
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Hint-based Execution
of Workloads in Clouds with Nefeli

Konstantinos Tsakalozos, Mema Roussopoulos, and Alex Delis

Abstract —Infrastructure-as-a-Service clouds offer entire virtual infrastructures for distributed processing while concealing all physical
underlying machinery. Current cloud interface abstractions restrict users from providing information regarding usage patterns of their
requested virtual machines (VMs). In this paper, we propose Nefeli, a virtual infrastructure gateway that lifts this restriction. Through
Nefeli, cloud consumers provide deployment hints on the possible mapping of VMs to physical nodes. Such hints include the collocation
and anti-collocation of VMs, the existence of potential performance bottlenecks, the presence of underlying hardware features (e.g.,
high availability), the proximity of certain VMs to data repositories, or any other information that would contribute in a more effective
placement of VMs to physical hosting nodes. Consumers designate only properties of their virtual infrastructure and remain at all times
agnostic to the cloud internal physical characteristics. The set of consumer-provided hints is augmented with high-level placement
policies specified by the cloud administration. Placement policies and hints form a constraint satisfaction problem that when solved,
yields the final VM-to-host placement. As workloads executed by the cloud may change over time, VM-to-host mappings must follow
suit. To this end, Nefeli captures such events, changes VM deployment, helps avoid bottlenecks, and ultimately, improves the quality
of the rendered services. Using our prototype, we examine overheads involved and show significant improvements in terms of time
needed to execute scientific and real application workloads. We also demonstrate how power-aware policies may reduce the energy
consumption of the physical installation. Finally, we compare Nefeli’s placement choices with those attained by the open-source cloud
middleware, OpenNebula.

Index Terms —Distributed Systems, Cloud Computing, IaaS Cloud, Virtual Machine Scheduling

✦

1 INTRODUCTION

Computing clouds allow for the transparent access to
diverse physical resources available in the form of ser-
vices. In this work, we focus on IaaS-clouds [1] that
exploit virtual machines (VMs) to deploy computing
systems on-demand [2]–[5]. We examine the effective
placement of VMs on the physical infrastructure so that
multiple and diverse workloads are efficiently handled.
The key benefit in using an IaaS-cloud is that it shields
users and/or applications from all administrative tasks
and resource sharing policies of the underlying ma-
chinery. Moreover, the decoupling of physical resources
from system software offers enhanced server-utilization
through collocation of VMs and effective options for
node recovery in light of failure(s). However, sharing
physical resources may yield peak performance rates
that are below expectation due to VM contention on
particular physical nodes.
Virtualization as used in current IaaS-clouds makes

deployment of VMs a straightforward task. However,
the large number of options of where within the cloud
to (re)deploy VMs renders the problem of infrastructure
tuning a real challenge. To this date, there have been
a number of efforts that attempt to fine-tune virtual
infrastructure placement for executing specific types of
jobs [6]–[9]. In these efforts, users “evaluate” the map-
ping quality of computational resources to VMs [10]–[12]

• The authors are with the University of Athens, Athens, GR15784, Greece.
E-mail: {k.tsakalozos, mema, ad}@di.uoa.gr

by using either fixed service-level agreements (SLAs)
or high-level utility functions. In general, producing an
“evaluation function” is a nontrivial task for it requires
knowledge of both the application at hand and the
policies regulating resource sharing within the physical
infrastructure [10].
In this paper, we present the design, implementation,

and evaluation of a cloud gateway,Nefeli.Nefeli performs
intelligent placement of VMs onto physical nodes by
exploiting user-provided deployment hints. Hints realize
placement preferences based on knowledge only the
cloud consumer has regarding the intended usage of
the requested VMs. By modeling workloads as patterns
of data flows, computations, control/synchronization
points and necessary network connections, users can
identify favorable VM layouts. These layouts translate
to deployment hints. Such hints articulate 1) resource
consumption patterns among VMs, 2) VMs that may
become a performance bottleneck and 3) portions of the
requested virtual infrastructure that can be assisted by
the existence of special hardware support. For instance,
the fact that two VMs in a virtual infrastructure will
hold mirrors of a database is only known to the cloud
consumer. This information should be communicated to
the cloud as a deployment hint so that the respective
VMs will not be deployed on the same host. We refer to
VM layout patterns as task-flows to distinguish them from
the traditional workflow concept [13]. Specifically, task-
flows illustrate “ideal” deployments of VMs described
by the cloud consumers using deployment hints. Nefeli
exploits these hints so as to (re)deploy VMs in the cloud

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

and achieve efficient task-flow execution. However, hints
must not reveal any cloud internal properties to the
consumers. Although hints may offer a desired VM-
deployment for consumer workloads, Nefeli may ulti-
mately elect to ignore part or all of them based on the
available physical resources. In addition to hints, Nefeli
also takes into account high-level VM placement policies,
set by the cloud administration, whose objectives may
entail energy efficiency and load balancing.
The main contribution of our approach is that we

present a complete solution in extracting and exploiting
the knowledge cloud consumers posses regarding the
operational aspects of their virtual infrastructures. Our
approach is compatible with the cloud abstractions that
dictate users are kept agnostic of the physical infrastruc-
ture properties at all times. Furthermore, our approach
is able to adapt to dynamic environments where both
task-flows and user preferences change over time. Ne-
feli produces suitable VM to physical node mappings
in response to signals coming from the infrastructures
(both physical and virtual) or any other external notifi-
cation mechanism. The produced mappings are applied
through appropriate VM placement calls to an underly-
ing cloud middleware.
We have created a detailed prototype and experi-

mented with both simulated and real cloud environ-
ments. We compare Nefeli VM-placement against a) ran-
dom placement, b) a placement that evenly distributes
VMs among physical nodes, c) a policy that minimizes
the number of physical nodes used and thus reduces
the power footprint of the cloud, and d) the match mak-
ing policy used by the open–source cloud middleware
OpenNebula v.1.2.0. Our approach consistently displays
significant performance improvements when compared
to the aforementioned policies. In video transcoding, Ne-
feli achieves 17% reduced processing times compared to
the VM placement decided by OpenNebula. In scientific
task-flows and for a variety of simulated clouds, Nefeli
demonstrates significantly higher throughput rates com-
pared to other VM placement policies. Noteworthy sav-
ings in terms of power consumption are reported as well.
We also present the performance overheads involved
in the operation of Nefeli as the cloud infrastructure
scales out. The rest of this paper is organized as follows:
Section 2 states the problem we address. Sections 3–6
present in detail all the architectural elements of Nefeli.
Section 7 discusses our experimental findings. Section 8
outlines earlier related work and finally, Section 9 offers
concluding remarks.

2 MANAGING IAA S–CLOUD RESOURCES

IaaS-clouds provide for their users a separation of con-
cerns at the level of hardware as their respective ser-
vices are confined to the provision of VMs; the latter
collectively form virtual infrastructures. Users may con-
sume IaaS-cloud services, yet, they are unable to impose
changes on the fundamental aspects and functional char-
acteristics of the elements of the underlying physical

substrate. Users may only offer minimal information
to influence the performance of the infrastructure by
indicating how VMs are to be actually deployed on
the physical resources. Cloud providers undertake all
administrative actions on physical computing nodes in-
cluding setting the policy with which consumer requests
are handled.
Both service consumers and producers possess frag-

ments of information and maintain knowledge in their
own sphere of operation that if combined could jointly
improve the effectiveness of the cloud. Knowledge of
the underlying hardware features, the make-up of the
virtual infrastructure as well as the characterization of
the workload in execution could all contribute to a
more effective resource sharing. As the cloud-contract
“prevents” the physical substrate from revealing most
of its organizational features, user preferences and de-
sired operational conditions can be expressed by the
IaaS consumer to the provider. Perhaps the most critical
parameter about which users have to alert the cloud
is the nature of the task-flows submitted. A task-flow
includes the set of VMs requested by the cloud consumer
combined with information regarding a desirable VM
deployment layout. This layout emerges from analyzing
VM usage patterns which are known only to the con-
sumer. In general, the consumer is aware of how various
elements of her workload should be ideally pegged to
VMs.
In this paper, we take the view that consumers may

communicate the task-flow information in the form of
hints. The latter could be used while trying to ap-
propriately deploy VMs. For instance, consider a user
who requests a VM that will play the role of a single
network-bridge between her virtual infrastructure and
the Internet. This bridge inherently becomes a single
point of failure and a potential performance bottleneck.
Therefore, the VM in question would be best placed on
an offloaded physical node equipped with redundant
hardware. In similar spirit, VMs that are to perform par-
allel jobs –very much in the MapReduce fashion– should
be spread across different nodes1. Hence, it is important
for the cloud to be aware of the user’s intended use of
particular VMs.
We also emphasize that IaaS consumers have no ex-

plicit control over VM migrations. Migrations reshuffle
the way VMs share the same computing nodes so they
may radically hurt or significantly enhance the virtual in-
frastructure’s performance. The actual placement of VMs
on physical hosting nodes should be able to address the
needs of changing workloads. For instance in a video-
encoding application, it might be beneficial to use a
highly distributed setup for VMs across various physical
nodes to harness as many CPU-cycles as possible. Occa-
sionally however, the aforementioned layout might gen-

1. Cloud providers such as Amazon [3] allow users to ask for
VMs deployed on different sites. Such ad-hoc engineering solutions,
however, cover only a portion of the needs of a user and even worse,
they disclose information about the cloud’s internal structure.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

erate significant network traffic calling for opportunistic
collocation of VMs. Thus, the cloud must take actions to
dynamically redeploy VMs to better serve continuously
changing workloads. Overall, the challenge IaaS-clouds
face is how to permit more sophisticated interaction with
users while keeping them agnostic of cloud internals.
In their quest to offer entirely transparent operations,
contemporary clouds inadvertently prevent their users
from exploiting salient virtualization features such as
VM migration. By accepting hints, Nefeli plays a major
role in helping attain user-favorable VM deployments.
The user remains unaware of the cloud internals as any
piece of his information arriving at Nefeli (the cloud
gateway) strictly refers to the type of the workload(s) the
virtual infrastructure is to serve.

