
Reaching Available Public Parking Spaces in
Urban Environments using Ad-hoc Networking

Vasilis Verroios 1, Vasilis Efstathiou 2 and Alex Delis 3

University of Athens, GR15784, Athens, Greece
{verroios1, v.efstathiou2, ad3}@di.uoa.gr

Abstract—A fundamental application in vehicular ad-hoc net-
works (VANETs) is the discovery of available parking spaces
as vehicles navigate through urban road networks. Vehiclesare
now capable of finding such parking spots using their on-board
sensing and computational infrastructure and then they can
disseminate this information for use by other members of the
travelling community in the geographic vicinity. In this context,
we examine the problem of locating an available parking space
for a vehicle entering an urban network of roads. Upon its entry,
a vehicle has to determine the best way to visit parking spots
reported to be free. In deciding this, the vehicle has to consider
the time required to reach each candidate position, its distance
from the final destination should the driver walk, and of course,
the probability that the spot(s) will be still-free once thevehicle
shows up at location. We formulate the question at hand as a
Time-Varying Travelling Salesman problem and we propose an
approach for computing the route that a vehicle must traverse
in order to visit all parking spaces known to be available. Our
method takes into account the limited computational resources of
vehicles and attempts to find the best feasible trip. This is done
in conjunction with a cost function that estimates the probability
to find a space filled. In order to ascertain the effectiveness
of our proposal, we compare it with a best-first approach and
examine computational overheads. We also investigate how close
to optimal results our approach comes.

Keywords-parking space problem; VANETs; Time-Varying
Travelling Salesman Problem; TSP; incremental computing;ad-
hoc networking;

I. I NTRODUCTION

Recent work in vehicular ad hoc networks (VANETs) has
yielded equipment that can help vehicles identify available
parking spaces while navigating in city environments [1].
Clearly, such information is very useful as if disseminated
properly it could help the movement of cars, help individuals
get into their destination faster and at the same time save
monetary resources expended by both drivers and local govern-
ments. Modern vehicles are equipped with sensory equipment
that is able to detect spaces between parked vehicles [1]. This
equipment recognizes a spot as an available parking space
through the combined use of its sensory GPS-enabled devices
and a local geographic database. Such databases contain de-
tailed maps for urban areas along with city-designated spaces
where public parking is permitted; they also feature parking
lots that inform the public about their occupancy and their
available parking spaces through adjacent roadside-units[2].

A number of protocols has been proposed [3], [4], [5],
[6] to help disseminate information about the status of the

road network and in particular information about parking.
The above information could be used in conjunction with
the probability to find the available space still free when a
vehicle finally reaches the spot [7]. In this paper, we exploit
the information about identified available parking spaces that
dynamically becomes available so that a driver can be effi-
ciently directed to the available spots that are closest to her
final destination. Thecriteria for this decision are:a) the time
needed to arrive to each space available,b) the probability
to find the spot in question available at the time of arrival,
c)the walking distance to the final destination (and possibly the
parking fee for the space). We formulate the above question
as a travelling salesman problem in which the points-to-be-
visited are available public parking spots, located close to the
final destination of the driver.

We adopt a solution that attempts to minimize the afore-
mentioned criteria and yield a minimal cost. This cost is time-
dependent as the likelihood to find a space available depends
upon the time of arrival. For this reason, the classic version of
Travelling Salesman Problem (TSP) cannot sufficiently address
our requirement and so, we resort to the generalizedTime-
Varying TSP [3]. The latter uses as input, both a transit
time b(x,y,t) as well as a transit costc(x,y,t) for each edge
(x,y) at time t. Here, the problem is to find a dynamic path
that starts at a pre-specified vertexs and visits each vertex
only once in a way that the total transit cost of traversed
path is minimal. As theTime-Varying TSP is inherentlyNP-
hard, an exact solution would undoubtly require substantial
computational resources. We follow a dual approach: firstly,
we deploy clustering algorithms to reduce the problem size by
mostly working with representative points of our input in order
to offer a near-optimal solution. Secondly, we dynamically
use disseminated-by-others information as a vehicle proceeds
towards its destination in order to correct and re-adjust the
path currently pursued.

Our approach takes into consideration the limited resources
vehicular devices demonstrate when it comes to designating
a vehicle trajectory in order to select an available spot. Itis
worth mentioning that the continuous update of information
related to available parking as necessitated by the roaming
of the vehicles, may take a toll on the computational load
on the car devices. Our aim is to reduce the computational
load vehicle devices experience while at the same time to
find a near-optimal trip. The rest of this paper is organized

as follows: Section II states the problem we address and
Section III outlines related work. Section IV presents our
proposed method for compiling a trip around known parking
spaces. The way we evaluate our approach and the outcomes
of experiments are discussed in Section V. Section VI provides
concluding remarks.

II. PROBLEM AND ASSUMPTIONS

Vehicles equipped with an automatic parking system feature
sensors that can detect the length and the width of a space be-
tween stable objects [1]. Once a vehicle detects a space, it must
locate its position on its map possibly with the help of GPS.
The map should also have information about the municipality-
sanctioned areas where parking is allowed so that the vehicle
can independently determine whether it has encountered an
available spot. In an orthogonal manner, parking lots may
inform potential customers about their utilization and available
capacities with the help of roadside units. Through PDAs or
smart-phones, vehicles may collect information transmitted by
such units [2]. Vehicles store the information for detected
spaces and/or availability in parking lots and through their
communication resources, they disseminate this information
to others near by. The dissemination could be performed
through an appropriate protocol for parking information [3],
[4], [5], [6]. Apart from the above parking space availability,
vehicles maintain statistics about average time periods needed
to traverse road segments, the average number of spaces one
may need to visit before an available spot is reached, and the
average period of time that a parking space remains free. The
space and time granularity of such statistics depend on the
storage capabilities of a vehicle’s device.

