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Abstract— Existing GRID infrastructur esrely on explicit user
instructions in order to replicate files for the purposes of
resiliency. This human-intensiveprocessis inefficient, error prone
and, more importantly , makes file replication in GRIDs a cum-
bersometask. To addressthis problem, we intr oduceFlexFS – a
fully automatedfile-systemframework that seamlesslyplugs into
existing GRID structur es providing automated file replication
and transparent-to-user resilience.FlexFS breaksapart files into
blocks and injects resilient information into theseblocks thr ough
the use of Forward Erasure Corr ection codes.FlexFS employs
a number of methods that facilitate the automated storage and
efficient retrieval of the blocks in order to provide I/O thr oughput
similar to that of local hard disks, all in the faceof ever-changing
utilization and availability of the GRID resources. Compared
to curr ently available GRID replication schemes,FlexFS attains
15% to 230% higher thr oughput, both for reading and writing
files.

I . INTRODUCTION

The sustainedgrowth of a distributed storageinfrastructure,such
as a GRID, is subject to frequent resourcefailures. Malfunctions
of physical hard drives, in conjunctionwith the occasionallimited
bandwidthavailability and heavy workloads at servers, render the
effective sharing of storageresourcesa critical issue. In general,
resourceunavailability is not a rarecasein computationalGRIDs[1],
[2]. File replicationis the solutionGRIDs currentlyoffer in orderto
increasedata integrity and achieve better applicationperformance.
Dispersingcopiesof data to multiple nodesimproves the chances
for opportunisticprocessing.Dispatchinga job to an under-utilized
clusterthat is closeto a replicaeliminatesthe needfor file transfers.
Moreover, computationalGRIDsaremeantto provide consistent,per-
vasive, dependableandtransparentaccessto computingdatastorage,
information retrieval and applicationservices[3], [4]. However, the
currentprovision for resilientdatastorageservicesis not automated.
The existing meansfor attainingdataintegrity in GRIDs is through
explicit user commands.File replication is routinely left as a task
to the user who has to select specific nodes in which replicas
are hosted[5]. Consideringthat the performanceof GRID-enabled
applicationsheavily dependson theproximity of computingelements
to the node(s)storing requisitedata, it becomesclear that effective
and versatilefile placementis an aspectof paramountimportance.
Today, a user is requiredto be well-versedin the topology of the
GRID-network as well as the capabilitiesof individual computing
nodes– both aspectsof dynamic nature. In this context, GRIDs
currentlyfail to provide dependable,pervasive and,moreimportantly,
transparentstorageservices.

In this paper, we overcomethe above shortcomingsfor GRID
storageresourcesby splitting files into smallerdatasegmentstermed
blocks. We enrich the blocks with redundantinformation through
the use of Forward ErasureCorrection codes (FEC), generating
packets. Subsequently, we managethe packet allocation to GRID
nodesin a mannerthat is transparentto the user. At the sametime,

the automatedpacket dispersalfully utilizes the available resources,
while maintainingfastretrieval performance.Thepacketsin question
becomethecoremechanismfor thedynamicreconstructionof blocks
and files. File reconstructionis accomplishedby simultaneously
fetchingpacketsfrom multiple storagenodesthatmaybeeitherlocal
or remoteto a cluster. Evenwhenstoragenodesbecomeunavailable,
FEC still enablesus to recreatethe blocksof a file. To reconstructa
block, the numberof retrieved packets is suchthat their cumulative
size is equalto the sizeof the block in question.

We incorporatethe above techniquesinto a GRID-basedfile-
systemframework called FlexFS, which managesthe breakingup
of file blocks into packetsandhandlesfiles transparentlyto the user
in a mannerthat most efficiently utilizes the available distributed
resources.Overall, our proposaloffers:

1) mechanismsfor an entirely user-transparentfile management
in computationalGRIDs,

2) scalableresilienceby efficiently allocatingFEC-encodedpack-
ets to availablenodes,

3) ordersof magnitudeincreasein meantime to failurecompared
to currentlyavailable replicationmethods,

4) increaseof up to 230% throughputperformancethrougheffi-
cient packet retrieval methods,and

5) a FlexFS implementationthat plugs into existing GRIDs.
Two types of nodescomprisethe functionality of FlexFS: Co-

ordination Nodes (CNs) and StorageNodes (SNs). CNs manage
the metadatanecessaryto orchestratethe packet disseminationand
retrieval, while SNs are only responsiblefor readingdata from and
writing datato disks.Virtually all long-termmemorydeviceshosting
file-systemsexported through a POSIX API can be used to store
packets. CNs initially break files into blocks, augmenteachblock
with a degreeof redundancy, andefficiently allocatepacketsof such
augmentedblocks into multiple SNs. When reconstructinga file,
multi-threading is employed for the simultaneouspacket retrieval
from multiple SNs, terminatingrequestsassoonassufficient number
of packets becomeavailable. The techniquesused by FlexFS to
managepacket placementandretrieval allow it to attainmuchhigher
read/writethroughputratesthanexisting GRID replicationschemes.

