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Abstract

Progressive and approximate techniques are proposeddieagftracing systems used to predict ra-
dio propagation. In a progressive prediction system, mésfiate prediction results are fed back to users
continuously. As more raypaths are processed, the accafacgdiction results improves progressively.
We consider how to construct a progressive system thafieatibe requirements of continuous observ-
ability and controllability as well as faithfulness andrfass. Adding a workload estimator to such a
progressive prediction system allows termination of thegotation when a desired accuracy (mean and
standard deviation of the error) is achieweithout knowing the final resuthat would be obtained if the
prediction system runs to completion.

The sample generator is at the core of the progressive picdgystem and serves to cluster and pri-
oritize raypaths according to their expected contribigitnprediction results. Two types of progressive
approaches, source-group-raypath-permute and raypihteave, are proposed. The workload estima-
tor determines the number of raypaths to be processed tevaxcthie specified requirement on prediction
accuracy. Two approximate models are described that attesvorkload dynamically during the pre-
diction process. Our experiments show that the proposegt@seive and approximate methods provide
flexible mechanisms to trade prediction accuracy for ptagidime in a relatively fine granularity.

Indexing Terms:progressive and approximate prediction model, obseiitsabitd controllability, faith-
fulness and fairness of prediction results, sample gemeaad workload estimator, prediction accuracy
and prediction error

*This work was partially supported by NSF under grant IRI-8642, the U.S. Department of Commerce under grant 4000186,
and the New York Center for Advanced Technology in Telecomigations (CATT).
TWork while at Polytechnic University.



1 Introduction

Ray-tracing based radio wave propagation prediction nsdugle become popular and important in modern
wireless system designs [16, 28, 13, 17, 25]. As wireleseBysbecome more complex, and requirements
for quality of services (QOS) delivered by wireless netvedokecome diverse and sophisticated [2, 16], there
is a growing need for versatile features of propagationiptieth models. For instance, during the design of
wireless networks, it may be desirable to know if the reatisignal strengths at some locations are above
a threshold. If prediction models feed back prediction ltestontinuously, then designers can get the re-
quired information quickly and terminate the predictiomgess before completion. Currently, prediction
models operate in batch mode [21, 17] so that designers pemgbinit specifications and requirements to
the prediction model before prediction procedure begirase on these parameters (specifications and re-
quirements), the prediction model will process a large m@wf ray trace data eventually returning complete
prediction results. While the program is running, desigrieve no control on the prediction procedure.

Progressive prediction models are attractive as they cawide successive refinements and give quick
feedback during the prediction process. They also givesultexible control over the whole prediction
process and convenient mechanisms to trade predictiomaayctor prediction time. Users can change pa-
rameters and therefore the prediction process on the fidlmsehanging or unquantifiable human factors,
such as time constraints, accuracy needs, and priorityhef ¢hsks. Since the user can observe the ongoing
process, there is no need to specify these factors in advaraditional prediction models are usually opti-
mized to finish the entire prediction task with minimum pregiag time, but there is no requirement for or
constraint on intermediate prediction results. If the préoh procedure terminates prematurely, its outputs
may be bias and misleading.

Progressive and approximate techniques have been appledriy fields, such as engineering mathemat-
ics [15], dynamical systems [4], fractal geometry [18, Htabase systems [23, 11], information retrieval
systems [14], computer graphics [12, 26, 6], and data cossfme and visualization [7, 8, 5]. In engi-
neering mathematics [15], progressive and approximatatgues are employed to determine roots of an
equation, such as Newton’s recursive method, regula fa¢hoa, and iterative method. Similar techniques
are also used to find approximation for eigenvalues of megritn computer graphics, progressive and ap-
proximate techniques are integrated into the ray-tracystesns for time-critical or interactive applications
[10, 9, 24, 27]. An approximate and low-quality image is deled to the user by generating and tracing
only a small set of samples. As more samples are generatqut@ressed, the quality of the resulting image
will improve. Such interactive and progressive ray-trgciiystems can be found in [22, 19, 20].

While progressive and approximation techniques have beed for some time, they are not currently
used in computer software systems for predicting UHF radivenpropagation in cities, which are based on
geometrical optics and the geometrical theory of diffi@tti This approach to propagation prediction can
be thought of as tracing rays radiated by a base statiomtities as they intersect buildings where they are
reflected, or illuminate building corners where they aréraited. The building corners act as secondary
sources of rays that can again be traced as they interacbuilttings. It is usual in ray programs to find the
rays from a single base station that illuminate many recéngations along the streets (one-to-many). Ray
programs usually account for rays that undergo five or mdleateons and one or two diffractions at vertical
building edges. For the study reported here, we have castiesimulations using a 2D ray tracing package,
which is appropriate for low base station antennas in a hggh building environment [2]. However, the
ideas reported here can be applied to codes that trace rayamd around buildings in 3D [13, 17, 2].



Generally speaking, progressive and approximate predigtiodels for propagation prediction should
satisfy the following requirements: 1) the prediction gdare should be continuously observable during
the entire prediction process; 2) the prediction procedtiauld let the user change parameters to control
the prediction procedure at any time; 3) intermediate ptadi results should be faithful approximations in
that it is the best (tightest) approximation of the actualfgrediction results under given time constraints;
4) intermediate and final prediction results should be faul anbiased for all receivers are updated at
the same rate; 5) mechanisms should be provided to tradéctiwedaccuracy for prediction time; and
6) the prediction model should allow integration of otharhtieiques into the model to further improve its
performance.

Although there are differences in the progressive and afipade techniques used in different fields, they
all share the same fundamental structure: 1) the originalpedation is decomposed into many small tasks
and are prioritized according to their (estimated) contidns to the final results. The high-priority tasks are
grouped into base sets, while the low-priority tasks arsteled into enhancement (refinement) sets; 2) the
result generated by processing all tasks in the base satsrdal rough approximation to the real final result;
3) as more tasks in the enhancement sets are processedatite @futhe result is continuously improved.
By monitoring the output of the process as it progresses pibgsible to terminate the computations knowing
that desired accuracy conditions (mean and standard abeviEtthe error) will be achieved without knowing
the final result.

The remaining of the paper is organized as follows. Sectipne2ents two theorems for idealized con-
ditions that indicate approaches to satisfying faithfathand fairness requirements. Mechanism to trade
prediction accuracy for prediction time is suggested bythlkeerem developed in Section 2 for idealized con-
ditions. Based on this analysis, two types of progressiegliption models, source-group-raypath-permute
and raypath-interleave, are proposed in Section 3. In &@edtitwo approximate prediction models, source-
group-raypath-permute approximate model and raypaéri@ave approximate model, are proposed to pro-
vide flexible mechanisms to trade prediction accuracy fedmtion time. All these methods (algorithms)
are implemented and their performance are evaluated by usal Geometric Information System (GIS)
databases in Section 5. We also compare and analyze adesstad disadvantages of different prediction
models. Conclusion can be found in Section 6.

