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Abstract

Progressive and approximate techniques are proposed here for ray-tracing systems used to predict ra-
dio propagation. In a progressive prediction system, intermediate prediction results are fed back to users
continuously. As more raypaths are processed, the accuracyof prediction results improves progressively.
We consider how to construct a progressive system that satisfies the requirements of continuous observ-
ability and controllability as well as faithfulness and fairness. Adding a workload estimator to such a
progressive prediction system allows termination of the computation when a desired accuracy (mean and
standard deviation of the error) is achievedwithout knowing the final resultthat would be obtained if the
prediction system runs to completion.

The sample generator is at the core of the progressive prediction system and serves to cluster and pri-
oritize raypaths according to their expected contributions to prediction results. Two types of progressive
approaches, source-group-raypath-permute and raypath-interleave, are proposed. The workload estima-
tor determines the number of raypaths to be processed to achieve the specified requirement on prediction
accuracy. Two approximate models are described that adjustthe workload dynamically during the pre-
diction process. Our experiments show that the proposed progressive and approximate methods provide
flexible mechanisms to trade prediction accuracy for prediction time in a relatively fine granularity.

Indexing Terms:progressive and approximate prediction model, observability and controllability, faith-
fulness and fairness of prediction results, sample generator and workload estimator, prediction accuracy
and prediction error
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1 Introduction

Ray-tracing based radio wave propagation prediction models have become popular and important in modern
wireless system designs [16, 28, 13, 17, 25]. As wireless systems become more complex, and requirements
for quality of services (QOS) delivered by wireless networks become diverse and sophisticated [2, 16], there
is a growing need for versatile features of propagation prediction models. For instance, during the design of
wireless networks, it may be desirable to know if the received signal strengths at some locations are above
a threshold. If prediction models feed back prediction results continuously, then designers can get the re-
quired information quickly and terminate the prediction process before completion. Currently, prediction
models operate in batch mode [21, 17] so that designers need to submit specifications and requirements to
the prediction model before prediction procedure begins. Based on these parameters (specifications and re-
quirements), the prediction model will process a large volume of ray trace data eventually returning complete
prediction results. While the program is running, designers have no control on the prediction procedure.

Progressive prediction models are attractive as they can provide successive refinements and give quick
feedback during the prediction process. They also give users flexible control over the whole prediction
process and convenient mechanisms to trade prediction accuracy for prediction time. Users can change pa-
rameters and therefore the prediction process on the fly based on changing or unquantifiable human factors,
such as time constraints, accuracy needs, and priority of other tasks. Since the user can observe the ongoing
process, there is no need to specify these factors in advance. Traditional prediction models are usually opti-
mized to finish the entire prediction task with minimum processing time, but there is no requirement for or
constraint on intermediate prediction results. If the prediction procedure terminates prematurely, its outputs
may be bias and misleading.

Progressive and approximate techniques have been applied in many fields, such as engineering mathemat-
ics [15], dynamical systems [4], fractal geometry [18, 1], database systems [23, 11], information retrieval
systems [14], computer graphics [12, 26, 6], and data compression and visualization [7, 8, 5]. In engi-
neering mathematics [15], progressive and approximate techniques are employed to determine roots of an
equation, such as Newton’s recursive method, regula falsi method, and iterative method. Similar techniques
are also used to find approximation for eigenvalues of matrices. In computer graphics, progressive and ap-
proximate techniques are integrated into the ray-tracing systems for time-critical or interactive applications
[10, 9, 24, 27]. An approximate and low-quality image is delivered to the user by generating and tracing
only a small set of samples. As more samples are generated andprocessed, the quality of the resulting image
will improve. Such interactive and progressive ray-tracing systems can be found in [22, 19, 20].

While progressive and approximation techniques have been used for some time, they are not currently
used in computer software systems for predicting UHF radio wave propagation in cities, which are based on
geometrical optics and the geometrical theory of diffraction. This approach to propagation prediction can
be thought of as tracing rays radiated by a base station transmitter as they intersect buildings where they are
reflected, or illuminate building corners where they are diffracted. The building corners act as secondary
sources of rays that can again be traced as they interact withbuildings. It is usual in ray programs to find the
rays from a single base station that illuminate many receiver locations along the streets (one-to-many). Ray
programs usually account for rays that undergo five or more reflections and one or two diffractions at vertical
building edges. For the study reported here, we have carriedout simulations using a 2D ray tracing package,
which is appropriate for low base station antennas in a high rise building environment [2]. However, the
ideas reported here can be applied to codes that trace rays over and around buildings in 3D [13, 17, 2].
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Generally speaking, progressive and approximate prediction models for propagation prediction should
satisfy the following requirements: 1) the prediction procedure should be continuously observable during
the entire prediction process; 2) the prediction procedureshould let the user change parameters to control
the prediction procedure at any time; 3) intermediate prediction results should be faithful approximations in
that it is the best (tightest) approximation of the actual final prediction results under given time constraints;
4) intermediate and final prediction results should be fair and unbiased for all receivers are updated at
the same rate; 5) mechanisms should be provided to trade prediction accuracy for prediction time; and
6) the prediction model should allow integration of other techniques into the model to further improve its
performance.

Although there are differences in the progressive and approximate techniques used in different fields, they
all share the same fundamental structure: 1) the original computation is decomposed into many small tasks
and are prioritized according to their (estimated) contributions to the final results. The high-priority tasks are
grouped into base sets, while the low-priority tasks are clustered into enhancement (refinement) sets; 2) the
result generated by processing all tasks in the base sets delivers a rough approximation to the real final result;
3) as more tasks in the enhancement sets are processed, the quality of the result is continuously improved.
By monitoring the output of the process as it progresses, it is possible to terminate the computations knowing
that desired accuracy conditions (mean and standard deviation of the error) will be achieved without knowing
the final result.

The remaining of the paper is organized as follows. Section 2presents two theorems for idealized con-
ditions that indicate approaches to satisfying faithfulness and fairness requirements. Mechanism to trade
prediction accuracy for prediction time is suggested by thetheorem developed in Section 2 for idealized con-
ditions. Based on this analysis, two types of progressive prediction models, source-group-raypath-permute
and raypath-interleave, are proposed in Section 3. In Section 4, two approximate prediction models, source-
group-raypath-permute approximate model and raypath-interleave approximate model, are proposed to pro-
vide flexible mechanisms to trade prediction accuracy for prediction time. All these methods (algorithms)
are implemented and their performance are evaluated by using real Geometric Information System (GIS)
databases in Section 5. We also compare and analyze advantages and disadvantages of different prediction
models. Conclusion can be found in Section 6.