3 OVERVIEW OF NEFELI

Nefeli adds a layer between the user and the infrastruc-
ture providing IaaS-cloud services, shown in Figure 1.
Nefeli interfaces with the lower level cloud services
that handle the VM lifecycle and perform fundamental
administrative tasks. This interface, denoted as a Cloud
API, allows us to query for specific aspects of the hard-
ware resources as well as manage the VM deployment
and migration. During operation, Nefeli has to obtain

Note

Note

Note

Cloud Middleware
Extra

Functionalities

Cloud Middleware Connector

VM VM

VM

VM VM VM...

...

Event Queue

Cloud API

User
Task−flows

.....

H
os

tin
g

N
od

es

M
on

ito
rin

g
T

oo
ls

Nefeli

Fig. 1: Nefeli’s structured layout and interaction model

the following information:
• Physical node properties: these properties include

free memory, total memory, CPU utilization, the
name/ID of each hosting node, the amount of free
disk space and redundant hardware enhancing the
node’s availability.

• Physical infrastructure properties: Nefeli takes into
account the network topology of the physical sub-
strate, the cloud’s gateways towards the Internet
and any data repositories available through the
network.

• The current status of each VM: in our approach each
VM may find itself in either STAGING or RUNNING

1

2 3

4

5

(a) Task-flow A

8

6

9

10

7

(b) Task-flow B

Fig. 2: Two different sample task-flows

state. A VM is considered to be STAGING when
management operations such as disk image copying
during a VM migration do not permit the VM to
run.

• VM properties: these are similar to the properties
acquired for physical hosting nodes. VM properties
include the memory usage and the disk space re-
served for each virtual machine. Nefeli also acquires
the IP-address of each VM through the cloud API
and forwards it to the user.

VM deployment is handled through the cloud API de-
picted in Figure 1 and includes the following operations:

• Spawn a new VM.
• Shut down a VM.
• Migrate a VM. The names/IDs of the hosting nodes

are needed for this operation.
Nefeli may interact with the physical infrastructure

through a cloud middleware [2], [4], [5]. However, the
cloud middleware may not provide all the functionality
required by Nefeli. For instance, OpenNebula v.1.2.0
does not expose all host-related information it gathers. In
such cases, we have to realize any missing functionality
and incorporate it in the “Cloud Middleware Connec-
tor” component (denoted as “Extra Functionalities” in
Figure 1).
Nefeli has the role of an IaaS-cloud gateway. Users

contacting Nefeli request virtual infrastructures created
by instantiating sets of VMs. Two sample graphs of task-
flows executed in such an infrastructure are displayed
in Figure 2. In the task-flow’s graphical representation,
each node corresponds to a single VM while edges
indicate control and data flows. The VM specifications
are accompanied by user-provided deployment hints.
Hints are expressed as sets of conditions or constraints
pointing out a deployment favoring specific task-flows
within the virtual infrastructure. As the user must be
kept agnostic of the internal deployment decision algo-
rithms of the cloud, all available constraint types are
provided by Nefeli. Constraints, even though important,
may occasionally be contradicting or even impossible to
satisfy all at the same time. Therefore, each constraint is
coupled with a weight value indicating its importance
relative to the other hints provided. For task-flow A of
Figure 2a, possible deployment hints include a) VMs 2
and 3 should preferably be deployed on different hosting
nodes and b) VM 4 should be favored by deploying it

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

on a host without any other VMs. The latter indicates
a possible CPU performance bottleneck of the task-flow
at hand. In addition to cloud consumer constraints, Ne-
feli also accepts hints that articulate high-level policies
imposed by the cloud administration. Table 1 depicts a
number of such consumer and administrative types of
constraints that we have frequently used in our work.

TABLE 1: Commonly used constraints.

Cloud Consumer Constraints
FavorVM Try to reserve a single hosting node

for a specific VM.
MinTraf Deploy on the same host a set of VMs so as

to minimize traffic over the physical network.
Try to deploy a set of VMs on separate

ParVMs physical nodes so as not to compete
over the same resources

PinVM Try not to migrate a specific VM.
HighAvail Try to deploy a specific VM on a host with

high availability features.
UsesDataRepo Try to reduce the network distance

between a VM and a data repository.

Cloud–Administration Constraints
PowerSave Reduce the number of hosting nodes

used for VM deployment
EmptyNode Offload a specific hosting node
EvenLoad Distribute VMs evenly among hosting nodes

StopPingPong Cease the same VMs from migrating
back and forth among hosting nodes.

ReduceDist Reduce the network hops among a set of VMs.

We use a single XML document to describe all
consumer-provided information. Listing 1 presents all
aspects related to task-flow A of Figure 2a. In the first
section, the consumer provides the specifications of the
requested VMs. Each VM is assigned a system-wide
identifier. The user also sets RAM requirements and
points to the VM type that needs to be instantiated by
providing the proper disk image pointer. The second
XML section outlines the constraints to be taken into
account for the deployment of the virtual infrastructure.
As mentioned earlier, there are two constraints, one for
VM deployment in separate nodes (ParVMs) and one for
favoring the deployment of VM with ID 4 (FavorVM).
In the second XML section, VM identifiers are used
whenever constraints have to refer to specific VMs. Since
the performance impact of specific constraints may be
greater than that of others, the third XML section con-
tains pertinent user-assigned weights. In this example,
the constraint with ID 1 is more important than that with
ID 2 and thus, it receives a weight of 0.4 while constraint
2 gets a 0.3. Note that the correctness neither of the
constraints nor the respective weights is questioned. We
trust the user has some knowledge of the performance
bottlenecks in her task-flows.
Administrative constraints are introduced by the cloud

provider in the same way as consumer constraints.
However, the administrative constraints do not refer
to any specific set of VMs, rather they refer to as-
pects of cloud internals only the cloud administration
is permitted to know. In what follows, we discuss how
Nefeli handles a single task-flow and then, we look

at how our approach offers simultaneous execution of
multiple task-flows running on the same physical nodes.

<Task−flow>
<VirtualMachines>
<VM id=”1”><RAM>512</RAM><Disk>VM1. img</Disk></VM>
<VM id=”2”><RAM>512</RAM><Disk>VM2. img</Disk></VM>
<VM id=”3”><RAM>512</RAM><Disk>VM3. img</Disk></VM>
<VM id=”4”><RAM>512</RAM><Disk>VM4. img</Disk></VM>
<VM id=”5”><RAM>512</RAM><Disk>VM5. img</Disk></VM>

</VirtualMachines>

<Cons tra in ts>
<ParVMs id=”1”>
<VMid>2</VMid><VMid>3</VMid>

</ParVMs>
<FavorVM id=”2”><VMid>4</VMid></FavorVM>

</Cons tra in ts>

<P ro f i l e s>
<P ro f i l e id=”1”>
<Weights>
<Constr id=”1”><Weight>0 . 4</Weight></Constr>
<Constr id=”2”><Weight>0 . 3</Weight></Constr>

</Weights>
</P ro f i l e>

</P ro f i l e s>
</Task−flow>

Listing 1: Nefeli input describing the sample task-flow A
of Figure 2a.

4 SINGLE TASK -FLOW EXECUTION

Figure 3 shows the key steps followed starting from
the user input until we reach a VM-to-host mapping,
termed deployment profile. With V being all the VMs
to be deployed and H the set of physical nodes, a
profile M is a function from V to H (M : V 7→ H).
Nefeli chooses, out of all possible profiles Mall, one that
best suits the constraints expressed for the task-flow at
hand. Profile production exploits information gathered
from user hints, as well as information emanating from
the cloud administration and the physical infrastructure.
Combining the user-provided constraints with the VM
specifications, as described in XML-documents such as
the one of Listing 1, results in deployment patterns.
The deployment patterns are used to match VM require-
ments to physical node resources. This matching phase
creates the actual final deployment profile by taking into

id: Object

id: Object

Small Note

Hardware

Specifications

Patterns
Deployment

Specifications of

Virtual Machine

Deployment

Profile

User provided XML

Constraints

Administration

User
Constraints

Edit layers 0 and 1 as needed

Fig. 3: Nefeli’s operational model

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

account cloud administration constraints and hardware
node specifications.

4.1 Constraints

Constraints express user (cloud consumer) and adminis-
tration preferences. Each constraint is realized as a utility
function F that evaluates a single deployment profile.
F takes as input a deployment profile and returns the
degree of constraint satisfaction in the range of [0, 1]

F : Mall 7→ [0, 1],

where Mall is the set of all possible deployment profiles.