2 Considerations on Progressive and Approximate Predictions

Faithfulness requires that the prediction system alwajigaite the best prediction results (the least mean
of prediction errors for all transmitters and receivers)matter when the user terminates the prediction
procedure. If we assume that the processing time for eagfatlays the same, and the maximum number
of raypaths which can be tracedtisinder the given constraints on time and computation ressutben,
the prediction model should trace theaypaths that minimize the prediction errors. The most g
design index in a wireless system is the received signaigtine for all receivers. We therefore use the mean
of the received signal strengths at all receivers as theftéitess metric to evaluate the quality of predic-
tions. Assuming that the processing time for each raypathsei same, the following theorem (Theorem 1)
guarantees that the faithfulness requirement is alwaysfiedtno matter when the prediction procedure is
terminated.

Theorem 1 (Faithfulness) Suppose that the processing time for each raypath is the,samdeprediction



errors are described by the difference between the genénateeived signal strengths (in dB) and final
received signal strengths (in dB) for all receivers. Thetdbuation ratio of a raypath is defined as the
ratio of its contribution (in Watt) to a receiveR and the sum of contributions (in Watt) of all unprocessed
raypaths forR. If raypaths are always traced according to their nonin@ieg contribution ratios to the
received signal strengths no matter which receivers thegnihate, then the mean prediction error (in dB)
is minimized, however, its variance (in YBnay fluctuate (increase or decrease).

The proof of Theorem 1 is similar to that given for Theoremrit] aan be found in [3]. To apply Theorem 1,
the prediction model needs to be aware of the contributidradl the raypaths to the prediction results and
sort them in nonincreasing order before the raypaths irud@on are actually traced. For this theorem, the
prediction accuracy is characterized only by the mean gtiedi error and not by its variance. Obviously, it
is unrealistic to assume that the raypaths can be sortedvanad. However, methods to approximate this
sorting process are discussed in Section 4.

For wireless system design, it is also desirable that thigilaliion of prediction errors should spread
evenly among all receivers to minimize the variance of tmersr In this case, the processing strategy based
on Theorem 1 is not enough since it may concentrate erroreme seceivers. Fairness requires that the
mean and variance of prediction errors should both decrees®tonically during the whole prediction
process. Theorem 2 addresses this requirement.

Theorem 2 (Fairness) Suppose that there are receiversR; (i = 0,1,...,n — 1 andn > 1), and R; is
illuminated bym, raypaths,r; ;, j = 0,1,...,m; — 1. The contribution to the received power by; is
P; ; (in Watt), and all P; ; for R; form a geometric progression, that iB; ;1 = r;F; ; (0 < r; < 1). By
clustering they-th raypath for all receivers together to form a grotf{g), we get a sequence of groups of
raypaths,G(g), (¢ = 0,1,...). If we traceG(g) group by group in that order, then a) the mean (in dB) of
prediction errors decreases monotonically with the numifgarocessed groups; b) the variance (in%)IBf
prediction errors decreases monotonically with the nundfgarocessed groups if it is further assumed that
m;=oofori=0,1,...,n.

The proof of Theorem 2 can be found in Appendix A. Similar tcedrem 1, application of Theorem2
also requires that the contribution to final prediction tsshy each raypath should be known before it is
traced. The condition that contributions of raypaths ililnating the same receiver satisfy the geometric
progression relation will, at best, be only approximatelyet In moderately complex environments, there
will be an infinite number of raypaths illuminating each rigee In reality, most raypaths may contribute
so little to the final prediction results that they can be lyadeopped off.

2.1 Tradeoff between Prediction Accuracy and Prediction Time

An important requirement for a progressive prediction mhdgléhat it should provide a flexible and conve-

nient mechanism with users to trade prediction accuracyritiction time. For example, network designers
only want to find general trends or gross patterns of the ptiedi results, instead of the exact results with
very high precision. This is in fact an approximation probléat may be phrased two ways. One is, given
a time constraint, what is the best prediction accuracy tbhdahcan deliver. The other is, given the worst
tolerable prediction error, what is the minimum procesginge. An approximate prediction model based
on Theorems 1 and 2 can solve the first problem as long as tlditiomis in the Theorems are satisfied.
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To solve the second problem, we define the prediction errdneaslifference between the final prediction
results and the prediction results generated so far (baiB)n

Note that the ray tracing procedures simplify the buildilagsl the physical processes involved. As a
result, there will always be differences between the memsents and final prediction using all of the rays.
Because of these simplifications, models run for receivistsilolited over kilometer distances exhibit dif-
ferences between prediction and measurements (in dB)ypagatly have an average of about 1dB and
a standard deviation of about 8dB [17, 2]. Now suppose thastepe the prediction process at the point
when the difference between the interrupted predictiornstha final predictions using all the rays has an
average of 1dB or less, and a standard deviation of 4 dB or laghis case, the errors of the interrupted
predictions as compared to measurements will have an avégag than 3 dB and standard deviation ap-
proximately 9 dB (i.e.,/42 + 82) [3]. This example suggests the conditions under which wg imarrupt
the prediction without significantly impacting the achiedaaccuracy as compared to measurements. In
using the definition of prediction error as the differencéssen the final predictions and the intermediate
results, we would need to trace all the raypaths and finistetitiee prediction process, which contradicts
the main purpose of the approximation procedure. Theoresrd8signed to solve this dilemma.

Theorem 3 (Workload) Suppose that there arereceiversRk;, i = 0,1,...,n — 1, each of them is illumi-
nated by an infinite number of raypaths. The contributionh®received power of receivét; by raypath
ri;is P j (in Watt, andP; ; > 0), and all P; ; for R; form a geometric progression, that B, ;1 = ; F; ;

(0 <r; <1forj=0,1,2,...). Raypaths; ; are clustered into a groug-(j), (¢ = 0,1,2,...,n — 1
andj = 0,1,...). GroupsG(j) are traced group by group in that order. Given the tolerableam and
variance of prediction errors ag (in dB) ando? (in dB?), then after tracingt groups of raypaths, the mean
u(k) and variances? (k) of prediction errors generated by the prediction model wdtisfy;.(k) < p and
o?(k) < o? as long ask satisfies:

1
log [1 T 1omax (M,a)/lo} n—1
= ) Tmaz = MaXT;
10g (Tmam) 1=

The proof of Theorem 3 can be found in Appendix B. Theorem 3vshtbat prediction errors can be found
even though the final prediction results are unknown, pexvitiat all the conditions described in Theorem 3
are satisfied.

Even though the conditions (mentioned or implied) in Thawel, 2, and 3 cannot be satisfied in real
systems, the following guidelines derived from these thewr can be used for designing progressive and
approximate prediction models. First, trace raypaths raieg to their expected or estimated contributions
to the final prediction results. This strategy helps to min@rthe mean of prediction errors at any time
during the whole prediction process. The contributionshio final prediction results by raypaths can be
estimated by some heuristic methods. Next, when the variahprediction errors is important, raypaths
should be clustered and processed group by group. Raypethes same group should cover (illuminate) all
or most of the receivers. Those groups contributing mostedinhal prediction results should be assigned
higher priorities. Furthermore, the contributions of eiént groups should form a nondecreasing relation
(e.g., geometric progression). The relationship amorfgreift raypaths can be exploited to cluster raypaths
to approximate the above properties. Finally, when premtichiccuracy is traded for prediction time, work-
load should be estimated to deliver prediction results &skbyuas possible based on Theorem 2. To make
the estimate of workload accurate, dynamic adjustment oklvad is necessary.