2 Considerations on Progressive and Approximate Predictions

Faithfulness requires that the prediction system always delivers the best prediction results (the least mean
of prediction errors for all transmitters and receivers) nomatter when the user terminates the prediction
procedure. If we assume that the processing time for each raypath is the same, and the maximum number
of raypaths which can be traced ist under the given constraints on time and computation resources, then,
the prediction model should trace thet raypaths that minimize the prediction errors. The most important
design index in a wireless system is the received signal strengths for all receivers. We therefore use the mean
of the received signal strengths at all receivers as the faithfulness metric to evaluate the quality of predic-
tions. Assuming that the processing time for each raypaths is the same, the following theorem (Theorem 1)
guarantees that the faithfulness requirement is always satisfied no matter when the prediction procedure is
terminated.

Theorem 1 (Faithfulness) Suppose that the processing time for each raypath is the same, and prediction
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errors are described by the difference between the generated received signal strengths (in dB) and final
received signal strengths (in dB) for all receivers. The contribution ratio of a raypath is defined as the
ratio of its contribution (in Watt) to a receiverR and the sum of contributions (in Watt) of all unprocessed
raypaths forR. If raypaths are always traced according to their nonincreasing contribution ratios to the
received signal strengths no matter which receivers they illuminate, then the mean prediction error (in dB)
is minimized, however, its variance (in dB2) may fluctuate (increase or decrease).

The proof of Theorem 1 is similar to that given for Theorem 2, and can be found in [3]. To apply Theorem 1,
the prediction model needs to be aware of the contributions of all the raypaths to the prediction results and
sort them in nonincreasing order before the raypaths in discussion are actually traced. For this theorem, the
prediction accuracy is characterized only by the mean prediction error and not by its variance. Obviously, it
is unrealistic to assume that the raypaths can be sorted in advance. However, methods to approximate this
sorting process are discussed in Section 4.

For wireless system design, it is also desirable that the distribution of prediction errors should spread
evenly among all receivers to minimize the variance of the errors. In this case, the processing strategy based
on Theorem 1 is not enough since it may concentrate errors on some receivers. Fairness requires that the
mean and variance of prediction errors should both decreasemonotonically during the whole prediction
process. Theorem 2 addresses this requirement.

Theorem 2 (Fairness) Suppose that there aren receiversRi (i = 0, 1, . . . , n − 1 andn > 1), andRi is
illuminated bymi raypaths,ri,j, j = 0, 1, . . . ,mi − 1. The contribution to the received power byri,j is
Pi,j (in Watt), and allPi,j for Ri form a geometric progression, that is,Pi,j+1 = riPi,j (0 < ri < 1). By
clustering theg-th raypath for all receivers together to form a groupG(g), we get a sequence of groups of
raypaths,G(g), (g = 0, 1, . . .). If we traceG(g) group by group in that order, then a) the mean (in dB) of
prediction errors decreases monotonically with the numberof processed groups; b) the variance (in dB2) of
prediction errors decreases monotonically with the numberof processed groups if it is further assumed that
mi = ∞ for i = 0, 1, . . . , n.

The proof of Theorem 2 can be found in Appendix A. Similar to Theorem 1, application of Theorem2
also requires that the contribution to final prediction results by each raypath should be known before it is
traced. The condition that contributions of raypaths illuminating the same receiver satisfy the geometric
progression relation will, at best, be only approximately true. In moderately complex environments, there
will be an infinite number of raypaths illuminating each receiver. In reality, most raypaths may contribute
so little to the final prediction results that they can be safely dropped off.

2.1 Tradeoff between Prediction Accuracy and Prediction Time

An important requirement for a progressive prediction model is that it should provide a flexible and conve-
nient mechanism with users to trade prediction accuracy forprediction time. For example, network designers
only want to find general trends or gross patterns of the prediction results, instead of the exact results with
very high precision. This is in fact an approximation problem that may be phrased two ways. One is, given
a time constraint, what is the best prediction accuracy the model can deliver. The other is, given the worst
tolerable prediction error, what is the minimum processingtime. An approximate prediction model based
on Theorems 1 and 2 can solve the first problem as long as the conditions in the Theorems are satisfied.
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To solve the second problem, we define the prediction error asthe difference between the final prediction
results and the prediction results generated so far (both indB).

Note that the ray tracing procedures simplify the buildingsand the physical processes involved. As a
result, there will always be differences between the measurements and final prediction using all of the rays.
Because of these simplifications, models run for receivers distributed over kilometer distances exhibit dif-
ferences between prediction and measurements (in dB) that typically have an average of about 1 dB and
a standard deviation of about 8 dB [17, 2]. Now suppose that westop the prediction process at the point
when the difference between the interrupted predictions and the final predictions using all the rays has an
average of 1 dB or less, and a standard deviation of 4 dB or less. In this case, the errors of the interrupted
predictions as compared to measurements will have an average less than 3 dB and standard deviation ap-
proximately 9 dB (i.e.,

√
42 + 82) [3]. This example suggests the conditions under which we may interrupt

the prediction without significantly impacting the achievable accuracy as compared to measurements. In
using the definition of prediction error as the difference between the final predictions and the intermediate
results, we would need to trace all the raypaths and finish theentire prediction process, which contradicts
the main purpose of the approximation procedure. Theorem 3 is designed to solve this dilemma.

Theorem 3 (Workload) Suppose that there aren receiversRi, i = 0, 1, . . . , n − 1, each of them is illumi-
nated by an infinite number of raypaths. The contribution to the received power of receiverRi by raypath
ri,j is Pi,j (in Watt, andPi,j ≥ 0), and allPi,j for Ri form a geometric progression, that is,Pi,j+1 = riPi,j

(0 < ri < 1 for j = 0, 1, 2, . . .). Raypathsri,j are clustered into a groupG(j), (i = 0, 1, 2, . . . , n − 1

and j = 0, 1, . . .). GroupsG(j) are traced group by group in that order. Given the tolerable mean and
variance of prediction errors asµ (in dB) andσ2 (in dB2), then after tracingk groups of raypaths, the mean
µ(k) and varianceσ2(k) of prediction errors generated by the prediction model willsatisfyµ(k) ≤ µ and
σ2(k) ≤ σ2 as long ask satisfies:

k =
log

[

1 − 1

10max (µ,σ)/10

]

log (rmax)
; rmax =

n−1
max
i=0

ri

The proof of Theorem 3 can be found in Appendix B. Theorem 3 shows that prediction errors can be found
even though the final prediction results are unknown, provided that all the conditions described in Theorem 3
are satisfied.