In Nefeli, each such function has at its disposal all in-
formation regarding the characteristics of both physical
and virtual nodes. An example of the utility function
HighAvail is presented by Algorithm 1. When a cloud
consumer uses HighAvail for a VM, she indicates that
the specified VM is of great importance for the virtual
infrastructure and it should always be available (i.e.,
ideally no down time). From the provider’s perspective,
this translates to hosting the VM on a physical node that
is unlikely to fail. Algorithm 1 quantifies the success of a
profile in mapping a specific VM to a hosting node with
high availability properties. If the selected host is a high-
availability (HA) server, then the HighAvail constraint
is fully satisfied and 1.0 is returned by line 5. Otherwise,
we check the redundancy of the host’s hardware. We
increase the degree of satisfaction if we find RAID setup
(line 7), additional power supply (line 10) or multiple
network interfaces (line 13). In our implementation of
this HighAvail function we elect to increase the degree
of satisfaction by 0.2 for each redundant device available.

The implementation details of the HighAvail con-
straint are not revealed to the consumer as they are
specific to each cloud infrastructure. Whenever one or
more assumptions regarding the high availability of the
hardware are outdated, possibly due to major changes
in the infrastructure (e.g., all hosting nodes become
equipped with RAID), we have to provide new imple-
mentations for the affected utility functions.

Administrative constraints are also realized as util-
ity functions. These constraints serve a dual purpose
as they can introduce high-level policies and assist in
administration tasks. For instance, EmptyNode relieves
a hosting node of VMs. ReduceDist enforces the high-
level policy of clustering VMs of the same user on hosts
that may not be far apart in terms of network hops; this
is done to limit major traffic to be routed over long-haul
physical networks.

We have realized both user and administration con-
straints of Table 1 as utility functions in similar fashion
to Algorithm 1; for brevity, we omit their detailed dis-
cussion here. Such functions are expected to work in a
plug-and-play fashion.

Algorithm 1 HighAvail Utility Function

Input: VM_ID: ID of the VM to deploy in a high availability node
M(): Deployment profile function
Output: Satisfaction degree of constraint

1: host ID := M(VM_ID)
2: satisfaction := 0;
3: if (HostIsHAServer(host ID)) then
4: satisfaction := 1.0;
5: return satisfaction;
6: end if
7: if (HostHasRAID(host ID)) then
8: satisfaction += 0.2;
9: end if
10: if (HostHasRedundantPowerSupply(host ID)) then
11: satisfaction += 0.2;
12: end if
13: if (HostHasMultipleNetwork(host ID)) then
14: satisfaction += 0.2;
15: end if
16: return satisfaction;

4.2 Deployment Profile Production

Each possible deployment profile m is assigned a score
computed by the formula:

Score(m) =
∑

Consti∈Cs

wiConsti(m),

where Cs is the set of all constraints and w the respective
weights derived from the user-provided XML. In the
example of Listing 1 where the two constraints ParVMs
and FavorVM with weights 0.4 and 0.3 are used, the
Score of a deployment profile m becomes:

Score(m) = 0.4 ∗ ParVMs(m) + 0.3 ∗ FavorVM(m)

The optimal profile (mopt) is the one with the highest
score:

Score(mopt) ≥ Score(mq), ∀mq ∈ Mall

where Mall is the set of all possible deployment profiles.
Finding optimal deployment profiles is NP-hard [8] so

we employ simulated annealing [14] to attain plausible
approximations. In Algorithm 2, we start from a random
VM deployment, produced by GetRandomProfile,
and visit gradually higher-scoring neighboring deploy-
ment profiles. The neighbors of each deployment profile
are generated by a call to GetNeightborOf. The neigh-
borhood Nm of a deployment profile m is the set:

Nm = {N ∈ Mall|Prob(N(v) 6= m(v)) = d, ∀v ∈ V },

Here, V is the set of all VMs, Mall is the set of all
profiles, d is the probability for a VM v to be deployed
on a hosting node other than the one set by profile
m. Increasing d results in wider neighborhoods and
prevents us from getting trapped at local optima. Yet,
too wide neighborhoods result in almost randomly gen-
erated neighbors and thus, deployment profiles of low
quality.
Algorithm 2 chooses to update current profile with

one of its neighbors based on a probability factor:
eD/T > Random(), where D is the score improvement

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

we get using the neighboring profile and T the tem-
perature. Using this formula, we handle local minimum
pits by allowing “jumps” to lower scoring profiles. How-
ever, when the temperature drops near zero (10−5) only
higher scoring neighbors are visited. Apart from the

Algorithm 2 Simulated Annealing - Profile Production

Input: same_iterations: After how many iterations showing no
improvement will we stop our search
T: Temperature
Score(): Deployment profile score function
Output: A near-optimal deployment profile

1: same = 0
2: best profile = current profile = GetRandomProfile()
3: while same <same_iterations do
4: new profile = GetNeightborOf(current profile)
5: D = Score(new profile) - Score(current profile)
6: if (T > 10−5 AND eD/T > Random()) OR

(T < 10−5 AND D > 0) then
7: current profile = new profile
8: end if
9: if Score(new profile) > Score(best profile) then
10: best profile = new profile
11: same = 0
12: end if
13: same++
14: T = 0.99 * T
15: end while
16: return best profile

starting temperature and the number of non-improving
iterations performed before returning the best profile
(same_iterations), another option for enhancing the
profile quality is the number of times Nefeli runs sim-
ulated annealing. Starting from a different initial VM
deployment, allows our approach not to get trapped at
locally optimum solutions.

Our approach decouples the profile evaluation and
generation from the process of finding a near-optimal
VM-to-host mapping. This allows us to place constraints
into two categories:

• Soft Constraints: the degree of satisfaction of con-
straints that belong in this class contributes to the
overall quality of the produced profile.

• Hard Constraints: conditions placed in this group
have to be satisfied to their full extent. Otherwise,
task-flows featuring such constraints are simply not
admitted for execution and receive no further con-
sideration.

Escalating the severity of a soft constraint to hard re-
quires setting its weight to 1.0 in the respective task-
flow XML-description. Soft constraints are used for the
computation of each profile score. Hard constraints
are taken into consideration during the generation of
new profiles from functions GetNeightborOf and
GetRandomProfile of Algorithm 2. These two func-
tions also take into account the obvious constraints rais-
ing from the limited availability of hardware resources
such as the available main-memory on each hosting
node.

4.3 Computational Requirements for Nefeli

Typically, the provision of a VM is a process that takes
several minutes. For a VM instantiation, one or more
disk images need to be copied from the image repository,
where all VMs are stored, to the physical node that will
provide the resources needed at runtime. Nefeli incurs
an additional overhead to the VM provision since a con-
straint satisfaction problem (CSP) needs to be solved for
producing a deployment profile. Depending on the time
requirements set by each IaaS-provider, the acceptable
time overhead in general may range from a few seconds
to at most a few minutes.
In this work, we formulate the VM-to-host mapping

production as a CSP so as to take advantage of the evolu-
tion of CSP solvers and avoid the use of preset heuristics.
The selected simulated annealing solver displays two
fundamental properties that render Nefeli suitable for
a wide range of small to medium sized clouds. Our
approach has two salient features. First, it allows the
cloud administration to specify the maximum amount
of time to be expended on deployment planning. This is
achieved by properly adjusting the temperature T and
same_iterations in Algorithm 2. In this way, perfor-
mance is tuned to match VM provision requirements.
Second, our approach is parallelizable in an intuitive
way. Multiple, separate executions of the simulated an-
nealing algorithm may commence simultaneously, each
one with a different start-up seed. Different seeds make
sure that even if one execution gets trapped at a local
optimum, a good solution will ultimately be found by
some other execution.
In cases where the size of the cloud infrastructure is

too large or the number of the involved constraints is
very high, simulated annealing may not yield high qual-
ity profiles within strict time limits. Here, the provider
has two options: either reduce the search space of simu-
lated annealing or solve the CSP with other more effec-
tive solvers and possibly heuristics. In [15], we outline an
approach that follows the first option above; it reduces
the search space and harvests cloud resources to realize
an elastic distributed solver and yield scalable profile
production.Nefeli’s modular design can readily facilitate
the second of the above choices by replacing simulated
annealing with other alternatives envisaged.

5 INTRODUCING MULTIPLE TASK -FLOWS

As clouds serve many users, each one in need of his
own private infrastructure, multiple task-flows may have
to be active for simultaneous execution. In its simplest
form, multiple task-flow execution occurs when Nefeli
serves a single task-flow while a new one is submitted. In
this case, a single deployment profile must be produced
taking into consideration constraints for both task-flows.
Listing 2 shows the XML-description for task-flow B of
Figure 2b. For this task-flow, there are two constraints:
a) VMs 6 and 9 would better be co-located since they
will be producing too much network traffic and b) VMs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

8 and 10 are to be deployed on different hosting nodes.
VM IDs are system-wide identifiers and thus the task-
flows of Figure 2 make use of differentVMs.Nefeli never
reveals the set of VM identifiers to users. In collaborative
environments, where users share VMs, to produce task-
flows, users must be assisted by higher level components
operating outside Nefeli.
Producing a single deployment profile for both

task-flows of Figure 2, is done by combining
the respective descriptions of Listings 1 and 2.