Sinceredundancy is built into eachpacket, it doesnotmatterwhich
specificpackets are retrieved. For example,a 512 KB block can be
encodedinto four 256 KB packets, each stored in a separateSN.
Any two out of the four packets are necessaryto reconstructthe
original block. Consequently, a CN node may issue four requests
but can neverthelessrecreatethe block from the first two packets
delivered.This methodalso improves write throughput– insteadof
writing one512 KB block to a singleSN, four SNs write 256 KB in
parallel,potentiallycompletingthetaskin half thetime.With respect
to resiliencein this example,asmany astwo out of thefour SNs may
fail without “loosing” the original block. This is akin to a RAID-6
disk system.

We provide an implementationof FlexFS basedon the FUSE
framework [6]. Our prototypeintegratesinto a GRID by exposing
the GRID StorageElement (SE) functionality through the Storage



Resource Management (SRM) API [7], [8]. We evaluateour FlexFS
prototypein realistic scenariosand identify FEC-configurationsthat
deliver throughputsimilar to that of a local hard-disk.Simulations
show that our approachdelivers up to 230% higher throughput
comparedto existing GRID-replicasolutions.

The restof this paperis organizedasfollows: SectionII presents
related work. Section III gives an overview of the current GRID
methodsfor file replication.An introductionto FECcodesis provided
in SectionIV. SectionV presentsthe implementationdetailsof our
framework. SectionVI detailsour empiricalevaluations.Finally, our
conclusionsarepresentedin SectionVII.

I I . RELATED WORK

FlexFS adoptsForward ErasureCorrectioncodes(FEC) in order
to provide for resilient file storagein the GRID. FEC is a classof
error correctingcodesthat hasbeenusedin telecommunications[9]
and in computersystems[10], [11] to regeneratepackets lost dur-
ing transmission.The introduction of FEC-encodeddata implies
processingoverheadsat nodes while at the same time it offers
significant advantagesover file replication [12]. In [13], Tornado
erasurecodesareusedto improve the speedof informationretrieval
from mirrored sites. We note that while Tornado codes provide
faster messageencoding and decoding than FECs, they require
morepackets per block, increasingtheir utility in environmentsthat
emphasizespeedover fault tolerance.OceanStore useserasurecodes
to provide resilienceof staticfiles, effectively providing a versioning
schemefor file updatesthroughits deeparchival storageoption [14].
Similarly, erasurecodesis an option for adding fault tolerancein
the Ursa Minor [15] storagesystem.In the context of the GRID,
there have beenapplication level attemptsto use erasurecodesin
order to provide increaseddata availability [16]. A widely used
alternative to erasurecodes is replication. A number of storage
solutionsproposeduse replication sincemanagementof replicasis
particularlystraightforward.GoogleFS[17], FarSite[18], Kosha[19]
andtheGRID targetingLegionFS[20] all employ replicasto enhance
data availability, load balancingand even fault tolerance.In all of
the mentionedstoragesolutions,with the exceptionof Kosha[19],
file metadataaswell asdirectoryhierarchyis maintainedin specific
nodes,thus forming a centralizedarchitecture.On the other hand,
Koshais build on top of P2Pnetworks andsincethereis no central
metadatarepository, file anddirectorymanipulationis inefficient.

Our proposalcombinessome of the characteristicsof the sys-
tems mentionedabove. Contrary to [19], we proposea centralized
architecturalmodelwherethe centralnodesachieve high availability
andfault tolerancethroughreplicationlike [17], [18], [20]. However,
in the storagenodes(SNs), increaseddata throughputis provided
through the use of erasurecodes as in the case of [15], [14],
[16]. In addition, forward erasurecodesallow FlexFS to enhance
fault toleranceand load balancingat the file block level. Efficient
maintenanceof directorytreeandfile metadatais achieved eitherby
having replicasof a central metadatanode (CNs) or by delegating
it to other GRID servicesthat provide the requiredfeatures.To the
best of our knowledge, this is the first proposalfor increaseddata
availability in a GRID environmentthat is transparentto the user.

I I I . CURRENT GRID REPLICA SCHEMES

CurrentGRID infrastructuresareconstructedaroundthenotionof
Virtual Organizations(VO). Each VO is a collection of resources
that are provided to registeredusers.The resourcesfall into two
categories: computationaland storage-related.Scatteredthroughout
theInternet,a numberof physicalmachinesexport suchresourcesby
hostingspecificGRID-layer services.Servicesoffered by the same
provider form a GRID site. In essence,eachVO is an aggregation
of suchGRID sites.Figure1 depictsa deploymentdraft of the most
importantservicespresentin a VO.

GRID computationalresourcesareaccessedthrougha Computing
Element (CE) and tasksareexecutedon Worker Nodes (WNs). WNs
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Fig. 1. Basicservicesof a VO in a GRID

have to accessfiles stored in Storage Elements (SE) during job
execution.The SE whereeachfile is locatedis provided by the File
Catalog (FC). The FC functionsasa directory for mappingfiles to
one or more SEs. To executea job, a usersubmitsa requestto the
Workload Management System (WMS) [21] which dispatchesthe job
to the bestpossibleCE.

