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Abstract—The predicates in a non-equi-join can be anything
but equality relations. Non-equi-join predicates can be asimple
as an inequality expression between two join relation fieldsor
as complex as a user-defined function that carries out arbitiry
complex comparisons. The nature of non-equi-join calls for
predicate evaluation over all possible combinations of tules
in a two-way join. In this paper, we consider the family of
fragment and replicate join algorithms that facilitates non-equi-
join evaluation and adapt it in a Smart Disk environment. We
use Smart Disk as an umbrella term for a variety of different
storage devices featuring an embedded processor that mayfload
data processing from the main CPU. Our approach partially
replicates one of the join relations in order to harness all
processing capacity in the system. However, partial replation
introduces problems with synchronizing concurrent algorthmic
steps, load balancing, and selection among different joinvalua-
tion alternatives. We use a processing model to avoid perfarance
pitfalls and autonomously select algorithm parameters. Though
experimentation we find our proposed algorithms to utilize d
system resources and, thus, yield better performance.

Index Terms—database join, non-equi-joins, smart disks, active
disks, fragment and replicate parallelism, array of disks

|I. INTRODUCTION

Join is arguably the most commonly used operator
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high volumes of data being retrieved from disks into memory
buffers and processed. Due to limited memory space, maltipl
iterations over the same data is the common scenario.

Our goal is to efficiently evaluate non-equi-join over an
array ofSmart Disks. We useSmart Disks as a general term to
describe the wide range of architectures where storageeevi
sport data processing capabilities [2]-[5]. The outlineaof
smart disk is presented in Figure 1. The interface controlle
in a smart disk manages two types of requests: traditio@al I/
requests andmart 1/0 requests. As presented in Figure 1, tra-
ditional I/O requests are serviced by copying blocks betwee
buffers and disk platters. In contrast, smart requestsnexte
the parameters of traditional 1/0O requests, so that spetdfia
processing occurs as part of the request locally, inside the
device. To this end, smart disks feature embedded prosessor
and memory buffers in order to carry out the requested data
processing. As an example, assume the smart disk interface
controller receives a smart read request. In responsenthd s
disk reads the respective blocks from the disk platterstimo
device buffers, similar to what a traditional read requestila
call for. However, the blocks are not forwarded to the caller
imtil they are processed with the instructions receivedaat p

database systems. The join operator is invoked with a setadfthe smart request [2]. Then, the data processing output is
predicates on two relations. The join predicates determineforwarded to the caller to complete the request. Likewise, a
whether two tuples, one from each join relation, producemart write request asks for processing the write blocks firs
a match. The type of database join, equi-join or non-equand then, writing the outcome on the disk platters.

join, is determined by the nature of the predicates invalved Smart disks follow the general architectural paradigm of
The presence of an equality join predicate, where a fielthigrating” processing closer to data [3], [6]. Arguabliigte
from one join relation must be equal with a field from thare applications where pushing data processing on a single

other relation makes an equi-join. In general, an equi-jsin
efficiently evaluated with hash-based techniques and we do
not consider it in this work [1]. Instead, we consider nonseq
joins, which is a wider class of join predicates that produce
a join match if, for example, the two relation fields are not
equal, or one is greater than the other. More complicated
non-equi-join predicates follow some user-defined diganc
metric and ask for field values to be within some distance in
this metric. In general, any user-defined function can serve
as a join predicate, and therefore, no assumption can be
made about two particular field values being a join match.
To this end, the strong requirement of answering a non-equi-
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join query is that the join predicates have to be evaluated on

all tuple combinations from the two relations. This leads to

Fig. 1. A Smart Disk.



smart disk improves the overall performance. However, the
potential for performance gain is greater in high-end data
servers that are build atop arrays of smart disks. The raliéon
behind arranging smart disks in an array is twofold: dinfinis
the size of data transfers over the disk interconnect and use
the array as a massively parallel computing substrate.dn th -
rest of this paper, we assume an array of smart disks is
available and distinguish betweeisk andhost resources, i.e. L
resources available either embedded in the disk array dnen t é) .le)
main system. For simplicity, we assume that all array disks
are attached on a common interconnect network, although in  Fig. 2. Block placement aftep replication on 3-disk array.
practice a hierarchy of bus channels is used.