The dispensed-by-others parking information has to be
exploited by a vehicle so that it will locate a spot within a
short period of time and close to its final destination. The
decision for the trip, the vehicle will follow, around the known
parking spaces, may be critical for the time needed to park and
the distance of the parking position to destination. Consider
Fig. 1 where a vehicle in positions has its final destination
positiond and is aware that spaces1, 2, 3 and4 close to her
final destination are currently available. If the vehicle goes
directly to space3, geographically the closest to destination
d, it may arrive there too late and find it taken. An alternative
route would be to make a detour, to check spaces1 and 2,
which are the closest to the current position, before visiting
space3, if 1 and2 are taken. Another detour could be made
to visit space4, after1 and2, and before3. But parking at4
means that the driver will have to walk some distance to her
destination. Also due to detours taken, the vehicle may finally
arrive to3 with some delay, should all previous choices prove
to be infeasible.

We can compute the expected time to destination for a
specific trip if we have at our disposal an estimation for the
probability to find each of the visited spaces free during the
trip in question. This expected time is a function of the time
required to reach every single available position and the time
needed to walk from there to destination. Let us consider

s

d

1

2

4

3

Fig. 1. Example for parking space problem

the trip with the minimum expected time to destination be
the best choice. Forn parking places, the number of distinct
trips traversing them all, is factorial. Clearly, this would pose
significant strain on the computing resources of the vehicle
device rendering an exhaustive search infeasible. Even if the
value of n is limited, the fact that the disseminated parking
information stored by a vehicle is frequently updated, it will
cause intense use of pertinent resources. The method discussed
in Section IV ultimately proposes a trip that minimizes a cost
function related to the criteria stated in the introduction. At
the same time, our approach takes into consideration the fact
that information about parking spots is continously received by
moving vehicles whose computational resources by and large
remain limited.

III. R ELATED WORK

We anticipate that moving vehicles use a dissemination
protocol in order to exchange information about parking
availability. Actually, a number of such proposals have already
been proposed in [3], [4], [5], [6]. In [3], a spatio-temporal
relevance function is proposed to compute the relevance of
information, so that the dissemination of information can
be carried out solely based on its relevance. In [4], mobile
nodes build content summaries of their local information
and disseminate them to peers; through a routing mechanism
queries are forwarded to nodes that have a high probability of
providing results. The protocol discussed in [5] disseminates
aggregated parking information about areas that cover a lotof
parking terminals, while taking the local relevance and ageof
information into account. In [6] the proposed protocol does
not disseminate the same information to all vehicles, in order
to avoid competition among them for the same parking spaces,
and tries to coordinate them, so that each vehicle “reserves”
a different space. Vehicle self-coordination is also discussed
in [8] where a protocol for traffic flow management in inter-
sections is suggested. In [9], we discuss a decentralized and
collaborative approach to bypass congested areas in large road-
networks based on information disseminated among moving
vehicles.

In this paper, we express the quality of a trip that visits
reported parking places in a sequence using a cost function.
This function depends on the probability to actually locatea
spot available for parking. In a similar context, [7] predicts

the occupancy of a parking lot, by modeling it as a queue
and using a Markov chain. Another work related to problem
of finding a free parking space, is presented in [2], where
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications are used to help vehicles navigate inside
large parking lots. Two basic approaches for the parking
space search problem are investigated in [10]: the first is a
decentralized approach that usesV2V communication in order
to disseminate parking space information among vehicles and
the second is a centralized approach where a server acts as a
reservation system for vehicles’ parking requests. The system
presented in [11], consists of a central server that collects
reports for parking spaces detected by vehicles’ sensors, in
order to produce a real-time map of parking space information.
Parking space allocation and routing to a reserved space is pro-
vided by the system proposed in [12], using aggregate parking
and traffic information from vehicles and roadside units. In
this work, we build on existing dissemination protocols [3],
[4], [5], [6] and through collected statistics (i.e., average rates
“seen by others thus far” on the road network) we propose
methods for helping a vehicle rapidly approach available space
near the stated destination.

IV. T HE SALESMAN METHOD

With the help of the dissemination protocol, a vehicle
seeking a spot uses data accumulated thus far and stored on
board to determine a trajectory to be visited. The data entails
all identified parking positions located close to the destination.
The degree of proximity can be driver designated and indicates
how far she is willing to walk. Candidate positions have to be
large enough to accommodate the vehicle in question. In this
section we outline three different approaches:

• the exact approach in which we determine the vehicle
trajectory with the data available on-board at request time.

• theclustering-based approaches in which instead of deal-
ing with all candidate parking spots, we initially group all
currently on-board available spots in geographic extends.
We then work with these groups to provide a solution,
and finally,

• the live approach in which we continuously receive
updates regarding parking spots from oncoming (in com-
munication range) cars and dynamically re-calibrate the
trajectory taken to destination.

In all of the above approaches clearly additional factors may
affect the final decision of where to actually park. For instance,
paying a certain fee or seeking a free-of-charge space wouldbe
constraints to take into consideration. Such constraints could
be easily incorporated in our methods but this discussion is
omitted for brevity here.

A. The Exact Algorithm

Consider the setting of Fig. 2 in which a car departs from
locations and has as its final destination locationd. As soon
as the driver requests service, the on-board equipment works
with reported spots in locations1, 2, 3 and 4. The vehicle
could travel froms to any of these four locations. These moves

s

d

1

2

4

3

Fig. 2. Rationale of the dynamic-programming algorithm

constitute four feasible virtual edges to be taken and we need
to estimate the cost of each; it turn, we need to carry out the
same process going from the first selected spot to second one
and so on until a full trajectory has been formed. The cost
for a single “virtual directed edge” that connects two parking
spacesa andb is defined as follows:

C(a, b, ttot) = tab + p(ttot) ∗ wb + [1 − p(ttot)] ∗ D (1)

wheretab is the time required to drive from spacea to space
b, wb is the time needed to walk from spaceb to the final
destination,D is a time penalty taken if spaceb is not available
when the vehicle arrives there, andttot represents the accrued
time until spotb has been reached.p(ttot) is the probability
to find spaceb still available after elapsed timettot.