To reducetheexecutiontimeandresourceconsumptionfor a given
job, the WMS will attemptto placethe job for executionwith a CE
that is “closest” to the SE holding any requiredfiles. How well this
proximity criterion is fulfilled dependson the availability of services
at the time of job submission.In order to increasedataavailability,
a usercan explicitly add file replicasto multiple SEs aheadof the
computationin order to increasethe probability that the job will be
allocatedto a less-loadedCE. Often, this is accomplishedby the
user issuing explicit User Interface (UI) commandsto specify the
SEs in which the files shouldbe replicated.This replicationscheme
not only bypassesthe abstractionlayer that GRID aims to provide,
but also setsundesiredrequirementsfor the users.In this context,
usersare requiredto have a good understandingof the VO’s GRID
sitesand the resourceeachone provides. Therefore,the user must
have in-depth knowledge of the topology and capabilitiesof each
GRID site of interest.For instance,if a userintendsto executea job
that accessesa file storedin the SE of site

�
, but the availability

of the correspondingCE is limited, there are two options: either
take no action and let the WMS dispatchthe job to anotherCE
sustainingthe overheadof transferringthe file during job execution,
or replicatethefile from

�
to anothersite.The first option resultsin

undesireddelaysor evendataunavailability in caseof limited network
bandwidthbetweenGRID sites.In themanualreplicationoption, the
user has to determinea new GRID site B whoseSE will host the
replica.This decisionhasto be basedon the capabilitiesof the CE
of siteB astheSE shouldbecoupledwith anappropriateCE in order
to prevent undesirablefile transfersduring execution.Evidently, the
usershouldbe awareof the available CEs, their capabilitiesaswell
as the intensity of the workloadsthat suchcandidatenodeshandle.
Although suchinformation is available, it requiressophisticationon
behalf of usersas they have to know the API to query eachsite
andcorrectlyinterpretthe queryresults.This is a diversionfrom the
realm of interestof the averageGRID user. Even worse, requiring
such in-depth knowledge of the topology and capabilitiesof each
site rendersa GRID to be a collection of clustersout of which the
userindirectly picks onesite to executea job, ratherthanbeing the
intendedresourcesharingplatform [3], [4].

IV. FORWARD ERASURE CORRECTION CODES

In this section, we briefly introduce the Forward ErasureCor-
rection codes(FECs) that provide the file block resiliencein the
proposedFlexFS framework. In a communicationinvolving FECs,
a message� , initially comprisedof � packets, is injected with
redundantinformationandencodedinto � packets.During this trans-
formation,thepacket sizeremainsconstantbut ����� . A (n,k) erasure
code adds ( � - � )*sizeof(packet) bytes of redundantinformation in



sucha way that the initial messagecan be reconstructedfrom any
subsetof � out of the � packets. When usedin telecommunication
systemsto avoid information loss, redundancy is probabilistically
calibratedaccordingto expecteddatalossduringtransmission.Noisy
channelscall for higher levels of redundancy requiring messagesto
be encodedinto more packets. In FlexFS, the redundancy injected
is expressedas a percentageof the amount of packets initially
comprisingthe message� :

�	��

� � 

� ������� ������ (1)

Our framework usesa subclassof erasurecodescalled linear
erasurecodes.In this subclassthe messageto be encodedis repre-
sentedas �� ����� ����� ��!�!"!#� $%!"!�!#�'&"(*) where � $ is the +-,/. packet.
With the use of a �102� matrix 3 , message�� � is encodedinto��*4 ��� 4 � 4 � !"!"! 4 $ !"!"! 465 ( ) :

3 �� �7� ��*4 (2)

where
��*4

is thevectorof packetsthatwill be transmittedthroughthe
communicationchannel.

Each row of matrix 3 , along with vector �� � , define a single
packet/elementof vector

��84
through an equationof the following

form:

9 $;: ��<=���?> 9 $/: �=<=�'�@>A!8!B!C> 9 $;: &D<E� &	� 4 $GFH+=I��KJML��N( (3)

with 9 $/: O being the element of 3 at row + and column P . In
environmentswhereerasurecodesareusedto dealwith packet loss,
thevalueof � is determinedbasedon theexpecteddatalossgoverned
by interferencecriteria,with theoutlook that thereceiver will always
obtainat least � packetsof thetransmittedvector

�� 4
. In our proposal,

however, � is determinedby the amountor redundancy thatwe wish
to add to eachpacket, asdetailedin SectionV.

Matrix 3 is usedby the transmitterto encodemessage� into
vector

�� 4
. The receiver usesthe samematrix 3 to decode� only

from the subsetof packets of vector
�� 4

which are received. This
decodingrequiresat least � out of the � packets/elementsof

�� 4
and

alsothecorresponding� rows of 3 asonly theseareenoughto form
a linear systemof at least � equationsasper Eqn. 3. We denotethe
vectorof � receivedpacketsas

�� 46Q
, while 3 Q containsonly thoserows

of 3 that correspondto thepacketswhich werereceived.This linear
systemis denotedas

3 Q �� �7� �
� 4 Q

(4)

Solving this systemresultsinto revealing message� and requires
finding 3 Q*R � : �� ���S3 Q*R � �

� 4 Q
(5)

Finding a solution may presenta significant overheaddue to two
factors:a) The elementsof �� � and

�� 4 Q
can be of several KB long

and thereforerequire many CPU cycles to be processed.b) High
precisionarithmeticis alsorequiredsinceeven a singlebit error can
affect the entire message[9]. To avoid the semanticdifficulties of
sharingmatrix 3 betweenthe transmitterandreceiver, it is common
practiceto packrow + of 3 alongwith packet

4 $ .
V. FlexFSOVERVIEW AND DESIGN ASPECTS

The primary objectivesfor the designof FlexFS arethe provision
of file resilience in the face of failing GRID storagenodes and
high bandwidth utilization through simultaneousin-network I/O-
requests.The framework basesits operationon two typesof nodes:
Coordination Nodes (CNs) and Storage Nodes (SNs). These two
nodesare expectedto replacethe SE currently deployed in GRID-
sites. By separatingthe managerialaspectof GRID storagefrom
the data repositories,we permit the CoordinationNodesto contact

StorageNodesof differentsites.To allow suchinteraction,metadata
have to be sharedamongall CNs.

