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Abstract—A fundamental application in vehicular ad-hoc net- road network and in particular information about parking.
works (VANETS) is the discovery of available parking spaces The above information could be used in conjunction with
as vehicles navigate through urban road networks. Vehicleare  yha propability to find the available space still free when a
now capable of finding such parking spots using their on-boat . . . .
sensing and computational infrastructure and then they can vehl_cle f|naII_y reaches. the _s_pot [7]._In this paper, we exploi
disseminate this information for use by other members of the the information about identified available parking spades t
travelling community in the geographic vicinity. In this context, dynamically becomes available so that a driver can be effi-
we examine the problem of locating an available parking spa& ciently directed to the available spots that are closesteto h
for a vehicle entering an urban network of roads. Upon its enty, fin| destination. Theriteria for this decision area) the time

a vehicle has to determine the best way to visit parking spots . . I
reported to be free. In deciding this, the vehicle has to conder needed to arrive to each space availaliipthe probability

the time required to reach each candidate position, its digtnce 0 find the spot in question available at the time of arrival,
from the final destination should the driver walk, and of course, c)the walking distance to the final destination (and possitdy t

the probability that the spot(s) will be still-free once thevehicle parking fee for the space). We formulate the above question
shows up at location. We formulate the question at hand as a as a travelling salesman problem in which the points-to-be-

Time-Varying Travelling Salesman problem and we propose an . . . . .
approach for computing the route that a vehicle must traverg visited are available public parking spots, located clasthe

in order to visit all parking spaces known to be available. Ou final destination of the driver.

method takes into account the limited computational resouces of We adopt a solution that attempts to minimize the afore-
vehicles and attempts to find the best feasible trip. This is ahe mentioned criteria and yield a minimal cost. This cost isetim

in conjunction with a cost function that estimates the probaility gapendent as the likelihood to find a space available depends
to find a space filled. In order to ascertain the effectiveness . . . . .

of our proposal, we compare it with a best-first approach and UPON the time of arrival. For this reason, the_c_lassm versid
examine computational overheads. We also investigate hoviose 1Tavelling Salesman Problem (TSP) cannot sufficiently address

to optimal results our approach comes. our requirement and so, we resort to the generalifieoe-

Keywords-parking space problem: VANETS; Time-Varying \(arying TSP [3]. The latter uses as input, both a transit
Travelling Salesman Problem; TSP; incremental computing;ad- time b(x,y,t) as well as a transit cost(xy,t) for each edge
hoc networking; (xy) at timet. Here, the problem is to find a dynamic path

that starts at a pre-specified vertexand visits each vertex
. INTRODUCTION only once in a way that the total transit cost of traversed
Recent work in vehicular ad hoc networks (VANETSs) hapath is minimal. As theTime-Varying TSP is inherentlyNP-
yielded equipment that can help vehicles identify avadabhard, an exact solution would undoubtly require substhntia
parking spaces while navigating in city environments [1fomputational resources. We follow a dual approach: firstly
Clearly, such information is very useful as if disseminatede deploy clustering algorithms to reduce the problem size b
properly it could help the movement of cars, help individuaimostly working with representative points of our input ider
get into their destination faster and at the same time saeeoffer a near-optimal solution. Secondly, we dynamically
monetary resources expended by both drivers and local govarse disseminated-by-others information as a vehicle paxe
ments. Modern vehicles are equipped with sensory equipmémwards its destination in order to correct and re-adjust th
that is able to detect spaces between parked vehicles [i§. Tipath currently pursued.
equipment recognizes a spot as an available parking spac®ur approach takes into consideration the limited resaurce
through the combined use of its sensory GPS-enabled devigehicular devices demonstrate when it comes to designating
and a local geographic database. Such databases containadeshicle trajectory in order to select an available spois It
tailed maps for urban areas along with city-designatedespaevorth mentioning that the continuous update of information
where public parking is permitted; they also feature pagkirrelated to available parking as necessitated by the roaming
lots that inform the public about their occupancy and theaf the vehicles, may take a toll on the computational load
available parking spaces through adjacent roadside-[#jits on the car devices. Our aim is to reduce the computational
A number of protocols has been proposed [3], [4], [5]pad vehicle devices experience while at the same time to
[6] to help disseminate information about the status of tHand a near-optimal trip. The rest of this paper is organized



as follows: Section Il states the problem we address and
Section Il outlines related work. Section IV presents our
proposed method for compiling a trip around known parking
spaces. The way we evaluate our approach and the outcomes
of experiments are discussed in Section V. Section VI pexid
concluding remarks.

