FlexFS TransparenResilience
for GRID StorageResources

KonstantinosT sakalozos
University of Athens
Athens,15748,Greece
Email: k.tsakalozos@di.uoa.gr

Abstract— Existing GRID infrastructur esrely on explicit user
instructions in order to replicate files for the purposes of
resiliency This human-intensive processds inefficient, error prone
and, more importantly, makes file replication in GRIDs a cum-
bersometask. To addressthis problem, we intr oduce FlexFS— a
fully automated file-systemframework that seamlesslyplugs into
existing GRID structures providing automated file replication
and transparent-to-user resilience.FlexFS breaks apart files into
blocks and injects resilientinformation into theseblocks thr ough
the use of Forward Erasure Correction codes. FlexFS employs
a number of methodsthat facilitate the automated storage and
efficient retrieval of the blocksin order to provide I/O throughput
similar to that of local hard disks, all in the face of ever-changing
utilization and availability of the GRID resources. Compared
to currently available GRID replication schemes,FlexFS attains
15% to 230% higher thr oughput, both for reading and writing
files.

I. INTRODUCTION

The sustainedgrowth of a distributed storageinfrastructure,such
as a GRID, is subjectto frequentresourcefailures. Malfunctions
of physical hard drives, in conjunctionwith the occasionallimited
bandwidth availability and heary workloads at seners, renderthe
effective sharing of storageresourcesa critical issue.In general,
resourceunavailability is notararecasein computationalGRIDs[1],
[2]. File replicationis the solution GRIDs currently offer in orderto
increasedata integrity and achievze better application performance.
Dispersingcopiesof datato multiple nodesimproves the chances
for opportunisticprocessingDispatchinga job to an undetutilized
clusterthatis closeto a replicaeliminatesthe needfor file transfers.
Moreover, computationaGRIDsaremeantto provide consistentper
vasie, dependabl@ndtransparenaccesto computingdatastorage,
information retrieval and applicationservices[3], [4]. However, the
currentprovision for resilientdatastorageservicesis not automated.
The existing meansfor attainingdataintegrity in GRIDs is through
explicit user commandsFile replicationis routinely left as a task
to the user who has to select specific nodes in which replicas
are hosted[5]. Consideringthat the performanceof GRID-enabled
applicationsheavily dependn the proximity of computingelements
to the node(s)storing requisitedata, it becomesclear that effective
and versatilefile placementis an aspectof paramountimportance.
Today a useris requiredto be well-versedin the topology of the
GRID-network as well as the capabilitiesof individual computing
nodes— both aspectsof dynamic nature. In this context, GRIDs
currentlyfail to provide dependablepenasive and,moreimportantly
transparenstorageservices.

In this paper we overcomethe above shortcomingsfor GRID
storageresourcedy splitting files into smallerdatasegmentstermed
blocks. We enrich the blocks with redundantinformation through
the use of Forward Erasure Correction codes (FEC), generating
paclets. Subsequentlywe managethe paclet allocationto GRID
nodesin a mannerthatis transparento the user At the sametime,
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the automatedpaclet dispersalfully utilizes the available resources,
while maintainingfastretrieval performanceThe pacletsin question
becomethe coremechanisnfor the dynamicreconstructiorof blocks
and files. File reconstructionis accomplishedby simultaneously
fetchingpacletsfrom multiple storagenodesthat may be eitherlocal
or remoteto a cluster Evenwhenstoragenodesbecomeunavailable,
FEC still enableausto recreatethe blocks of a file. To reconstructa
block, the numberof retrieved paclets is suchthat their cumulatve
sizeis equalto the size of the block in question.

We incorporatethe above techniquesinto a GRID-basedfile-
systemframenork called FlexFS which manageshe breakingup
of file blocksinto paclets and handlesfiles transparentlyto the user
in a mannerthat most efficiently utilizes the available distributed
resourcesOverall, our proposaloffers:

1) mechanismdor an entirely usertransparenfile management
in computationalGRIDs,
scalableresilienceby efficiently allocatingFEC-encodegack-
etsto available nodes,
ordersof magnitudeincreasén meantime to failure compared
to currently available replicationmethods,
increaseof up to 230% throughputperformancehrough effi-
cient paclet retrieval methods,and

5) a FlexFSimplementatiorthat plugsinto existing GRIDs.

Two types of nodescomprisethe functionality of FlexFS Co-
ordination Nodes (CNs) and Storage Nodes (SNs). CNs manage
the metadatanecessanto orchestratethe paclet disseminationand
retrieval, while SNs are only responsiblefor readingdatafrom and
writing datato disks.Virtually all long-termmemorydeviceshosting
file-systemsexported through a POSX API can be usedto store
paclets. CNs initially breakfiles into blocks, augmenteachblock
with a degreeof redundanyg, andefficiently allocatepaclets of such
augmentedblocks into multiple SNs. When reconstructinga file,
multi-threadingis emplg/ed for the simultaneouspaclet retrieval
from multiple SNs, terminatingrequestsassoonassuficient number
of paclets becomeavailable. The techniquesused by FlexFS to
managepaclet placementndretrieval allow it to attainmuchhigher
read/writethroughputratesthan existing GRID replicationschemes.