2.2 Generic Progressive and Approximate Models

In the radio wave propagation prediction problem, if eagipath from real transmitters to receivers is con-
sidered as a sample, then the raypaths between all traessvatid receivers will form a huge sample space.
Different samples contain different path components (c&flas, diffractions), require different processing
time, illuminate different set of receivers and buildingreers, and contribute differently to the final predic-
tion results. Comparing with traditional prediction magjed progressive prediction model needs to cluster
raypaths into different orders before processing them. drth, it is convenient to divide the geometric
data processing into two parts, a sample generator and teagigg engine. The sample generator clusters
raypaths into groups and assigns different priorities ¢ortbased on some criteria, then hands these groups
to the ray-tracing engine according to their prioritiesisitlear that at the core of a progressive prediction
model is the sample generator [24]. The design of samplerg&me should be based on the guidelines
derived from Theorems 1, 2, and 3, and also should take imttoust the characteristics of radio wave prop-
agations. For example, we know that transmitters carry niigher energy than secondary transmitters
(diffraction corners). Also, raypaths representing thst filiffraction by a corner may carry much higher
energy than those representing a second diffraction byraecoDifferent raypaths may illuminate differ-
ent sets of receivers, and some may illuminate a large setcefvers, while others may illuminate only a
small or empty set of receivers. Finally, raypaths emittedlifferent source points that are well separated
spatially may illuminate different sets of receivers.

Based on these observations as well as the guidelines ddrime Theorems 1, 2, and 3, we design a
generic sample generator for a progressive or approxinratigtion model. All raypaths emitted from real
transmitters are put into the high-priority base sets, evthibse raypaths generated by diffraction corners
are put into the enhancement sets. Raypaths in the same gdtenfarther partitioned into different pri-
ority groups based on other criteria. In Sections 3 and 4, igegmt heuristic methods for grouping rays,
according to the guidelines suggested by Theorems 1, 2, aRl@paths are handed to the ray-tracing
engine in a group-by-group fashion. Based on the feedbaxchk the ray-tracing engine, it is desirable to
adjust the grouping criteria, regroup raypaths, and chanigeities of different groups if necessary. When
termination conditions are satisfied, proceed to electgymagc indices computation part, and generate the
final prediction results.

The design of the ray-tracing engine for a progressive ptiedi model is more complicated than a tra-
ditional prediction model since it needs to collect statssinformation for the sample generator. Raypaths
from the sample generator may not have any particular ofidery may come from different source points,
or from the same source point but with random order. To avwédtime-consuming operation of ray-wall-
intersection check, the ray-tracing engine should usenmétion accumulated in the processing of previous
groups. The ray-tracing engine should organize this actatediinformation efficiently for retrieval, up-
date, and removal. Furthermore, the ray-tracing engindseeinteract with the electromagnetic indices
computation part, which will generate the intermediateltssand display them through the user interface.

3 Progressive Prediction M odels

The pincushion ray-tracing method [2] is used in our préglictnodels. For a 2D ray trace, the pincushion
method launches rays for each source point (real trangnoittdiffraction corner) at some small angular
separatiord in the horizontal plane. The intersection of a ray with adl talls in the database is computed,



and the one closest to the source point is chosen as the irgjleaill, since the other intersections are
shadowed by the first wall. The resulting ray segment is testetl to see if it illuminates any of the receiver
locations and building corners. Subsequently, a refled@gdstarting at the point of intersection with the
wall and traveling in the direction of specular reflectiotréced to the next wall intersection. This reflected
segment is tested to see if it illuminates receivers or mdldorners. The foregoing process is repeated until
the ray passes out of the computational domain, or the nuoflieflections exceeds some preset threshold.

3.1 The Source-Group-Raypath-Per mute (SGRP) Model

In a traditional prediction model, all real transmitters arocessed sequentially, and all diffraction corners
are processed in the order they are generated. For eacte gmint (real transmitter or diffraction corner),
rays are launched sequentially around the source poird.clear that this tracing strategy does not satisfy
the requirements for the progressive prediction modeteaally the faithfulness and fairness of prediction
results. To find a better grouping and tracing strategy, vedyae the raypath-launching procedure in more
detail. Whené is very small (less than 0.01 radian, @6°), raypaths emitted from the source are likely
to illuminate neighbors among a set of receivers. If we tnaggaths sequentially from a source point,
their contributions to the final prediction results may camicate on a small group of receivers. Also, if the
maximum numbers of reflections and diffractions encoundtbkea raypath are relatively small, then a source
point may illuminate only the nearby receivers and buildiogners. Therefore, if we trace all raypaths from
the same source point together, they only affect a smaliquoof receivers. Raypaths emitted from different
source points, close to each other, will iluminate veryiknsets of receivers. On the contrary, if the source
points are very far away from each other, then their raypatlisliuminate different sets of receivers. If
these raypaths are put into the same group and processdti@ggben almost all receivers are affected
which will help to reduce variance of prediction errors.

Based on the above analysis, we propose the source-grgpatinapermute progressive (SGRP) model,
which overcomes the shortcomings of the traditional modés main ideas are as follows. 1) All real
transmitters are partitioned infg portions according to their geometric locations (e.g., iggor wedges).
Each portion has; transmitters; = 1,2,..., N. Then thejth group of transmitters is formed a8 =
U{CVZIT;CJ, G =1,2,...,max¥ | n), Ty, ; is the jth transmitter in thetth portion. All these groups are
put into the high-priority base sets, and processed grougrdwyp based on their priorities. 2) To further
improve the variance of prediction errors at any time of thedction process, raypaths from the same
transmitter are permuted before being traced. The periontatethod can be random shuffle, hopping
with different angular separations, or partitioning andno robin sampling. 3) Each order of diffraction
corners (typically 1 or 2 orders) is processed similar torta transmitters except that diffraction corners
are partitioned intd/ portions withM > N since the number of diffraction corners is much larger tinen t
number of real transmitters. Each diffraction corner emaigaths only within a wedge (typicalB70°),
thereby its processing time is shorter. For lafige the processing time for each group is nearly the same,
and the update rate for prediction results is almost the shmeg each time interval.

3.2 TheRaypath-Interleave (RI) Models

It is reasonably straightforward to implement the SGRP rhol®wever, when the building database is
very large, or when the number of receiver locations is latige performance of this model may not be
satisfactory. The main reason is that source points areepsed sequentially, and the processing time for



each source point will be relatively long. This may not beiddde and can be improved based on the
following observations. First, due to the limits on the nrmaxim numbers of reflections and diffractions a
raypath can undergo, a source point (real transmitter fsadtfon corner) may illuminate a very small set of
receivers. Even though all raypaths from a source point mreegsed, only a small portion of receivers can
update their predicted received powers. This will affeetwhariance of prediction errors. Second, raypaths
from different source points which are far away from eacteptimay illuminate totally different sets of
receivers.

