[17] S. Chiu, W. Liao, A. Choudhary, and M. Kandemir, “Processor-
embedded distributed smart disks for I/O-intensive workloads: archi-
tectures, performance models and evaluation,”Journal of Parallel and
Distributed Computing, vol. 64, no. 3, pp. 427–446, 2004.

[18] M. Uysal, A. Acharya, and J. Saltz, “Evaluation of active disks for
decision support databases,”6th Int. Symp. High-Performance Computer
Architecture, pp. 337–348, 2000.

[19] G. Gibson, D. Nagle, W. II, N. Lanza, P. Mazaitis, M. Unangst,
and J. Zelenka, “Nasd scalable storage systems,”Proceedings of the
USENIX99 Extreme Linux Workshop, 1999.