Sinceredundang is built into eachpaclet, it doesnot matterwhich
specific paclets are retrieved. For example,a 512KB block canbe
encodedinto four 256 KB paclets, each storedin a separateS\.
Any two out of the four paclets are necessaryto reconstructthe
original block. Consequentlya CN node may issue four requests
but can neverthelessrecreatethe block from the first two paclets
delivered. This methodalso improves write throughput— insteadof
writing one 512 KB block to a single SN, four SNs write 256 KB in
parallel,potentiallycompletingthe taskin half thetime. With respect
to resiliencein this example,asmary astwo out of the four SNs may
fail without “loosing” the original block. This is akin to a RAID-6
disk system.

We provide an implementationof FlexFS basedon the FUSE
framawork [6]. Our prototypeintegratesinto a GRID by exposing
the GRID StorageElement(SE) functionality through the Sorage
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Resource Management (SRM) API [7], [8]. We evaluateour FlexFS
prototypein realistic scenariosand identify FEC-configurationghat
deliver throughputsimilar to that of a local hard-disk.Simulations
shawv that our approachdelivers up to 230% higher throughput
comparedo existing GRID-replicasolutions.

The restof this paperis organizedasfollows: Sectionll presents
related work. Sectionlll gives an overvien of the current GRID
methoddor file replication.An introductionto FEC codess provided
in SectionlV. SectionV presentghe implementationdetailsof our
frameawork. SectionVI detailsour empirical evaluations.Finally, our
conclusionsare presentedn SectionVII.

Il. RELATED WORK

FlexFS adoptsForward ErasureCorrectioncodes(FEC) in order
to provide for resilientfile storagein the GRID. FEC is a classof
error correctingcodesthat hasbeenusedin telecommunication§9]
and in computersystems[10], [11] to regeneratepaclets lost dur
ing transmission.The introduction of FEC-encodeddata implies
processingoverheadsat nodes while at the sametime it offers
significant advantagesover file replication [12]. In [13], Tornado
erasurecodesare usedto improve the speedof informationretrieval
from mirrored sites. We note that while Tornado codes provide
faster messageencoding and decoding than FECs, they require
more paclets per block, increasingtheir utility in ervironmentsthat
emphasizespeedover fault tolerance OceanStore useserasurecodes
to provide resilienceof staticfiles, effectively providing a versioning
schemefor file updateghroughits deeparchival storageoption[14].
Similarly, erasurecodesis an option for adding fault tolerancein
the Ursa Minor [15] storagesystem.In the context of the GRID,
there have beenapplicationlevel attemptsto use erasurecodesin
order to provide increaseddata availability [16]. A widely used
alternatve to erasurecodesis replication. A number of storage
solutions proposeduse replication since managemenbf replicasis
particularlystraightforward. GoogleFJ17], FarSite[18], Kosha[19]
andthe GRID targetingLegionFS[20] all emplg replicasto enhance
data availability, load balancingand even fault tolerance.In all of
the mentionedstoragesolutions,with the exceptionof Kosha[19],
file metadateaswell asdirectory hierarchyis maintainedin specific
nodes,thus forming a centralizedarchitecture.On the other hand,
Koshais build on top of P2P networks and sincethereis no central
metadataepository file and directory manipulationis inefficient.

Our proposalcombinessome of the characteristicsof the sys-
tems mentionedabove. Contraryto [19], we proposea centralized
architecturaimodelwherethe centralnodesachieve high availability
andfault tolerancethroughreplicationlike [17], [18], [20]. However,
in the storagenodes(SNs), increaseddata throughputis provided
through the use of erasurecodesas in the case of [15], [14],
[16]. In addition, forward erasurecodesallow FlexFS to enhance
fault toleranceand load balancingat the file block level. Efficient
maintenancef directorytree andfile metadatds achieved eitherby
having replicasof a central metadatanode (CNs) or by delegating
it to other GRID servicesthat provide the requiredfeatures.To the
bestof our knowledge, this is the first proposalfor increaseddata
availability in a GRID ervironmentthatis transparento the user

I1l. CURRENT GRID REPLICA SCHEMES

CurrentGRID infrastructuresare constructedaroundthe notion of
Virtual Organizations(VO). Each VO is a collection of resources
that are provided to registeredusers. The resourcesfall into two
categyories: computationaland storage-relatedScatteredthroughout
the Internet,a numberof physicalmachinesexport suchresourceby
hosting specific GRID-layer services.Servicesoffered by the same
provider form a GRID site. In essencegachVO is an aggr@ation
of suchGRID sites.Figure 1 depictsa deploymentdraft of the most
importantservicespresentin a VO.

GRID computationakesourcesare accessethrougha Computing
Element (CE) andtasksare executedon Worker Nodes (WNs). WNs
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Fig. 1. Basicservicesof a VO in a GRID

have to accessfiles storedin Sorage Elements (SE) during job
execution.The SE whereeachfile is locatedis provided by the File
Catalog (FC). The FC functionsas a directory for mappingdfiles to
one or more SEs. To executea job, a usersubmitsa requestto the
Workload Management System (WMS) [21] which dispatcheghe job
to the bestpossibleCE.