Without deviating from conventional GRID design principles,
FlexFS has to becomeaware of all available storageresourcesin
its realm. In particular, the CNs have to be properly configuredin
order to useandcooperatewith respective Storage Nodes. The only
requirementthat our framework imposesis that SNs expose their
file-systemsin a Unix POSIX compliantmanner. In this regard,SNs
can be mountedon local file-systemswhereCN-servicesreside.As
a result, a greatvariety of storageresourcesand/ordevices can be
supported.Network file-systemssuchasthe NFS [22] andAFS [23]
canbeput into usein ourapproach.Moreover, ourproposalallows for
even easierandmoreflexible solutionswhenit comesto configuring
SNs. For instance,onecanaccessa storagenodethroughthe useof
a singlesshaccounton a SN and the sshfsfile-systemon the CN.

As Figure 2 shows, a FlexFS file-systemmay presenteither a
standardUnix-POSIX API or a GRID-compliant one. Therefore,
FlexFS CNs, with the additionof a few extra metadatamanagement
services,can also be mounted in a local file-systemthrough the
FUSE framework [6]. As a result, a FlexFS file-systemcan serve
as a SN to other FlexFS file-systems.This property enablesthe
clusteringof SNs with similar characteristicssuchas the degreeof
resilienceof individual nodeswithin thegroup,geographicproximity
of nodes,and aggregate throughput.Figure 2 depictsthe layers of
our framework and the protocolsusedfor communication.

NFS sshfsLocal GmailFS

UNIX Posix I/O API

SRM for GRID

UNIX POSIX I/O API

GRID Users

FlexFS Coordination Node (CN)

Storage Nodes (SNs)

Local Users

Fig. 2. Layeredoverview of FlexFS

Our relaxed requirementsfor SNs intend to give GRID users
an opportunity to readily share storageresourcesas opposedto
the existing mechanismsin computationalGRIDs [24], [25]. Using
FlexFS, and with practically no specific system configuration in
place,anyonecancontactthe VO managersin order to offer storage
throughany (POSIX compliant)protocol. It is then up to the GRID
site administratorsto make useof the offered SNs by appropriately
configuringthe correspondingCNs.

Theoperationof FlexFSis centeredaroundthe functionalityof its
CN elements.It is therethat forward erasurecorrectionis employed
andfile blocksareaugmentedwith redundantinformation.Figure3
depicts the splitting of a file into blocks and shows how blocks
are fragmentedinto packets providing a degreeof redundancy. The
degree of redundancy is a percentagemeasureof the amount of
redundantinformationencodedinto packets.As per SectionIV, the
degreeor redundancy is definedas J"TMTMUV0�W/�X�Y�[Z#\]� . Packets are
finally dispersedamongthe available and/or preferredSNs in pro-
portionsdefinedby the GRID administrator. In this manner, FlexFS
canput into useSNs with differentcharacteristicsandcapacities.The
systemadministratorhasto decideon the desiredpropertiesof the
SNs andselectthosethat betterandmoreefficiently serve the needs
of the GRID community. The choiceof key parameterssuchas the
redundancy percentage,theblockandpacket sizearebasedon: (a) the
probability of failure of a particularSN and (b) the minimum time
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Fig. 3. Files are divided into blocks and then into packets. Packets are
ultimately storedat StorageNodes(SNs) distributed in the GRID.

requiredfor a file block reconstruction.In respectto (b), we notethat
higherredundancy andpacket granularityresult in the productionof
more packets. This, in turn, increasesthe available datasourcesfor
block reassembly, effectively reducingthe datablock reconstruction
time. However, asshown in SectionVI, thereareCPU performance
issuesthat do not allow for unlimited increaseof redundancy and
numberof packetsper block.

To reconstructan entire file, FlexFS needs only a subset of
the packets distributed to the GRID-network. For each block, the
framework will have to retrieve packets whosecumulative size is
equal to the block’s size. This allows for transparentto the user
selectionof SNs basedon their responsivenessand throughput.

A. The Internals of Coordination Nodes

Figure 4 depicts the componentsthat constitutea Coordination
Node and shows the interactionsthat take placeamongthem. The
entry point of all system calls placed against FlexFS is the top
level implementation which implements the API defined by the
FUSEframework. Thereis a one-to-onecorrespondencebetweenthe
Unix I/O API and the implementedFlexFS functions.A numberof
calls1 are handledby this very moduleand do not have additional
interactionswith otherCN-modules.Thesecalls work only with the
metadataavailable within the top level implementation component.
On the otherhand,readandwrite calls arerealizedin synergy with
other modulesof the CN. During theseI/O calls, data are always
managedin blockswhosesizeis differentfrom thatusedin the local
operatingsystemlevel. Therefore,even if a portion of a block is
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Fig. 4. Internalmodulesof a CN

accessed,theentireblock hasto beobtained.Assemblingeachblock
requirescommunicationwith SNs which canbe time consuming.For
this reasonthe useof a Cache is imperative.