It will be beneficial to interleave raypaths from differemtusce points together and put them into same
groups to cover a large set of receivers. For two nearby squoints, their raypaths may still illuminate
quite different sets of receivers if orientations of rayysaare quite different (for example, in the opposite
directions). Therefore, interleaving raypaths from d#f® source points is still a good clustering strategy
to improve the mean and variance of prediction errors. Tlwealobservations and analysis lead to the
raypath-interleave (RI) prediction model, which involtbe following three steps. First, all transmittérs
i=1,2,..., N are putinto the high-priority base set. Suppose Thasasn, raypathsy; ;,7 = 1,2,..., N,
andj =1,2,...,n;. LetS; ; be the angle between the raypath and the positive x-axisSy;q be a given
parameter{J be the set of interleaving raypaths for @)l i = 1,2,..., N, andu; be thekth raypath inU.
Then,U is constructed by picking raypaths from different transenst in a round robin manner. The choice
of raypath within each transmitter is determined by theofsihg rule: ifu;, = r; ; is the previous raypath
from T}, then the current raypath shouldde, ; = r;;, wheres = (i+1)%N, andS; ; = (S; j+Stha) %360
(where% is the modulo operation). Second, the raypath& iare partitioned into groups with group size
M. These groups are assigned different priorities and psedegroup by group according to their priorities.
Third, for each level of diffraction corners, the procedimethe real transmitters is used except that raypaths
from diffraction corners are put into enhancement sets,amstyned lower priorities. Also, the parameters
such asV, M, andn; (: = 1,2,..., N) should be changed to make sure that the processing timadbr e
group is the about the same, and the update rate of predretsuits is approximately the same at each time
interval.

The RI model has the same computational complexity as thePF@&tlel but requires more main memory
since it should store information about the status for eadince point. When the numbers of transmitters or
diffraction corners are very large, after their raypatlesiarerleaved and partitioned into groups, the raypaths
within the same group may come only from a small portions af@® points. Thus, the number of receivers
illuminated by a group of raypaths may be small. To handle s$ituation, we can combine SGRP and RI
models to form the source-group-raypath-interleave (S@ridel which partitions the source points into
different geometric regions based on their geometric ionat interleaves raypaths within the same regions,
and clusters raypaths from different regions into groups.

4 Approximate Prediction Models

One of the requirements for a progressive or approximaiigiren model is to provide users with a mecha-

nism to trade the prediction accuracy for the predictioretiffihe progressive prediction models introduced
in Section 3 indeed provide a basis for such a mechanism. fawiétolerable prediction errors are speci-

fied, the prediction model needs to determine the numbelrypftas it should process to achieve the given
constraints.



Typically, the number of real transmitters is much smalantthe number of building corners, which act
as secondary sources of diffracted waves. Hence the piogdssae spent on real transmitters is very small
compared to that for diffraction corners and the predictiore will not decrease significantly if we drop
some or all raypaths from the real transmitters. Also, thengtth of the secondary sources at the corners is
derived from the incident rays due to the real transmitt@rse result of this is that the ray fields traced from
the secondary sources are much smaller than the ray fietldsdtdirectly from the real transmitters. Thus
dropping some raypaths from real transmitters, the priedictccuracy will be dramatically affected.

An upper limit for relative accuracy of predictions can bard in terms of the achieved accuracy com-
pared to measurements when many rays are included. Contparezhsurements, predictions have average
error of about 1 dB and standard deviation of about 8 dB. Asudised previously, the overall accuracy com-
pared to measurements will not be appreciably degradedaiive accuracy of predictions with a limited
set of rays has mean and standard deviation less than 2 dBdBdrdspectively [3]. Generally speaking,
processing of real transmitters alone cannot achieve thweeablerances, so some raypaths from diffraction
corners are needed.

To estimate the workload needed to deliver predictionsritaai desired accuracy in minimum time, we
make use of Theorem 3. According to Theorem 3, workload catrebermined based on the given tolerant
meany and variancer? of prediction errors, and the geometric ratig,... To findr,,.., we need to know
r; (i = 0,1,...,n — 1 andn is the number of receivers). The simplest way to estimat®r receiver
R; is as follows. For receiveR;, record the numbery;, of illuminating raypaths traced so far, and find
the minimum received powe; ,,,;, and maximum received powe?, ,,... Then,r; can be estimated as
T = (Pmax/&mm)l/mi. The number of groups can be calculated based on Theorem 3, and the total
number of raypaths to be traced§ = kn, wheren is the number of receivers. During the ray-tracing
process, some processed raypaths may not illuminate agiyeeat all, or their contributions to the received
powers are not significant and dropped. To take these rayatitn account, we still need to estimate the
ratio of the retained significant raypaths to total procesagpathsf; ;. We may then estimate the workload
N (i.e., total number of raypaths to be processed to achievgiten tolerances) as; = kn/f ;.

The quality of the estimated workloasl, or N; depends on the accuracies of the estimated parameters
rmaz @Nd fs ;. 1t may not be tight due to the complex characteristics opadlys. An alternative method
to the estimate of workload is based on the fact that for aefimtremental separation anglebetween
the traced rays, there will be a finite numberof rays traced from the real transmitters and the diffragctin
corners. The method assumes that the prediction accuracynanotonic function of number of processed
raypaths, and assumes that the relationship between tliietiya errors and number of processed raypaths
is linear. Suppose that the mean and standard deviationegbrigdiction results argy and oy, respec-
tively, after we trace all rays from all of the real transemigt Letyu; and o; be the mean and standard
deviation of prediction errors after we process ftie raypath starting at the diffraction corners. Then,
w; = (1 —i/N)pg, ando; = (1 — i/N)og. In other words, given maximum allowable mean and stan-
dard deviation of prediction errorg, ando respectively, the number of raypathgs we should process is
Ny = max ((1 — pu/po)N, (1 —o/og)N). While py andoy are not known in advance of a complete ray
trace, it is reasonable and accurate enough taget10 dB andoy = 10 dB. In summary, if the maximum
allowed mean and standard deviation of prediction err@g @ndo, respectively, then the estimated work-
load (the total raypaths to proceds) should belV = min (N1, No + Nypg, N), where Ny, is a tunable
parameter.

One implementation for limiting on the total number of raysto be traced is the source-group-raypath-



permute approximate prediction model (SGRP-APP). Thisehiscbased on its counterpart in the progres-
sive prediction model and integrates with a new elementwibikload estimator. The SGRP-APP model
also adjusts the workload estimaté dynamically based on information collected by the sampleeggor
and the ray-tracing engine as follows. First, all transengttare processed. Necessary information is col-
lected to estimate the ratio of significant raypaths to tptatessed raypatfi ;. The parametelN;, N,
andW can be calculated as discussed above, and the mean anddtdadation of prediction errorgg
andog can be estimated empirically. Then, the next group of sopoiets (with sizeM) is fetched from

the sample generator, and is handed to the ray-tracing @nginthe same time, all necessary feedback is
collected from the sample generator and the ray-tracinqmentpr examplep; ;a2 P min, m; for receiver

R;, the number of significant raypaths, and the number of tatadgssed raypaths. Finally, the estimated
workload is readjusted based on the above feedback. Ifeattstimated workload has been processed, then
the prediction process terminates. Otherwise, the prevamal current steps are repeated. As its counter-
part in progressive prediction model, the different diftirag corners are processed sequentially, which may
affect the accuracy of workload estimation.