To reducethe executiontime andresourceconsumptiorfor agiven
job, the WMS will attemptto placethe job for executionwith a CE
thatis “closest” to the SE holding ary requiredfiles. How well this
proximity criterion s fulfilled dependson the availability of services
at the time of job submissionlIn orderto increasedataavailability,
a usercan explicitly add file replicasto multiple SEs aheadof the
computationin orderto increasethe probability that the job will be
allocatedto a less-loadedCE. Often, this is accomplishedby the
userissuing explicit User Interface (Ul) commandsto specify the
SEs in which the files shouldbe replicated.This replicationscheme
not only bypasseghe abstractionlayer that GRID aimsto provide,
but also setsundesiredrequirementsfor the users.In this contet,
usersare requiredto have a good understandingf the VO's GRID
sites and the resourceeachone provides. Therefore,the user must
have in-depth knowledge of the topology and capabilitiesof each
GRID site of interest.For instancejf a userintendsto executea job
that accesses file storedin the SE of site A, but the availability
of the correspondingCE is limited, there are two options: either
take no action and let the WMS dispatchthe job to another CE
sustainingthe overheadof transferringthe file during job execution,
or replicatethe file from A to anothersite. The first option resultsin
undesiredielaysor evendataunavailability in caseof limited network
bandwidthbetweenGRID sites.In the manualreplicationoption, the
userhasto determinea new GRID site B whose SE will hostthe
replica. This decisionhasto be basedon the capabilitiesof the CE
of site B asthe SE shouldbe coupledwith anappropriateCE in order
to prevent undesirabléfile transfersduring execution.Evidently, the
usershouldbe aware of the available CEs, their capabilitiesas well
asthe intensity of the workloadsthat suchcandidatenodeshandle.
Although suchinformationis available, it requiressophisticationon
behalf of usersas they have to knowv the APl to query eachsite
andcorrectlyinterpretthe queryresults.This is a diversionfrom the
realm of interestof the averageGRID user Even worse, requiring
such in-depth knowledge of the topology and capabilitiesof each
site rendersa GRID to be a collection of clustersout of which the
userindirectly picks one site to executea job, ratherthanbeingthe
intendedresourcesharingplatform 3], [4].

IV. FORWARD ERASURE CORRECTION CODES

In this section,we briefly introduce the Forward ErasureCor
rection codes (FECs) that provide the file block resiliencein the
proposedFlexFS frameawvork. In a communicationinvolving FECs,
a messagem, initially comprisedof k paclets, is injected with
redundaninformationandencodednto n paclets.During this trans-
formation, the paclet sizeremainsconstantut n>k. A (n,k) erasure
code adds (n-k)*sizeof(packet) bytes of redundantinformation in



sucha way that the initial messagecan be reconstructedrom any
subsetof k out of the n paclets. When usedin telecommunication
systemsto avoid information loss, redundang is probabilistically
calibratedaccordingto expecteddatalossduring transmissionNoisy
channelscall for higherlevels of redundang requiring messageso
be encodedinto more paclets. In FlexFS the redundang injected
is expressedas a percentageof the amount of paclets initially
comprisingthe messagen:

n—k
- (1)
Our framawork usesa subclassof erasurecodescalled linear

erasurecodes.In this subclasgshe messagdo be encodedis repre-

sentedasni = [mima...m;.. .mk]T wherem; is the iy, paclet.

With the use of a n x k matrix G, messag is encodedinto

- T.

t = [tltz...ti...tn] :
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where# is the vectorof pacletsthatwill betransmittecthroughthe
communicationchannel.

Each row of matrix G,_)along with vector m, define a single
paclet/elementof vector ¢ through an equationof the following
form:

®)

with g;,; being the elementof G at row ¢ and column j. In
ervironmentswhereerasurecodesare usedto dealwith paclet loss,
thevalueof n is determinedasedon the expecteddatalossgoverned
by interferencecriteria, with the outlook thatthe rg)cei/erwill always
obtainatleastk pacletsof thetransmittedvector ¢ . In our proposal,
however, n is determinedby the amountor redundang thatwe wish
to addto eachpaclet, asdetailedin SectionV.

Matrix G is usedby the transmitterto encodemessagen into

- : :

vector ¢ . The recever usesthe samematnx G to decodem only
from the subsetof paclets of vector ¢t which are recei/ecb This
decodingrequiresat leastk out of the n paclets/elementsf ¢ and
alsothe corresponding: rows of G asonly theseareenoughto form
a linear systemof at leastk equationsas per Egn. 3. We denotethe
vectorof k recevedpacletsas t’, while G’ containsonly thoserows
of G that correspondo the pacletswhich werereceved. This linear
systemis denotedas

ginxmi+giaxma+ ...+ gk kme =1t; Vi €[1l,n]

=1 @)

Solving this systemresultsinto revealing messagen and requires
finding G'~*:

MG (5)

Finding a solution may presenta significant overheaddue to two

factors:a) The elementsof 7 and t' can be of several KB long
and thereforerequire mary CPU cycles to be processedb) High
precisionarithmeticis alsorequiredsinceeven a single bit error can
affect the entire messagg9]. To avoid the semanticdifficulties of
sharingmatrix G betweerthe transmitterandrecever, it is common
practiceto packrow 7 of G alongwith paclet ¢;.