Interestingly, the evaluation of non-equi-join algorithmon
a smart disks array, utilizing the processing capacity dhboB- Traditional, non Smart Disk Approach
host and disk resources is a problem with many operationalThe traditional approach to thB i S evaluation, which
parameters. On one hand, the specific system configurat®on kasmart disk oblivious, calls for Nested Loops Join (NLJ).
to be taken into account, so that, for example, when a higim NLJ, blocks from the smaller relation, assumReareread
speed system bus is available more aggressive paralietizat from all disks concurrently into main memory. l#7| blocks
pursued. On the other hand, the characteristics of thef8pecare available in main memory, then|iR| < |M| the relation
join evaluation are also important. For example, “migrgtin is read in one step; otherwisé, = [|R|/|M]|] steps are
processing closer to data might not be beneficial, subjeitieto required. When a read step completespaich step follows.
input to output size ratio [3]. If this is the case, the tremial In the match step the entifgis read concurrently, to increase
approach of processing data away from where data is stoted overall read rate, and one 1/O buffer is reserved in main
should be pursued. As a third example, an expensive useremory per disk. . When a block froii is available in an
defined join predicate that incurs high processing load,esak/O buffer, all combinations with the read blocks fraRare
I/O load a secondary issue and calls for processing closerconsidered and the respective join output is produced.rAfte
data. Consequently, we incorporate all operational patenrsie computation, the 1/0 buffer is cleared for the next block & b
in a processing model in order to estimate the cost of thead in. In the general case, the total number of 1/O blocks
possible alternatives. By means of this model, our approadad is|R| + k|S|, wherek = [|R|/|M]].
autonomously selects the least expensive alternativetharsg
is well-suited for a database system that adapts to worklo&d
changes in a constantly-evolving system. Our approach aims at using the processing capacity in smart

In Section Il, we present our approach for non-equi-joielisks in combination with the host resources. We view alll
evaluation on an array of smart disks that distributes tle losmart disks as peer processing nodes, while the host regsese
between disk and host resources. We start with describimg th significantly more powerful node in the “network”. The
details of partially replicating one relation, and contnwith  family of Fragment and Replicate Join (FRJ) algorithms is
the description of possible alternatives for join evalomti Suitable for evaluating non-equi-join in distributed orgitel
The details of load balancing and the cost estimates feystems [7]. The skeleton of a FRJ algorithm that evaluates
different execution alternatives are considered in Sactib R < S is as follows: the smaller relation iplicated to all
In Section IV we describe our experimentation setup arfocessing nodes; then, each node computes the join between
illustrate how our approach autonomously adapts to differethe local replica and the locélagment of the non-replicated
hardware setups. We give an overview of related work figlation. Consider the initial data placement, where disélds
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Replication in p-FRJ

Section V and conclude with future work in Section VI.  the fragmentsi; and S; of the join relations. If we chose to
replicate R, then the entire relation should be copied over
Il. SMART DIsSK p-FRJ across all disks, since every disk serves as a processirgy nod

In contrast, the host does not participate in replicatiamges

the host has access to all disks at the same time. We respond
We assume the two join relatiodsandS are block stripped to this asymmetry in resources and connectivity with our

on a smart disk array. In this sense, without assuming apsoposedp-FRJ method, that depends on the load balancing

particular tuple order, the first block from a relation isrstb factor p. In the following, we describe how the load balancing

on the first disk, the second block on the second disk, etc.factor alters the replication process. We present theraitives

a round-robin fashion. We note witR; the part of relation to actually evaluate the join result with a given replicatio

R on disk i, so thatu;R; = R andU;S; = S. The blocks the next section.

of a relation are evenly distributed to disks, so we can gafel The load balancing factop denotes the portion of input,

assume R;| = |R|/d, where|R| is the number of blocks for and therefore processing load, that will be handled by thk di

relation R andd is the number of disks. array, while the remainingl — p) portion is managed by the

A. Initial Data Layout



host. To this endp-FRJ creates on every diskpartial replica  (a) Concurrently read blocks fromk, and R; in the read