The costC(a, b, ttot) consists of the timetab to drive from
a to b as well as the walking timewb required to reach
destinationd if b is still-available or the penaltyD that we have
to pay otherwise. The factorwb is weighted by probability
p(ttot) whereas factorD by its complement. Clearly, ifb is
close tod (i.e., a short walk apart), the designated probability
p(ttot) needs to be high so thatb is visited as early as possible;
in this casewb is expected to be much smaller thanD. If the
vehicle delays its visit tob, the weight[1−p(ttot)] of penalty
D will be high. In order to avoid paying a large percentage of
the time penalty, the vehicle will be forced to choose a space
b, that is close to the previous spacea, in the trajectory that
connects all the reported free spaces. This way, the possibility
that the vehicle will always arrive at a taken space, becomes
highly unlikely. This cost function also leads vehicles towards
producing trajectories that are minimal in terms of time.

In order to computetab, a vehicle uses the statistics, main-
tained in its storage, for the traverse times of road segments,
to find the shortest path froma to b. In [9], we discuss an
approach to estimatetab. A number of average values, based
on reported statistics, are used in the proposed cost function
of Eqn. 1. The “space average life-time” (salt) is the average
period that a parking space remains free once vacated. The
average number of parking spaces visited before a vehicle finds
a spot available is designated as “average spot missed” (asm).
Statistics maintained in the vehicles storage, provide thevalues
for both salt and asm. Based on the data we currently have
at hand, we can compute the following two factors: first, the

average time to drive from all spaces to all others or “spot to
spot” (sts) and second, the “average walk time” (wat) from all
spaces tod. Provided the above parameters, we can designate
the factorsp(ttot) andD of Eqn. 1 as follows:

p(ttot) =
salt

ttot + salt
(2)

D = asm ∗ sts + wat (3)

Our rationale is to select a decreasing functionp(ttot) that
suggestsp(0) = 1 and p(salt) = 0.5; p(ttot) asymptotically
reaches0 when time goes to∞. Time penaltyD is an
estimation of the average time we will need to park plus to
walk usingasm, sts andwat.

In order to find the trip that visits all spots and minimizes
the proposed cost function, we apply the exact dynamic-
programming Alg. 1 which is based on theTVTSP-ZW algo-
rithm [13]. The input for this algorithm is the set of the known
available spaces when service was solicited and the timeT
needed for the “longest” trip that visits all these spaces. This
“longest” trip serves as an upper-bound for the maximum time
a trip may incur. Appendix 1 discusses how Alg. 4 finds an
approximation forT .

The rationale of the dynamic-programming Alg. 1 is de-
picted in Fig. 2. We search for the best trip that starts at
the vehicle’s current positions, visits spaces1, 2, 3, ends
in space4; once in4, we impose the requirement that time
t has elapsed. Here,1 → 4, 2 → 4 and 3 → 4 are the three
previous alternative virtual edges. We find the best route by
recursively examining the cost of reaching nodes1, 2 and 3
and adding onto these costs the respective costs for traversing
the above three virtual edges.

In Alg. 1, B(s,x,S,t) expresses the cost of the “best” trip that
starts froms, visits all the spaces of setS, ends in spacex and
needs timet to complete. If no such trip can be furnished, then
B(s,x,S,t) = ∞. In general,B(s,x,S) is the cost of the “best”
trip for all t.

B. Grouping Spaces into Clusters

The time complexity of Alg. 1 isO(n3T 2n)[13], where
T is the time of the longest trip andn is the number of
parking spaces. The main factor in this complexity is the factor
2n. In order to lower the computational load implied by this
time complexity, we decrease the problem’s size by grouping
parking spaces located geographically close into clusters. A
vehicle groups the spaces known to be available, that are stored
in its device, into clusters, and applies Alg. 1 using as input
the clusters of parking spaces instead of distinct spots. We
propose to locate the best trip around the clusters by using
the Exact Algorithm and visit the spaces within each cluster
using a best-first approach with respect to the cost function
C(a, b, ttot). Our conjecture is that through the use of clusters
we can expedite the process of determining the trajectory to
visit all known spaces by shedding computations. In SectionV,
we compare the optimal trip around distinct spaces and the trip
around clusters, and evaluate what is the impact of applying
the clustering, in the solution’s quality.

Algorithm 1 Optimal Trip Based on C(a, b, t)
Input: parkingSpaces: The set of parking spaces inside the maximum walking range

T : The time of the longest trip that visits all the parking spaces

Output: The trip that starts from the current position, visits all the spaces, and has the

minimum cost

Begin
1: s := vehicle’s current position
2: for each spacey ∈ parkingSpaces do
3: time := time to drive froms to y
4: B(s, y, ∅, time) := C(s, y, time)
5: store s as the predecessor of spacey in B(s, y, ∅, time)
6: end for
7: spaces := |parkingSpaces|
8: for size = 2, 3, ..., spaces do
9: for each subset of spacesS such that|S| = size do

10: for t = 1, 2, ..., T do
11: for each spacey ∈ S do
12: for each spacex ∈ S − {y} do
13: time := time to drive fromx to y
14: u := t − time
15: if B(s, x, S − {x, y}, u) is equal to∞ then
16: continue with the next spacex
17: end if
18: addedCost := C(x, y, t)
19: if B(s, x, S −{x, y}, u) + addedCost < B(s, y, S −{y}, t)

then
20: B(s, y, S − {y}, t) := B(s, x, S − {x, y}, u) + addedCost
21: store x as the predecessor ofy in B(s, y, S − {y}, t)
22: end if
23: end for
24: end for
25: end for
26: end for
27: end for
28: bestCost := ∞
29: for each spacey ∈ parkingSpaces do
30: cost := B(s, y, parkingSpaces − {y})
31: if cost < bestCost then
32: bestCost := cost
33: end if
34: end for

35: return The trip that refers tobestCost

End

The clustering impact can be limited, if the parking spaces
that are grouped into a cluster, are spaces that are “very close”
to each other. Ideally, spots that ultimately appear in clusters
are partial spot-sequences appearing in the optimal trajectory
produced by Alg. 1. We elect to useQuality Threshold (QT)
Clustering[14] as we do not want to designate the number of
resulting clusters and we use the Euclidean distance metric.
Fig. 3 shows16 parking spaces that are grouped into5 clusters.
The vehicle at points, will decide the order to visit5 clusters,
using Alg. 1. The spaces within each cluster are to be visited
in a best-first order fashion.