V. FlexFSOVERVIEW AND DESIGN ASPECTS

The primary objectvesfor the designof FlexFSarethe provision
of file resiliencein the face of failing GRID storagenodesand
high bandwidth utilization through simultaneousin-network [/O-
requestsThe framevork basests operationon two typesof nodes:
Coordination Nodes (CNs) and Storage Nodes (SNs). These two
nodesare expectedto replacethe SE currently deplged in GRID-
sites. By separatingthe managerialaspectof GRID storagefrom
the datarepositorieswe permit the CoordinationNodesto contact

StorageNodesof differentsites.To allow suchinteraction,metadata
have to be sharedamongall CNs.

Without deviating from corventional GRID design principles,
FlexFS hasto becomeaware of all available storageresourcesn
its realm. In particular the CNs have to be properly configuredin
orderto useand cooperatewith respectie Sorage Nodes. The only
requirementthat our framewvork imposesis that SNs expose their
file-systemsn a Unix POSIX compliantmanner In this regard, SNs
can be mountedon local file-systemswhere CN-servicesreside.As
a result, a greatvariety of storageresourcesand/ordevices can be
supportedNetwork file-systemssuchasthe NFS[22] and AFS [23]
canbe putinto usein our approachMoreover, our proposakllows for
even easierand moreflexible solutionswhenit comesto configuring
WNs. For instanceone canaccessa storagenodethroughthe use of
a single sshaccounton a SN and the sshfsfile-systemon the CN.

As Figure 2 shaws, a FlexFS file-systemmay presenteither a
standardUnix-POSX API or a GRID-compliant one. Therefore,
FlexFS CNs, with the addition of a few extra metadatamanagement
services,can also be mountedin a local file-systemthrough the
FUSE framenork [6]. As a result, a FlexFS file-systemcan sene
as a SN to other FlexFS file-systems.This property enablesthe
clusteringof SNs with similar characteristicsuch as the degree of
resilienceof individual nodeswithin the group,geographigroximity
of nodes,and aggr@ate throughput.Figure 2 depictsthe layers of
our framavork andthe protocolsusedfor communication.
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Fig. 2. Layeredoverviev of FlexFS

Our relaxed requirementsfor SNs intend to give GRID users
an opportunity to readily share storageresourcesas opposedto
the existing mechanismsn computationalGRIDs [24], [25]. Using
FlexFS and with practically no specific system configurationin
place,arnyone can contactthe VO managersn orderto offer storage
throughary (POSX compliant)protocol.lt is thenup to the GRID
site administratorso make use of the offered SNs by appropriately
configuringthe correspondingCNs.

The operationof FlexFSis centerecaroundthe functionality of its
CN elementslt is therethat forward erasurecorrectionis employed
andfile blocks are augmentedvith redundaninformation. Figure 3
depicts the splitting of a file into blocks and shavs howv blocks
are fragmentedinto paclets providing a degree of redundang. The
degree of redundancy is a percentagemeasureof the amount of
redundaninformation encodednto paclets. As per SectionlV, the
degreeor redundang is definedas 100% x (n — k)/k. Paclets are
finally dispersedamongthe available and/or preferredSNs in pro-
portionsdefinedby the GRID administratarIn this manner FlexFS
canputinto useSNs with differentcharacteristicandcapacitiesThe
systemadministratorhasto decideon the desiredpropertiesof the
Ns and selectthosethat betterand more efficiently sene the needs
of the GRID community The choiceof key parametersuchasthe
redundang percentagetheblock andpaclet sizearebasecdon: (a) the
probability of failure of a particular SN and (b) the minimum time
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Fig. 3. Files are divided into blocks and then into paclets. Paclets are
ultimately storedat StorageNodes(SN\s) distributedin the GRID.

requiredfor afile block reconstructionin respecto (b), we notethat
higherredundang and paclet granularityresultin the productionof
more paclets. This, in turn, increaseghe available datasourcesfor
block reassemblyeffectively reducingthe datablock reconstruction
time. However, asshawvn in SectionVI, thereare CPU performance
issuesthat do not allow for unlimited increaseof redundang and
numberof paclets per block.

To reconstructan entire file, FlexFS needsonly a subsetof
the paclets distributed to the GRID-network. For each block, the
frameavork will have to retrieve paclets whose cumulatie size is
equal to the block’s size. This allows for transparento the user
selectionof SNs basedon their responsienessand throughput.

A. The Internals of Coordination Nodes

Figure 4 depictsthe componentsthat constitutea Coordination
Node and shavs the interactionsthat take place amongthem. The
entry point of all systemcalls placed against FlexFS is the top
level implementation which implementsthe API defined by the
FUSEframenork. Thereis a one-to-onecorrespondencbetweenthe
Unix 1/0O API andthe implementedFlexFS functions.A numberof
calls' are handledby this very module and do not have additional
interactionswith other CN-modules.Thesecalls work only with the
metadataavailable within the top level implementation component.
On the other hand,readandwrite calls arerealizedin synegy with
other modulesof the CN. During thesel/O calls, data are always
managedn blockswhosesizeis differentfrom thatusedin the local
operatingsystemlevel. Therefore,even if a portion of a block is
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Fig. 4. Internalmodulesof a CN

accessedhe entireblock hasto be obtained Assemblingeachblock
requirescommunicatiorwith SNs which canbe time consuming For
this reasonthe useof a Cache is imperatve.