Even though the conditions (mentioned or implied) in Theorems 1, 2, and 3 cannot be satisfied in real
systems, the following guidelines derived from these theorems can be used for designing progressive and
approximate prediction models. First, trace raypaths according to their expected or estimated contributions
to the final prediction results. This strategy helps to minimize the mean of prediction errors at any time
during the whole prediction process. The contributions to the final prediction results by raypaths can be
estimated by some heuristic methods. Next, when the variance of prediction errors is important, raypaths
should be clustered and processed group by group. Raypaths in the same group should cover (illuminate) all
or most of the receivers. Those groups contributing most to the final prediction results should be assigned
higher priorities. Furthermore, the contributions of different groups should form a nondecreasing relation
(e.g., geometric progression). The relationship among different raypaths can be exploited to cluster raypaths
to approximate the above properties. Finally, when prediction accuracy is traded for prediction time, work-
load should be estimated to deliver prediction results as quickly as possible based on Theorem 2. To make
the estimate of workload accurate, dynamic adjustment of workload is necessary.
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2.2 Generic Progressive and Approximate Models

In the radio wave propagation prediction problem, if each raypath from real transmitters to receivers is con-
sidered as a sample, then the raypaths between all transmitters and receivers will form a huge sample space.
Different samples contain different path components (reflections, diffractions), require different processing
time, illuminate different set of receivers and building corners, and contribute differently to the final predic-
tion results. Comparing with traditional prediction models, a progressive prediction model needs to cluster
raypaths into different orders before processing them. To do this, it is convenient to divide the geometric
data processing into two parts, a sample generator and a ray-tracing engine. The sample generator clusters
raypaths into groups and assigns different priorities to them based on some criteria, then hands these groups
to the ray-tracing engine according to their priorities. Itis clear that at the core of a progressive prediction
model is the sample generator [24]. The design of sample generators should be based on the guidelines
derived from Theorems 1, 2, and 3, and also should take into account the characteristics of radio wave prop-
agations. For example, we know that transmitters carry muchhigher energy than secondary transmitters
(diffraction corners). Also, raypaths representing the first diffraction by a corner may carry much higher
energy than those representing a second diffraction by a corner. Different raypaths may illuminate differ-
ent sets of receivers, and some may illuminate a large set of receivers, while others may illuminate only a
small or empty set of receivers. Finally, raypaths emitted by different source points that are well separated
spatially may illuminate different sets of receivers.

Based on these observations as well as the guidelines derived from Theorems 1, 2, and 3, we design a
generic sample generator for a progressive or approximate prediction model. All raypaths emitted from real
transmitters are put into the high-priority base sets, while those raypaths generated by diffraction corners
are put into the enhancement sets. Raypaths in the same set may be further partitioned into different pri-
ority groups based on other criteria. In Sections 3 and 4, we present heuristic methods for grouping rays,
according to the guidelines suggested by Theorems 1, 2, and 3. Raypaths are handed to the ray-tracing
engine in a group-by-group fashion. Based on the feedback from the ray-tracing engine, it is desirable to
adjust the grouping criteria, regroup raypaths, and changepriorities of different groups if necessary. When
termination conditions are satisfied, proceed to electromagnetic indices computation part, and generate the
final prediction results.

The design of the ray-tracing engine for a progressive prediction model is more complicated than a tra-
ditional prediction model since it needs to collect statistics information for the sample generator. Raypaths
from the sample generator may not have any particular order.They may come from different source points,
or from the same source point but with random order. To avoid the time-consuming operation of ray-wall-
intersection check, the ray-tracing engine should use information accumulated in the processing of previous
groups. The ray-tracing engine should organize this accumulated information efficiently for retrieval, up-
date, and removal. Furthermore, the ray-tracing engine needs to interact with the electromagnetic indices
computation part, which will generate the intermediate results, and display them through the user interface.

3 Progressive Prediction Models

The pincushion ray-tracing method [2] is used in our prediction models. For a 2D ray trace, the pincushion
method launches rays for each source point (real transmitter or diffraction corner) at some small angular
separationδ in the horizontal plane. The intersection of a ray with all the walls in the database is computed,
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and the one closest to the source point is chosen as the reflecting wall, since the other intersections are
shadowed by the first wall. The resulting ray segment is then tested to see if it illuminates any of the receiver
locations and building corners. Subsequently, a reflected ray starting at the point of intersection with the
wall and traveling in the direction of specular reflection istraced to the next wall intersection. This reflected
segment is tested to see if it illuminates receivers or building corners. The foregoing process is repeated until
the ray passes out of the computational domain, or the numberof reflections exceeds some preset threshold.

3.1 The Source-Group-Raypath-Permute (SGRP) Model

In a traditional prediction model, all real transmitters are processed sequentially, and all diffraction corners
are processed in the order they are generated. For each source point (real transmitter or diffraction corner),
rays are launched sequentially around the source point. It is clear that this tracing strategy does not satisfy
the requirements for the progressive prediction models, especially the faithfulness and fairness of prediction
results. To find a better grouping and tracing strategy, we analyze the raypath-launching procedure in more
detail. Whenδ is very small (less than 0.01 radian, or0.6◦), raypaths emitted from the source are likely
to illuminate neighbors among a set of receivers. If we traceraypaths sequentially from a source point,
their contributions to the final prediction results may concentrate on a small group of receivers. Also, if the
maximum numbers of reflections and diffractions encountered by a raypath are relatively small, then a source
point may illuminate only the nearby receivers and buildingcorners. Therefore, if we trace all raypaths from
the same source point together, they only affect a small portion of receivers. Raypaths emitted from different
source points, close to each other, will illuminate very similar sets of receivers. On the contrary, if the source
points are very far away from each other, then their raypathswill illuminate different sets of receivers. If
these raypaths are put into the same group and processed together, then almost all receivers are affected
which will help to reduce variance of prediction errors.

Based on the above analysis, we propose the source-group-raypath-permute progressive (SGRP) model,
which overcomes the shortcomings of the traditional models. Its main ideas are as follows. 1) All real
transmitters are partitioned intoN portions according to their geometric locations (e.g., by grids or wedges).
Each portion hasni transmitters,i = 1, 2, . . . ,N . Then thejth group of transmitters is formed asGj =

∪N
k=1

Tk,j, (j = 1, 2, . . . ,maxN
i=1 ni), Tk,j is the jth transmitter in thekth portion. All these groups are

put into the high-priority base sets, and processed group bygroup based on their priorities. 2) To further
improve the variance of prediction errors at any time of the prediction process, raypaths from the same
transmitter are permuted before being traced. The permutation method can be random shuffle, hopping
with different angular separations, or partitioning and round robin sampling. 3) Each order of diffraction
corners (typically 1 or 2 orders) is processed similar to thereal transmitters except that diffraction corners
are partitioned intoM portions withM ≫ N since the number of diffraction corners is much larger than the
number of real transmitters. Each diffraction corner emitsraypaths only within a wedge (typically270◦),
thereby its processing time is shorter. For largeM , the processing time for each group is nearly the same,
and the update rate for prediction results is almost the sameduring each time interval.

3.2 The Raypath-Interleave (RI) Models

It is reasonably straightforward to implement the SGRP model. However, when the building database is
very large, or when the number of receiver locations is large, the performance of this model may not be
satisfactory. The main reason is that source points are processed sequentially, and the processing time for
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each source point will be relatively long. This may not be desirable and can be improved based on the
following observations. First, due to the limits on the maximum numbers of reflections and diffractions a
raypath can undergo, a source point (real transmitter or diffraction corner) may illuminate a very small set of
receivers. Even though all raypaths from a source point are processed, only a small portion of receivers can
update their predicted received powers. This will affect the variance of prediction errors. Second, raypaths
from different source points which are far away from each other may illuminate totally different sets of
receivers.