R, of the firstp|R| blocks of R. Therefore, after replication, steps and then, at match steps, readsalilocks.
disk i carries the fragments§; and R;, and also the partial (b) Read blocks fronf' in the read steps and then, at match
replicaR, of R. We note withR, the part ofR; that was not steps, concurrently read blocks frafy and Ry.

replicated, and we note with; = U; 2} the partof R thatwas | Figure 4, we present the data flow in our running 3-disk
not replicated. In this sens&; N R, # 0 andR;NR, = 0.In  example for scenario (a), where the replicated relatiorseu

Figure 2 we present the block layout after replication fora 3, read steps. Here, the main memory can hold up to nine
disk example case. In the example we seledor replication pjocks, while the disk memory has room for three blocks. In
and setp = 0.2, so the first block of allR; is replicated majn memory three of the blocks are reserved for I/0 buffers,

resulting in a 3-block partial replic&, on every disk. one for each disk, while one block is reserved for /0O buffers
in disk-embedded memory. Digkcannot hold the entir&,. to
D. Execution Alternatives in p-FRJ evaluateR, > S; and similarly, there is no room on the host

af,ﬁ)f all R., in order to evaluate?, > S. In this example, the
on-disk join requires two read steps to complete join evana
and so does the host join. At the first read step, two blocks

ePom R, are read into the smart disk buffers, while six blocks
rom R’ are concurrently read from all disks into the main

After the p-based replication completes, join evaluation ¢
start. In p-FRJ the originalR >x S is split into several
smaller joins of different sizes, respecting the asymmiettize
processing capacity of nodes-FRJ processes these small

joins independently and concatenates the respectivetsesul .
J b y P emory buffers. Then, at the match step, the erfiiie read

form the final R < S outcome. More specifically, every smar . X
disk i computesR, s S; independently. At the same time, theconcurrently on all disks to compute matches (dashed lines)

host compute; > S, whereR; is the portion ofR that was A bIc(;cE:hfrom Si |st_f|rst retad tlr:c;?e 4 OSre_serveg buf;er_:_r;]dlsk
not replicated. The host and disk joins are evaluated Witti,NI_ihan € rbeISplf(? 'er ou pdu q tTt;q i 1S pro E:Ce”(') en, d
using the host and disk resources respectively. ThtsRJ € same block IS Torwarded 1o the appropriate reserve

follows the same execution pattern as NLJ, wheiterations S.Uflf(eé'?fthe hfc;t tr? par?rc]npate I > f ' tNotedtha}t a"ﬂ? nt-th
of read and match steps are carried out. Howevep-FRJ ISK buflers otit, have the same content, and aiso that the

multiple joins are involved, so the data flow is differentrfro entireS is read one block at a time and contributes to different

the one in NLJ. In Figure 3 we present the steps taket;p-byJOInS ina p|pel.|ned fashl(?n. .
FRJ. First, the partial replication step is carried out ameht The alternative scenario (b) calls for using the fragmented

k iterations follow. In every iteration, the disk and hostipi relation in the read steps and is presented in Figure 5. Again

concurrentlyread blocks into disk and host memory buffersthere is not enough room for the entit® to be read in

respectively. A read step is followed byraatch step where neither the diSI_( nor host memory. In t_hi_s cagei,terat_ions .
the disk and host joins lookup in the disk and host buffefy€ Necessary in order to e_valuate the jom. In every ima
respectively for matches. In the following we discuss th blocks fr(_)m Si ﬁrgﬁrgiﬁd klnto smzi\rt o?sk bugfe(rjs, a?.ﬁl ?]t
synchronization issues that arise from concurrently etiegu the same time, the ocks are aiso forwarded to fill the

disk and host joins and present alternatives to evaluateth§'dn memory buffers. Then, smart diskeads, one block at

joins. We defer the estimation of the number of iteratiédns a time, f[he entire?, and the entirel?; concurrently into the
until the next section appropriately reserved 1/O buffers on disk and host (dashed

In order to evaluate?, = S; on all disks requires the entireIlnes). The blocks fromR, contribute in the join evaluation

S = U;S; to be read. Thereforei-FRJ synchronizes the on- of S; > R, on diski, while the blocks fromR; contribute