To overcome the limitation of processing the diffractionrers sequentially, we proposed the raypath-
interleave approximate prediction (RI-APP) model. Simitathe SGRP-APP model, a workload estimator
module is added into the RI-APP. However, due to the factrdagtaths from different diffraction corners
are interleaved together and processed in a mixed maneendthods to estimate and adjust the workload
are quite different. At the beginning of the prediction @ss, the number of raypaths illuminating each
receiver is relatively small, it is very difficult to estineaf ,,,;, and P, ,,.,. accurately for receiveR; based
on these small number of raypaths. As a result, the worklgathased on those parameters is not stable
and accurate. If the workload estimator uses this inforonatinly, the prediction process may terminates
prematurely due to the fluctuation 6f;. Therefore, the estimation of the workload should mainlgetel
on N, at the beginning of the process. As the prediction processeeds, the accumulated raypaths for each
receiver increase continuously, and the changes of thesegcpowers for receivers are relatively small, all
parameters required for calculatidg can be estimated with higher accuracy.

Based on the above analysis, the estimate of workl@air the RI-APP model is defined as

) N whenN, < Ny,
W= { min (N1, N2) whenN, > N;. (1)

Here, N, is the total number of raypaths having been processed diytré) is a tunable parameter. The
workload estimator for the RI-APP model works as followgsEiraypaths from transmitters are processed.
The workload estimator collects all necessary informatimicalculate the following parameters: ratio of
significant raypaths to total processed raypath the mean and standard deviation of prediction errgrs
andoy; and N,. The estimated workload is set # = N, and N; = W/2. Then, the next group of
raypaths (with sizeV/) is fetched from the sample generator and handed to theraayiy engine. The
parameterlV,. is computed based on the feedback from the sample generatdha ray-tracing engine.
Information is collected fotP; ,,.q., P;min, m; for receiver R;, the number of significant raypaths, and
the number of total processed raypaths. Finally, the egtdnevorkload is readjusted and re-estimated.
Parameterg, ;, N1, and N, are recalculated, the workloadl is updated based on (1). If all the estimated
workload has been finished, then the prediction processnates. Otherwise, the previous and current
steps are repeated.

In the RI-APP method, the workload and related parameterseadjusted and re-estimated after every
group of raypaths. The size of group can be adjusted dyn#lynioacontrol the frequency of recalculation
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and the accuracy of estimations. Since raypaths from difitesource points are interleaved together, it is
more likely that after tracing/ groups of raypaths, all receivers are illuminated and trezieived powers
are updated. Therefore, it is expected that the RI-APP modsl decrease the mean and variance of
prediction errors more uniformly and steadily than the SGTHP method.

5 Implementationsand Experiments

We have implemented two progressive and two approximatdigtien methods, have tested their perfor-
mance by using two GIS databases, one of Rosslyn, VA, andliee af Dupont Circle, Washington DC. All
experiments were performed on a Sun Ultra 10 machine, with €1Bck rate of 440 MHz, main memory
of 384 MB, and Solaris 5.7 operating system.

The building footprint shown in Figure 1 represents the quag of Rosslyn, VA, and consists of 79
buildings with 412 walls. The buildings have from 4 to 13 i@#$ each, with an average of 5. We use only
one transmittefl"z that is located at the point having coordinates (23765618100.0)m. There are 400
receiversRx which are placed along several streets. Dupont Circle, iWgln DC, shown in Figure 2
has streets that run radially from Dupont Circle, as wellms oectangular grid. There are 3,564 buildings
featuring 23181 walls, with each building having from 3 to\&8tices, with an average of 6. It is evident
that the number of vertices in footprints varies dramaigcaut most of the footprints have less than 8 edges,
and more than half of them feature between 3 and 4 edges. @alynis installed, which is located close
to the epicenter of the map at (322780.0, 4308550.0)m. Téaexrel00 receiversHx) which are located
along the two East-West (horizontal) streets.

Locations of Tx and Rx in Rosslyn Environment(Buildings, Txs, Rxs) for Dupont Circle
T T 4.3092e+06 T T T T T
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Figure 1: Locations of buildings, Tx and Rx in Figure 2: Locations of buildings, Tx and Rx in
Rosslyn, VA Dupont Circle, Washington DC

The 2-D ray-tracing method is used for a frequency of 900 MHze maximum numbers of reflections
and diffractions for each raypath are 8 and 1, respectiiiifracted rays are the main contributors to the
received powers for those receivers in non-line of sight@$l) zones. The antenna height of the transmitter
is 10m, while all receivers have height 1.5m. All walls arswesed to be described by the Fresnel reflection
coefficient for a dielectric constant = 6. The pincushion method is used to launch rays[2] with ajukan
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separation (step size) 6f5°.

5.1 Resultsof Progressive Prediction Models

In this section we evaluate the faithfulness and fairneghefprogressive prediction models described in
Section 3. The intermediate and final prediction resultsldfha proposed progressive models are compared
with those generated by the traditional prediction model.altraditional prediction model, all the real
transmitters are processed in the order specified by the whk#ée all diffraction corners are processed in
the orders they are generated. We name this traditional Ifsetguential method”. In each experiment, we
collect and calculate at various times: the number of ilhated receivers, the number of diffraction corners
being processed, the number of raypaths having been trasedkll as the mean and standard deviation of
the prediction errors. Notice that when we calculate themasa standard deviation of the prediction errors,
we only count those receivers that are illuminated by soaeett raypaths instead of all receivers, therefore,
the mean and standard deviation may fluctuate during theqticed process. The results are presented in
Tables 1 and 2, respectively, for Rosslyn and Dupont Circle.