C. Cutting-off Clusters

QT Clustering uses a threshold for the maximum radius of
the clusters it generates. If we use a value for this threshold,
that is less than the minimum distance of all the pairs of
parking spaces, we will end up with one cluster per parking
space. The opposite case is when we use a large threshold and
we end up with just one cluster with all the parking spaces
inside. An appropriate value for the threshold ofQT clustering
is strongly related to the city where the vehicle moves. The
resulting clusters that will be the input to theExact Alg. 1 may

s

d

1
2

3

4 5

Fig. 3. Clustering Example

still inflict substantial load on the computational capabilities
of a vehicle’s device. In order to adjust the problem’s size in
its operational environment, a vehicle can use a subset of all
the clusters as input in Alg. 1. The size of this subset critically
affects the computational load and must be selected according
to the computational resources of the on-board equipment.

The choice for the subset of clusters is not trivial. One
option would be to keep thetop-k clusters, based on the cost
function C(a, b, ttot). Since our aim is to be close to the
solution for the optimal trip, we choose to identifyk areas for
the parking spaces and keep one cluster as a representative
of each area. Fig. 4 shows that, for the5 clusters of Fig. 3,
we identify three areas. One area for clusters1 and 2, one
for clusters3 and4, and one for cluster5. The representative
clusters are1, 4 and 5, respectively. The method we apply,
in order to identify the areas and choose the subset of the
representative clusters is thek-medoid clustering and the
Partitioning Around Medoids (PAM) approach[15]. The data
points that are given asPAM input are the cluster centers.

s

d

1

2

3

4 5

Fig. 4. Cutting-off Example

The rest of the clusters that are not selected in the subset
of representatives, will be inserted, one by one, in the trip
generated by Alg. 1. At every step, we select the cluster
center that is the closest to one of those already selected.
The chosen cluster will be inserted into the position, in the
sequence of already inserted clusters, that gives the best total
cost for a trip. Alg. 2 termedSynchronization Mode, depicts
a combined approach that carries out clustering, selectionof
best representatives, use of theexact algorithm and finally
insertion of cut-off clusters. We use the Euclidean distance

as the distance metric and the distance between two clusters
is the one between their centers. Note that the time to traverse
a cluster, is the time to traverse the spaces contained in it,
using a best-first approach.

Algorithm 2 Synchronization Mode
Input: parkingSpaces: The set of parking spaces inside the maximum walking range

k: The size of the set that will be given as input to Alg. 1

Output: The cluster sequence which corresponds to the proposed triparound the spaces

Begin
1: clusters := apply QT clustering withparkingSpaces as input
2: topK := apply PAM algorithm withclusters andk as input
3: remainder := clusters − topK
4: approximation := apply Alg. 4 with topK as input
5: clusterSeq := apply Alg. 1 with topK and3 ∗ approximation as input
6: while remainder 6= ∅ do
7: toBeInserted := The clusterc ∈ remainder with the minimum distance

to a clusterl ∈ {clusters − remainder}
8: insert toBeInserted into the position ofclusterSeq that gives the best

cost for the corresponding trip
9: update clusterSeq with the new insertion

10: remainder := remainder − {toBeInserted}
11: end while
12: return clusterSeq

End

D. Live-Mode Approach

While a vehicle is in motion, it communicates with others
encountered within its radio range and continually receives
reports (updates) about parking spaces. An update informs
that either a spot previously reported free is taken or a new
opening exists in the vicinity. Evidently, a set of such updates
may be received at any time in the form of a batch. These
change may necessitate that the vehicle re-adjusts the trip
initially computed and currently followed. A likely option
would be to have Alg. 2 invoked every time an update is
received. This would clearly pose significant burden on the on-
board computing resources. Here, we present anincremental
approach for possibly adjusting the trip initially generated by
Alg. 2 once a vehicle receives an update. Moreover, we define
the condition that specifies when a vehicle has to invoke Alg.2
anew in order to regenerate a near-optimal trip for the heavily-
updated parking space set stored on-board.

A vehicle examines updates from a batch one-by-one and in
doing so, re-adjusts its trajectory connecting all known spaces.
For every update, the vehicle detects which of the already-
formed clusters that make up its current route is affected. If the
update reports a spot already-taken, the vehicle has to reflect
this fact on its storage so that others may be notified properly;
in addition if this space is already part of a cluster, the vehicle
marks this cluster in the trajectory as affected. Should the
update report a new position, the vehicle has to detect which
of its trajectory clusters is the best candidate to incorporate this
“newly-discovered” space. The best such cluster candidateis
the one that maximizes the scoring functionSF = 1/(r∗r2

C),
where r is the radius of a cluster, andrC is the Euclidean
distance of the new space to the centerC of a cluster. If a
cluster consists of just a parking space, thenSF = 1/r3

C .
This scoring functionSF favors clusters with smaller radius,

that have a center closer to the new space. If the new space
is not within the maximum radius permitted for any of the
current clusters, we generate a new cluster that consists of
only this new parking spot.

After detecting the cluster affected by a single update, the
vehicle must examine if the clusters must be visited in a
different order. More specifically, if the vehicle follows atrip
that sequentially traversesn clusters, it must decide whether
to re-order the position of the affected cluster in the sequence.
In this regard, each of then+1 possible positions corresponds
to a new trip. We consider the position that corresponds to the
trip with the minimum total cost as the best position for the
affected cluster. The worst-case time-complexity for handling
a single update isO(n*m) where m is the number of pre-
existing spaces andn is the number of clusters. Each of the
n+1 trips that have to be computed has an individual cost
of O(m). We experimentally investigate how computationally
intensive is the above update procedure in section V-A.