Ct . Y ._in the join evaluation ofS > Ry on the host. Note that the
disk joins with the host join, so that the blocks from relatio . . .
. . main memory buffer contains the same tuples as the union of
S are read only once. To achieve this performance galFRJ

forces alld+1 joins to take read, and respectively match, step?sljﬁers on all disks.

the same time. However, the number of steps required by NLJ m
to evaluate the host join might be different from the numider o
steps for the disk joins, depending on the available mentiory.A. Processing Pipeline
this casep-FRJ forces all joins to perform the same number of \ye model the algorithmic execution in smart disk envi-
iterations. Finally, to complete join synchronization, jains gnments in terms of grocessing pipeline [3], [8]. This
must use the same relation when reading blocks into memQiipeline comprises sistages: reading data from disks,on-
and respectively, when looking for matches in memory. Thigg processing, copy to host over the interconnect network,
means that after the decision for the relation to replica@® hpog processing, copy to disks, andwriting back to disks. The
been madep-FRJ has to choose between two alternatives. pipeline stages operate in parallel and the overall pipelin
speed is determined by the slower stage, termed the pipeline
S o msteon | icteen ‘ bottleneck. Therefore, in order to fully evaluate system per-
[ repiicate [ read [maten] reaa Jimateh] - - - [ read [maten] formance we have to determine the amount of data conveyed
between stages and the rate at which each stage consumes
Fig. 3. Steps inp-FRJ. data. Note however, that one cannot model the entire join

. PROCESSINGMODEL
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Fig. 4. Read replic&, and R in memory. UseS to produce matches. Fig. 5. ReadS in memory. Use replicd, and Ry to produce matches.

evaluation as a single pipeline, but only as a series of pipgl by the host, while theR, blocks, which are read in parallel,

In the p-FRJ case, we model each step as a different pipelisge handled on-disk. In contrast, $f is the input to either a

as illustrated in Figure 3. In this senseFRJ starts with a read or a match pipeline, the data flow has ghelocks first
single replication pipeline. Then, a pair of read and a mattieing processed on-disk and then being forwarded and furthe
pipelines follows. The read pipeline reads blocks from slislprocessed on host. In light of this observation, we consider
into memory buffers, and when the read pipeline completdhe performance of a read or match pipeline, when either
the match pipeline follows and produces matches. As prer the pair of R, and R; are used as input.

sented in Figure 3p-FRJ execution might involve more than When S is used as input to either read or a match pipeline,
one pair of read and match pipelines. In the following, weoff the read stage reads| blocks and the smart disk array
a detailed analysis of the trade-offs involved in the pipedi processes the sanj&| blocks. Then, the same number of
for replication, read, and match steps. The goal is to forplocks is transferred through the interconnect and preckss
pipelines in such a way so that bottlenecks are eliminated, gn the host. The build pipeline produces no output, while the
in other words, to make all pipeline stages last equally longutcome of the match pipeline i, > S| + |Ry 1 S| =

The input to the replication pipeline is the firgtfraction |R > S|. Typically, in smart disk environments the output
of blocks from the replicated relation. Each disk reads it'size is orders of magnitude less than the input size [3], so
own share of blocks and broadcasts it on the interconnéieé write stage is not expected to slow down the pipeline.
network. At the same time, disks create a replica file ar&kcept from the write stage, all stages have the same input
append to it all broadcast blocks they receive, includirarth size, so the bottleneck is the stage with the slower consompt
own broadcast. IfR is the replicated relation and is the rate. The processing load during the match pipeline is highe
load balancing factor, thep| R| blocks are read and broadcasthan during read pipeline, but still not high enough to caaise
on the interconnect, whildp|R| blocks are written to disks. bottleneck. In practice, even expensive predicates, igance
Thus, in the replication pipeline we expect the write stagleet  between tuples in some metric or string matching, only nequi
the bottleneck because it receivetimes larger input than all a few CPU instructions, so the processing stages exhibit
other stages, and has the lowest consumption rate. Edgecihigh throughput rates. Therefore, the bottlenecks can bely
in the replication pipeline, the pipeline bottleneck canbe formed in two places: either the read stage or the copy-to-
affected by changing the value pf host stage. In either case, we cannot change the bottleneck

o by affecting the load balancing factgr when S is used as
B. Read and Match Pipelines input to either a read or a match pipeline.