1suchas stat which returnsfile metadataregardingfile size, permissions
andaccesgimes

The Cache modulestoresdecodedblocksin memoryso that they
can be reusedwithout the overheadsof contactingthe SNs and
reconstructingthe blocks from paclets. Our design of the Cache
prioritizes read over write requests.Data block writing is carried
out in two stagesinitially, blocks are placedin a queuein the local
file systemandduringidle periodsof the CN nodethey areencoded
into paclets and the paclets are then dispatchedo designatedS\s.
While afile hasits blockspendingfinal processingt a queue thefile
in questionis only available throughthe Coordination Node which
has been assignedthe task to encodeblocks and store paclets to
designatedNs. As soonasthis paclet “uploading”to SNs completes,
the data blocks are available at all CNs. Therefore,eachCN must
registerwith the GRID File Catalog servicethatit holdsa replicaof
the entire file. When a file is modified, only the altered/dirtydata-
blocks are re-encodednto paclets, andredistributedto SNs.

Thedistributor modulecommencedts work whenthereareeither
issuedread requestsor file blocks are waiting at the queueto be
fragmentedinto paclets and storedto SNs. Figure 4 depicts the
interaction of distributor with the other modulesof a CN node.
Should a block be stored, the following stepshave to take place:
firstly, redundang hasto be addedto the block. The percentage
of addedredundang is a function of how penasie in the GRID-
infrastructurehefile in discussiorshouldbe,asdecidedoy the GRID
administrator Evidently, as the numberof SNs involved increases,
the reliability of the file is enhancedas well. Secondly the block
along with its redundantinformation is fragmentedto equal-size
paclets that are dispatchedfor storageaccordingto the FlexFS
placementpolicy. We use an indexing mechanismso that we can
readily track, retrieve and/orupdatepaclets of blocksin the system.
This mechanismis appropriatelyupdatedso that we know at all
timeswherepaclets of specificblocksof a particularfile are stored.
In coordinatedaction with the index, the distributor hasto follow
the reverse approachto assemblea block out of the constituent
paclets when a readtakes place. The multi-threadeddesignof the
distributor enablesFlexFSto be fastby ensuringthat mary paclets
are simultaneouslyretrieved until the desiredpopulationof a block
is reached.

The Forward Erasure Correction (FEC) library provides FlexFS
with the necessargubstrateo overcomeeither SNs failuresor non-
respondingnodes.Whenwriting a file block, FEC usesasinput the
block, the amountof redundang to be addedand the number of
paclets to be produced.For instance,if we intend to store a file
block of 1 MB with 100% redundang and use paclets of 256 KB,
thenFEC producesight paclets. Whenreadingfile blocksandonce
the work of the distributor hascompletedthe paclets areinput into
FEC which producesthe block. In the abore example, we needto
acquireonly four of the storedpaclets (4 x 256 K B = 1M B).

B. Metadata Management

The storageof datato remotenodescalls for efficient handlingof
metadatgertinentto paclets,blocksandfiles. We identify two types
of metadataa) metadatanecessaryo implementa POS X I/O API
andb) metadataelatedto file, block and paclet placement.

Most of the metadatabelongingto the first type are the ones
returnedby a stat systemcall. We needto presere such metadata
since FlexFS presentsa standardUnix API throughthe use of the
FUSE framewnork. However, for the specificneedsof contemporary
computing GRIDs, only a portion of this API is needed[7]. To
supportthis, we storethe metadatain a single node accessibleby
all CNs. This decisionis in syncwith the currentarchitectureof the
GRID. As the FC GRID servicemanageshe metadatdor the files
storedin a VO, metadataof this first type arestoredthere.In essence,
thesemetadataare usedto provide a hierarchicaldirectory view of
all files.

The secondset of metadatais FlexFS specific and its main
objective is to furnishinformationto CNs sothatthe latter canlocate
the appropriatepaclets. More specifically uponan I/O requestthe



appropriateblock hasto be assembledn the CN's cache. As the
individual dataBlock Sze of a file is known, given the File Offset
in which the I/O operationhasto take place,the Sequence ID of the
datablock is computed:Sequence ID=File Offset/Block Sze. Using
this Sequence ID, all pertinentpaclets can be locatedwith the help
of theindex. The distributor translateshe SN-/D to the mountpoint
locationthat a particular SN is attachedon and concatenate& with
the pathof the pacletin orderto retrieve the paclet content.Tablel
shaws all FlexFSspecificmetadataequiredfor files, data-blocksand
paclets.

| File Matadata | Block Metadata | Packet Metadata |

Block size Paclet size StorageNode ID
List of paclets Path to paclet
Checksum Checksum
TABLE |
FlexFSMETADATA

In order to addressall metadatarequirementswe proposeand
experimentwith two indexing approachesthe first involvesa single-
managerindexing-node built on a B+tree accessmethod and the
second,a purely distributed one, basedon the Berkeley-DB frame-
work [26]. Figures5 and6 presenthe deploymentin a GRID VO of
the single-manageB+tree and Berkeley-DB indexes respectiely.
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Fig. 5. VO servicesvia a Single-manageB+tree Index