It will be beneficial to interleave raypaths from different source points together and put them into same
groups to cover a large set of receivers. For two nearby source points, their raypaths may still illuminate
quite different sets of receivers if orientations of raypaths are quite different (for example, in the opposite
directions). Therefore, interleaving raypaths from different source points is still a good clustering strategy
to improve the mean and variance of prediction errors. The above observations and analysis lead to the
raypath-interleave (RI) prediction model, which involvesthe following three steps. First, all transmittersTi,
i = 1, 2, . . . , N are put into the high-priority base set. Suppose thatTi hasni raypaths,ri,j, i = 1, 2, . . . ,N ,
andj = 1, 2, . . . , ni. Let Si,j be the angle between the raypathri,j and the positive x-axis,Sthd be a given
parameter,U be the set of interleaving raypaths for allTi, i = 1, 2, . . . ,N , anduk be thekth raypath inU .
Then,U is constructed by picking raypaths from different transmitters in a round robin manner. The choice
of raypath within each transmitter is determined by the following rule: if uk = ri,j is the previous raypath
fromTi, then the current raypath should beuk+1 = rs,t, wheres = (i+1)%N , andSs,t = (Si,j+Sthd)%360

(where% is the modulo operation). Second, the raypaths inU are partitioned into groups with group size
M . These groups are assigned different priorities and processed group by group according to their priorities.
Third, for each level of diffraction corners, the procedurefor the real transmitters is used except that raypaths
from diffraction corners are put into enhancement sets, andassigned lower priorities. Also, the parameters
such asN , M , andni (i = 1, 2, . . . , N ) should be changed to make sure that the processing time for each
group is the about the same, and the update rate of predictionresults is approximately the same at each time
interval.

The RI model has the same computational complexity as the SGRP model but requires more main memory
since it should store information about the status for each source point. When the numbers of transmitters or
diffraction corners are very large, after their raypaths are interleaved and partitioned into groups, the raypaths
within the same group may come only from a small portions of source points. Thus, the number of receivers
illuminated by a group of raypaths may be small. To handle this situation, we can combine SGRP and RI
models to form the source-group-raypath-interleave (SGRI) model which partitions the source points into
different geometric regions based on their geometric locations, interleaves raypaths within the same regions,
and clusters raypaths from different regions into groups.

4 Approximate Prediction Models

One of the requirements for a progressive or approximate prediction model is to provide users with a mecha-
nism to trade the prediction accuracy for the prediction time. The progressive prediction models introduced
in Section 3 indeed provide a basis for such a mechanism. However, if tolerable prediction errors are speci-
fied, the prediction model needs to determine the number of raypaths it should process to achieve the given
constraints.
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Typically, the number of real transmitters is much smaller than the number of building corners, which act
as secondary sources of diffracted waves. Hence the processing time spent on real transmitters is very small
compared to that for diffraction corners and the predictiontime will not decrease significantly if we drop
some or all raypaths from the real transmitters. Also, the strength of the secondary sources at the corners is
derived from the incident rays due to the real transmitters.One result of this is that the ray fields traced from
the secondary sources are much smaller than the ray fields traced directly from the real transmitters. Thus
dropping some raypaths from real transmitters, the prediction accuracy will be dramatically affected.

An upper limit for relative accuracy of predictions can be found in terms of the achieved accuracy com-
pared to measurements when many rays are included. Comparedto measurements, predictions have average
error of about 1 dB and standard deviation of about 8 dB. As discussed previously, the overall accuracy com-
pared to measurements will not be appreciably degraded if relative accuracy of predictions with a limited
set of rays has mean and standard deviation less than 2 dB and 4dB, respectively [3]. Generally speaking,
processing of real transmitters alone cannot achieve the above tolerances, so some raypaths from diffraction
corners are needed.

To estimate the workload needed to deliver predictions having a desired accuracy in minimum time, we
make use of Theorem 3. According to Theorem 3, workload can bedetermined based on the given tolerant
meanµ and varianceσ2 of prediction errors, and the geometric ratiormax. To findrmax, we need to know
ri (i = 0, 1, . . . , n − 1 andn is the number of receivers). The simplest way to estimateri for receiver
Ri is as follows. For receiverRi, record the number,mi, of illuminating raypaths traced so far, and find
the minimum received powerPi,min and maximum received powerPi,max. Then,ri can be estimated as
ri = (Pi,max/Pi,min)1/mi . The number of groupsk can be calculated based on Theorem 3, and the total
number of raypaths to be traced isN0 = kn, wheren is the number of receivers. During the ray-tracing
process, some processed raypaths may not illuminate any receiver at all, or their contributions to the received
powers are not significant and dropped. To take these raypaths into account, we still need to estimate the
ratio of the retained significant raypaths to total processed raypathsfs,t. We may then estimate the workload
N1 (i.e., total number of raypaths to be processed to achieve the given tolerances) asN1 = kn/fs,t.

The quality of the estimated workloadN0 or N1 depends on the accuracies of the estimated parameters
rmax andfs,t. It may not be tight due to the complex characteristics of raypaths. An alternative method
to the estimate of workload is based on the fact that for a finite incremental separation angleδ between
the traced rays, there will be a finite numberN of rays traced from the real transmitters and the diffracting
corners. The method assumes that the prediction accuracy isa monotonic function of number of processed
raypaths, and assumes that the relationship between the prediction errors and number of processed raypaths
is linear. Suppose that the mean and standard deviation of the prediction results areµ0 andσ0, respec-
tively, after we trace all rays from all of the real transmitters. Letµi and σi be the mean and standard
deviation of prediction errors after we process theith raypath starting at the diffraction corners. Then,
µi = (1 − i/N)µ0, andσi = (1 − i/N)σ0. In other words, given maximum allowable mean and stan-
dard deviation of prediction errors,µ andσ respectively, the number of raypathsN2 we should process is
N2 = max ((1 − µ/µ0)N, (1 − σ/σ0)N). While µ0 andσ0 are not known in advance of a complete ray
trace, it is reasonable and accurate enough to setµ0 = 10 dB andσ0 = 10 dB. In summary, if the maximum
allowed mean and standard deviation of prediction errors areµ andσ, respectively, then the estimated work-
load (the total raypaths to process)W should beW = min (N1,N2 + Nthd,N), whereNthd is a tunable
parameter.