time | il.rx | df.cor.| rays | mean| dev. || time | il.rx | df.cor.| rays | mean| dev.
(sec.) (dB) | (dB) | (sec.) (dB) | (dB)
sequential method source-group-raypath-permute
1.83 | 251 0 720 | 2.69 | 444 || 1.83 | 251 0 720 | 2.69 | 4.44
5.88 | 318 | 10 6132 | 7.74 | 14.10| 6.40 | 326 | 10 6123 | 10.70| 18.33
11.45| 327 | 20 | 11530| 8.03 | 15.03|| 11.09| 332 | 20 | 11443| 7.49 | 11.46
16.49| 334 | 30 | 16934| 5.17 | 10.92| 17.55| 344 | 30 | 16718| 4.49 | 6.75
22.05| 335 | 40 | 21676| 4.12 | 9.71 || 21.68| 346 | 40 | 22037| 3.78 | 6.11
35.34| 348 | 60 | 32059| 2.60 | 8.50 || 33.05| 350 | 60 | 31998| 3.50 | 8.10
48.19| 353 | 80 |42599| 2.12 | 7.31 || 46.43| 361 | 80 | 42727| 1.88 | 6.92
57.77| 356 | 100 | 53114| 1.91 | 6.95 || 57.92| 362 | 100 | 52592| 0.98 | 6.41
70.52| 363 | 120 | 63315| 0.70 | 6.32 || 69.76| 364 | 120 | 63219| 0.04 | 0.20
73.31| 365 | 127 | 66925| 0.00 | 0.00 || 74.02| 365 | 127 | 66925| 0.00 | 0.00
raypath-interleave source-group-raypath-interleave
183 | 251 0 720 | 2.69 | 444 || 1.80 | 251 0 720 | 2.69 | 4.44
6.71 | 333 | 84 5169 | 6.84 | 11.66| 6.54 | 341 | 84 5156 | 6.78 | 11.33
12.18| 345 | 127 | 10312| 4.25 | 6.53 || 11.80| 342 | 127 | 10325| 4.70 | 7.28
17.51| 349 | 127 | 15452| 3.45 | 5.39 | 17.49| 349 | 127 | 15481| 3.46 | 5.46
23.16| 350 | 127 | 20609| 2.79 | 4.01 || 22.99| 350 | 127 | 20613| 2.79 | 4.02
34.51| 358 | 127 | 30901| 1.82 | 2.96 | 34.27| 358 | 127 | 30901| 1.81 | 2.96
45.66| 359 | 127 | 41205| 1.19 | 2.23 | 45.19| 359 | 127 | 41212| 1.23 | 2.26
57.09| 362 | 127 | 51530| 0.70 | 1.56 || 56.58| 362 | 127 | 51527| 0.70 | 1.57
68.42| 365 | 127 | 61877| 0.26 | 1.28 || 67.68| 365 | 127 | 61861| 0.16 | 1.20
73.75| 365 | 127 | 66925| 0.00 | 0.00 || 73.26| 365 | 127 | 66925| 0.00 | 0.00

Table 1: Rosslyn: statistics for progressive methods

From these tables, we can observe that all progressive nwilominate more receivers than the se-
guential method (i.e, the traditional method) at any giviemetduring the entire prediction process. The
raypath-interleave (RI) method and source-group- raypaérleave (SGRI) method perform better than
source-group-raypath-permute (SGRP) method, and the &@Riod is the best. It is obvious that the Rl
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and SGRI methods illuminate a large portion of receivereat garly time which may help improve the pre-
diction accuracy. Also, the Rl and SGRI methods traverseerddfraction corners than sequential method
and SGRP method at any given point during the entire predigirocedure which helps to illuminate more
receivers. They usually visit all diffraction corners witl0% of the processing time.

It can be seen that the mean and standard deviation of pgoedietrors delivered by all progressive
methods are much better than those given by the sequentithbdhat any given time prior to the end of
the entire prediction process. When the Rl or SGRI methodésl uit takes only about half of the total
processing time to drive both the mean and standard daviafiprediction errors within 3dB, and only
two-third of the total processing time to reach 1dB. In castr it takes almost all the processing time to
bring the mean and standard deviation down to 1 dB and 3 dBectisely, in the sequential method. Within
the same time constraint, all methods trace about the samberwf raypaths. However, the means and
standard deviations of prediction errors delivered by tfugpgessive methods are much lower (more than
4dB at most of the time) than those by the sequential methois. clear that the sample generators and
ray-tracing engines in our proposed progressive methatksenh tend to assign high priority to raypaths
contributing significantly to predictions and trace therstfir

time il.rx | df.cor. rays mean| dev. || time il.rx | df.cor. rays mean| dev.

(sec.) (dB) | (dB) || (sec.) (dB) | (dB)
sequential method source-group-raypath-permute

10.40 180 0 720 5.37 | 9.11 || 10.40 180 0 720 537 | 9.11

121.69 | 308 | 100 52449 | 21.15| 23.05| 111.65 | 340 | 100 53266 | 16.61| 18.92
236.28 | 335| 200 | 101961 | 19.96| 19.90| 214.46 | 368 | 200 | 106594 | 12.91| 12.82
448.96 | 338 | 400 | 207143 | 17.90| 18.01| 444.54 | 379 | 400 | 211981 | 9.88 | 10.20
659.09 | 351 | 600 | 311235 | 17.71| 17.74| 652.60 | 385| 600 | 315622 | 5.97 | 7.42
1057.05| 362 | 900 | 465692 | 13.85| 14.07 || 1066.93| 385 | 950 | 495354 | 5.44 | 6.85
1237.91| 376 | 1050 | 545665 | 10.60| 11.83 || 1248.18| 385 | 1100 | 572235 | 4.19 | 5.72
1666.19| 387 | 1400 | 728221 | 3.82 | 5.73 || 1641.30| 388 | 1450 | 754217 | 2.20 | 4.99
1931.59| 388 | 1650 | 858578 | 2.14 | 4.65 || 1928.43| 394 | 1700 | 883000 | 0.32 | 0.92
2236.12| 395 | 1956 | 1014773| 0.00 | 0.00 | 2232.71| 395 | 1956 | 1014773| 0.00 | 0.00
raypath-interleave source-group-raypath-interleave
10.40 180 0 720 5.37 | 9.11 || 10.40 180 0 720 5.37 | 9.11
124.57 | 308 | 958 50761 | 18.81| 20.50| 118.31 | 363 | 952 50743 | 15.00| 15.47
286.47 | 381 | 1956 | 126885 | 8.93 | 8.19 | 288.77 | 384 | 1956 | 126902 | 7.96 | 7.41
455.14 | 389 | 1956 | 203008 | 6.28 | 5.72 || 455.65 | 389 | 1956 | 203001 | 6.25 | 5.72
625.91 | 390 | 1956 | 279078 | 4.71 | 4.31 | 623.30 | 390 | 1956 | 279089 | 4.49 | 4.26
1012.36| 394 | 1956 | 456683 | 2.91 | 3.11 || 1012.27| 394 | 1956 | 456698 | 2.91 | 3.11
1292.40| 395 | 1956 | 583537 | 2.02 | 2.31 || 1295.17| 395 | 1956 | 583526 | 1.97 | 2.30
1686.02| 395 | 1956 | 761119 | 1.15 | 1.69 || 1684.17| 395 | 1956 | 761160 | 1.09 | 1.68
1903.49| 395 | 1956 | 862646 | 0.99 | 1.64 || 1896.16| 395 | 1956 | 862631 | 0.59 | 1.10
2239.96| 395 | 1956 | 1014773| 0.00 | 0.00 | 2238.18| 395 | 1956 | 1014773| 0.00 | 0.00

Table 2: Dupont Circle: statistics for progressive methods

Finally, the relationship between the prediction erroreémand standard deviation) and the processing
time is almost linear for the RI and SGRI methods. Thereftliey update the received powers of all
receivers continuously, and with almost the same rate. |&ilyi the relationship between the prediction
errors and the number of processed raypaths is nearly lfoeaoth the Rl method and the SGRI method

12



city map | target errors| time | speedup| raypaths| il.rx | mean| dev
(p,0)(dB) (sec.) (dB) | (dB)
Rosslyn | (0.0, 0.0) 74.00 1.00 66925 | 365 | 0.00 | 0.00
(1.0, 1.0) 66.75 1.11 60125 | 364 | 0.30 | 1.00
(2.0, 2.0) 62.21 1.19 57096 | 363 | 0.95 | 2.50
(2.0, 3.0) 58.89 1.26 52992 | 362 | 1.90 | 3.44
Dupont | (0.0, 0.0) 2232.00 1.00 | 1014773| 395 | 0.00 | 0.00
Circle (2.0, 1.0) 1872.46| 1.19 866723 | 395 | 0.40 | 0.95
(1.0, 2.0) 1782.53| 1.25 817432 | 394 | 0.88 | 1.96
(2.0, 3.0) 1699.19| 1.31 788332 | 393 | 1.36 | 3.10

Table 3: speedup, prediction errors by the SGRP-APP method

indicating that their grouping strategy satisfies the fgsrequirement.