<Task−flow>
<VirtualMachines>
<VM id=”6”><RAM>512</RAM><Disk>VM6. img</Disk></VM>
<VM id=”7”><RAM>512</RAM><Disk>VM7. img</Disk></VM>
<VM id=”8”><RAM>512</RAM><Disk>VM8. img</Disk></VM>
<VM id=”9”><RAM>512</RAM><Disk>VM9. img</Disk></VM>
<VM id=”10”><RAM>512</RAM><Disk>VM10. img</Disk></VM>

</VirtualMachines>

<Cons tra in ts>
<MinTraf id=”1”>
<VMid>6</VMid><VMid>9</VMid>

</MinTraf>
<ParVMs id=”2”>
<VMid>8</VMid><VMid>10</VMid>

</ParVMs>
</Cons tra in ts>

<P ro f i l e s>
<P ro f i l e id=”1”>
<Weights>
<Constr id=”1”><Weight>0 . 4</Weight></Constr>
<Constr id=”2”><Weight>0 . 3</Weight></Constr>

</Weights>
</P ro f i l e>

</P ro f i l e s>
</Task−flow>

Listing 2: Nefeli input derived from sample task-flow B
of Figure 2b

In this case, the set of constraints to be considered is the
union of all constraints. Constraint weights handling
policies may need to take into account the financial
gain from satisfying specific users. Such policies are out
of the scope of Nefeli as we expect them to be enforced
at a higher level. The score function for a deployment
profile m becomes:

Score(m) = 0.4 ∗ ParVMsA(m) + 0.3 ∗ FavorVM(m) +

+ 0.4 ∗ MinTraf(m) + 0.3 ∗ ParVMsB(m)

where ParVMsA and ParVMsB are the ParVMs con-
straints of task-flows A and B respectively.
A task-flow departure also calls for the production

of a new deployment profile. This time the constraints
used will have to be the ones referring to the task-flows
remaining for execution. The VMs used explicitly by the
terminated task-flow alone will also have to be removed.
A transition between deployment profiles (as in the

case of adding or removing task-flows) involves VM
migrations that in the absence of live migration re-
sult in some downtime of the virtual infrastructures.
In this case, VMs have to be suspended and copied
to other hosting nodes where they can resume their
normal operation. To tackle such inefficiency, the profile
creation procedure may trade profile quality for mi-
grating less VMs. To this end, we define the distance

of two profiles to be the number of VMs deployed
on different hosting nodes in the profiles compared.

Definition: The distance Dist between two deployment
profiles M1,M2 ∈ Mall, that map VMs to hosting nodes,
is:

Dist(M1,M2) = |{v ∈ V : M1(v) 6= M2(v)}|

Given an initial deployment profile ms, to reduce
VM migration overheads, Nefeli first produces the k
highest scoring profiles and then, it picks the one whose
transition from ms requires migrating fewer VMs. With
k regulating the tradeoff between migration overhead
and the time spent in producing the final deployment
profile, we are able to express the virtual infrastructures’
sensitivity to downtime. From the set (Mb) of the k
highest scoring profiles, the final deployment profile
(mq) used is:

mq : Dist(mq,ms) ≤ Dist(mi,ms), ∀mi,mq ∈ Mb

Our decision to reduce the number of migrating VMs
may not not always yield the swiftest transitions. Choos-
ing a deployment profile based on the transition time
would require us to consider several cloud properties
such as the VM disk size, the network topology, and
also schedule migrations according to projections on
the available network bandwidth. We expect that our
approach of reducing the number of migrating VMs will
affect fewer users. VMs that would yield long transition
times can be excluded from migrations using the PinVM
constraint.

6 NEFELI IN DYNAMIC ENVIRONMENTS

The overall goal of Nefeli is to make choices regarding
the deployment profile based on the user’s needs and the
system’s performance. As both needs and actual prefer-
ences change over time, Nefeli must act accordingly and
produce updated deployment profiles. To this end, our
approach features a notification mechanism that relays
events towards Nefeli.

6.1 Event Types and their Handling in Nefeli

Events are used to signal when the virtual infrastruc-
tures should be reorganized -through VM migration
operations- so as to reflect the changes in Nefeli’s en-
vironment. We group events into two classes according
to their origin:
• Events activated by direct human intervention: they in-
clude the submission or removal of any number of task-
flows served. This class also includes events that help
administrators effectively control the operation of both
cloud and Nefeli. Consider for example node mainte-
nance tasks that require specific parts of the hardware
infrastructure to be shut down. The cloud administration
must migrate the hosted VMs to nodes that will not
be affected. Nefeli must provide the means to support
this kind of activity and it does so by responding to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

events set by the administrator combined with hard
constraints included in task-flow descriptions. In similar
spirit, activation of constraints such as PowerSave, may
be performed on demand.
• Events triggered by any monitoring activity in the context of
physical/virtual infrastructure or any authorized third party
component: VM redeployment may take place after a
threshold in a resource utilization is exceeded. Through
the cloud middleware connector, Nefeli offers hooks for
monitoring CPU utilization on both VMs and hosting
nodes. Other internal activities such as network traf-
fic are monitored through third party monitoring tools
(Figure 1) such as Nagios [16]. Receiving this type of
events may indicate that the deployment profile cur-
rently used is ineffective. For instance, long time periods
with specific hosting nodes displaying high CPU loads
while others staying idle, mean that the VMs hosted
on those nodes have become a performance bottleneck.
Such bottlenecks can be handled by a redeployment of
VMs. This class of events includes events coming from
both the physical and the virtual infrastructure. The
virtual infrastructure may signal the end of a task-flow or
even the initiation of a new one. This event class allows
for the development of cloud-efficient applications while
keeping applications agnostic to the infrastructure on
which they are executed.
All events can be combined in Boolean expressions

using AND,OR and NOT operations. In this regard, both
consumers and administrators may express complex
conditions calling for VM re-organization. Such Boolean
expressions are placed in the XML descriptions of task-
flows.

6.2 Application Driven Operation

Users frequently want to execute different task-flows
at different time periods on top of their virtual infras-
tructure. These time periods are delineated by specific
events occurring in the system. These events should be
appropriately registered so that Nefeli carries out the
respective optimization of the virtual infrastructure.
Listing 3 depicts the way such events are introduced to

Nefeli through an extended XML input file. Similarly to
the single task-flow description, the VirtualMachines
section provides all VMs of the virtual infrastructure.
The Constraints section describes all constraints, re-
gardless of the task-flow to which they refer. In the
Profiles section, the consumer provides one set of
weights for each separate task-flow; there exist two pro-
files corresponding to two distinct task-flows. In more
detail, the XML input file involves two VMs with IDs 1
and 2. Each of the two VMs is referenced by a separate
FavorVM constraint. The user’s intention is to have two
deployment profiles each one favoring a different VM.
To this end, there are two deployment profiles in the
Profiles section; each profile assigns a 0.9 weight
to the constraint to be active and 0.0 to the one that
should be inactive. As clarified in Section 4.2, constraints

with 0.0 weight have no impact on the evaluation of
deployment profile score.

The next two sections of the input XML refer to the
transition between the deployment profiles. The Events
section points out events whose occurrence will cause
a change in the deployment followed. The two events
in question are: a) a time-based event that periodically
sends a signal, and b) a network-based event that starts a
server listening for a predefined message to arrive. Both
events belong to the second class of Section 6.1. The first
event, with ID 1, will be triggered every 1, 000 seconds
as defined within the Time tag. The second event (Net
tag) will have Nefeli listen for messages coming in on
port 2324. If the message received is the string Change,
the event will be triggered.

<Altenative Task−f lows>
<VirtualMachines>
<VM id=”1”><RAM>512</RAM><Disk>VM1. img</Disk></VM>
<VM id=”2”><RAM>512</RAM><Disk>VM2. img</Disk></VM>

</VirtualMachines>

<Cons tra in ts>
<FavorVM id=”1”><VMid>1</VMid></FavorVM>
<FavorVM id=”2”><VMid>2</VMid></FavorVM>

</Cons tra in ts>

<P ro f i l e s>
<P ro f i l e id=”1”>
<Weights>
<Constr id=”1”><Weight>0 . 9</Weight></Constr>
<Constr id=”2”><Weight>0 . 0</Weight></Constr>

</Weights>
</P ro f i l e>
<P ro f i l e id=”2”>
<Weights>
<Constr id=”1”><Weight>0 . 0</Weight></Constr>
<Constr id=”2”><Weight>0 . 9</Weight></Constr>

</Weights>
</P ro f i l e>

</P ro f i l e s>

<Events>
<Time id=”1”><Period>1000</Period></Time>
<Net id=”2”>
<Port>2324</Port><Msg>Change</Msg>

</Net>
</Events>

<Trans i t i on s>
<Trans i t i on>
<From>1</From><To>2</To><Event>1</Event>

</Trans i t i on>
<Trans i t i on>
<From>2</From><To>1</To><Event>2</Event>

</Trans i t i on>
</Trans i t i on s>

</Alternative Task−f lows>

Listing 3: Nefeli extended XML input sample.

Transitions caused by the above two events are
sketched in the last segment of the XML description.
Event with ID 1 causes a transition from deployment
profile 1 to deployment profile 2, while activation of
the event 2 has the opposite effect. The outcome of this
“Alternative Task-flow” description is that VM 1 will
be favored for 1, 000 seconds and then VM 2 will be
“promoted” until the message Change is received. This
alternate usage of profiles continues as long as the virtual
infrastructure remains on-line.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

6.3 Coordinating Nefeli’s Operation

Figure 4 depicts the key Nefeli components and their
role in a cloud environment. Deployer is active the entire
time the cloud is available and keeps track of all task-
flows. As events may cause the VM-to-host mapping to
change, the Deployer takes appropriate action to produce
and apply updated deployment profiles. To do so, this
component a) contacts the Planner to acquire a high
scoring deployment profile and b) makes use of a cloud
connector to interact with the underlying middleware.