1suchas stat, which returnsfile metadataregardingfile size, permissions
andaccesstimes

The Cache modulestoresdecodedblocks in memoryso that they
can be reusedwithout the overheadsof contacting the SNs and
reconstructingthe blocks from packets. Our design of the Cache
prioritizes read over write requests.Data block writing is carried
out in two stages:initially, blocksareplacedin a queuein the local
file systemandduring idle periodsof the CN nodethey areencoded
into packets and the packets are then dispatchedto designatedSNs.
While a file hasits blockspendingfinal processingat a queue,thefile
in questionis only available throughthe Coordination Node which
has beenassignedthe task to encodeblocks and store packets to
designatedSNs. As soonasthispacket “uploading” to SNs completes,
the data blocks are available at all CNs. Therefore,eachCN must
registerwith the GRID File Catalog servicethat it holdsa replicaof
the entire file. When a file is modified, only the altered/dirtydata-
blocksarere-encodedinto packets,andredistributedto SNs.

Thedistributor modulecommencesits work whenthereareeither
issuedread requestsor file blocks are waiting at the queueto be
fragmentedinto packets and stored to SNs. Figure 4 depicts the
interaction of distributor with the other modules of a CN node.
Should a block be stored,the following stepshave to take place:
firstly, redundancy has to be addedto the block. The percentage
of addedredundancy is a function of how pervasive in the GRID-
infrastructurethefile in discussionshouldbe,asdecidedby theGRID
administrator. Evidently, as the numberof SNs involved increases,
the reliability of the file is enhancedas well. Secondly, the block
along with its redundantinformation is fragmentedto equal-size
packets that are dispatchedfor storageaccording to the FlexFS
placementpolicy. We use an indexing mechanismso that we can
readily track, retrieve and/orupdatepacketsof blocksin the system.
This mechanismis appropriatelyupdatedso that we know at all
timeswherepacketsof specificblocksof a particularfile arestored.
In coordinatedaction with the index, the distributor has to follow
the reverse approachto assemblea block out of the constituent
packets when a read takes place.The multi-threadeddesignof the
distributor enablesFlexFS to be fastby ensuringthat many packets
are simultaneouslyretrieved until the desiredpopulationof a block
is reached.

The Forward Erasure Correction (FEC) library provides FlexFS
with the necessarysubstrateto overcomeeitherSNs failuresor non-
respondingnodes.Whenwriting a file block, FEC usesas input the
block, the amountof redundancy to be addedand the number of
packets to be produced.For instance,if we intend to store a file
block of J MB with J�T]T % redundancy and usepackets of ^M_]` KB,
thenFEC produceseightpackets.Whenreadingfile blocksandonce
the work of the distributor hascompleted,the packetsare input into
FEC which producesthe block. In the above example,we needto
acquireonly four of the storedpackets ( ab0 ^M_]`]c'de�fJhgSd ).

B. Metadata Management
The storageof datato remotenodescalls for efficient handlingof

metadatapertinentto packets,blocksandfiles.We identify two types
of metadata:a) metadatanecessaryto implementa POSIX I/O API
andb) metadatarelatedto file, block andpacket placement.

Most of the metadatabelonging to the first type are the ones
returnedby a stat systemcall. We needto preserve suchmetadata
since FlexFS presentsa standardUnix API through the use of the
FUSE framework. However, for the specificneedsof contemporary
computing GRIDs, only a portion of this API is needed[7]. To
supportthis, we store the metadatain a single node accessibleby
all CNs. This decisionis in syncwith the currentarchitectureof the
GRID. As the FC GRID servicemanagesthe metadatafor the files
storedin a VO, metadataof this first typearestoredthere.In essence,
thesemetadataare usedto provide a hierarchicaldirectory view of
all files.

The second set of metadatais FlexFS specific and its main
objective is to furnish informationto CNs sothat the lattercanlocate
the appropriatepackets. More specifically, upon an I/O request,the



appropriateblock has to be assembledin the CN’s cache. As the
individuali dataBlock Size of a file is known, given the File Offset
in which the I/O operationhasto take place,the Sequence ID of the
datablock is computed:Sequence ID=File Offset/Block Size. Using
this Sequence ID, all pertinentpackets can be locatedwith the help
of the index. The distributor translatesthe SN-ID to the mountpoint
location that a particularSN is attachedon andconcatenatesit with
the pathof the packet in orderto retrieve the packet content.TableI
shows all FlexFS-specificmetadatarequiredfor files,data-blocksand
packets.