Updates may either trigger repositioning of existing clus-
ters or form new clusters; these changes essentially reflect
alterations that affect the initial cluster sequence compiled by
Alg. 2. Should the update-batches heavily modify the status
of the parking space set a vehicle works with, we might have
to re-invoke Alg. 2. The question here is whether we can
continue using incremental adaptations of the cluster-sequence
or we have to resort to something more drastic which is the
recompilation of the sequence from scratch (with the new
data). We define a distance metric that quantifies the degree
of change between two routes: the route initially designated 1

and the travelling sequence maintained incrementally. Below,
we first provide an example for this distance metric and we
then offer its respective closed-formula.

Consider the situation in Fig. 5. Here, a vehicle was aware
of the available spaces1, 2 and 3 the last time Alg. 2
was invoked. When the vehicle reaches points, it receives
a batch-update that collectively reports spaces1, 2 and 3
as occupied and spaces4 and 5 as available. The initial
sequence of say1 → 2 → 3 changes and through incremental
computations becomes4 → 5. The vehicle ats calculates the
distance between the above two trips before it decides to use
Alg. 2. Each spot of the adjusted trip, which visits less spaces,
corresponds to3/2 spaces of the initial one. We match the first
space of the adjusted trip,4, with the first2(= ⌈3/2⌉) spaces,
1 and2, of the initial trip, and space5 with space2 and space
3. The distance between the two trips, is a weighted sum of the
distances of the matched spaces. In this example, the weight
for each matching pair is3/2

2 = 0.75. For the four matching
pairs 4 with 1, 4 with 2, 5 with 2, 5 with 3 the Euclidean
distances are respectively4, 4, 6, and5. The distance between
the two trips is set at0.75(4 + 4 + 6 + 5) = 14.25. More
formally, we define the distance between two proposed trips
S andL as follows:

1the last time we run theSynchronization Mode Alg. 2

w{

⌈
|L|
|S|

⌉∑

j=1

d(s1, lj) +

|S|∑

i=2

to(i)∑

j=f(i)

d(si, lj) +

|L|∑

j=to(|S|)

d(s|S|, lj)}

where

f(i) = ⌈
|L|

|S|
⌉ + r + (i − 2)[⌈

|L|

|S|
⌉ − 1 + r],

to(i) = ⌈
|L|

|S|
⌉ + (i − 1)[⌈

|L|

|S|
⌉ − 1 + r],

w =
|L|

|S|
/⌈

|L|

|S|
⌉

Without loss of generality, we assume that tripS visits |S|
spaces (designated assi for i=1. . .|S|) which are less than
the |L| spaces, (designated aslj for j=1. . .|L|), visited by trip
L. A specific parking spotsz that is part of the short tripS
matches with the spaces of the long tripL, that start from
f(z), and end toto(z). The variabler is equal to1 when
|L|mod|S| = 0 and0 otherwise. The distanced(s, l) between
two spacess and l is the Euclidean distance.

5

s 1

2

3

4

0.75

0.75

4
0.75

0.75
4

6

5

Fig. 5. Distance between two routes

The interaction between our proposed incremental com-
puting approach and Alg. 2 is presented in Alg. 3. Every
vehicle runs this algorithm as a deamon that creates and
incrementally updates the trajectory to follow in the presence
of continuously disseminated information on the status of
spots. TheSynchThres threshold designates the maximum
distance between two routes and we use it to determine if the
Synchronization Mode has to be immediately applied, instead
of carrying on the incremental updating. The value of this
threshold depends on how frequently the computing device of
a vehicle can reserve computational resources to apply Alg.2.

V. EVALUATION

In order to evaluate the proposed method, we built a
simulator and we performed experiments on a part of the Paris
road network. A sreenshot of the simulator’s GUI is given on
Fig. 6. This simulator uses a simple dissemination protocol
for the parking information, that can be described as follows:
each vehicle stores for each known available parking space,
spatial data and a timestamp, that denotes when this space

Algorithm 3 Live-Mode Deamon
Initialization:

synchSeq := apply Alg. 2 with the known parking spaces as input

curSeq := synchSeq

Begin
1: while true do
2: if there is an addition or deletion in the set of known parking spacesthen
3: for each changedo
4: if a spaces was takenthen
5: affectedCluster := The cluster that containss
6: curSeq := curSeq − {affectedCluster}
7: end if
8: if a new spaces is availablethen
9: affectedCluster := The best cluster to contains, based onSF

10: if no cluster could contains then
11: affectedCluster := A new cluster that contains onlys
12: else
13: curSeq := curSeq − {affectedCluster}
14: end if
15: end if
16: insert affectedCluster into the position ofcurSeq that gives the best

cost for the corresponding trip
17: update curSeq with the new insertion
18: end for
19: distance := The distance between the trips forcurSeq andsynchSeq
20: if distance > SynchThres then
21: synchSeq := apply Alg. 2 with the known parking spaces as input
22: curSeq := synchSeq
23: end if
24: end if
25: end while

End

was reported available. Vehicles exchange parking information
with other in-range vehicles, and keep the most up-to-date
information. When a vehicle traverses a road segment, it is able
to detect free parking spaces. A final destination is assigned
to each vehicle, and a vehicle will park only to a parking
space that is within a maximum distance range from the final
destination and is larger than the vehicle’s length.

The experiments performed are divided in two parts: in
the first, we ascertain the effectiveness of the incremental
computing and clustering techniques. The metrics used in
the first part of evaluation, are the execution time for the
computation of a trip around a set of parking spaces and
the cost difference of a trip from the optimal trip, using the
cost functionC(a, b, ttot) described in section IV-A. In the
second part of our experiments, we compare our method to a
Best-First approach, where each vehicle goes directly to the
most promising (or “best” at the time) parking space. We use
the following metrics:a) time needed to reach a free parking
space,b) time required to walk from the selected space to
the final destination andc) the percentage of vehicles that
managed to park.

The simulator has been developed onJava 6and all the
experiments were performed on a machine equipped with an
Intel Core2 Duo 3.00GHz CPU and4 GB RAM. Throughout
the experiments, we assumed a wireless communication range
of 50m, a bandwidth of2 Mbps and a vehicle density of20
vehicles per km.