Note

P
ro

vi
de

r
C

on
su

m
er

Nefeli − The Cloud Gateway

Solver

Cloud Middleware Connector

N
ot

ifi
ca

tio
n

M
ec

ha
ni

sm

Constraints
Specifications of

Virtual Machines User−monitored Events

Profiles

Deployment

Physical nodes

Monitoring

Administration
Constraints

Infrastructure

DeployerPlanner

Fig. 4: The environment Nefeli operates in.

At bootstrap, Nefeli starts listening for two key events:
requests for new virtual infrastructures as well as calls
for purging virtual infrastructures that have run their
work to completion. The Deployer maintains a list of
all deployed virtual infrastructures. Each such infras-
tructure is paired with a corresponding task-flow for
which the VM deployment is optimized; this task-flow
is termed as active. Also, for each infrastructure there
may exist inactive task-flows that get activated only if
appropriate events occur. The transition between deacti-
vating a task-flow and activating another –inactive thus
far– necessitates a different VM-to-host deployment.
Changing the VM-to-host mapping calls for respective

VM migration requests to be issued to the underlying
cloud middleware. The precise migration requests are
unknown until the target deployment profile is produced
by the Planner. The Deployer contacts the Planner, passes
the constraints of all active task-flows and receives the
VM-to-host mapping. The Deployer subsequently orches-
trates the transition to the produced deployment profile
through proper migration requests. This cycle of event
monitoring and profile transition continues until all vir-
tual infrastructures (and thus task-flows) are purged.

7 EVALUATION

We have implemented Nefeli as a Java library and a web
service to allow both integration with user applications

and easy embedding in cloud management systems. The
key objectives of our experimental evaluation are to:

• examine the efficiency of our system as compared
with existing placement alternatives as far as CPU
utilization and throughput are concerned.

• investigate the behavior ofNefeli as the number and
features of virtual resources available for processing
change over time.

• evaluate the overheads involved in using Nefeli.

Our experimentation entails diverse scientific task-flows
executed on simulated infrastructures as well as appli-
cations executed in a private Iaas-cloud. The difference
between simulation and real application evaluation is in
the infrastructure used. We have implemented two cloud
middleware connectors (Figure1). The first simulates a
physical infrastructure and the second interacts with
OpenNebula [2] through XML-RPC. At this time, Open-
Nebula along with Eucalyptus [4] and OpenStack [5] are
all key open-source IaaS-cloud middleware projects with
similar if not identical objectives. In what follows, we
first examine performance and scalability issues using
the simulated infrastructure and subsequently present
the benefits of using Nefeli in a real application.

7.1 Nefeli in a Simulated Cloud Environment

The physical nodes of the simulated infrastructure are
assumed to be connected over a 10 Mbps switch in a star
network topology. Each node provides two types of re-
sources: RAM and CPU-cycles. VMs reserve RAM upon
their deployment and consume CPU-cycles to transform
input data to output data. The number of available cycles
per second to be shared among hosted VMs allows us
to designate the CPU performance rate. Increasing the
available CPU-cycles per second appointed to each host
results in producing more output data per unit of time
(more bytes per second). We set physical nodes to have
8 GB of RAM and virtual nodes to have 512 MB.

The behavior of each VM is designated by two ratios:

• The input-to-output size ratio (input KBytes/output
KBytes). This ratio quantifies how much of the input
data must be consumed to produce a single unit of
the output data.

• The cycles-to-output ratio indicates how many cycles
have to be expended to produce a single unit of
output (i.e., Byte). By increasing the cycles per sec-
ond available to each CPU and keeping the same
cycles-to-output ratio, we allow more output Bytes to
be produced (in the duration of a second). Such an
increase essentially corresponds to an upgrade of
the respective CPU.

Output bytes are forwarded to other virtual machines
via the network and thus consume network bandwidth.
Using the above modeling, a task-flow creation requires
the following: first, setting up characteristics of each VM
with both input-to-output and cycles-to-output rates and
second, defining the network connections describing the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 2: VM characteristics for the SIPHT-inspired task-
flow.

VM IDs Input-to-Output Cycles-to-Output

1 11.34 78.1
2 0.11 21.27
3 4.64 43.93
4 59.96 772.89
5 4.31 59.87
6 5.3 1.69
7 2.44 24.48
8 137 576
9 57.54 298.86
10 0.97 3.66
11 3.12 1.73
12 1 0.09

{13, 14, 15, 16, 17, 18} 430 132

data paths of the specific task-flow(s) at hand.

SIPHT and CyberShake task-flows:we present two task-
flows inspired by the SIPHT search engine [17] and the
CyberShake [18] workflow.

• The sRNA identification protocol using high-
throughput technology (SIPHT) program searches over
a large database of RNA encoded genes. In doing so, it
combines a variety of individual algorithms in a well
formed workflow. This workflow has been split into
tasks so that it can be conveniently executed in cluster
environments. Figure 5 shows the processing nodes,
corresponding to respective VMs, and network topology
used by this task-flow. The input-to-output and cycles-
to-output ratios for all VMs, as extracted from [19], are
shown in Table 2. Taking into account the data flow
ratios of Table 2, the layout of the nodes and knowledge
of bottlenecks acquired from preliminary test runs we
are able to formulate a number of hints to be passed to
Nefeli. Here, VMs {1, 2, 3, 4} would better be deployed
on different hosting nodes as they operate in parallel.
Nodes 5 and 11 may develop into bottlenecks and are
thus better placed on dedicated hosting nodes. Table 3
presents our choice of weights for each of the constraints
used to generate the deployment profiles.

1 2 3 4

5
6

7 8 9 10

11

12

16

17

1813

14

15

Fig. 5: SIPHT-inspired task-flow

• CyberShake workflow characterizes earthquake hazards
using the Probabilistic Seismic Hazard Analysis (PSHA)
technique. Figure 6 shows the layout of VMs involved
in CyberShake-inspired task-flow while the input-to-output
and cycles-to-output ratios are presented in Table 4. The
user hints for this task-flow are presented in Table 5. As

TABLE 3: Two sets of User Weighted Constraints for
SIPHT

Constraints Nefeli Nefeli-power

ParVMs on VMs {1, 2, 3, 4} 0.50 0.50
FavorVM on VMs 5 0.80 0.80
FavorVM on VMs 11 0.80 0.80

PowerSave 0.0 0.40

TABLE 4: VM properties for the CyberShake-inspired
task-flow.

VM IDs Input-to-Output Cycles-to-Output

{1, 11} 87.75 0.80
{2, 3, 4, 5, 12, 13, 14, 15} 39, 573 21.27
{6, 7, 8, 9, 10, 16, 17,

18, 19, 20} 20 1, 360
21 1 1

VMs 1 and 11 act as top level data-producers of the task-
flow, they have to be placed on separate hosting nodes
and they should be favored over the rest of the VMs.
VMs 10, 20 and 21 should also be favored since they are
on the receiving end of multiple data flows as shown in
Figure 6. Finally, we ask for VMs operating in parallel
({2, 3, 4, 5, 12, 13, 14, 15} and {6, 7, 8, 9, 16, 17, 18, 19}) to
be hosted on different nodes.

In Tables 3 and 5 there are two sets of constraint
weights: the first is mostly concerned with throughput
attained by the infrastructure and is termedNefeli, while
the second includes the PowerSave constraint, indicat-
ing that we want to reduce the number of active hosting
nodes. The latter has to do with the consumption of
power, often of high concern in computing installations.
This second set of constraints is termed Nefeli-power.

The simulated environment allows us to easily change
key cloud properties affecting the performance of the

2 4 53

1

6 7 8 9

11

15 14 13 12

16171819
10

20

21

Fig. 6: CyberShake-inspired task-flow

TABLE 5: Two sets of User Weighted Constraints for
CyberShake

Constraints Nefeli Nefeli-power

ParVMs on VMs {1, 11} 0.25 0.25
ParVMs on VMs {2, 3, 4, 5, 12, 13, 14, 15} 0.25 0.25
ParVMs on VMs {6, 7, 8, 9, 16, 17, 18, 19} 0.25 0.25

FavorVM on VMs {1, 11} 0.10 0.10
FavorVM on VMs {10, 20, 21} 0.30 0.30

PowerSave 0.0 0.40

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

underlying physical infrastructure. We can: a) selectively
“increase” the CPU performance and b) offer additional
hosting nodes. We are interested in the throughput of the
entire flow as measured by the outcome of the trailing
node. In the SIPHT task-flow this is the VM with ID
11 and in the CyberShake, the VM with ID 21. Our two
configurations –Nefeli and Nefeli-power– are compared
against implementations of the following scheduling
policies:

• Power Saving: when instantiating VMs, we exclu-
sively use the clause that the number of active
hosting nodes must be the smallest possible.

• Random: schedule VMs randomly. This policy bears
minimal overhead.

• Balance VMs: attempt to distribute VMs equally
across all hosting nodes.