o

Il. PROBLEM AND ASSUMPTIONS

Vehicles equipped with an automatic parking system feature
sensors that can detect the length and the width of a space be-
tween stable objects [1]. Once a vehicle detects a spacesit m
locate its position on its map possibly with the help of GPS.
The map should also have information about the municipality

sanctioned areas where parking is allowed so that the eehigle trip with the minimum expected time to destination be
can independently determine whether it has encounteredg8 pest choice. Far parking places, the number of distinct
available spot. In an orthogonal manner, parking lots mayps traversing them all, is factorial. Clearly, this wdylose
inform potential customers about their utilization andikalde significant strain on the computing resources of the vehicle
capacities with the help of roadside units. Through PDAS @gyice rendering an exhaustive search infeasible. Eveneif t
smart-phones, vehicles may collect information trangditty \gue of n is limited, the fact that the disseminated parking
such units [2]. Vehicles store the information for detectedformation stored by a vehicle is frequently updated, iti wi
spaces and/or availability in parking lots and through rtheiayse intense use of pertinent resources. The method séstus
communication resources, they disseminate this infoomatij, section 1v ultimately proposes a trip that minimizes atcos
to others near by. The dissemination could be performeghction related to the criteria stated in the introductiéw
through an appropriate protocol for parking informatiof, [3the same time, our approach takes into consideration the fac
[4], [5], [6]. Apart from the above parking space availayili that information about parking spots is continously reegity

to traverse road segments, the average number of spaces @R&in limited.

may need to visit before an available spot is reached, and the
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Fig. 1. Example for parking space problem

average period of time that a parking space remains free. The IIl. RELATED WORK
space and time granularity of such statistics depend on theVe anticipate that moving vehicles use a dissemination
storage capabilities of a vehicle’s device. protocol in order to exchange information about parking

The dispensed-by-others parking information has to lawailability. Actually, a number of such proposals haveadty
exploited by a vehicle so that it will locate a spot within d@een proposed in [3], [4], [5], [6]. In [3], a spatio-tempbra
short period of time and close to its final destination. Theslevance function is proposed to compute the relevance of
decision for the trip, the vehicle will follow, around thedwn information, so that the dissemination of information can
parking spaces, may be critical for the time needed to padk alpe carried out solely based on its relevance. In [4], mobile
the distance of the parking position to destination. Cagrsidnodes build content summaries of their local information
Fig. 1 where a vehicle in position has its final destination and disseminate them to peers; through a routing mechanism
positiond and is aware that spacés2, 3 and4 close to her queries are forwarded to nodes that have a high probabflity o
final destination are currently available. If the vehicleego providing results. The protocol discussed in [5] dissergga
directly to space3, geographically the closest to destinatiomggregated parking information about areas that cover af lot
d, it may arrive there too late and find it taken. An alternativparking terminals, while taking the local relevance and afye
route would be to make a detour, to check spacesd2, information into account. In [6] the proposed protocol does
which are the closest to the current position, before wigiti not disseminate the same information to all vehicles, ireord
space3, if 1 and2 are taken. Another detour could be madé& avoid competition among them for the same parking spaces,
to visit spacet, after1 and2, and before3. But parking a4 and tries to coordinate them, so that each vehicle “resérves
means that the driver will have to walk some distance to hardifferent space. Vehicle self-coordination is also disead
destination. Also due to detours taken, the vehicle maylfinain [8] where a protocol for traffic flow management in inter-
arrive to3 with some delay, should all previous choices proveections is suggested. In [9], we discuss a decentralizdd an
to be infeasible. collaborative approach to bypass congested areas in laagle r