Consider from Section II-D, the twexecution alternatives We now consider the case where the read and match
available top-FRJ. After replication is completgy-FRJ can pipelines have?, and Ry as their input. The important change
useR, and Ry as input to either the read pipeline (Figure 4here is that the total number of blocks reddR,| + |Ry|
or the match pipeline (Figure 5). In both the read and match higher than|R|, because the same replicds. are read
pipelines the block data flow resulting from havid} and locally in all disks. In this sense;-FRJ is expected to read
R as input is the same. The blocks froRy are managed more blocks than NLJ. However, it is not the total number



of 1/0s that determines performance, but the rate at whidlhus, p-FRJ uses the maximum number of iterations for the
data are read. Recall that typically the system bus canmab cases according to NLJ.
sustain the aggregate read rate of a large number of disks. plRIT [(1—p)|R|
Consider NLJ wheréR| blocks are read fromi disks and kr = maX{ MM J ; [ | W} (3)
transferred through the system bus. The NLJ performance is d h ] ]
limited by the copy-to-disk stage reading| blocks at the !N order to enhance performangefFRJ adjusts in (3) so
system bus speed. Similarly, i®FRJ the copy-to-host stagethat the number of iterations is reduced.
transfer§Rs| = (1—p)|R| < |R| blocks, which means that the [Mw _ {(1 - P)|R|W o |Mq @)
copy-to-host stage completes faster compared to NLJ. Iglear Mg | | My, p= | Ma| + | My
asp — 1 and|Ry| becomes smaller, the load placed on thg, ight of this, p-FRJ has to combine (1) and (4); the first
interconnect network will reduce. However, @as- 1 the total  gquation guards against the read stage becoming the bottle-
number of read blocks increases rendering the read staggegk, while the second minimizes the number of iterations.
bottleneck. In this context, we have the opportunity to atju  Note that so far we have not made the assumption fbjat
the value ofy so that the performance bottleneck is eliminatedg) |n fact, as the following cost expressions indicate, it is
p-FRJ increaseg up to the point where the read staggossible to decrease cost by replicating the larger reiatio
lasts as long as the copy-to-host stage, and hence, is not lier first considers eitheR or S for replication. Then, a
bottleneck. This means that while the system bus is bug¥cond decision has to be made for which relation will be
transferring data at full speed, the underutilized diskadre yseq in the read steps, making a total of four alternatives. T
replica blocks in parallel. We usB,cqq and By, t0 denote cost of the four alternatives is estimated befprBRJ starts
the maximum disk read rate and the maximum interconnggfecution, so that the least expensive alternative isieith
network bandwidth. o inf
d| R, R R d 1- dByeq = i
dB _B CrepI(R7 pR) + Cread(S/da S) + kSCmatct{Rra Rf)a
— p < max {O, read bus } (1) CrepI(Sa PS) + Cread(Sr, Sf) + kSCmatch(R/dv R)a
~@Bread + (4~ 1) Bous Crepl(S. p5) + Cread B/d. R) + kCraic 1. S7)} (5)
Although (1) guards against saturating the read stageRJ TQe values ofkp and ks are taken from (3) and (2). The

uses a complementary mechanism to synchronize the disk Eést of replication is governed by the write stages botti&ne

host joins. This mechanism does not directly depend on t X . .
data flow in the pipeline so we devote the next section f r’ep'(X’ 9) = g,-- The cost of reading relations and H

presenting it.

respectively to disk and host memory buffers is determined b

_ o the bottleneck in the copy-to-host stag&cad D, H) = %
C. Join Synchronization Similarly the cost for the match pipeline Gmawc( D, H) =