CPU performance: we select 6 hosting nodes in this
experiment and gradually increase the CPU performance
rate up to 20 times. We do so by increasing the CPU
cycles each hosting node has available every second.
Figures 7a and 7d depict the performance gains ob-

tained for the SIPHT and CyberShake task-flows using
the Nefeli configuration of Tables 3 and 5. In both task-
flows, Random and Balance VMs schedulers demon-
strate approximately the same performance. Since the
Balance VMs policy iterates over the hosting nodes for
placing newly instantiated VMs, one would expect that it
should be more beneficial than its Random counterpart.
However, it is not since it does not discriminate between
VMs that are to be deployed on the hosts. VMs are
chosen randomly, albeit evenly distributed across hosts.
The Power Saving policy uses fewer physical nodes to
host the same number of VMs compared to Balance
VMs and Random policies. Thus, its VM placement is
effective in light of high performing CPUs. The con-
servative Power Saving scheduler is an underachiever
in overall performance even though the utilization of
its active hosting nodes is typically high. Nefeli con-
sistently manages to outperform all other schedulers
showing that the potential bottlenecks that have been
user-“hinted” through pertinent constraints have been
addressed successfully.
Provide additional physical nodes: increasing the num-
ber of physical nodes results in a) having more CPU-
cycles available, b) increased overall network bandwidth
and c) increased power consumption. We start with 3
hosting nodes and we gradually reach an infrastructure
consisting of 10 physical machines. In Figures 7b and 7e,
we present the mean throughput delivered by the SIPHT
and CyberShake task-flows respectively. In both cases
the three schedulers and the two Nefeli configurations
are used. In infrastructures with very few nodes, the
options for optimal deployment are limited. This is the
reason why all scheduling policies perform equally well
when 3 hosting nodes are available. As more nodes
are added, the Nefeli configuration outperforms the
other schedulers. All schedulers except the Power Saving
display notable performance improvements since they

take advantage of additional nodes. The Power Saving
scheduler always uses a fixed number of hosting nodes,
in our case two. Thus, it displays no improvement.
Power saving schedulers [20]: are popular amongst
cloud operators because they reduce the maintenance
cost of the physical plant. Hosting nodes serving no VMs
may enter a “deep-sleep” state in which they consume
far less energy compared to their normal operation.
Nefeli-power may assist in reducing the number of
active hosting nodes through its power saving constraint
in the production of deployment profiles. Given that
power is consumed only by the active hosting nodes
and only during the period the virtual infrastructure is
available, Figures 7c and 7f show the task-flow through-
put achieved normalized by the number of active nodes.
The normalized throughput is computed by dividing the
total throughput reported in Figures 7b and 7e by the
number of physical nodes that host VMs. This average
throughput rate per active host captures the power effi-
ciency of the physical substrate. The lower the average
throughput per active host is, the longer the amount of
time the nodes have to remain on-line to produce the
same amount of output data.
For both task-flows, the Power Saving scheduler uses

exactly two hosting nodes to deploy all VMs and there-
fore, it remains largely unaffected by the addition of
extra nodes. Random, Balance VMs and Nefeli use as
many hosting nodes as possible. For the SIPHT task-
flow the trend displayed in Figure 7c is a decrease in
the average throughput per node as nodes are added.
Figure 7b shows that Nefeli cannot enhance overall
throughput when more than 6 nodes are available. This
is because 6 nodes can fully satisfy all constraints of
Table 3. Therefore, Nefeli-power offers an improvement
over Nefeli in terms of average throughput achieved
per active node (Figure 7c) as the additional nodes are
not used for hosting VMs. In the case of CyberShake,
the extra resources offered by the additional hosting
nodes are effectively harvested. Here, Nefeli-power of-
fers total throughput similar to Random and Balance
VMs (Figure 7e) but uses fewer hosting nodes as we
show in Figure 7f. Overall, Nefeli-power presents a
compromise between the high throughput rates achieved
by Nefeli and the number of active nodes. Figures 7b
and 7e in combination with Figure 7c and 7f depict the
tradeoff between overall performance achieved in terms
of throughput and the use of hosting nodes.
Multiple SIPHT task-flows: to evaluate the performance
overhead incurred by profile production, we simulate
a physical infrastructure of 500 nodes and we request
the deployment of gradually increasing numbers of
virtual infrastructures. Each such infrastructure serves
a separate SIPHT task-flow. We allow the amount of
SIPHT task-flows to range from 1 to 200 (involving 18
to 3, 600 VMs). The three lines shown in Figure 8 depict
the time needed to decide on the VM placement for three
different values of the same_iterations used as input
in Algorithm 2. Using a single thread of a Core(TM)2 Duo

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

 0

 100

 200

 300

 400

 500

 600

 700

x1 x3 x5 x9 x12 x16 x20

T
hr

ou
gh

pu
t (

K
B

yt
es

/S
ec

)

CPU performance scale

 Random
 Power Saving

 Balance
 Nefeli

(a) SIPHT throughput under in-
creasing CPU performance

 10

 20

 30

 40

 50

 60

 70

 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
B

yt
es

/S
ec

)

Number of hosting nodes

 Random
 Power Saving

 Balance
 Nefeli

 Nefeli-power

(b) SIPHT throughput under in-
creasing number of hosting nodes

 3

 4

 5

 6

 7

 8

 9

 10

 11

 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t p

er
 a

ct
iv

e
no

de
 (

K
B

yt
es

/S
ec

)

Number of hosting nodes

 Random
 Power Saving

 Balance
 Nefeli

 Nefeli-power

(c) SIPHT throughput per active
node

 0

 5

 10

 15

 20

 25

 30

 35

 40

x1 x3 x5 x9 x12 x16 x20

T
hr

ou
gh

pu
t (

K
B

yt
es

/S
ec

)

CPU performance scale

 Random
 Power Saving

 Balance
 Nefeli

(d) CyberShake throughput under in-
creasing CPU performance

 0

 0.5

 1

 1.5

 2

 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
B

yt
es

/S
ec

)

Number of hosting nodes

 Random
 Power Saving

 Balance
 Nefeli

 Nefeli-power

(e) CyberShake throughput under in-
creasing number of hosting nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t p

er
 a

ct
iv

e
no

de
 (

K
B

yt
es

/S
ec

)

Number of hosting nodes

 Random
 Power Saving

 Balance
 Nefeli

 Nefeli-power

(f) CyberShake throughput per active
node

Fig. 7: Evaluation of Nefeli under the SIPHT and CyberShake task-flows

CPU T7100 at 1.80GHz, our Nefeli prototype implemen-
tation produces any deployment profile in less than 45
seconds. The lower the same_iterations is, the less
time is needed to reach to a placement decision. Yet,
this has an impact on the deployment profile’s score. In
Figure 9 we show the effect of the same_iterations
parameter on the profile score. In this experiment, we
fix the number of SIPHT instances to 200 and we vary
the same_iterations from 5 to 200. More iterations
result in higher scoring profiles.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 25 50 75 100 125 150 175 200

T
im

e
in

 S
ec

on
ds

Number of SIPHT instances

 200 same iter.
 100 same iter.

 5 same iter.

Fig. 8: Plan production time under increasing numbers
of task-flows.

The outcome of experimenting with simulated cloud
environments shows the potential of our approach.
When cloud consumers indicate likely bottlenecks using
hints or constraints, Nefeli can drastically enhance the
overall performance of the equipment used.

 195

 195.5

 196

 196.5

 197

 197.5

 198

 198.5

 199

200 150 100 50 5

P
la

n
S

co
re

Same iterations

Fig. 9: Plan score of 200 SIPHT instances for different
numbers of same_iterations.

7.2 Nefeli in a Real Private Cloud Environment

We now outline our evaluation using a real private-
cloud environment running Nefeli and show the gains
obtained when compared with the scheduler of a widely-
deployed open-source cloud middleware [2]. We have
created a cloud-enabled application that performs video
and audio transformations while offering deployment
hints to Nefeli. Such applications are very well suited
to cloud execution as many VMs can simultaneously
operate on separate fragments of the input media. In
addition, the elongated processing time ameliorates the
VM scheduling and deployment delays.

The transformation application serves one user at a
time in a first-come first-serve fashion. Users must pro-
vide a media file comprised of a video and an audio
stream. Our application accepts the input streams and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

transforms them to a user-selected format. The available
output formats are: DVD, SVCD or VCD. The user also
provides the encoding property, either PAL or NTSC,
regarding the display standard. The combination of the
format and display standard specifies the compression
algorithm (MPEG-1 & 2) and the video resolution of the
output. A transformation request is served by following
a four-step procedure:
1) the input file is split into equally sized parts. The

number of parts is equal to the number of VMs
capable of processing them (3 in our virtual infras-
tructure).

2) each part is dispatched to VMs performing the
appropriate video transformation,

3) once video transformation completes, all parts are
forwarded to the VMs that perform the audio
transformation, and finally,

4) all segments are merged into one transformed
video.

All valid combinations of the three output formats
(DVD, SVCD, VCD) and the two display settings (PAL,
NTSC) for both audio and video transformation yield
in summary 12 distinct capabilities (6 for video and 6
for audio) shown in Table 6. Our virtual infrastructure
is made of 6 VMs with IDs 1 to 6. Shown in Table 6,
each of the video/audio transformations of steps 2 and 3
above is carried out by 3 VMs. During a video or audio
transformation, 3 VMs can work in parallel on three
parts of the input file. Therefore, step 1 splits the input
file into 3 equally sized parts. We note that VMs do
not feature identical capabilities. For example, VM 1 can
produce only DVD/PAL, SVCD/PAL, and SVCD/NTSC
video as well as DVD/PAL, VCD/PAL and VCD/NTSC
audio streams. The rest of the six capabilities are not
installed on VM 1.
In an optimal VM deployment, VMs simultaneously

performing video/audio transformations should be dis-
tributed among different hosting nodes so that they do
not compete for CPU cycles. We allocate transformation
programs (or capabilities) to VMs in a manner such that
there is no single optimal VM-to-host mapping for all
transformation operations. Table 6 indicates what is the
optimal deployment profile for each transformation op-
eration. For example, in the optimal mapping of DVD/-
PAL, VMs 1, 2, 3 are distributed among different hosting
nodes as they perform the video transformations. Along
these lines, VMs 1, 4, 5 also have to be placed on different
hosting nodes while producing the audio stream.