We can compute the expected time to destination forreetworks based on information disseminated among moving
specific trip if we have at our disposal an estimation for theehicles.
probability to find each of the visited spaces free during the In this paper, we express the quality of a trip that visits
trip in question. This expected time is a function of the timeeported parking places in a sequence using a cost function.
required to reach every single available position and tme ti This function depends on the probability to actually locate
needed to walk from there to destination. Let us considspot available for parking. In a similar context, [7] predic



the occupancy of a parking lot, by modeling it as a queue
and using a Markov chain. Another work related to problem
of finding a free parking space, is presented in [2], where
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications are used to help vehicles navigate inside
large parking lots. Two basic approaches for the parking
space search problem are investigated in [10]: the first is a
decentralized approach that ud&8/ communication in order

to disseminate parking space information among vehiclés an
the second is a centralized approach where a server acts as a
reservation system for vehicles’ parking requests. Théegys
presented in [11], consists of a central server that callect
reports for parking spaces detected by vehicles’ sensors, i

order to produce a real-time map of parking space 'nformat'oconstitute four feasible virtual edges to be taken and wel nee

Rarking space allocation and rquting to a_reserved space-s Ro estimate the cost of each; it turn, we need to carry out the
vided by_‘h‘? system_ proposed |n_[12], using aggr_egate P@rk'g'ame process going from the first selected spot to second one
and traffic information from vehicles and roadside units. Ignd so on until a full trajectory has been formed. The cost

this work, we build on existing dissemination protocols, [3]for a single “virtual directed edge” that connects two pagki
[4], [5], [6] and through collected statistics (i.e., avgeaates sgacem andb is defined as follows:

“seen by others thus far” on the road network) we propos

methods for helping a vehicle rapidly approach availabéesp C(a,b,tior) = tap + p(tiot) * wp + [1 — p(tior)] * D (1)
near the stated destination.
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Fig. 2. Rationale of the dynamic-programming algorithm

wheret,;, is the time required to drive from spaeeto space
IV. THE SALESMAN METHOD b, wy is the time needed to walk from spaéeto the final
With the help of the dissemination protocol, a vehiclgestinationD is a time penalty taken if spadeas not available
seeking a spot uses data accumulated thus far and storedvben the vehicle arrives there, ang; represents the accrued
board to determine a trajectory to be visited. The data lsntaime until spotb has been reacheg(t;.) is the probability
all identified parking positions located close to the degton. to find space still available after elapsed timeg,;.
The degree of proximity can be driver designated and indgcat  The costC/(a, b, t:¢) consists of the time,; to drive from
how far she is willing to walk. Candidate positions have to be to b as well as the walking timeu, required to reach
large enough to accommodate the vehicle in question. In tkigstination? if b is still-available or the penaltip that we have
section we outline three different approaches: to pay otherwise. The factow, is weighted by probability
« the exact approach in which we determine the vehicle(t.,:) whereas factoD by its complement. Clearly, ib is
trajectory with the data available on-board at request.timgose tod (i.e., a short walk apart), the designated probability
« theclustering-based approaches in which instead of deap(t:,¢) needs to be high so thais visited as early as possible;
ing with all candidate parking spots, we initially group alin this casew, is expected to be much smaller than If the
currently on-board available spots in geographic extendehicle delays its visit td, the weight[1 — p(t:.)] of penalty
We then work with these groups to provide a solution’) will be high. In order to avoid paying a large percentage of
and finally, the time penalty, the vehicle will be forced to choose a space
« the live approach in which we continuously receive, that is close to the previous spagein the trajectory that
updates regarding parking spots from oncoming (in comennects all the reported free spaces. This way, the ptigsibi
munication range) cars and dynamically re-calibrate tibat the vehicle will always arrive at a taken space, becomes

trajectory taken to destination. highly unlikely. This cost function also leads vehicles &ds
In all of the above approaches clearly additional factory m@roducing trajectories that are minimal in terms of time.
affect the final decision of where to actually park. For inst, In order to compute,;, a vehicle uses the statistics, main-