Based on the above observations, we can conclude that thedRS@RI methods are better than tradi-
tional models and the SGRP method and satisfy all the reqeinés for progressive models, especially the
faithfulness and fairness requirements.

5.2 Resultsof Approximate Prediction Models

First, we evaluate the performance of the source-groupatiypermute approximate (SGRP-APP) predic-
tion model, especially its ability of workload adjustmemidaits sensitivity to the input parameters. We
execute the SGRP-APP method for various targeted valube afitan and standard deviation of the predic-
tion errors. The ranges for the mean and standard deviatiprediction errors are [0.0, 2.0]dB and [0.0,
3.0] dB, respectively, and the step size is 1 dB. For eachrawrpat, we collect and calculate the following
parameters: the processing time, the speedup, the numpesadssed raypaths, the number of illuminated
receivers, the actual mean and standard deviation of pi@dierrors it delivered. These parameters are
shown in Table 3 for Rosslyn and Dupont Circle.

From Table 3, it can be seen that the mean and standard devidtprediction errors delivered by this
model are quite close to the targeted prediction errors.réfbie, the workload estimator can adjust its
workload estimates based on the inputs. The estimator dnpieides a mechanism to trade the prediction
accuracy for the prediction time. When the tolerance fodigten errors is relaxed, the prediction time
can be reduced. Controllability of prediction errors isatikely coarse. The speedup does not change with
the same rate as the targeted mean and standard deviatioadattipn errors. When the targeted mean
and standard deviation of prediction errors are relaxeddipe larger) from (1.0, 1.0)dB to (2.0, 3.0) dB,
the speedups only increase from 1.19 to 1.31 for Dupont €ir@rediction accuracy fluctuates around
the specified tolerance, it can be better or worse than ttengmerance. The distribution of prediction
errors among all receivers is not uniform. The predictiomsrtend to concentrate on a subset of receivers.
The main reason for this uneven distribution of predictioroms is that all source points are processed
sequentially and some source points are not processedvatetl the prediction procedure terminates.

In Section 5.1, it was found that the raypath-interleavé (Rdthod and the source-group-raypath-interleave
(SGRI) method are the best performers. It is expected teatpbroximate prediction models based on these
progressive methods may also have the best performance s&\thel RI-APP method here as an example
to evaluate its performance, especially the fine-tuningabgipy and sensitivity to inputs of its workload
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estimator. Experiments similar to those for the SGRP-AP®atkare performed, except that we use a finer
step size of 0.5dB instead of 1.0 dB. Table 4 presents theiexget results for Rosslyn and Dupont Circle.

city map | target errors| time | speedup| raypaths| il.rx | mean| dev
(1,0)(dB) (sec.) (dB) | (dB)
Rosslyn | (0.0, 0.0) 74.00 1.00 66925 | 365 | 0.00 | 0.00
(0.5, 0.5) 69.41 1.07 62879 | 365 | 0.16 | 0.99
(1.0, 1.0) 58.12 1.27 21533 | 362 | 0.55 | 1.50
(2.0, 2.0) 48.63 1.52 43406 | 360 | 1.09 | 1.99
(2.0, 2.0) 41.52 1.78 37125 | 359 | 1.40 | 2.30
(2.0, 3.0) 30.10 2.46 26890 | 358 | 2.04 | 3.05
Dupont | (0.0, 0.0) 2232.00/ 1.00 | 1014773| 395 | 0.00 | 0.00
Circle (0.5,0.5) 213991 1.04 964107 | 395 | 0.30 | 0.78
(2.0, 1.0) 1792.41| 1.25 811907 | 395 | 1.00 | 1.64
(1.0, 2.0) 1631.28| 1.37 735787 | 395 | 1.48 | 2.04
(2.0, 2.0) 1300.40| 1.72 589537 | 395 | 1.95 | 2.29
(2.0, 3.0) 1087.55| 2.05 487038 | 395 | 2.60 | 2.90

Table 4: speedup, prediction errors by RI-APP method

From Table 4, we can observe that the RI-APP method providesttar mechanism to balance the pre-
diction accuracy and prediction time than the SGRP-APP atktRor example, in Dupont Circle case, the
speedup can be as high as 2.05 when the targeted mean arardtdedation of prediction errors are (2.0,
3.0) dB, which is much higher than that given by the SGRP-ARfhod (which is 1.31). Therefore, the
workload estimator in the RI-APP model performs much betian that in the SGRP-APP method in its
adjustability, controllability and accuracy of estimatiorhere is a very close relationship between the pre-
diction accuracy and the number of processed raypaths.ritmeleame tolerances for the prediction errors,
the RI-APP method delivers much better prediction resultb speedups than the SGRP-APP method. For
instance, for Dupont circle case, when the specified mearstamtlard deviation of prediction errors are
2.0dB and 3.0dB, respectively, the actual mean and stam#aidtion generated by the SGRP-APP model
are 1.36 dB and 3.10 dB, respectively, and the speedup iswl8lk in the RI-APP method, the actual mean
and standard deviation are 2.60 dB and 2.90 dB, respectiwatyhe speedup is 2.05. If the same processing
time is used (i.e., about 1699.19 seconds), then the RI-A&tRad can deliver mean and standard deviation
less than 1.48dB and 2.04 dB, with speedup larger than 1.3&ddition, the distribution of prediction
errors is more uniform than that in the SGRP-APP method. ;TthesRI-APP method has better prediction
fairness than the SGRP-APP method.