TABLE 6: Mapping of transformational tasks to VMs.

Transformation VMs for Video VMs for Audio

DVD/PAL 1, 2, 3 1, 4, 5
DVD/NTSC 2, 3, 4 2, 5, 6
VCD/PAL 3, 4, 5 3, 6, 1

VCD/NTSC 4, 5, 6 4, 1, 2
SVCD/PAL 5, 6, 1 5, 2, 3

SVCD/NTSC 6, 1, 2 6, 3, 4

During the experiment, the mapping of the
capabilities-to-VMs remains fixed while Nefeli
dynamically performs the VM-to-host mapping. We use
an XML extended input file (as the one in Section 6.2)
to indicate six different task-flows corresponding to
the 6 rows of Table 6. Every time, we encounter, for
example, the creation of a VCD/NTSC stream the
respective deployment hints are used by Nefeli to
produce a suitable deployment profile. Once this piece
of work completes, another request through a respective
event might appear, for example DVD/NTSC. Again,
an appropriate profile is produced and applied to
attain an optimal VM-to-host mapping for the specific
transformation function.

The communication between the application and Ne-
feli is based on the event mechanism. We assign one
event for each of the output formats (DVD, VCD, SVCD)
and two more for the display standard (PAL or NTSC).
These events are triggered by sending a signal to ports
on which Nefeli listens. Format and display events are
combined using Boolean operators before asking the
Deployer to take appropriate action. For instance, request-
ing a DVD/PAL transformation will trigger both events
“DVD” and “PAL”.

 0

 200

 400

 600

 800

 1000

 1200

ONE Nefeli

T
im

e
(S

ec
)

Merge
Transcode
Split

Fig. 10: Comparing Nefeli to OpenNebula in the three
phases of the encoding.

The physical substrate, in this experiment, is made
of 3 nodes connected via a 1 GBps Ethernet switch.
Each node is equipped with 8 GB of RAM and an
Intel(R) Core(TM)2 CPU 6600 at 2.40 GHz CPU. Live
migration is not available and VM images are fetched
from a file server. We use Xen 3.2.1 [21] as VM hypervisor
and OpenNebula v.1.2.0 [2] is the cloud middleware.
Nefeli interacts with OpenNebula through its API that
is exposed with the assistance of the XML-RPC protocol.
VMs use 512 MB of RAM and face no restriction on the
CPU resource usage.

Figure 10 shows the time required to process a DivX
(MPEG-4 video/MPEG layer-3 audio) file in our cloud
infrastructure using either Nefeli or simply employing
the default OpenNebula VM scheduler. The VM place-
ment of OpenNebula is based on a match-making policy
that takes into account the free memory and CPU each
hosting node reports and the respective VM require-
ments. Each VM occupies a percentage of the hosting
CPU and uses a portion of its memory. The OpenNeb-
ula match-making approach proves ineffective for our
application as VM CPU requirements are known only at

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

run-time and not at deployment time. Nefeli achieves a
17% improvement in the time required to have video
and audio transformation complete. File splitting and
merging display no gains from an optimal deployment
since both operations are performed on a single node. In
our infrastructure featuring hosts with Core(TM)2 CPU
6600 at 2.40GHz processors, we found the overhead for
the production of the deployment profile to be negligible
when compared with virtual disk copying and VM
booting operations.

8 RELATED WORK

In the pure virtualized environments of [6], [7], [22] the
satisfaction of SLAs is examined in light of changing
workloads. Local utility functions provide feedback to
a global and system-wide optimization two-level mech-
anism that decides on resource provisioning. In contrast,
Nefeli exclusively uses a single optimization scoring
function in which all deployment preferences are in-
cluded.
The system described in [9] employs smart component

regeneration through VM instantiation to achieve high
availability and low response time of multi-tier applica-
tions. Placing and instantiating VMs is done based on
load predictions using queue modeling. Anti-collocation
and resource constraints are used in [23] to guarantee
high availability. Through the introduction of shadow
VMs the placement algorithm reserves locations on sep-
arate nodes that can be used to evacuate VMs in case of a
failing host. In Nefeli high availability is only one of the
placement aspects we target through constraints. With
constraints that function in a plug and play fashion we
serve several versatile placement goals at the same time.
Advice, similar to the hints of our approach, regarding
the placement of VMs are used in [24]. Components,
termed Domain Advisors, offer their advice to a con-
straint satisfaction solver that yields the final placement
of VMs to hosts. Compared to [24], our approach is better
aligned with the cloud abstractions as we classify hints
as those used by the consumer and those available to
the administration. Furthermore, our event-based mech-
anism allows for the implementation of cloud enabled
applications that dynamically adjust their deployment
on the cloud. The Plasma [25] consolidation manager
makes a clean distinction between the roles of the user
requesting VMs and the administrator responsible for
the physical infrastructure. This distinction, available
also in Nefeli, is vital for the transparent operation of the
cloud. Yet, compared to our approach, Plasma has lim-
ited options in the constraints available. A total of four
constraints is used, two of them are available to the cloud
consumers and two to the administrators. The cloud
software by VMware [26] offers support for a limited set
of constraints in the placement of VMs. Its Distributed
Resource Manager (DRM) can exploit collocation and
anti-collocation deployment hints. However, the cloud
consumer is not given a wide range of constraints to

use in describing an ideal deployment. The concept
of resource pools can serve certain properties required
by the customers (e.g., high availability). Contrary to
the platform offered by VMware, with Nefeli we take
advantage of the flexibility that pluggable constraints
offer in matching user needs with the facilities offered
by the cloud. VM placement under SLA guarantees and
power efficiency is examined in pMapper [20]. SLAs and
the cost of live migration are taken into account while
VMs are continuously reorganized to balance load. In
our approach, power efficiency is considered as an ad-
ministrative preference. Furthermore, our VM placement
decisions are based on deployment hints and not on
load predictions. Finally, the system described in [27]
also rearranges VMs based on SLAs, high-level policies,
and performance forecasts. Nefeli does not employ load
predictions, rather user hints are exploited in handling
peak load and high-level policies can be readily enforced
by administrative deployment hints.
The problem of constraint satisfaction in VM place-

ment is shown to be hard and a hierarchical placement
approach is suggested to handle scalability in [8]. In
our work, we formulate the VM placement issue as a
constraint satisfaction problem so as to benefit from the
evolution of respective contemporary solvers. In [15], we
offer an approach that elaborates on the scalability of
such solvers.
The behavior of many distributed applications can be

modeled as recurrent data and control flows (or collec-
tively workflows) that often follow distinct and specific
patterns [28]. In Nefeli, we offer the means to express the
existence of such patterns as task-flows; Nefeli exploits
these patterns to attain improved VM deployment.
The allocation of resources in dynamic distributed

environments [29] where load and resource availability
change over time requires adaptive policies. In [30],
[31], such resource sharing policies are proposed for the
execution of jobs on the Grid. Utility functions [31] are
proposed to help quantify the efficient execution of jobs
in light of different resource sharing disciplines. Grid-
jobs frequently form large DAGs often split before they
are dispatched for execution.
Rearrangement of VMs aims at harvesting cloud re-

sources in the most effective way. In similar spirit, data
stream processing systems [32]–[34] aim to produce the
most efficient placement of operators in the network
for processing of data flowing from data sources to
interested data consumers.
In many respects, Nefeli realizes a number of features

envisaged by autonomic computing [35]. Autonomic
systems attempt to self-adjust according to the needs
of the applications they process. Specific application re-
quirements are expressed in a high-level language which
are then interpreted by the tuning component of the
systems. In enterprise infrastructures, these requirements
are described with the help of service-level agreements
(SLAs). The degree to which an SLA is satisfied is
quantified through user-furnished utility functions [11],

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

[12]. Although, the stated objective of SLAs is to make
applications agnostic of the system they run on, this
regularly fails because defining an appropriate utility
function is a nontrivial task. This definition requires
both application expertise and detailed knowledge of
the autonomic model used. Moreover, complex SLA
requirements frequently require significant human inter-
vention [10]. In contrast, Nefeli uses predefined utility
functions that correspond to known properties of the
task-flows under execution.
Compared to other existing scheduling VM–based

load-balancing systems [36]–[38],Nefeli exhibits two key
differences. First, our approach does not examine the
execution of specific VMs in isolation but considers
all task-flows making up the current workload before
rearranging the virtual infrastructure. Second, the event-
based mechanism that we use to trigger VM rearrange-
ments is not based solely on specific usage thresholds of
resources. Moreover, Nefeli supports the use of any ex-
ternal monitor mechanism available within the physical
infrastructure such as Nagios [16].