One implementation for limiting on the total number of raysW to be traced is the source-group-raypath-
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permute approximate prediction model (SGRP-APP). This model is based on its counterpart in the progres-
sive prediction model and integrates with a new element, theworkload estimator. The SGRP-APP model
also adjusts the workload estimateW dynamically based on information collected by the sample generator
and the ray-tracing engine as follows. First, all transmitters are processed. Necessary information is col-
lected to estimate the ratio of significant raypaths to totalprocessed raypathfs,t. The parameterN1, N2,
andW can be calculated as discussed above, and the mean and standard deviation of prediction errorsµ0

andσ0 can be estimated empirically. Then, the next group of sourcepoints (with sizeM ) is fetched from
the sample generator, and is handed to the ray-tracing engine. At the same time, all necessary feedback is
collected from the sample generator and the ray-tracing engine, for example,Pi,max, Pi,min, mi for receiver
Ri, the number of significant raypaths, and the number of total processed raypaths. Finally, the estimated
workload is readjusted based on the above feedback. If all the estimated workload has been processed, then
the prediction process terminates. Otherwise, the previous and current steps are repeated. As its counter-
part in progressive prediction model, the different diffracting corners are processed sequentially, which may
affect the accuracy of workload estimation.

To overcome the limitation of processing the diffraction corners sequentially, we proposed the raypath-
interleave approximate prediction (RI-APP) model. Similar to the SGRP-APP model, a workload estimator
module is added into the RI-APP. However, due to the fact thatraypaths from different diffraction corners
are interleaved together and processed in a mixed manner, the methods to estimate and adjust the workload
are quite different. At the beginning of the prediction process, the number of raypaths illuminating each
receiver is relatively small, it is very difficult to estimatePi,min andPi,max accurately for receiverRi based
on these small number of raypaths. As a result, the workloadN1 based on those parameters is not stable
and accurate. If the workload estimator uses this information only, the prediction process may terminates
prematurely due to the fluctuation ofN1. Therefore, the estimation of the workload should mainly depend
onN2 at the beginning of the process. As the prediction process proceeds, the accumulated raypaths for each
receiver increase continuously, and the changes of the received powers for receivers are relatively small, all
parameters required for calculatingN1 can be estimated with higher accuracy.

Based on the above analysis, the estimate of workloadW for the RI-APP model is defined as

W =

{

N2 whenNc < Nt,
min (N1,N2) whenNc ≥ Nt.

(1)

Here,Nc is the total number of raypaths having been processed currently, Nt is a tunable parameter. The
workload estimator for the RI-APP model works as follows. First, raypaths from transmitters are processed.
The workload estimator collects all necessary informationto calculate the following parameters: ratio of
significant raypaths to total processed raypathfs,t; the mean and standard deviation of prediction errorsµ0

andσ0; andN2. The estimated workload is set asW = N2, andNt = W/2. Then, the next group of
raypaths (with sizeM ) is fetched from the sample generator and handed to the ray-tracing engine. The
parameterNc is computed based on the feedback from the sample generator and the ray-tracing engine.
Information is collected forPi,max, Pi,min, mi for receiverRi, the number of significant raypaths, and
the number of total processed raypaths. Finally, the estimated workload is readjusted and re-estimated.
Parametersfs,t, N1, andN2 are recalculated, the workloadW is updated based on (1). If all the estimated
workload has been finished, then the prediction process terminates. Otherwise, the previous and current
steps are repeated.

In the RI-APP method, the workload and related parameters are readjusted and re-estimated after every
group of raypaths. The size of group can be adjusted dynamically to control the frequency of recalculation
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and the accuracy of estimations. Since raypaths from different source points are interleaved together, it is
more likely that after tracingM groups of raypaths, all receivers are illuminated and theirreceived powers
are updated. Therefore, it is expected that the RI-APP modelmay decrease the mean and variance of
prediction errors more uniformly and steadily than the SGRP-APP method.

5 Implementations and Experiments

We have implemented two progressive and two approximate prediction methods, have tested their perfor-
mance by using two GIS databases, one of Rosslyn, VA, and the other of Dupont Circle, Washington DC. All
experiments were performed on a Sun Ultra 10 machine, with CPU clock rate of 440 MHz, main memory
of 384 MB, and Solaris 5.7 operating system.

The building footprint shown in Figure 1 represents the corepart of Rosslyn, VA, and consists of 79
buildings with 412 walls. The buildings have from 4 to 13 vertices each, with an average of 5. We use only
one transmitterTx that is located at the point having coordinates (237656.0, 118100.0)m. There are 400
receiversRx which are placed along several streets. Dupont Circle, Washington DC, shown in Figure 2
has streets that run radially from Dupont Circle, as well as on a rectangular grid. There are 3,564 buildings
featuring 23181 walls, with each building having from 3 to 86vertices, with an average of 6. It is evident
that the number of vertices in footprints varies dramatically, but most of the footprints have less than 8 edges,
and more than half of them feature between 3 and 4 edges. Only oneTx is installed, which is located close
to the epicenter of the map at (322780.0, 4308550.0)m. Thereare 400 receivers (Rx) which are located
along the two East-West (horizontal) streets.

117600

117700

117800

117900

118000

118100

118200

237300 237400 237500 237600 237700 237800 237900

Locations of Tx and Rx in Rosslyn

buildings
receivers

transmitter

Figure 1: Locations of buildings, Tx and Rx in
Rosslyn, VA

4.3078e+06

4.308e+06

4.3082e+06

4.3084e+06

4.3086e+06

4.3088e+06

4.309e+06

4.3092e+06

322200 322400 322600 322800 323000 323200 323400

Environment(Buildings, Txs, Rxs) for Dupont Circle

buildings
transmitter

receivers

Figure 2: Locations of buildings, Tx and Rx in
Dupont Circle, Washington DC

The 2-D ray-tracing method is used for a frequency of 900 MHz.The maximum numbers of reflections
and diffractions for each raypath are 8 and 1, respectively.Diffracted rays are the main contributors to the
received powers for those receivers in non-line of sight (NLOS) zones. The antenna height of the transmitter
is 10m, while all receivers have height 1.5m. All walls are assumed to be described by the Fresnel reflection
coefficient for a dielectric constantǫr = 6. The pincushion method is used to launch rays[2] with an angular
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separation (step size) of0.5◦.