The single-manageB+tree utilizes one index-file for eachfile
storedin our file system.When paclets for a particular block are
requestedthe index mechanismaccesseshe correspondingndex
structureon disk andretrievesthe SNs wherethe paclets are stored.
All theindex-files arestoredin a hierarchicaldirectorystructurewith
the path of eachfile servingas part of the key usedto accessthe
contentof indexes. In this regard, whenwe needto fetch a file, we
have to initially traversethelogical pathon FlexFSandsubsequently
to accessherequisitepaclets.Clearly, the logical pathdoesnot need
to be part of the index file itself. This yields compactindex files
and, more importantly systemcalls such as moving and deleting
entire files do not require traversing the index. Calls that alter the
logical path of a file are realized as correspondingchangesin the
logical path of the index files. Although having a single manager
conductoperationson the index delivers the required consisteny,
suchan architecturalchoice requirestransferringparts of the index
to the CNs during eachFlexFS1/O. This approachsufers from two
dravbacks:firstly, this centralnodeis a single point of failure asthe
entire FlexFS dependson this nodeto sene metadataand, secondly
the nodehostingthe index is a potentialbottleneck.

The Berkeley DB engineis usedin our secondindexing mech-
anism: this mechanismalso implementsB+treesand is basedon
the idea of having a masterindex site and several mirror sites.

The masternode maintainsfull control over the index (read and
write access)while the mirror nodesare only allowed to readfrom
their local copy of the index. Eachtime the index is updated,the
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Fig. 6. VO servicesvia Berkeley-DB index

changesare propagatedo all copies.Requestingan updatefrom all

mirror indexes before a transactionis committedensuresthat each
CN hasa consistentiiew of theindex. Both mirror updatesandACID

transactionsare provided by the Berkeley DB engine.ln additionto

consisteny, this index mechanismalso offers animproved tolerance
to nodefailure. Shouldthe mastemalfunction,a mirror immediately
takes over. Its electionis basedon the freshnessof the mirrored
dataand a priority sequenceagreedduring deployment. This safety
mechanisimis transparento FlexFSasit is handledby the Berkeley

DB framework. In FlexFS eachsystemhostinga CN also hostsa
node of the Berkeley DB index. This type of index organization
delivers increasedperformancedue to the fact that readsmay be
facilitated through local mirrors and also becauseof the caching
mechanismimplementedby the Berkeley DB framework.

The weak points of the Berkeley DB approachappearwhen it
comesto manipulating entire files and such changeshave to be
reflectedto all mirror sites. For instance,when a file moves to
anotherlocationin the logical hierarchy this hasto be reflectedto
all Berkeley DB nodes.Neverthelessthe Berkeley DB solution is
far morefeaturerich thanthe single-manageB+treesolution. ACID
transactionstransparentelection of masterindex node, caching of
index blocksandindex locking malke it anideal choicefor distributed
ervironments. However, such functionality introducesundesirable
overheadsTherefore casesvherethe single-manageB+treedelivers
betterperformancehanthe Berkeley DB-basedoption do exist. We
presentexperimentalconfigurationsthat exposetheseoverheadsin
SectionVI-B.

VI. EXPERIMENTAL EVALUATION

While creatingour experimentalapproachye setto evaluatethree
specific objectives: a) to examine the viability of using FEC as a
componentof FlexFS b) to assesghe overall functionality of our
FlexFS prototypeand c) to investigatehow our approachcompares
with the currentGRID approachfor dataresilience.

A. Ascertaining the Feasibility of FECs

In the first seriesof our experimentswe examinethe throughput
of the FEC-library that we usein our prototype[27] while varying
the following key parameters:

« theblock sizethatis being decoded,

« the paclets per block created and

« the percentagef redundang thatis added.

Our evaluation concentrateon decodingblocks from paclets. The
processof encodingblocksinto pacletsis not time critical provided
thatit takes placeduring the idle periodsof the system.



In orderto ascertairthe feasibility of differentCPUsto copewith
the reguirementshatthe FEC-libraryimposeswe usethreedifferent
computersystemsa) An AMD Athlon(tm) XP 1500+,b) An Intel(R)
Pentium(R}¥ CPUat 3.20GHz,c) An Intel(R) Core(TM)2CPU 6600
at 2.40GHz.

Amount of processed data: We have experimentedwith a wide range
of datablock sizes.Here we report the throughputresultsbasedon
block sizesthatarefeasiblein realisticscenarios128KB to 1024KB.
We keepthe numberof paclets fixed while varying the block size.

Decoding throughput of FEC when ratio
of block size to packet size is steady
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Fig. 7. FEC-Decodingperformancewith increasingblock size and using
constant24 paclets per block

Figure7 presentshe decodingperformancen oneof our testswhere
the numberof paclets is setto 24 per block. The FEC decoding
processemainsunafectedby the volumeprocessedor sucharange
of modernCPUs.This shavs thattheblock sizewe chooséor FlexFS
does not hamper performanceat the FEC library level. However,
this also reveals that using hardware available a number of years
agothe throughputperformance8 MB/sec) was far below that of a
commodityharddisk. Performancemproveswith P4 but throughput
only reachesacceptablelevels on the Core 2 Duo processorWe
notethat CPU utilization reachesl00% whenthe library encodesor
decodedlocks. This is not anissuesinceCPUson GRID SE nodes,
which FlexFSaimsto replacearenot partof the GRID clusterwhich
executesjobs. Therefore,our intention to hanest the CPU on SEs
doesnot hamperthe computationalesource®f a GRID-site.Further
improvementsin CPU processingpower will surelyfavor FlexFS
Varying the number of packets per block: In this experimentwe
decreasehe bock size from 1024 KB to 128 KB while fixing the
paclet size at 32 KB and the redundang percentageat 50%. As a
result, the numberof paclets managedare a function of the block
size.Figure 8 presentghe decodingthroughputperformanceor our
three hardware configurations Interestingly this experimentreveals

Decoding throughput of FEC when decreasing block size
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a parametercombinationthat rendersthe use of FEC inefficient.