File Matadata Block Metadata Packet Metadata
Block size Packet size StorageNodeID

List of packets Path to packet
Checksum Checksum

TABLE I

FlexFS METADATA

In order to addressall metadatarequirements,we proposeand
experimentwith two indexing approaches:thefirst involvesa single-
managerindexing-node built on a B+tree accessmethod and the
second,a purely distributed one, basedon the Berkeley-DB frame-
work [26]. Figures5 and6 presentthedeployment in a GRID VO of
the single-managerB+treeandBerkeley-DB indexes respectively.
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FC SIN
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Fig. 5. VO servicesvia a Single-managerB+treeIndex

The single-managerB+tree utilizes one index-file for each file
stored in our file system.When packets for a particular block are
requested,the index mechanismaccessesthe correspondingindex
structureon disk andretrievesthe SNs wherethe packetsarestored.
All the index-files arestoredin a hierarchicaldirectorystructurewith
the path of eachfile servingas part of the key usedto accessthe
contentof indexes. In this regard,whenwe needto fetch a file, we
have to initially traversethe logical pathon FlexFSandsubsequently
to accesstherequisitepackets.Clearly, the logical pathdoesnot need
to be part of the index file itself. This yields compactindex files
and, more importantly, systemcalls such as moving and deleting
entire files do not require traversing the index. Calls that alter the
logical path of a file are realizedas correspondingchangesin the
logical path of the index files. Although having a single manager
conductoperationson the index delivers the requiredconsistency,
suchan architecturalchoicerequirestransferringpartsof the index
to the CNs during eachFlexFS I/O. This approachsuffers from two
drawbacks:firstly, this centralnodeis a singlepoint of failure asthe
entireFlexFS dependson this nodeto serve metadataand,secondly,
the nodehostingthe index is a potentialbottleneck.

The Berkeley DB engineis usedin our secondindexing mech-
anism: this mechanismalso implementsB+trees and is basedon
the idea of having a master index site and several mirror sites.

The masternode maintainsfull control over the index (read and
write access)while the mirror nodesare only allowed to readfrom
their local copy of the index. Each time the index is updated,the
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Fig. 6. VO servicesvia Berkeley-DB index

changesarepropagatedto all copies.Requestingan updatefrom all
mirror indexes beforea transactionis committedensuresthat each
CN hasa consistentview of theindex. Bothmirror updatesandACID
transactionsareprovided by the Berkeley DB engine.In addition to
consistency, this index mechanismalsooffers an improved tolerance
to nodefailure.Shouldthemastermalfunction,a mirror immediately
takes over. Its election is basedon the freshnessof the mirrored
dataand a priority sequenceagreedduring deployment. This safety
mechanismis transparentto FlexFS asit is handledby the Berkeley
DB framework. In FlexFS, eachsystemhosting a CN also hostsa
node of the Berkeley DB index. This type of index organization
delivers increasedperformancedue to the fact that readsmay be
facilitated through local mirrors and also becauseof the caching
mechanismimplementedby the Berkeley DB framework.

The weak points of the Berkeley DB approachappearwhen it
comes to manipulating entire files and such changeshave to be
reflected to all mirror sites. For instance,when a file moves to
anotherlocation in the logical hierarchy, this has to be reflectedto
all Berkeley DB nodes.Nevertheless,the Berkeley DB solution is
far morefeaturerich thanthesingle-managerB+treesolution.ACID
transactions,transparentelection of masterindex node,cachingof
index blocksandindex locking make it anidealchoicefor distributed
environments. However, such functionality introducesundesirable
overheads.Therefore,caseswherethesingle-managerB+treedelivers
betterperformancethan the Berkeley DB-basedoption do exist. We
presentexperimentalconfigurationsthat exposetheseoverheadsin
SectionVI-B.

VI. EXPERIMENTAL EVALUATION

While creatingour experimentalapproach,we setto evaluatethree
specific objectives: a) to examine the viability of using FEC as a
componentof FlexFS, b) to assessthe overall functionality of our
FlexFS prototypeand c) to investigatehow our approachcompares
with the currentGRID approachfor dataresilience.

A. Ascertaining the Feasibility of FECs
In the first seriesof our experiments,we examinethe throughput

of the FEC-library that we usein our prototype[27] while varying
the following key parameters:j the block size that is beingdecoded,j the packetsper block created,andj the percentageof redundancy that is added.
Our evaluationconcentrateson decodingblocks from packets. The
processof encodingblocks into packets is not time critical provided
that it takesplaceduring the idle periodsof the system.



In orderto ascertainthe feasibility of differentCPUsto copewith
therequirementsk that theFEC-libraryimposes,we usethreedifferent
computersystems:a) An AMD Athlon(tm) XP 1500+,b) An Intel(R)
Pentium(R)4 CPUat 3.20GHz,c) An Intel(R) Core(TM)2CPU6600
at 2.40GHz.
Amount of processed data: We have experimentedwith a wide range
of datablock sizes.Here we report the throughputresultsbasedon
block sizesthatarefeasiblein realisticscenarios:128KB to 1024KB.
We keepthe numberof packets fixed while varying the block size.
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Figure7 presentsthedecodingperformancein oneof our testswhere
the numberof packets is set to 24 per block. The FEC decoding
processremainsunaffectedby thevolumeprocessedfor sucha range
of modernCPUs.Thisshows thattheblocksizewechoosefor FlexFS
does not hamperperformanceat the FEC library level. However,
this also reveals that using hardware available a number of years
ago the throughputperformance( m MB/sec)was far below that of a
commodityharddisk. Performanceimproveswith P4 but throughput
only reachesacceptablelevels on the Core 2 Duo processor. We
notethat CPU utilization reaches100%whenthe library encodesor
decodesblocks.This is not an issuesinceCPUson GRID SEnodes,
which FlexFSaimsto replace,arenot partof theGRID clusterwhich
executesjobs. Therefore,our intention to harvest the CPU on SEs
doesnot hamperthecomputationalresourcesof a GRID-site.Further
improvementsin CPU processingpower will surely favor FlexFS.
Varying the number of packets per block: In this experiment we
decreasethe bock size from J�TM^Ca KB to J�^]m KB while fixing the
packet size at no^ KB and the redundancy percentageat 50%. As a
result, the numberof packets managedare a function of the block
size.Figure8 presentsthe decodingthroughputperformancefor our
threehardware configurations.Interestingly, this experimentreveals
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a parametercombination that rendersthe use of FEC inefficient.