A. Clustering and Cutting Off Impact

In the experiments presented here, we monitored the com-
putational time needed by one vehicle to decide the trip

around parking spaces, using the methods we propose in this
paper. We also estimate how “close” a trip remains to the
optimal trip, when we apply theClustering and Cutting Off
methods. The cost difference of a trip from the optimal, states
this fact; the cost in question is expressed by the function
C(a, b, ttot) of section IV-A. The parameters affecting the
geographic distribution of parking spaces are the average,ave,
and standard deviation,std, for the distance between every two
spots. In the results we present in this paper,ave was set to
522m andstd to 395m.

Fig. 7 depicts the effect ofQT Clustering with 3 different
values for quality thresholdQThres. This threshold expresses
the maximum radius a cluster may display. We chooseave and
std as the parameters which affect the maximum radius. The
three levels of clustering are designated as follows:

• Cluster1:QThres = ave/3
• Cluster2:QThres = ave/3 + std/2
• Cluster3:QThres = ave/3 + 2 ∗ std

Thex-axis expresses the number of parking places known by
the vehicle that computes the trip around them. They-axis
expresses the execution time for the computation of the tripin
milliseconds and logarithmic scale. The execution time needed
by Alg. 1 which finds the optimal trip, increases exponentially
to the number of known parking places. The execution time
for Cluster1 also rises when the number of parking spaces
increases, as the number of clusters that are formed becomes
larger. Cluster2 and Cluster3 form less clusters than Cluster1
and have reduced execution times.

 1

 10

 100

 1000

 10000

 100000

4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
s)

Parking Places

 Optimal
 Cluster1
 Cluster2
 Cluster3

Fig. 7. Time to compute the trip around parking places for theoptimal and
three clustering levels

Fig. 8 presents the cost difference from optimal for the same
experiments with those depicted in Fig. 7. Cluster1 has the
best cost difference in most cases, since it forms clusters with
parking spaces that are close to each other, and it is likely that
these spaces are visited sequentially, in the optimal trip.The
fact that the curves of Cluster2 and Cluster3 are rough, is an
indication that the best first approach for visiting large subsets
of parking spaces, gives near-optimal results in some cases,
and high-cost results in other cases.

In Figs. 9 and 10, we compare thetop-k method and thek-
medoids method for deciding thek, out of10 spaces2, that will

2The computational resources were not sufficient for computing the optimal
solution for a problem size over10 using theExact approach.

Fig. 6. Screenshot of the simulator’s GUI

 0

 5

 10

 15

 20

 25

4 5 6 7 8 9 10

C
os

t D
iff

 fr
om

 O
pt

im
al

 %

Parking Places

 Cluster1
 Cluster2
 Cluster3

Fig. 8. Cost difference from optimal for three clustering levels

be used as input in Alg. 1, as described in subsection IV-C. The
top-k method selects thek spaces with the lower cost, using
cost functionC(a, b, ttot) described in section IV-A. Thex-
axis in both figures is the number,k, of spaces that will be
selected by the two methods. We observe that the differences
in the execution time of the two methods are minimal, since
they will always run Alg. 1 with the same input size,k. We also
observe that when30% to 70% of the parking spaces are used
as representatives, thek-medoids method shows significantly
better cost difference. This can be explained by the fact that
top-k method selects the subset of the “best” parking spaces,
that may be positioned close together, whilek-medoids selects
a subset that represents in a better way, the topology of the
entire parking space set.

In Figs. 11 and 12 we apply clustering and then we keepk
of the clusters, as representatives, using thek-medoids method.
The x-axis denotesk in both figures, and the three clustering
levels are the same as in Figs. 7 and 8. We observe that the cost

 100

 1000

 10000

 100000

2 3 4 5 6 7 8 9

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
s)

Number of Representatives

 K Medoids
 Top K

Fig. 9. Time to compute the trip around parking places, usingtop-k and
k-medoids methods, to produce a subset of parking spaces

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

2 3 4 5 6 7 8 9

C
os

t D
iff

 fr
om

 O
pt

im
al

 %

Number of Representatives

 K Medoids
 Top K

Fig. 10. Cost difference from optimal, usingtop-k andk-medoids methods,
to produce a subset of parking spaces

difference remains the same ask moves over4, for Cluster2,
and remains the same for all the values ofk, for Cluster3. This
is because, in most cases, Cluster2 does not form, more than
4 clusters, and Cluster3 does not form more than2. Cluster1

forms more clusters, and the cost difference from optimal is
better than Cluster2 only when a sufficiently large number of
these clusters are used as representatives. Note that when more
than5 clusters are used as representatives, the cost difference
from optimal is less than10%, for Cluster1.

 10

 100

 1000

 10000

2 3 4 5 6 7 8 9

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
s)

Maximum Representatives

 Cluster1
 Cluster2
 Cluster3

Fig. 11. Time to compute the trip around parking places, using clustering
and cutting off

 6

 8

 10

 12

 14

 16

 18

 20

 22

2 3 4 5 6 7 8 9

C
os

t D
iff

 fr
om

 O
pt

im
al

 %

Maximum Representatives

 Cluster1
 Cluster2
 Cluster3

Fig. 12. Cost difference from optimal, using clustering andcutting off

A comparison between the clustering and cutting off meth-
ods, is given in Figs. 13 and 14. For each experiment per-
formed using clustering, that producesL clusters, we run an
experiment usingk-medoids, keepingL representatives for all
the spaces. In both cases theL representatives make up the
input to Alg. 1. We used5 clustering levels which are more
fine-grained than the3 levels used before. As Figs. 13, 14
show, cutting off gives a significantly better outcome than
the clustering method, for all the clustering levels, whilethe
execution time is slightly more in most cases. This outcome
indicates that it is better to find the optimal trip for a number
L of representatives for the whole parking space set, and then
insert the rest of the spaces in this trip one by one, than finding
the optimal trip forL clusters, and then visit the spaces inside
a cluster using a best-first approach.