As discussed in Section II-D, the reason for join synchro%%. Considering (1) and (4) we use a rangepofalues for
nization is the performance gain from reading the fragnintéb), so we note witlpr andpg the best values for replicating
relation in one pass. In practice, join synchronizatioruiegs R and.S respectively.
all joins to use the same number of steps and execute them IV. EXPERIMENTAL RESULTS

in tandem. As discussed in Section II-B, NLJ always uses . ) ) _
the smaller relation in the read step in order to reduce the'Ve conduct detailed simulation experiments that enable

total number of 1/Os. Ip-FRJ, where NLJ is used to evaluatd!S 10 €xaminep-FRJ features and empirically evaluate the
disk and host joins, the same rule applies, with the excaptiHade'OﬁS involved. The nature of smart disks renders gxpe

that the number of /O requests is not the only factor t§i€ntation with prototypes a challenging problem on its own.
consider. Instead, the performance of the pipeline batlkn In light of_th|s, we resort to 5|mula_t|ng "?‘” components of
is the main criterion. To this end, first we consider th@ Smart disk architecture on par with prior efforts [2], [8],
two execution alternatives and provide the respectiveytinal [9]- We developed our smart disk system simulator atop the
formulae for the number of iterations necessary. Second, fy&'M discrete event simulation library. We simulate all sma
present the expected number of blocks fed into pipelineestad!iSK System components: disks, processors, memory modules
and produce cost expressions based on the performanc@'?)q buses._ In order_to simulate en_tlre smart disk systems
pipeline bottlenecks. we appropriately configure and combine components together

When the fragmented relatiafi is used in the read steps," OUr €xperiments, system components are configured to
the number of iterations:s is the maximum of iterations NLJ OP€rate according to the parameters presented in Tables | an
requires for the disk and host joins. II. The implementation of join algorithms make use of the

simulated system resources according to their needs. So at
ks = max {[ El ] , [ﬂw } (2) runtime, join algorithms use various simulated resources a
d|Mal | " | [Mn] simulator statistics are updated accordingly. Join ators
Similarly, when R, and Ry are used in the read steps, disloperate on generated relation data and fully evaluate amd st
i has to maintairiR,| blocks, while the host maintairi$;|. to simulated disks the join outcome.




TABLE | TABLE Il

SMART DISK PARAMETERS SYSTEM PARAMETERS the host processor underutilized. NLJ places all load on the
host which delivers better performance than AD-FRJ. Sk,
Parameter  Value Parameter Value performance of NLJ is limited by the interconnect network
Read Rate  80MB/sec  CPU Speed 2GHz bandwidth, which is over 98% utilized. Note that the NLJ
Write Rate 60 MB/sec Memory 500 MB . . . .
CPU Speed 400 MHz System Bus 300MB/sec '€SPONse fume is the same when the numbe_zr of disk¥)is
Memory 100 MB Disks on Bus 8 or 24 (3 disk buses), as well as when the disks 28eand
32 (4 disk buses). In these two cases, although the number of
100 ‘ ‘ disks increases the interconnect is saturated and bectmes t
_ =" pipeline bottleneck in the read and match pipelines.
ol In p-FRJ, the interconnect network is also the bottleneck in
the read and match pipelines. Howeve+s-RJ exploits this
: ol fact and sends more I/O requests on the disks which are
£ underutilized. During the NLJ read pipeline, disk utilipat
Q wl is less than20%, when more thar8 disks are used, while
£ p-FRJ utilizes60% of disk throughput rate. In this context,
ol i p-FRJ performance on the host is comparable to the NLJ
performance. Howevep-FRJ uses the smart disk buffers, and
N thus, requires less iterations for join evaluation. In gesup,
S v s NLJ requires3 steps, whilep-FRJ require® due to the extra

smart disk embedded buffers. On average, NLJ Bigis more
compared tq-FRJ.

Fig. 6. Join evaluation time for different number of disks.