5.1 Results of Progressive Prediction Models

In this section we evaluate the faithfulness and fairness ofthe progressive prediction models described in
Section 3. The intermediate and final prediction results of all the proposed progressive models are compared
with those generated by the traditional prediction model. In a traditional prediction model, all the real
transmitters are processed in the order specified by the user, while all diffraction corners are processed in
the orders they are generated. We name this traditional model “sequential method”. In each experiment, we
collect and calculate at various times: the number of illuminated receivers, the number of diffraction corners
being processed, the number of raypaths having been traced,as well as the mean and standard deviation of
the prediction errors. Notice that when we calculate the mean and standard deviation of the prediction errors,
we only count those receivers that are illuminated by some traced raypaths instead of all receivers, therefore,
the mean and standard deviation may fluctuate during the prediction process. The results are presented in
Tables 1 and 2, respectively, for Rosslyn and Dupont Circle.

time il.rx df.cor. rays mean dev. time il.rx df.cor. rays mean dev.
(sec.) (dB) (dB) (sec.) (dB) (dB)

sequential method source-group-raypath-permute
1.83 251 0 720 2.69 4.44 1.83 251 0 720 2.69 4.44
5.88 318 10 6132 7.74 14.10 6.40 326 10 6123 10.70 18.33
11.45 327 20 11530 8.03 15.03 11.09 332 20 11443 7.49 11.46
16.49 334 30 16934 5.17 10.92 17.55 344 30 16718 4.49 6.75
22.05 335 40 21676 4.12 9.71 21.68 346 40 22037 3.78 6.11
35.34 348 60 32059 2.60 8.50 33.05 350 60 31998 3.50 8.10
48.19 353 80 42599 2.12 7.31 46.43 361 80 42727 1.88 6.92
57.77 356 100 53114 1.91 6.95 57.92 362 100 52592 0.98 6.41
70.52 363 120 63315 0.70 6.32 69.76 364 120 63219 0.04 0.20
73.31 365 127 66925 0.00 0.00 74.02 365 127 66925 0.00 0.00

raypath-interleave source-group-raypath-interleave
1.83 251 0 720 2.69 4.44 1.80 251 0 720 2.69 4.44
6.71 333 84 5169 6.84 11.66 6.54 341 84 5156 6.78 11.33
12.18 345 127 10312 4.25 6.53 11.80 342 127 10325 4.70 7.28
17.51 349 127 15452 3.45 5.39 17.49 349 127 15481 3.46 5.46
23.16 350 127 20609 2.79 4.01 22.99 350 127 20613 2.79 4.02
34.51 358 127 30901 1.82 2.96 34.27 358 127 30901 1.81 2.96
45.66 359 127 41205 1.19 2.23 45.19 359 127 41212 1.23 2.26
57.09 362 127 51530 0.70 1.56 56.58 362 127 51527 0.70 1.57
68.42 365 127 61877 0.26 1.28 67.68 365 127 61861 0.16 1.20
73.75 365 127 66925 0.00 0.00 73.26 365 127 66925 0.00 0.00

Table 1: Rosslyn: statistics for progressive methods

From these tables, we can observe that all progressive methods illuminate more receivers than the se-
quential method (i.e, the traditional method) at any given time during the entire prediction process. The
raypath-interleave (RI) method and source-group- raypath-interleave (SGRI) method perform better than
source-group-raypath-permute (SGRP) method, and the SGRImethod is the best. It is obvious that the RI
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and SGRI methods illuminate a large portion of receivers at very early time which may help improve the pre-
diction accuracy. Also, the RI and SGRI methods traverse more diffraction corners than sequential method
and SGRP method at any given point during the entire prediction procedure which helps to illuminate more
receivers. They usually visit all diffraction corners within 10% of the processing time.

It can be seen that the mean and standard deviation of prediction errors delivered by all progressive
methods are much better than those given by the sequential method at any given time prior to the end of
the entire prediction process. When the RI or SGRI method is used, it takes only about half of the total
processing time to drive both the mean and standard deviation of prediction errors within 3 dB, and only
two-third of the total processing time to reach 1 dB. In contrast, it takes almost all the processing time to
bring the mean and standard deviation down to 1 dB and 3 dB, respectively, in the sequential method. Within
the same time constraint, all methods trace about the same number of raypaths. However, the means and
standard deviations of prediction errors delivered by the progressive methods are much lower (more than
4 dB at most of the time) than those by the sequential method. It is clear that the sample generators and
ray-tracing engines in our proposed progressive methods indeed tend to assign high priority to raypaths
contributing significantly to predictions and trace them first.

time il.rx df.cor. rays mean dev. time il.rx df.cor. rays mean dev.
(sec.) (dB) (dB) (sec.) (dB) (dB)

sequential method source-group-raypath-permute
10.40 180 0 720 5.37 9.11 10.40 180 0 720 5.37 9.11
121.69 308 100 52449 21.15 23.05 111.65 340 100 53266 16.61 18.92
236.28 335 200 101961 19.96 19.90 214.46 368 200 106594 12.91 12.82
448.96 338 400 207143 17.90 18.01 444.54 379 400 211981 9.88 10.20
659.09 351 600 311235 17.71 17.74 652.60 385 600 315622 5.97 7.42
1057.05 362 900 465692 13.85 14.07 1066.93 385 950 495354 5.44 6.85
1237.91 376 1050 545665 10.60 11.83 1248.18 385 1100 572235 4.19 5.72
1666.19 387 1400 728221 3.82 5.73 1641.30 388 1450 754217 2.20 4.99
1931.59 388 1650 858578 2.14 4.65 1928.43 394 1700 883000 0.32 0.92
2236.12 395 1956 1014773 0.00 0.00 2232.71 395 1956 1014773 0.00 0.00

raypath-interleave source-group-raypath-interleave
10.40 180 0 720 5.37 9.11 10.40 180 0 720 5.37 9.11
124.57 308 958 50761 18.81 20.50 118.31 363 952 50743 15.00 15.47
286.47 381 1956 126885 8.93 8.19 288.77 384 1956 126902 7.96 7.41
455.14 389 1956 203008 6.28 5.72 455.65 389 1956 203001 6.25 5.72
625.91 390 1956 279078 4.71 4.31 623.30 390 1956 279089 4.49 4.26
1012.36 394 1956 456683 2.91 3.11 1012.27 394 1956 456698 2.91 3.11
1292.40 395 1956 583537 2.02 2.31 1295.17 395 1956 583526 1.97 2.30
1686.02 395 1956 761119 1.15 1.69 1684.17 395 1956 761160 1.09 1.68
1903.49 395 1956 862646 0.99 1.64 1896.16 395 1956 862631 0.59 1.10
2239.96 395 1956 1014773 0.00 0.00 2238.18 395 1956 1014773 0.00 0.00

Table 2: Dupont Circle: statistics for progressive methods

Finally, the relationship between the prediction errors (mean and standard deviation) and the processing
time is almost linear for the RI and SGRI methods. Therefore,they update the received powers of all
receivers continuously, and with almost the same rate. Similarly, the relationship between the prediction
errors and the number of processed raypaths is nearly linearfor both the RI method and the SGRI method
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city map target errors time speedup raypaths il.rx mean dev
(µ,σ)(dB) (sec.) (dB) (dB)

Rosslyn (0.0, 0.0) 74.00 1.00 66925 365 0.00 0.00
(1.0, 1.0) 66.75 1.11 60125 364 0.30 1.00
(1.0, 2.0) 62.21 1.19 57096 363 0.95 2.50
(2.0, 3.0) 58.89 1.26 52992 362 1.90 3.44

Dupont (0.0, 0.0) 2232.00 1.00 1014773 395 0.00 0.00
Circle (1.0, 1.0) 1872.46 1.19 866723 395 0.40 0.95

(1.0, 2.0) 1782.53 1.25 817432 394 0.88 1.96
(2.0, 3.0) 1699.19 1.31 788332 393 1.36 3.10

Table 3: speedup, prediction errors by the SGRP-APP method

indicating that their grouping strategy satisfies the fairness requirement.