In most of the configurationsthe slowest systemdelivers less than^]T MB/sec and it only reaches ^M_ MB/sec when it createsjust 6
packets.On the otherhand,the Core2 Duo CPU reachesmaximum
throughputof Jh^]_ MB/sec. Even with a block size of pC`Mm KB (32
packets) the performanceof the Core 2 Duo systemis acceptable.
Taking into considerationtheseresultsandtheperformancecapabili-
tiesof thehardwarewherethe CN serviceswill behosted,theGRID
administratorhas to set the numberof packets producedfor each
block.This numberis calculatedasfollows: q � �Xr �hs]tvuHw	� �"� � 4�x �W;dzy|{]���~}?+-� � >2dzy|{C�"�[}�+-� � < �	��

� � 

� �����~Z#\ w	� �"� � 4 }?+�� � .
Varying the redundancy percentage: We examine the FEC attained
throughputrateswhen we vary the percentageof redundancy. For
this purpose,we settheblock andpacket sizesto _�J�^ KB and nM^ KB
respectively and experimentwith redundancy percentagefrom 25%
to 200%.Figure 9 shows the derived throughputratesfor the three
configurations.The outcome clearly shows the trade-off between
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CPU overheadsand increasedredundancy. Even the fastestCPU
cannotcopewell whenit reaches150%redundancy andattainsonly^]T MB/sec.This leadsto the conclusionthat the useof redundancy
ratesgreaterthan100%shouldbe usedwith caution.

B. Evaluating the FlexFS Prototype

Here we discussexperimentsthat examine the role of the major
componentsin our prototype and include the size of the B+trees
usedin both indexing mechanism.We discussexperimentscarried
out with the AMD Athlon(tm) XP 1500+ equippedwith 646MB
of main memory. Theseexperimentsmeasurethe performanceof
the CN, therefore the testing system should not sustain network
delays or display results that are subject to the protocols used
betweenthe participating nodes.In order to isolate the CN from
the SNs so as to ensurethat it is not the characteristicsof SNs that
dominatethe results,we use four storagenodesthat are set up as
four different directorieson the samelocal ATA-100 5400rpmhard
disk drive. Moreover, we do not allow additional CNs in order to
avoid interferencefrom externalprocessesspawnedfrom otherCNs.
Similarly, the index mechanismsareplacedin the samenodeas the
CN to eliminateany network delays.

We experimentwith the Andrew’s [23] and Bonnie++ [28] file-
systembenchmarks.Themaincharacteristicof Andrew’s benchmark
is that it involvesmany small sizedfiles that arerepeatedlyaccessed
during an execution.To make surethat I/Os are not served entirely
by the FlexFS cachemodulewe run multiple instancesof Andrew’s
benchmarkat thesametime.Ontheotherhand,Bonnie++benchmark
accesseslarger files using diverse patterns.The size of the files
involved in this benchmarkrendersit indicative of the performance
FlexFS will attain in a GRID environments where the file size
might reachseveral 3	d . For our needs,we take into accountthe
total execution time. In the following tests we start from a base



configuration and we gradually change its parameters.The base
configurationhasindex block size: Jh^]m KB, data-blocksize: Jh^Cm KB,
packet size: a KB, cachesize:50 data-blocks(for a total of `%! a MB),
andredundancy: 50%.
Varying the index block size: We experimentwith variousindex block
sizes in the range of ^]_]` KB to `]a KB used by the B+trees that
implementboth our indexing choices.Figure 10 presentsthe total
executiontime for the Andrew’s benchmarkfor threeselectedblock
sizes.Figure 11 depictsthe correspondingresultsfor the Bonnie++
benchmark.Thesetwo figuresshow thatBerkeley DB remainslargely
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unaffectedby the block size.On the otherhand,our single-manager
B+treeshows a preferencetowardssmall block sizes.The reasonfor
this is that part of the index key in the Berkeley DB index contains
thelogical pathof thefile accessed.This is not thecasein thesingle-
managerindex asit usesa separateindex file for eachstoredfile and
thus it omits the logical file path from the index keys. The size of
the logical file-path is set to 1024 characters.As eachindex block
containsmultiple index keys, block sizemustbeseveral �'� soasto
compareboth index mechanismswith enoughkeys per index block.
In the single-managerindex, suchlarge index blocksresult in many
unusedkeys fetchedthroughunnecessaryharddisk I/Os.On theother
hand,block memory mappingsand the cachingmechanismof the
Berkeley DB index pay off. In a similar fashion,for the Bonnie++
Benchmarkthesingle-managerB+treeis alsofavoredby small index
block sizes.