6 Conclusions

Progressive and approximate prediction models are atteasince they can provide continuous feedback
to users during the entire radio wave propagation predigimcess. They offer users more flexible and
fine-scale controls over the prediction processing, inolygffective mechanisms to trade prediction ac-
curacy for prediction time. Moreover, they integrate gasilth other techniques to further improve the

performance of the system. We have presented experimeritsrés the proposed progressive prediction

14



methods and approximate prediction methods. From theséiges is evident that the proposed progres-
sive prediction methods (the source-group-raypath-permethod, the raypath-interleave method and the
source-group-raypath-interleave method) deliver bettediction results than traditional models continu-
ously and progressively at any time during the entire ptamtigorocess. In most experiments, the prediction
errors were reduced by more than 5 dB for both the mean andasthdeviation of the prediction errors. In
the proposed progressive prediction methods, the SGRIladeashthe best in terms of prediction accuracy,
number of illuminated receivers, and number of processi#édiion corners. Both approximate prediction
methods, the SGRP-APP method and the RI-APP method, préiexible mechanisms to trade prediction
accuracy. The actual mean and standard deviation of thecpogderrors are very close to the targeted ones.
The RI-APP method has better performance than the SGRP-Adoth Under the same time constraint,
the RI-APP method delivers much better prediction reshls the SGRP-APP method in terms of predic-
tion accuracy. Similarly, under the same targeted premictrrors, the RI-APP method generates prediction
results with less time, thereby has higher speedup rate RTH#d”P method also has better capabilities to
estimate and adjust the workload, and can manipulate thgéaelbetween the prediction accuracy and the
number of processed raypaths in a much finer granularity.
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A Proof of Fairness Theorem

Proof a) LetE;(g) (in dB) be the prediction error for receivé®; after thegth group of raypaths is processed, and its
mean (in dB) beu(g) (9 = 0,1,...). SinceP; ;41 =r;P;;fori=0,1,...,nandj =0,1,...,m; — 1, we denote

P, = Pi,Oi then
m;—1 g—1 m;—1 g—1 1 — pmi
Eg)= > Pu| —|D_Pu|l =D Pri| —|D_Pri| = [ — ] 2)
1=0 dB 1=0 dB 1=0 dB 1=0 dB i -dB
n—1 n—1 . n—1 )
1 1 1—rm 1 11—
= — El = — 2 ) 1 = — 2 3
W) =2 S B0 =1 3 [T | ¢ uarn=1 1_rg+1] @
i=0 i=0 i 1dB i=0 i dB
n—1 . . n—1 1
1 1— 1— 1 1—rd"
_ 1) = = 7 _ 7 _ _ 7 4
uig) = plg+1) nZ{[l—r-g]dB [1—7’%1] } nle—T%’} “)
i=0 @ i dB i=0 * 1dB



since0 < r; < 1, it is easy to show thafl — r;’“)/(l —79) > 1 and [(1 —Tfﬂ)/(l ) o  Ofori —
0,1,...,(n — 1), thereforeu(g) > u(g + 1).

b) Leto%(g) be the variance (in dB of the prediction errors after thgh group of raypaths has been processed
(9=0,1,...), then

:%iEiz(g)—Hz(g); (g+1) = ZE29+1 12(g+1) ®)
1=0
n—1
9 =ote+D) = % > (EXg) — EX g+ 1)| — [1*(9) — #*(g + 1)] (6)
=0
= % i {[Ez(g) + Ei(g + 1)][E1(9) - Ei(g + 1)]} — [u(g) + /L(g 4 1)][#(9) _ ,Lt(g + 1)] (7)
=0

LetE;(g) + Ei(g+ 1) = a; andE;(g) — E;(g + 1) = b;. Since each receiver is illuminated by infinite numbers of
raypaths, it is clear that

e’} g—1
P P(1—17 1
L L =
1—r; 1—r; 1—r:
1=0 4B 1=0 B dB dB v 1dB
1 1—rftt
ai = Ei(g) + Ei(g+1) = . 1o bi = Ei(g) — Eilg+1) = | 47—~ ©)
(L =ri)( ) s v laB
1 n—1 1 n—1
) +ulg+1) =~ [Ei(g) + Ei(g +1)] Zaz, plg+1)==> b (10)
1=0 =0
1n—1 1= —
02(9)—02(94'1):5 - EZ Zbi) (11)
= 0 =0 i:O
Itis easy to show that; > 0 andb; > 0fori =0,1,...,n — 1. Also, for any pair ofz; anda; and any pair ob; and
bj, we can get
1 1—p9tt
l—rjg- 1—7’?Jr 1,};7
a; —a; = (1—7"(-])(1—7‘g+1) ;o bi—bj = 1*’”?“ (12)
¢ g dB

T
1=r5 laB

By assuming thab < r; < r; < 1, we can show thatl — r)/(1 —7¢) > 1, (1 —r¢"")/(1 = r{™") > 1, and
(%)(%) > 1, so, [( — )(%)} > 0, thereforea; > a;. By letting f(r) = (1 — r9+1)/(1 — r9),
' i lam

(0 < r < 1), we can find its derivative with respectitas

r9= 41 —r -7 e
g >[g(1£1;)2+ Radd) (13)

Therefore,f(r) is a monotonically increasing function. For< r; < r; < 1, we have(1 — 7/™')/(1 — +7) >
(1—79"1)/(1 = r9), therebyb; > b;.

In summary, if we assume that > r;,; fori = 0,1,.. ,n—2,then,a; > 0,b; > 0, a; > ajy1, by > biy1.
Similarly, if we assume that; < r;,; fori =0,1,...,n — 2,then,a; > 0,b; > 0, a; < a;y1, b; < b;11. According
to Chebychev’s inequality which states thamf> 0,b; >0,i=0,1,....(n—1), a; > a;41 andb; > b;;1, Or
a; < a1 andb; < by, then,(2 27 La) (2S00 M hy) < LS (aibi); we derive that

n—1 — n—1
P -t = 2 - T ad T o (14)
1=0 =0 i:O

Thereforep?(g) > o%(g + 1) indicating that the variance of prediction errors is a dasireg function of;. QED
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B Proof of Workload Estimation Theorem

Proof In Theorem 2, we have already shown that the mean and varidipeediction errors monotonically decrease
with the number of traced groups of raypaths. Therefore, @edronly to find the minimum number of groups
to be traced such that the mean and variance of predictiomseare less than or equal to the givermndo?. Let
E;(k) be the prediction error (in dB) for receivét; after tracing groug (k), p(k) ando?(k) be the mean and
variance (in dB and dB respectively) of prediction errors at the end of procegsirgroupG(k), rmaz = max;;‘(} r;
andr,,;, = min}; r;. Itis easy to show that/(1 —r?) < 1/(1 —79,,.), 1/(1 —?) > 1/(1 -9, ), and

1/(1 = Tmin) < 1/(1 = Fmas), then

n—1 n—1 n—1
1 1 1 1 1 1
K = = E;j(k)== < = S = |— 15
M( ) n; ( ) ni:O |:1_rf:|d3_n;|:1_r7knaw:|d3 |:1_Tfnaw:|dB ( )
n—1 n—1 2 n—1 2
1 1 1 1 1
2 2 2
k) = = Ef (k) — p2(k) = — -
SCIESRICRATERSS L—rfLB {nz [Hf dB}
n—1 2 n—1 2 2
1 1 1 1 1
n =0 1- "maz dB n =0 1- Tmin dB 1= "maa dB
Thus,u(k) < pando? < o? whenk = max (k, ko) and
log [1— 1_] log [1— L]
ky > 7101”0; kg > ————100 4 (17)
log (T'maz) log (Tmaz)

QED
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