Figs. 15 and 16 respectively depict the computational over-
head and the deviation from the optimal trip whenLive-
Mode is in use. In Fig. 15, a vehicle re-adjusts its trajectory,
for a number of updates. The execution time for handling
these updates, starts from50ms for one or two updates, then
increases linearly, and finally reaches500ms for 8 updates.
Fig. 16 presents the cost difference from the optimal trip,
if instead of applyingLive-Mode, a vehicle “synchronizes”

 1

 10

 100

 1000

 10000

 1 2 3 4 5

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
s)

Clustering Level

Clutering Vs Cutting Off

Clustering
Cutting Off

Fig. 13. Time to compute the trip around parking places for clustering and
cutting off methods

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

C
os

t D
iff

 fr
om

 O
pt

im
al

 %

Clustering Level

Clutering Vs Cutting Off

Clustering
Cutting Off

Fig. 14. Cost difference from optimal for clustering and cutting off methods

(i.e., executes Alg. 2) its trip after every update is received.
When the number of updates, since the last time the vehicle
synchronized its trip, is less than4, the cost difference remains
below2%. Cost difference rises to4% for 5 to 7 updates, and
reaches9% for 8 updates.

 10

 100

 1000

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
s)

Updates to be merged in the trip

 Live Mode

Fig. 15. Execution Time for merging a number of updates, using theLive-
Mode

The experiments we carried out in this section overall
indicate thatLive-Mode features low computational overheads
and the re-adjusted route it yields is close to the optimal trip.
When clustering is performed with a large radius for clusters
or when cutting off is performed with a small number of
representatives, the formed route may be considerably worse
than the optimal. The most efficient way to keep the size of the
problem small and attain a near-optimal solution is to initially
deploy clustering with a small radius and subsequently, to use
k-medoids to selectk representative clusters.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8

C
os

t D
iff

 fr
om

 O
pt

im
al

 %

Updates After Last Synchronization

 Live Mode

Fig. 16. Cost difference from optimal, after a number of updates, using the
Live-Mode

B. Live-Mode versus Best-First

In this set of experiments, we examine how much time
a vehicle gains following a route that optimizes the cost
functionC(a, b, t) compared to a trip realized using a best-first
approach at every iteration. Regardless of the approach taken
the cost function remains the same and takes into account the
time needed to arrive to parking space, the time required to
walk from this spot to the final destination and finally, the
probability to find the spot still free.

Three different ratios,0.25, 0.5, 0.725, are selected for the
number of available parking spaces per vehicle. The starting
point and final destination of a vehicle are chosen using
uniform distribution, inside predefined regions of the roadnet-
work. We generate pairs of vehicles, having the same starting
point and final destination. One vehicle is using ourLive-
Mode approach while the second uses the best-first technique.
The specific settings for theLive-Mode are ave - std for the
maximum radius of clusters, and7 for the maximum number
of representatives. In all our experimentation, we maintain the
space per vehicle ratio constant by generating new pairs of
vehicles and new parking spaces as needed.

Figs. 17, 18 and 19 respectively show the average time
needed to find a free parking space, the time needed to
walk from that parking space to the final destination, and
the percentage of vehicles that found a free space using the
two approaches.Live-Mode demonstrates better results in all
three cases. Vehicles that operateLive-Mode choose to, first,
visit areas where there is a high density of parking spaces.
In contrast, Best-First vehicles elect to visit spots that are
their best option regarding their final destination and current
position, even if these spots lie on areas with low-density
of available spaces. The fierce competition among vehicles
using the Best-First approach does not allow any significant
improvement when the ratio of spaces per vehicle increases.

Fig. 17 shows that for all space ratios examined,Live-
Mode attains better average time if compared with its Best-
First counterpart. The biggest gains appear for rations0.5 and
0.725 where Live-Mode can help vehicle effectively travel
around empty spots. For space ratio0.25, the difference of
time required to park betweenLive-Mode and Best-First is
noticeably smaller due to higher competition for spaces.

As Fig. 18 depicts the walking time to the destination is

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.25 0.5 0.725

T
im

e
to

 p
ar

k(
vi

rt
ua

l)

Parking Places Per Vehicle

Best-First vs Live-Mode

Best-First
Live-Mode

Fig. 17. Time to find a parking space free for theLive-Mode and Best-First
approaches

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.25 0.5 0.725

W
al

ki
ng

 T
im

e(
vi

rt
ua

l)

Parking Places Per Vehicle

Best-First vs Live-Mode

Best-First
Live-Mode

Fig. 18. Walking time to the final destination forLive-Mode and Best-First
approaches

close for both approaches, in all cases. In general, we would
expect that a vehicle using the Best-First approach would
perform better than those enabled withLive-Mode as it tries
to aggressively select a spot very close to the destination.
However this does not frequently occur in our experiments
since Best-First vehicle find their top picks occupied and so
they have to settle for inferior choices.

As Fig. 19 shows, the percentage of vehicles finding a free
space consistently remains higher for theLive-Mode approach.
The results of Fig. 19 are in line with those presented in
Figs. 17 and 18; simply the differences become more pro-
nounced for ratios0.5 and0.725.

 0

 20

 40

 60

 80

 100

 0.25 0.5 0.725

V
eh

ic
le

s
P

ar
ke

d
%

Parking Places Per Vehicle

Best-First vs Live-Mode

Best-First
Live-Mode

Fig. 19. Percentage of vehicles that found a parking space free forLive-Mode
and Best-First approaches

VI. CONCLUSIONS

In this paper, we address the problem a driver faces while
trying to locate a parking position in an urban environment.
We assume that vehicles are equipped withvehicle-to-vehicle
communication equipment which also features computational
and storage capabilities. As the vehicle navigates, it con-
tinuously receives reports about available spots close to the
area the driver intends to park from oncoming traffic. We
formulate the problem using theTime-Varying TSP approach
and propose methods that reduce complexity for thisNP-hard
problem. Our methods attempt to present a good trade-off
between optimality of the solution adopted and computational
requirements. We developed a detailed simulation engine that
helped us experimentally evaluate our approach. Using a Best-
First baseline approach we demonstrate that ourTime-Varying
TSP approach can have substantial performance benefit. We
showed that our methods, if combined properly, can produce
a near-optimal trip with respect to the deployed cost-function.
Finally, our experimentation indicates that the incremental
updating approach (live-mode) maintains close-to-optimal tra-
jectories in the presence of continuously disseminated parking
information.