B. Time Spent in Steps

In Figures 7 and 8 we present the total time spent in the
In the baseline run, we evaluate the join of B relation replication, read, and match steps when, respectigeind 16
(3,5 million tuples) with a5 GB relation @0, 1 million tuples) disks are employed; in Table Ill we list in the corresponding
that produces 223 MB relation 94,000 tuples). The join component utilization. We see in both figures that although
predicate accepts tuples that are within a distance thigshdhe replication cost of AD-FRJ is prohibitively high, theack
in the euclidean metric space. In the following we considand match steps are faster in AD-FRJ compared with the
three different algorithms. The first is our proposedrRJ other two algorithms. The read and match stepspiRRJ
that considers all execution alternatives and uses the loadibit almostl00% disk utilization, which means that as more
balancing factop according to our description in the previouslisks are added the steps will require less time to complete.
section. The second algorithm is NLJ that does not use tHewever, putting more disks in the system will not decrease
smart disk processing resources. Although we implementx replication cost, as AD-FRJ replicatéd?| blocks.
NLJ as a separate algorithm, its behavior is identicapto  In contrast, NLJ has no replication and places all procgssin
FRJ forp = 0. We actually compared the behavior of NLbn the host, which means voluminous data has to go through
and p-FRJ with p = 0 as a sanity check for our testbedhe interconnect. Therefore, the bus becomes the botheasec
and verified that their results matched. The third algorithitis over90% utilized. This is the window of opportunity for
we consider isActive Disk FRJ (AD-FRJ) [9]. The AD-FRJ p-FRJ: while NLJ stalls the disks waiting for the bus transfer
algorithm fully replicates the smaller relation acrosskdjsso (disk utilization < 13%), p-FRJ places more read requests on
its behavior is identical tp-FRJ forp = 1. As with NLJ, we disks (disk utilization> 30%), and thus, allows for more data
implemented AD-FRJ separately and compared it's behaviorbe processed at no extra cost. Note in Figures 7 and 8 that
with p-FRJ forp = 1, only to found they completely match.the read steps ip-FRJ and NLJ last the same, althoygFRJ
In all algorithm implementations, the necessary read ari¢ wrreads more data. As more data is read during the read step,
buffers were allocated in disk and host memory as describie: less iterations are necessary for join evaluation. is th
in Section Il. After I/O buffer allocation was complete, theparticular case, wherg-FRJ require® iterations, while NLJ
remaining memory was available to the algorithms. requires3, the match steps ip-FRJ are50% faster than the
In Figure 6 we present the join evaluation time of the thrematch steps of NLJ. Overall, NLJ 5% slower thany-FRJ
algorithms we consider, in systems with a varying numbaer the 8-disk case an@5% slower in thel6-disk case.
of attached disks, ranging fromh to 32 disks. Note that As more disks are put to the system the interconnect
for every 8 disks, we use a separaB®0Mb/sec disk bus. bandwidth increases, so the match steps last shorter and the
In all cases, AD-FRJ lasts longer than the other algorithn@erformance gain is limited. However, the available hostme
The main problem with AD-FRJ is that the cost of a fulbry to algorithms decreases as more disks are added, because
replication overshadows any benefit from fast join evabrati the number of 1/O buffers increases. Constantly adding more
In addition, even when only a few smart disks are employelisks will eventually lead NLJ to more iterations that will
AD-FRJ places the entire join evaluation load on them legvimapidly drop its performance.

A. Baseline Experiment



TABLE Il
COMPONENTUTILIZATION FOR 8 AND 16 DiSKks

8-disks 16-disks
Algorithm  Step Disk Disk-CPU Bus CPU Disk Disk-CPU Bus CPU
NLJ repl 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
NLJ read 11.64% 0.00% 94.42% 8.02% 11.84% 0.00% 92.05% %5.69
NLJ match 12.79% 0.00% 99.79% 14.65% 12.85% 0.00% 99.55% 22%8.
AD-FRJ  repl 99.62%  1.68%  16.36%  0.00% 99.55%  1.46% 8.25% 0%.0
AD-FR]  read 79.48%  22.77%  0.00%  0.00% 78.55%  22.22%  0.00% 00%.
AD-FRJ match 75.70% 38.64% 0.00% 0.00% 75.92% 38.16% 0.00% .00%
p-FRJ repl 98.80% 1.66% 16.20% 0.00% 98.57% 1.45% 8.17% 0.00%
p-FRJ read 30.18% 5.07% 97.14% 8.27% 47.75% 9.84% 94.48% 9%%6.0
pFRJ match 13.32%  678%  99.81%  15.13% 13.56%  6.76%  99.60%.18%0
C. Load Factor p security and user authentication [15], or convert disksnfro