In most of the configurationsthe slowest systemdelivers lessthan
20MB/sec and it only reaches25MB/sec when it createsjust 6
paclets. On the otherhand,the Core 2 Duo CPU reachegnaximum
throughputof 125 MB/sec. Even with a block size of 768 KB (32
paclets) the performanceof the Core 2 Duo systemis acceptable.
Taking into consideratiorntheseresultsandthe performancecapabili-
ties of the hardwarewherethe CN serviceswill be hostedthe GRID
administratorhas to set the numberof paclets producedfor each
block. This numberis calculatedasfollows: NumberO f Packets =
(BlockSize + BlockSize * Redundancy)/PacketSize.

Varying the redundancy percentage: We examinethe FEC attained
throughputrateswhen we vary the percentageof redundang. For
this purposewe setthe block andpaclet sizesto 512 KB and32 KB
respectiely and experimentwith redundang percentagdrom 25%
to 200%. Figure 9 shaws the derived throughputratesfor the three
configurations.The outcome clearly shavs the trade-of between

Decoding throughput of FEC when increasing redundancy
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CPU overheadsand increasedredundang. Even the fastestCPU
cannotcopewell whenit reachesl50%redundang and attainsonly
20 MB/sec. This leadsto the conclusionthat the use of redundang
ratesgreaterthan 100% shouldbe usedwith caution.

B. Evaluating the FlexFS Prototype

Here we discussexperimentsthat examine the role of the major
componentsn our prototype and include the size of the B+trees
usedin both indexing mechanismWe discussexperimentscarried
out with the AMD Athlon(tm) XP 1500+ equippedwith 646MB
of main memory These experimentsmeasurethe performanceof
the CN, therefore the testing system should not sustain network
delays or display results that are subject to the protocols used
betweenthe participating nodes.In order to isolate the CN from
the S\Ns so asto ensurethat it is not the characteristicof SNs that
dominatethe results,we use four storagenodesthat are setup as
four differentdirectorieson the samelocal ATA-100 5400rpmhard
disk drive. Moreover, we do not allow additional CNs in order to
avoid interferencefrom external processespavned from other CNs.
Similarly, the index mechanismsre placedin the samenodeasthe
CN to eliminateary network delays.

We experimentwith the Andrew’s [23] and Bonnie++[28] file-
systembenchmarksThe main characteristiof Andren’s benchmark
is that it involvesmary small sizedfiles that arerepeatedlyaccessed
during an execution. To make surethat I/Os are not sened entirely
by the FlexFS cachemodulewe run multiple instancesof Andrew’s
benchmarlatthe sametime. Onthe otherhand,Bonnie++benchmark
accessedarger files using diverse patterns.The size of the files
involved in this benchmarkrendersit indicative of the performance
FlexFS will attain in a GRID ernvironments where the file size
might reachseveral GB. For our needs,we take into accountthe
total execution time. In the following testswe start from a base



configuration and we gradually changeits parameters.The base
configurationhasindex block size:128 KB, data-blocksize:128 KB,

paclet size:4 KB, cachesize:50 data-blockgfor atotal of 6.4 MB),

andredundang: 50%.

Varying the index block size: We experimentwith variousindex block
sizesin the range of 256 KB to 64 KB usedby the B+treesthat
implementboth our indexing choices.Figure 10 presentsthe total
executiontime for the Andren’s benchmarkfor threeselectedblock
sizes.Figure 11 depictsthe correspondingesultsfor the Bonnie++
benchmarkThesetwo figuresshav thatBerkeley DB remaindargely

Impact of Index Block size in Andrew’s Benchmark
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unafectedby the block size.On the otherhand,our single-manager
B+treeshawvs a preferenceowardssmall block sizes.The reasorfor
this is that part of the index key in the Berkeley DB index contains
thelogical pathof thefile accessedrhisis notthe casein the single-
manageindex asit usesa separatendex file for eachstoredfile and
thus it omits the logical file path from the index keys. The size of
the logical file-pathis setto 1024 charactersAs eachindex block
containsmultiple index keys, block sizemustbe several K B soasto
compareboth index mechanismsvith enoughkeys perindex block.
In the single-manageindex, suchlarge index blocksresultin mary
unusedkeys fetchedthroughunnecessarkiarddisk I/Os. On the other
hand, block memory mappingsand the cachingmechanismof the
Berkeley DB index pay off. In a similar fashion,for the Bonnie++
Benchmarkhe single-manageB+treeis alsofavoredby smallindex
block sizes.