C. Using FlexFS in a GRID Environment

In this experiment,we usetheNetwork Simulator (ns) [29] to help
us assessthe effectivenessof the FlexFS data resilienceapproach
versusthe replication schemenow usedby computationalGRIDs.
The ns allows us to setup a controlledGRID environmentwith six
sites connectedover the Internet as Figure 12 shows. We assume
that the connectionsamongthe GRID sites are facilitated through
a network of �"�M� Mb/s interfaceswhile intranet connectionsare at� Gb/s. In this setting, we also assumethat there is one pair of
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. . .
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Virtual Organization
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1Gbit ethernet connection:

GRID site GRID site GRID site
621

Fig. 12. SimulatedGRID deployment.

CE and SE per site. When we experimentwith the standardGRID
replication scheme,only one storagenode (SN) participatesin the
datatransfer. On the otherhand,FlexFS cansimultaneouslyrequest
packetsof a file dispersedin a numberof SNs andmay concurrently
commencethe assemblyof the file in question.To this effect, the
parameterof primary importancein this experimentis the number
of SNs taking part in the FlexFS operation.Equally critical is the
network bandwidth that is available at any time for data transfer
from the SNs to the CN. In this regard, we createrandomtraffic
amongInternetnodes,reservingfrom 10% to 90% of the available
bandwidthfor our datatransfers.

Figure 13 presentsthe resultsof the GRID simulationwhen the
averagebandwidthavailable for our data transfersdecreases.Each
line shows the throughputratesachieved by replicationand FlexFS
using between2 and 5 SNs. In relative terms,FlexFS doesoverall
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much better than its replication counterpart.When the network is
less-loadedthereare significantincreasesin the throughputattained
as FlexFS achieves between 15% and 31% improvement. More
significantarethegainswhennetwork bandwidthis constrained(10%
on the � -axis) in which casethe relative gains for FlexFS range
between95% and 229% comparedto the GRID replica scheme.In
absolutenumbers,theabove percentilescorrespondto a differenceof� �]� KB/s. However, with FlexFStheincreasein throughputcanreach
up to � MB/s which is 100%higherthanthe throughputdeliveredby
the replica scheme.Despitethe apparentimprovementobtainedby
FlexFS, this experimentalsoprovidessomepointersinto thenumber
of SNs that canbe used.Whenthereis no contentionfor bandwidth
in the network, only a few SNs are sufficient to take advantageof
the network infrastructure.In caseof limited network bandwidththe



useof moredatasources,leadsto higher throughputrates.
Our simulationsalsoshowed thatwhenthe network is lessloaded

thereis a thresholdon the optimumnumberof SNs to be contacted.
Exceedingthis thresholdcauseslow level datapacketsto bedropped,
thus delaying the overall file access.The optimal number of SNs
is subjectto the bandwidthavailable betweennetwork routers,the
length of packet queuesas well as the network routing algorithms.
In the specificsetupof the experimentsdepictedby Figure 13, the
threshold,for network utilization above 60%, is four nodes.This is
why in a configurationwith five SNs wheremore than 60% of the
network is utilized by FlexFS, the sustainedthroughputis slightly
lower thana two to four SN configuration.In future implementations
we will enhanceFlexFSby settingthe appropriatethresholdwithout
interruptingits operation.

VII . CONCLUSIONS AND FUTURE WORK

In this paper, we introduce FlexFS, a flexible file-system for
computationalGRIDs and distributed systems.The main objective
of FlexFS is to automatically overcome node failures that may
incapacitatestorageservers and may renderthe current GRID file
replication schemesineffective. We achieve this through injection
of redundantinformation at the data block level, followed by data
fragmentationinto packetsanddistributionin thenetwork. Thedegree
of redundancy may vary accordingto the userneedsas well as the
potentialof storagenodeunavailability. Forward ErasureCorrection
is the mechanismwe useto createdataredundancy. FlexFS requires
that only a fraction from the original block packets that have been
distributedbefetchedto cumulatively re-producea datablock sought.
We outline the basic functionalitiesand metadatausedby our file-
system.FlexFS is a viable alternative to contemporaryGRID repli-
cationasusersmay work in a entirely transparentfashionregarding
the operationalstate of the network and GRID nodes. Through
prototyping and experimentationwe demonstratethe feasibility of
FlexFS and establish the trade-offs for the operation of its key
components.Also, throughsimulationsin a controlledenvironment,
we show the performancebenefitsof the proposedframework over
theguaranteesthatGRID-replicationoffers.FlexFSthroughputgains
rangefrom 15% to nearly 230%.We arecurrentlyworking towards
the integration of FlexFS with the SRM protocol [8] in order to
achieve seamlessoperationin a data-intensive GRID environment.In
the future, we plan to investigatehow we can dynamicallyspecify
the optimumnumberof SNs to be put into usewhenretrieving data
packets.In addition,we planto investigatepoliciesthatautomatically
matchand calibratethe operationof FlexFS on heterogeneoussites
andexaminethe FlexFS impacton otherGRID services.
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