In Figure 9 we present the execution time foRJ in block stores into object stores [16]. In addition, SmartkiSis

the 8-disk and 16-disk system, with a fixed load balancing™Prove the performance of database systems, especially in
factor p and a fixed execution alternative. More specifically"e c@se Of filter-type operators, like table scan, sortednba
we vary thep value from0 to 1 and forcep-FRJ to replicate construction in merge sort, and top-k queries [5], [9], [17]
the smaller relation and use the replica during the read stff): However, binary matching operators, like join, pose
This is the execution alternative thafRJ chooses when self-different problems due to the large number of comparisons
adjusting they value. Note that the x-axis in Figure 9 is in?€fween the inputs. Subject to the available buffer space,
logarithmic scale. We see that for both thelisk and thelg- 10ins are completely different from filter-type algorithnis
disk systems a load factor less thar03 does not reduce that joins scan thelr m_put multllple times and flush to disk
the join evaluation time. However, forbetween).05 and0.2 potentially voluminous intermediate data [1].
the evaluation time drops b§0%. Then, for greater values Parallel join algorithms fall in two categories accordimng t
of p the performance significantly deteriorates. Note that Nltfie technique for data reorganizati@ymmetric partitioning
performance is on the leftmost part of the graph, foe 0, and fragment and replicate [7]. The symmetric partitioning
while the AD-FRJ performance on the rightmost, foe= 1. approach on a smart disk array hashes input relations ingbuck
Note that, the AD-FRJ performance in Figure 9 is much worggirs that are processed independently on smart disks [9]. A
compared to Figures 7 and 8. This is duept&RJ using a more general approach considers both disk and host resource
fixed execution alternative in this experiment. Should allrf in join evaluation [8]. Our algorithm is different in that it
execution alternatives were enabledFRJ would select to is capable to evaluate any join predicate, not only equality
replicate the smaller relation, but then use it in the matep,s predicates. Nevertheless;,FRJ borrows the load balancing
which is the case in Figures 7 and 8. scheme [8] in order to achieve high component utilization.
This indicates that, equations (1) and (4) are guigifgRJ Fragment and replicate techniques are the only choice in
to the right direction. Firstp-FRJ restricts, according to (1), cases of non-equi-join evaluation. AD-FRJ that falls insthi
to be p < 0.124 for 8 disks, andp < 0.169 for 16 disks. In category replicates the smaller relation across all disks,
this value range fop, blocks are read into disk buffers “forthat independent on-disk joins can follow [9]. In addition,
free”, as long as the system bus is saturated. SegefdR] a variation of AD-FRJ employs bit-vector filters to avoid
adjustsp according to (4) so that the number of iterations igeplication of tuples that are guaranteed to have no match,
minimum. For the8-disk system0.030 < p < 0.192, while but this variation only applies to equi-join predicates.rOu
for the 16-disk system0.062 < p < 0.192. We conclude that proposedp-FRJ, which falls in this category is a generalized
the two equations serve as good heuristics to guidiRJ to version of AD-FRJ that performs partial replication andldea
autonomously adjust the join evaluation load. Note howevayith synchronization issues, alternative execution pland
that the underlying model is flexible enough to cover a mudbad distribution.

wider case of system and application parameters. We use the termSmart Disks as an umbrella term for
different proposals in the literaturdctive Disks [2], [3] and
Intelligent DISKs [4], constitute one realization of the Smart
The Smart Disk architecture favors filter-type algorithmdisk architecture, where hard disk drives come equippeld wit
therefore applications like data mining, multimedia apgli embedded general-purpose programmable processors aad ext
tions, data warehousing, large string database search, amemory dedicated to data processing. Another Smart Disk
decision support systems are well suited for Smart Disks [Zrchitecture example iSletwork-Attached Secure Disks [15],
[3], [10], [11]. A different line of research uses smart diskand Clusters of Smart Disks [5]. Here, disks are attached to
to transparently reorganize the disk data structures ugesl bsome device that exports a network interface. This network
file system or a database system, based on information abot#rface is a mediator that features sophisticated podgoc
how these systems use their data [12], [13]. More radictilat, either directly or not, forward requests to disks.atlie
approaches push to disks the file system implementation [1#he traditional storage device interface of read/writaussis is

V. RELATED WORK
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