Based on the above observations, we can conclude that the RI and SGRI methods are better than tradi-
tional models and the SGRP method and satisfy all the requirements for progressive models, especially the
faithfulness and fairness requirements.

5.2 Results of Approximate Prediction Models

First, we evaluate the performance of the source-group-raypath-permute approximate (SGRP-APP) predic-
tion model, especially its ability of workload adjustment and its sensitivity to the input parameters. We
execute the SGRP-APP method for various targeted values of the mean and standard deviation of the predic-
tion errors. The ranges for the mean and standard deviation of prediction errors are [0.0, 2.0] dB and [0.0,
3.0] dB, respectively, and the step size is 1 dB. For each experiment, we collect and calculate the following
parameters: the processing time, the speedup, the number ofprocessed raypaths, the number of illuminated
receivers, the actual mean and standard deviation of prediction errors it delivered. These parameters are
shown in Table 3 for Rosslyn and Dupont Circle.

From Table 3, it can be seen that the mean and standard deviation of prediction errors delivered by this
model are quite close to the targeted prediction errors. Therefore, the workload estimator can adjust its
workload estimates based on the inputs. The estimator indeed provides a mechanism to trade the prediction
accuracy for the prediction time. When the tolerance for prediction errors is relaxed, the prediction time
can be reduced. Controllability of prediction errors is relatively coarse. The speedup does not change with
the same rate as the targeted mean and standard deviation of prediction errors. When the targeted mean
and standard deviation of prediction errors are relaxed (become larger) from (1.0, 1.0) dB to (2.0, 3.0) dB,
the speedups only increase from 1.19 to 1.31 for Dupont Circle. Prediction accuracy fluctuates around
the specified tolerance, it can be better or worse than the given tolerance. The distribution of prediction
errors among all receivers is not uniform. The prediction errors tend to concentrate on a subset of receivers.
The main reason for this uneven distribution of prediction errors is that all source points are processed
sequentially and some source points are not processed at allwhen the prediction procedure terminates.

In Section 5.1, it was found that the raypath-interleave (RI) method and the source-group-raypath-interleave
(SGRI) method are the best performers. It is expected that the approximate prediction models based on these
progressive methods may also have the best performance. We use the RI-APP method here as an example
to evaluate its performance, especially the fine-tuning capability and sensitivity to inputs of its workload
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estimator. Experiments similar to those for the SGRP-APP method are performed, except that we use a finer
step size of 0.5 dB instead of 1.0 dB. Table 4 presents the experiment results for Rosslyn and Dupont Circle.

city map target errors time speedup raypaths il.rx mean dev
(µ,σ)(dB) (sec.) (dB) (dB)

Rosslyn (0.0, 0.0) 74.00 1.00 66925 365 0.00 0.00
(0.5, 0.5) 69.41 1.07 62879 365 0.16 0.99
(1.0, 1.0) 58.12 1.27 21533 362 0.55 1.50
(1.0, 2.0) 48.63 1.52 43406 360 1.09 1.99
(2.0, 2.0) 41.52 1.78 37125 359 1.40 2.30
(2.0, 3.0) 30.10 2.46 26890 358 2.04 3.05

Dupont (0.0, 0.0) 2232.00 1.00 1014773 395 0.00 0.00
Circle (0.5, 0.5) 2139.91 1.04 964107 395 0.30 0.78

(1.0, 1.0) 1792.41 1.25 811907 395 1.00 1.64
(1.0, 2.0) 1631.28 1.37 735787 395 1.48 2.04
(2.0, 2.0) 1300.40 1.72 589537 395 1.95 2.29
(2.0, 3.0) 1087.55 2.05 487038 395 2.60 2.90

Table 4: speedup, prediction errors by RI-APP method

From Table 4, we can observe that the RI-APP method provides abetter mechanism to balance the pre-
diction accuracy and prediction time than the SGRP-APP method. For example, in Dupont Circle case, the
speedup can be as high as 2.05 when the targeted mean and standard deviation of prediction errors are (2.0,
3.0) dB, which is much higher than that given by the SGRP-APP method (which is 1.31). Therefore, the
workload estimator in the RI-APP model performs much betterthan that in the SGRP-APP method in its
adjustability, controllability and accuracy of estimation. There is a very close relationship between the pre-
diction accuracy and the number of processed raypaths. Under the same tolerances for the prediction errors,
the RI-APP method delivers much better prediction results and speedups than the SGRP-APP method. For
instance, for Dupont circle case, when the specified mean andstandard deviation of prediction errors are
2.0 dB and 3.0 dB, respectively, the actual mean and standarddeviation generated by the SGRP-APP model
are 1.36 dB and 3.10 dB, respectively, and the speedup is 1.31. while in the RI-APP method, the actual mean
and standard deviation are 2.60 dB and 2.90 dB, respectively, but the speedup is 2.05. If the same processing
time is used (i.e., about 1699.19 seconds), then the RI-APP method can deliver mean and standard deviation
less than 1.48 dB and 2.04 dB, with speedup larger than 1.37. In addition, the distribution of prediction
errors is more uniform than that in the SGRP-APP method. Thus, the RI-APP method has better prediction
fairness than the SGRP-APP method.

6 Conclusions

Progressive and approximate prediction models are attractive since they can provide continuous feedback
to users during the entire radio wave propagation prediction process. They offer users more flexible and
fine-scale controls over the prediction processing, including effective mechanisms to trade prediction ac-
curacy for prediction time. Moreover, they integrate easily with other techniques to further improve the
performance of the system. We have presented experiment results for the proposed progressive prediction
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methods and approximate prediction methods. From these results, it is evident that the proposed progres-
sive prediction methods (the source-group-raypath-permute method, the raypath-interleave method and the
source-group-raypath-interleave method) deliver betterprediction results than traditional models continu-
ously and progressively at any time during the entire prediction process. In most experiments, the prediction
errors were reduced by more than 5 dB for both the mean and standard deviation of the prediction errors. In
the proposed progressive prediction methods, the SGRI method is the best in terms of prediction accuracy,
number of illuminated receivers, and number of processed diffraction corners. Both approximate prediction
methods, the SGRP-APP method and the RI-APP method, provideflexible mechanisms to trade prediction
accuracy. The actual mean and standard deviation of the prediction errors are very close to the targeted ones.
The RI-APP method has better performance than the SGRP-APP method. Under the same time constraint,
the RI-APP method delivers much better prediction results than the SGRP-APP method in terms of predic-
tion accuracy. Similarly, under the same targeted prediction errors, the RI-APP method generates prediction
results with less time, thereby has higher speedup rate. TheRI-APP method also has better capabilities to
estimate and adjust the workload, and can manipulate the relation between the prediction accuracy and the
number of processed raypaths in a much finer granularity.
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A Proof of Fairness Theorem