paying a certain fee or seeking a free-of-charge space vimmuldtained in its storage, for the traverse times of road segsent
constraints to take into consideration. Such constraiatddc to find the shortest path from to 4. In [9], we discuss an
be easily incorporated in our methods but this discussiondpproach to estimatg,;,. A number of average values, based
omitted for brevity here. on reported statistics, are used in the proposed cost &umcti
) of Eqgn. 1. The “space average life-timesalt) is the average
A. The Exact Algorithm period that a parking space remains free once vacated. The
Consider the setting of Fig. 2 in which a car departs fromverage number of parking spaces visited before a vehicls fin
locations and has as its final destination locati@nAs soon a spot available is designated as “average spot missadi) (
as the driver requests service, the on-board equipmentswofitatistics maintained in the vehicles storage, provide#hees
with reported spots in locations, 2, 3 and 4. The vehicle for both salt and asm. Based on the data we currently have
could travel froms to any of these four locations. These moveat hand, we can compute the following two factors: first, the



average time to drive from all spaces to all others or “spot fJgorithm 1 Opti nal Trip Based on C(a,b,?)

spot” (sts) and second, the “average walk timatiat) from all ~ Input: parkingSpaces: The set of parking spaces inside the maximum walking range
spaces tal. Provided the above parameters, we can designatehe time of the longest trip that visits all the parking spmc

the faCtOI’Sp(ttot) and D of Eqn_ 1 as follows: Output: The trip that starts from the current position, visits ak tpaces, and has the

minimum cost

salt _
Plttor) = 7———— (2) Begin
tot + 8a 1: s := vehicle's current position
_ 2: for each spacg € parkingSpaces do
D = asm x sts + wat ®3) time = time to drive froms to y

3:
. . . . 4:  B(s,y,0,time) := C(s,y, time)
Our rationale is to select a decreasing functjg{i,,;) that 5. store s as the predecessor of spagén B(s, y, 0, time)
suggest®(0) = 1 and p(salt) = 0.5; p(ti) asymptotically ~ 6: end for ,

7. spaces = |parkingSpaces|

8:

reaches0 when time goes tooo. Time penalty D is an for size = 2,3, ..., spaces do
estimation of the average time we will need to park plus t%{ for each subset of spacéssuch thaflS| = size do

. fort=1,2,...,T do
walk usingasm, sts and wat. 11
In order to find the trip that visits all spots and minimizes}%}
the proposed cost function, we apply the exact dynamigz:
programming Alg. 1 which is based on tAi&/TSP-ZW algo- 15
rithm [13]. The input for this algorithm is the set of the kmow 17:
available spaces when service was solicited and the fime 18:
needed for the “longest” trip that visits all these spacdssT
“longest” trip serves as an upper-bound for the maximum timg:

for each spaceg € S do

for each space: € S — {y} do
time := time to drive fromz to y
u =t — time
it B(s,z,S — {z,y},u) is equal tooco then
continue with the next space:
end if
addedCost := C(z,y,t)
if B(s,z,S—{x,y},u)+addedCost < B(s,y,S —{y},t)
then
B(s,y,S —{y},t) = B(s,z,S — {z,y},u) + addedCost

store = as the predecessor gfin B(s,y, S — {y},t)

a trip may incur. Appendix 1 discusses how Alg. 4 finds ano: end if
approximation forT". %3: eneznf%rfor

The rationale of the dynamic-programming Alg. 1 is de{é} end for
picted in Fig. 2. We search for the best trip that starts %@ enﬁ“ﬁ)rﬂ)f
the vehicle’s current positios, visits spacesl, 2, 3, ends 28 pestCost = co
in space4; once in4, we impose the requirement that time29: for each spacg € parkingSpaces do
t has elapsed. Herd, — 4, 2 — 4 and3 — 4 are the three 31 e i(gégt’cngflﬁi%ﬁpaces —
previous alternative virtual edges. We find the best route I§¢:  bestCost := cost
recursively examining the cost of reaching node® and3 34 eninf%r'f
and adding onto these costs the respective costs for thagersss: retum The trip that refers tdestCost
the above three virtual edges. End

In Alg. 1, B(s,x,St) expresses the cost of the “best” trip that
starts froms, visits all the spaces of sét, ends in space and
needs time to complete. If no such trip can be furnished, then 1,4 clustering impact can be limited,
B(sx,St) = oo. In general,B(s,x,S) is the cost of the “best”

trip for all ¢.