9 CONCLUSIONS - FUTURE WORK

In this paper we present Nefeli, a hint-based VM sched-
uler that serves as a gateway to IaaS-clouds. Users are
aware of the flow of tasks executed in their virtual
infrastructures and the role each VM plays. This infor-
mation is passed to the cloud provider, as hints, and
helps drive the placement of VMs to hosts. Hints are
also employed by the cloud administration to express its
own deployment preferences.Nefeli combines consumer
and administrative hints to handle peak performance,
address performance bottlenecks and effectively imple-
ment high-level cloud policies such as load balancing
and energy savings. An event-based mechanism allows
Nefeli to reschedule VMs to adjust to changes in the
workloads served. Our approach is aligned with the
separation of concerns IaaS-clouds introduce as the users
remain unaware of the physical cloud structure and the
properties of the VM hosting nodes. Our evaluation,
using simulated and real private Iaas-cloud environ-
ments, shows significant gains for Nefeli both in terms
of performance and power consumption.
In the future, we plan to: a) investigate alternative

constraint satisfaction approaches to address scalability
issues present in large infrastructures, b) offer deploy-
ment hints that will effectively handle the deployment
of virtual infrastructures in the context of real large
cloud installations, c) extend the support of Nefeli to
other cloud middleware platforms [4], [5] by providing
additional Cloud Middleware Connectors.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments
that helped us improve our presentation. We would also
like to thank V. Floros for his contribution in the early
stages of this work. A preliminary version of the paper

appeared in [39]. This work has been partially supported
by the D4Science I & II EU FP7 projects and ERC Starting
Grant # 279237.

REFERENCES

[1] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors:
Current Technology and Future Trends,” IEEE Computer, vol. 38,
no. 5, pp. 39–47, 2005.

[2] “OpenNebula,” http://www.opennebula.org, May 2011.
[3] Amazon, “Elastic Cloud,” http://aws.amazon.com/ec2/, 2009.
[4] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source
Cloud-Computing System,” in 9th IEEE/ACM Int. Symposium on
Cluster Computing and the Grid (CCGRID), Shanghai, China, May
2009, pp. 124–131.

[5] “OpenStack,” http://www.openstack.org/, Feb. 2011.
[6] H. N. Van, F. D. Tran, and J.-M.Menaud, “Autonomic Virtual

Resource Management for Service Hosting Platforms,” in Proc. of
the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, Vancouver, BC, Canada, 2009, pp. 1–8.

[7] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, and
Q. Q.B. Wang, “Appliance-Based Autonomic Provisioning Frame-
work for Virtualized Outsourcing Data Center,” in Proc. of the 4th
Int. Conf. on Autonomic Computing, Washington, DC, 2007, p. 29.

[8] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whalley, and
E. Snible, “Improving Performance and Availability of Services
Hosted on IaaS Clouds with Structural Constraint-aware Virtual
Machine Placement,” in Proceedings of the 2011 IEEE Int. Conf. on
Services Computing (SCC), Washington, DCC, USA, July 2011.

[9] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and
C. Pu, “Performance and Availability Aware Regeneration For
Cloud Based Multitier Applications,” in IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN), Chicago, Illinois, USA,
June 2010.

[10] P. deGrandis and G. Valetto, “Elicitation and Utilization of
Application-level Utility Functions,” in Proc. of the 6th Int. Conf.
on Autonomic Computing. Chicago, IL, USA: ACM, 2009.

[11] J. O. Kephart and R. Das, “Achieving Self-Management via Utility
Functions,” IEEE Internet Computing, vol. 11, no. 1, pp. 40–48, 2007.

[12] G. Tesauro and J. O. Kephart, “Utility Functions in Autonomic
Systems,” in Proc. of the 1st Int. Conf. on Autonomic Computing.
New York, NY, USA: IEEE Computer Society, 2004, pp. 70–77.

[13] D. B. G. Ian J. Taylor, Ewa Deelman and M. Shields, Workflows for
e-Science Scientific Workflows for Grids. London: Springer, 2007.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[15] K. Tsakalozos, M. Roussopoulos, and A. Delis, “VM Placement in
non-Homogeneous IaaS-Clouds,” in Proc. of the 9th Int. Conf. on
Service Oriented Computing, Paphos, Cyprus, Dec. 2011.

[16] D. Josephsen, Building a Monitoring Infrastructure with Nagios.
Upper Saddle River, NJ: Prentice Hall PTR, 2007.

[17] “sRNA identification protocol using high-throughput technology
(SIPHT),” http://newbio.cs.wisc.edu/sRNA/ , Harvard Medical
School, Boston, Massachusetts, 2010.

[18] E. Deelman and et al., “Managing Large-Scale Workflow Exe-
cution from Resource Provisioning to Provenance Tracking: The
CyberShake Example,” in Proceedings of the Second IEEE Int. Conf.
on e-Science and Grid Computing, ser. E-SCIENCE ’06. Amsterdam,
Netherlands: IEEE Computer Society, 2006.

[19] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su,
and K. Vahi, “Characterization of Scientific Workflows,” in 3rd
Workshop on Workflows in Support of Large-Scale Science, Austin,
TX, November 2008, pp. 1–10.

[20] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migra-
tion Cost AwareApplication Placement in Virtualized Systems,”
in Proceedings of the 9th ACM/IFIP/USENIX International Conference
on Middleware, Leuven, Belgium, 2008, pp. 243–264.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. of the 19th ACM Symposium on Operating
Systems Principles. Lake George, NY: ACM, October 2003.

[22] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the Use
of Fuzzy Modeling in Virtualized Data Center Management,” in
Proc. of the Fourth Int. Conf. on Autonomic Computing, Jacksonville,
Florida, USA, June 2007.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

[23] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and
D. H. Lorenz, “Guaranteeing High Availability Goals for Virtual
Machine Placement,” in Proc. of the 31st Int. Conf. on Distributed
Computing Systems, Minneapolis, Minnesota, 2011.

[24] R. Harper, L. Tomek, O. Biran, and E. Hadad, “A Virtual Resource
Placement Service,” in Proc. of the 1st Int. Workshop on Depend-
ability of Clouds, Data Centers and Virtual Computing Environments
(DCDV), Hong Kong, China, June 2011.

[25] F. Hermenier, J. Lawall, J.-M. Menaud, and G. Muller, “Dynamic
Consolidation of Highly Available Web Application,” INRIA,
Tech. Rep. Research Report RR-7545, 2011.

[26] VMware, “VMware hypervisor,” http://www.vmware.com/,
2012.

[27] C. Hyser, B. McKee, R. Gardner, and B. J. Watson,
“Autonomic Virtual Machine Placement in the Data Center,”
http://www.hpl.hp.com/techreports/2007/HPL-2007-189.html,
2008.

[28] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Workflow Patterns,” Distributed and Parallel
Databases, vol. 14, no. 1, pp. 5–51, 2003.

[29] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky Com-
puting,” IEEE Internet Computing, vol. 13, September 2009.

[30] K. Lee, N. Paton, R. Sakellariou, E. Deelman, A. Fernandes,
and G. Mehta, “Adaptive Workflow Processing and Execution
in Pegasus,” in Proc. of 3rd IEEE Int. Conf. on Grid and Pervasive
Computing Workshops, Kunming, PR China, 2008, pp. 99–106.

[31] K. Lee, N. Paton, R. Sakellariou, and A. Fernandes, “Utility Driven
Adaptive Workflow Execution,” in Proc. of 9th IEEE/ACM Int.
Symposium on Cluster Computing and the Grid, Shanghai, PR China,
2009, pp. 220–227.

[32] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cen-
timentel, Y. Xing, and S. Zdonik, “Scalable Distributed Stream
Processing,” in Proc. of CIDR, Asilomar, CA, January 2003.

[33] Y. Ahmad and U. Çetintemel, “Network-Aware Query Processing
for Stream-based Applications,” in Proc. of VLDB’04, Toronto,
Canada, Aug. 2004.

[34] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
and M. Seltzer, “Network-Aware Operator Placement for Stream-
Processing Systems,” in Proc. of ICDE, Tokyo, Japan, Apr. 2006.

[35] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE–Computer, vol. 36, no. 1, pp. 41–50, 2003.

[36] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execu-
tion and leasing using virtual machines,” in Proc. of the 17th Int.
Symposium on High Performance Distributed Computing. Boston,
USA: ACM, June 2008, pp. 87–96.

[37] C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic Performance
Tuning for the Virtualized Cluster System,” in Proc. of the 29th
IEEE Int. Conf. on Distributed Computing Systems, Montreal, Que-
bec, Canada, June 2009, pp. 183–190.

[38] VMware, “vSphere,” http://www.vmware.com/products/
vsphere/, Nov. 2011.

[39] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis, “Nefeli:
Hint-based Execution of Workloads in Clouds ,” in Proc. of the
30th IEEE Int. Conf. on Distributed Computing Sytems (ICDCS’10),
Genoa, Italy, June 2010.

Konstantinos Tsakalozos is a
PhD candidate at the National and
Kapodistrian University of Athens
under the supervision of Alex Delis.
In 2007 he received his M.Sc. from
Department of Informatics and
Telecommunications also at the
University of Athens. As a member
of the ”Management of Data
Information, & Knowledge Group”

he has participated in three EGEE projects, Diligent,
D4Science and D4Science II. His research interests
include cloud computing, distributed architectures and
multidimensional indexing.

Mema Roussopoulos is an As-
sistant Professor of Computer Sci-
ence at the National and Kapodis-
trian University of Athens. Her in-
terests are in the areas of dis-
tributed systems, networking, and
digital preservation. She is a recipi-
ent of the NSF CAREER Award, the
ERC Starting Grant Award, and Best
Paper Award at ACM SOSP 2003.
She received her PhD in Computer

Science from Stanford University.

Alex Delis is a Professor of Com-
puter Systems in the Department
of Informatics and Telecommunica-
tions at the National and Kapodis-
trian University of Athens. His re-
search interests are in distributed
computing and data management.
His research work has been sup-
ported by agencies and organiza-
tions in Australia, US and the Eu-
ropean Union. He holds a PhD in

Computer Science from the Univ. of Maryland at College
Park.