C. Using FlexFSin a GRID Environment

In this experiment,we usethe Network Smulator (ns) [29] to help
us assesdhe effectivenessof the FlexFS data resilienceapproach
versusthe replication schemenow usedby computationalGRIDs.
The ns allows us to setup a controlled GRID environmentwith six
sites connectedover the Internetas Figure 12 shavs. We assume
that the connectionsamongthe GRID sites are facilitated through
a network of 100 Mb/s interfaceswhile intranetconnectionsare at
1Gb/s. In this setting, we also assumethat there is one pair of
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Fig. 12. SimulatedGRID deplgyment.

CE and SE per site. When we experimentwith the standardGRID
replication scheme,only one storagenode (SN) participatesin the
datatransfer On the otherhand, FlexFS can simultaneouslyrequest
pacletsof afile dispersedn a numberof SNs andmay concurrently
commencethe assemblyof the file in question.To this effect, the
parameterof primary importancein this experimentis the number
of SNs taking part in the FlexFS operation.Equally critical is the
network bandwidththat is available at ary time for data transfer
from the SNs to the CN. In this regard, we createrandomtraffic
amongInternetnodes,reservingfrom 10% to 90% of the available
bandwidthfor our datatransfers.

Figure 13 presentghe resultsof the GRID simulationwhen the
averagebandwidthavailable for our datatransfersdecreasesEach
line shavs the throughputratesachieved by replicationand FlexFS
using between2 and 5 SNs. In relative terms, FlexFS doesoverall

Throughput delivered by FlexFS when
using different number of Storage Nodes

10000 T T T T T T T T
g;::i-fﬁ‘::::ﬁ mzaad

-

8000

6000

4000

Throughput KB/sec

Replication —+—

FlexFS 2 SNs ---x--- R

FlexFS 3 SNs ------ ST

FlexFS 4 SNs & s
FlexFS 5 SNs ——&-—

O 1 1 1 1 1 1

90 80 70 60 50 40 30 20 10
Average percentage of network available for data transfers

2000

Fig. 13. FlexFSthroughputratesunderdiversenetwork loads

much better than its replication counterpart.When the network is
less-loadedhereare significantincreasesn the throughputattained
as FlexFS achieves between 15% and 31% improvement. More
significantarethe gainswhennetwork bandwidthis constrained10%
on the z-axis) in which casethe relative gainsfor FlexFS range
between95% and 229% comparedto the GRID replicaschemeln
absolutenumbersthe above percentilecorrespondo a differenceof
900 KB/s. However, with FlexFStheincreasen throughputcanreach
up to 4 MB/s which is 100%higherthanthe throughputdeliveredby
the replica scheme Despitethe apparentimprovementobtainedby
FlexFS this experimentalsoprovides somepointersinto the number
of SNs that canbe used.Whenthereis no contentionfor bandwidth
in the network, only a few SNs are sufiicient to take adwantageof
the network infrastructureIn caseof limited network bandwidththe



useof more datasources)eadsto higherthroughputrates.

Our simulationsalso shaved that whenthe network is lessloaded
thereis a thresholdon the optimum numberof SNs to be contacted.
Exceedinghis thresholdcausedow level datapacletsto bedropped,
thus delaying the overall file access.The optimal numberof SNs
is subjectto the bandwidthavailable betweennetwork routers,the
length of paclet queuesas well asthe network routing algorithms.
In the specificsetupof the experimentsdepictedby Figure 13, the
threshold,for network utilization abore 60%, is four nodes.This is
why in a configurationwith five SNs where more than 60% of the
network is utilized by FlexFS the sustainedthroughputis slightly
lower thana two to four SN configuration.n futureimplementations
we will enhanceFlexFSby settingthe appropriatethresholdwithout
interruptingits operation.

VIlI. CONCLUSIONS AND FUTURE WORK

In this paper we introduce FlexFS a flexible file-system for
computationalGRIDs and distributed systems.The main objective
of FlexFS is to automatically overcome node failures that may
incapacitatestorageseners and may renderthe current GRID file
replication schemesineffective. We achieve this through injection
of redundantinformation at the data block level, followed by data
fragmentatiorinto pacletsanddistributionin the network. Thedegree
of redundang may vary accordingto the userneedsaswell asthe
potentialof storagenodeunavailability. Forward ErasureCorrection
is the mechanismwe useto createdataredundang FlexFSrequires
that only a fraction from the original block paclets that have been
distributedbe fetchedto cumulatiely re-producea datablock sought.
We outline the basic functionalitiesand metadatausedby our file-
system.FlexFSis a viable alternatve to contemporaryGRID repli-
cationasusersmay work in a entirely transparenfashionregarding
the operational state of the network and GRID nodes. Through
prototyping and experimentationwe demonstratethe feasibility of
FlexFS and establishthe trade-ofs for the operation of its key
componentsAlso, throughsimulationsin a controlledenvironment,
we shawv the performancebenefitsof the proposedframevork over
the guaranteethat GRID-replicationoffers. FlexFSthroughputgains
rangefrom 15% to nearly 230%. We are currently working towards
the integration of FlexFS with the SRM protocol [8] in order to
achiee seamlesgperationin a data-intensie GRID ervironment.In
the future, we plan to investigatehow we can dynamically specify
the optimum numberof SNs to be put into usewhenretrieving data
paclets.In addition,we planto investigatepoliciesthatautomatically
matchand calibratethe operationof FlexFS on heterogeneousites
and examinethe FlexFSimpacton other GRID services.
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