Proof a) LetEi(g) (in dB) be the prediction error for receiverRi after thegth group of raypaths is processed, and its
mean (in dB) beµ(g) (g = 0, 1, . . .). SincePi,j+1 = riPi,j for i = 0, 1, . . . , n andj = 0, 1, . . . , mi − 1, we denote
Pi = Pi,0, then
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since0 < ri < 1, it is easy to show that(1 − rg+1

i )/(1 − rg
i ) > 1 and

[

(1 − rg+1

i )/(1 − rg
i )

]

dB
> 0 for i =

0, 1, ..., (n− 1), therefore,µ(g) > µ(g + 1).

b) Let σ2(g) be the variance (in dB2) of the prediction errors after thegth group of raypaths has been processed
(g = 0, 1, . . .), then

σ2(g) =
1

n

n−1
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i (g) − µ2(g); σ2(g + 1) =
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n
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{[Ei(g) + Ei(g + 1)][Ei(g) − Ei(g + 1)]} − [µ(g) + µ(g + 1)][µ(g) − µ(g + 1)] (7)

Let Ei(g) + Ei(g + 1) = ai andEi(g) − Ei(g + 1) = bi. Since each receiver is illuminated by infinite numbers of
raypaths, it is clear that

Ei(g) =

[

∞
∑

l=0

Pir
l
i

]

dB

−
[

g−1
∑

l=0

Pir
l
i

]

dB

=

[

Pi

1 − ri

]

dB

−
[

Pi(1 − rg
i )

1 − ri

]

dB

=

[

1

1 − rg
i

]

dB

(8)

ai = Ei(g) + Ei(g + 1) =

[

1

(1 − rg
i )(1 − rg+1

i )

]

dB

; bi = Ei(g) − Ei(g + 1) =

[

1 − rg+1

i

1 − rg
i

]

dB

(9)

µ(g) + µ(g + 1) =
1

n

n−1
∑

i=0

[Ei(g) + Ei(g + 1)] =
1

n

n−1
∑

i=0

ai; µ(g) − µ(g + 1) =
1

n

n−1
∑

i=0

bi (10)

σ2(g) − σ2(g + 1) =
1

n

n−1
∑

i=0

(aibi) − (
1

n

n−1
∑

i=0

ai)(
1

n

n−1
∑

i=0

bi) (11)

It is easy to show thatai ≥ 0 andbi ≥ 0 for i = 0, 1, . . . , n− 1. Also, for any pair ofai andaj and any pair ofbi and
bj, we can get

ai − aj =

[

(
1 − rg

j

1 − rg
i

)(
1 − rg+1

j

1 − rg+1

i

)

]

dB

; bi − bj =







1−r
g+1

i

1−r
g

i

1−r
g+1

j

1−r
g

j







dB

(12)

By assuming that0 < rj < ri < 1, we can show that(1 − rg
j )/(1 − rg

i ) > 1, (1 − rg+1

j )/(1 − rg+1

i ) > 1, and

(
1−r

g

j

1−r
g

i

)(
1−r

g+1

j

1−r
g+1

i

) > 1, so,

[

(
1−r

g

j

1−r
g

i

)(
1−r

g+1

j

1−r
g+1

i

)

]

dB

> 0, therefore,ai > aj. By letting f(r) = (1 − rg+1)/(1 − rg),

(0 < r < 1), we can find its derivative with respect tor as

df

dr
=

rg−1(1 − r)
[

g − r(1 + r + · · · + rg−1)
]

(1 − rg)2
> 0 (13)

Therefore,f(r) is a monotonically increasing function. For0 < rj ≤ ri < 1, we have(1 − rg+1

i )/(1 − rg
i ) ≥

(1 − rg+1

j )/(1 − rg
j ), therebybi ≥ bj.

In summary, if we assume thatri ≥ ri+1 for i = 0, 1, . . . , n − 2, then,ai > 0, bi > 0, ai ≥ ai+1, bi ≥ bi+1.
Similarly, if we assume thatri ≤ ri+1 for i = 0, 1, . . . , n − 2, then,ai > 0, bi > 0, ai ≤ ai+1, bi ≤ bi+1. According
to Chebychev’s inequality which states that ifai > 0, bi > 0, i = 0, 1, ..., (n − 1), ai ≥ ai+1 andbi ≥ bi+1, or
ai ≤ ai+1 andbi ≤ bi+1, then,( 1

n

∑n−1

i=0
ai)(

1

n

∑n−1

i=0
bi) ≤ 1

n

∑n−1

i=0
(aibi); we derive that

σ2(g) − σ2(g + 1) =
1

n

n−1
∑

i=0

(aibi) − (
1

n

n−1
∑

i=0

ai)(
1

n

n−1
∑

i=0

bi) ≥ 0 (14)

Therefore,σ2(g) ≥ σ2(g + 1) indicating that the variance of prediction errors is a decreasing function ofg. QED
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B Proof of Workload Estimation Theorem

Proof In Theorem 2, we have already shown that the mean and varianceof prediction errors monotonically decrease
with the number of traced groups of raypaths. Therefore, we need only to find the minimum number of groupsk
to be traced such that the mean and variance of prediction errors are less than or equal to the givenµ andσ2. Let
Ei(k) be the prediction error (in dB) for receiverRi after tracing groupG(k), µ(k) andσ2(k) be the mean and
variance (in dB and dB2, respectively) of prediction errors at the end of processing of groupG(k), rmax = maxn−1

i=0
ri

andrmin = minn−1

i=0
ri. It is easy to show that1/(1 − rg

i ) ≤ 1/(1 − rg
max), 1/(1 − rg

i ) ≥ 1/(1 − rg
min), and

1/(1 − rmin) ≤ 1/(1 − rmax), then

µ(k) =
1

n

n−1
∑

i=0

Ei(k) =
1

n

n−1
∑

i=0

[

1

1 − rk
i

]

dB

≤ 1

n

n−1
∑

i=0

[

1

1 − rk
max

]

dB

=

[

1

1 − rk
max

]

dB

(15)

σ2(k) =
1

n

n−1
∑

i=0

E2
i (k) − µ2(k) =

1

n

n−1
∑

i=0

[

1

1 − rk
i

]2

dB

−
{

1

n

n−1
∑

i=0

[

1

1 − rk
i

]

dB

}2

≤ 1

n

n−1
∑

i=0

[

1

1 − rk
max

]2

dB

−
{

1

n

n−1
∑

i=0

[

1

1 − rk
min

]

dB

}2

≤
[

1

1 − rk
max

]2

dB

(16)

Thus,µ(k) ≤ µ andσ2
k ≤ σ2 whenk = max (k1, k2) and

k1 ≥
log

[

1 − 1

10
µ
10

]

log (rmax)
; k2 ≥

log
[

1 − 1

10
σ
10

]

log (rmax)
(17)

QED
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