ACKNOWLEDGMENT

We would like to thank Herald Kllapi for his help with the
simulation environment and his comments. This work has been
partially supported by theD4Science IIFP7-project funded by
the European Commission.

REFERENCES

[1] W. Park, B. Kim, D. Seo, D. Kim, and K. Lee, “Parking Space
Detection using Ultrasonic Sensor in Parking Assistance System,” in
IEEE Intelligent Vehicles Symposium, Eidhoven, The Netherlands, June
2008, pp. 1039–1044.

[2] R. Lu, X. Lin, H. Zhu, and X. Shen, “SPARK: a New VANET-based
Smart Parking Scheme for Large Parking Lots,” inProc. of the IEEE
INFOCOM Conference, Rio De Janeiro, Brazil, April 2009.

[3] B. Xu, A. Ouksel, and O. Wolfson, “Opportunistic Resource Exchange
in Inter-Vehicle Ad-Hoc Networks,” inProc. of Int. Conf. on Mobile
Data Management, Berkeley, CA, January 2004, pp. 4–12.

[4] T. Repantis and V. Kalogeraki, “Data dissemination in mobile peer-to-
peer networks,” inProc. of the Int. Conf. on Mobile Data Management,
Ayia Napa, Cyprus, May 2005, pp. 211–219.

[5] M. Caliskan, D. Graupner, and M. Mauve, “Decentralized Discovery of
Free Parking Places,” inProc. of the 3rd Int. Workshop on Vehicular Ad-
hoc Networks, ser. VANET ’06. Los Angeles, CA: ACM, September
2006, pp. 30–39.

[6] T. Delot, N. Cenerario, S. Ilarri, and S. Lecomte, “A Cooperative
Reservation Protocol for Parking Spaces in Vehicular Ad-hoc Networks,”
in Proc. of the 6th Int. Conf. on Mobile Technology, Application and
Systems (Mobility’09). Nice, France: ACM, 2009, pp. 1–8.

[7] M. Caliskan, A. Barthels, B. Scheuermann, and M. Mauve, “Predicting
Parking Lot Occupancy in Vehicular Ad-hoc Networks,” inProc. of the
IEEE Int. Conf. on Vehicular Technology Conference (VTC’07). Dublin,
Ireland: IEEE, April 2007, pp. 277–281.

[8] A. Khekdar and V. Kumar, “Self-Synchronizing Moving Objects Using
Contextual Information,” inProc. of the 2010 Int. Conf. on Information
and Knowledge Engineering (IKE’10). Las Vegas Nevada, USA:
CSREA Press, 2010, pp. 330–335.

[9] V. Verroios, K. Kollias, P. K. Chrysanthis, and A.Delis,“Adaptive
Navigation of Vehicles in Congested Road Networks,” inInt. Conf. on
Pervasive Services (ICPS’08). Sorrento, Italy: ACM, July 2008.

[10] E. Kokolaki, M. Karaliopoulos, and I. Stavrakakis, “Value of information
exposed: wireless networking solutions to the parking search problem,”
in Proc. of the 8th Int. Conf. on Wireless On-demand Network Systems
and Services(IFIP/IEEE WONS), Bardonecchia, Italy, 2011.

[11] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe, “ParkNet: drive-by sensing of road-side
parking statistics,” inProc. of the 8th Int. Conf. on Mobile Systems,
Applications, and Services(MobiSys ’10). San Francisco, USA: ACM,
2010, pp. 123–136.

[12] J. Boehle, L. Rothkrantz, and M. V. Wezel, “CBPRS: A CityBased
Parking and Routing System,”ERIM Report Series Reference No. ERS-
2008-029-LIS, May 2008.

[13] X. Cai, D. Sha, and C. Wong,Time-Varying Network Optimization,
1st ed. Springer Publishing, 2007.

[14] L. Heyer, S. Kruglyak, and S. Yooseph, “Exploring Expression Data:
Identication and analysis of Coexpressed Genes,” inGenome Research
9, 1999, pp. 1106–1115.

[15] L. Kaufman and P. J. Rousseeuw,Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley, 1990.

[16] M. Fisher, L. Nemhauser, and L. Wolsey, “An Analysis of Approxima-
tions for Finding a Maximum Weight Hamiltonian Circuit,”Operations
Research, vol. 27, no. 4, pp. 799–809, July 1979.

Appendix 1
The problem of finding the longest trip can be formulated to
theMAX-TSP[16], which is alsoNP–hard. We select a greedy
algorithm that offers a1/3-approximation of the time needed
for the longest trip[16]; this appears in Alg. 4. The algorithm
initially chooses a directed edge of maximum weight and then
continues to choose edges of maximum weight subject to the
requirement that the collection be contained in a directed cycle
with all the nodes. In our work, nodes are the parking spaces
and the weight of a directed edge is the drive time from the
first corresponding space to the second. The value obtained by
Alg. 4 is multiplied by3 before provided as input to Alg. 1;
in this manner, we approximate the value of the longest trip
throughout all nodes.

Algorithm 4 "Longest" Trip Approximation
Input: parkingSpaces: The set of parking spaces inside the maximum walking range

Output: A value that is at least the1/3 of the time of the longest trip that visits all the

parking spaces

Begin
1: for each spacex ∈ parkingSpaces do
2: for each spacey ∈ parkingSpaces − {x} do
3: store the time to drive fromx to y as the cost for the virtual directed edge

from x to y
4: end for
5: end for
6: selectedSet := ∅
7: while selectedSet does NOT form a cycle containing all the spacesdo
8: edgeAdded := The edge with the maximum cost, which satisfies the constraint

that each space will have at most one incoming and one outgoing edge, if it is
added in theselectedSet

9: selectedSet := selectedSet ∪ {edgeAdded}
10: end while
11: s := vehicle’s current position
12: maxFromSource := 0
13: for each spacex ∈ parkingSpaces do
14: time := The time to drive froms to x
15: if time > maxFromSource then
16: maxFromSource := time
17: end if
18: end for
19: cycleT ime := The sum of the edges’ cost inselectedSet

20: return maxFromSource + cycleT ime

End