if the parking spaces
that are grouped into a cluster, are spaces that are “vesg’tlo
to each other. Ideally, spots that ultimately appear intehss
are partial spot-sequences appearing in the optimal toajec
produced by Alg. 1. We elect to ug@uality Threshold (QT)
Clustering[14] as we do not want to designate the number of
resulting clusters and we use the Euclidean distance metric

B. Grouping Spaces into Clusters

The time complexity of Alg. 1 isO(n®>72")[13], where
T is the time of the longest trip and is the number of

arking spaces. The main factor in this complexity is thédiac _ . .
g". In %rdper to lower the computational Ian()j imglied by thi{['g' 3 sh_owsl(i pa_rkmg Spaces that are groupe(_JI !ﬁtdusters.
time complexity, we decrease the problem’s size by groupi @e vehicle at poins, wil deqd_e the order to visib cIuster;, .
parking spaces located geographically close into clusters using AIg._l. The spaces within each cluster are to be visited
vehicle groups the spaces known to be available, that arecsta! & best-first order fashion.
in its device, into clusters, and applies Alg. 1 using as inp
the clusters of parking spaces instead of distinct spots.
propose to locate the best trip around the clusters by usingQT Clustering uses a threshold for the maximum radius of
the Exact Algorithm and visit the spaces within each clustethe clusters it generates. If we use a value for this threkshol
using a best-first approach with respect to the cost functitimat is less than the minimum distance of all the pairs of
C(a, b, t1o). Our conjecture is that through the use of clustegsarking spaces, we will end up with one cluster per parking
we can expedite the process of determining the trajectory gpace. The opposite case is when we use a large threshold and
visit all known spaces by shedding computations. In Sedfion we end up with just one cluster with all the parking spaces
we compare the optimal trip around distinct spaces and ifhe tinside. An appropriate value for the threshold®F clustering
around clusters, and evaluate what is the impact of applyirsgstrongly related to the city where the vehicle moves. The
the clustering, in the solution’s quality. resulting clusters that will be the input to tB®act Alg. 1 may

. Cutting-off Clusters
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as the distance metric and the distance between two clusters
is the one between their centers. Note that the time to tsaver

a cluster, is the time to traverse the spaces contained in it,
using a best-first approach.
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Algorithm 2 Synchroni zati on Mode

Input: parkingSpaces: The set of parking spaces inside the maximum walking range

|:| 0- |:| |E| I- . (k): 'tl'het's;—zr:e Oflthf set that will b:-gri]ven as inpuc'; t(: Atlrr;:] 1 wowa
|:| |:| | 1 utput: The cluster sequence which corresponds to the proposedr e spaces

Fig. 3. Clustering Example
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Begin

clusters = apply QT clustering withparkingSpaces as input

topK = apply PAM algorithm with clusters and k as input

remainder = clusters — topK

approxzimation = apply Alg. 4 with topK as input

clusterSeq := apply Alg. 1 with topK and3 * approzimation as input

still inflict substantial load on the computational capieis while remainder # 0 do ' N A
toBelnserted = The clusterc € remainder with the minimum distance

of a vehicle’s device. In order to adjust the problem’s size i ** 5 custen € {clusters — remainder}
its operationa| environment, a vehicle can use a subsetl of a8: insert toBelnserted into the position ofclusterSeq that gives the best
. . . . . cost for the corresponding trip
the clusters as inputin Alg. 1. The size of this subset @lifc 9. | pdate ciusterSeq with the new insertion
affects the computational load and must be selected agmprdil0: remainder := remainder — {toBelnserted}
to the computational resources of the on-board equipment.13: S;ﬂr;““;'fumsw
The choice for the subset of clusters is not trivial. Ong
option would be to keep thep-k clusters, based on the cost
function C(a,b,ts,:). Since our aim is to be close to the
solution for the optimal trip, we choose to identifyareas for p_ | jye-Mode Approach

the parking spaces and keep one cluster as a representative, . L L . :
of each area. Fig. 4 shows that, for theclusters of Fig. 3 While a vehicle is in motion, it communicates with others

we identify three areas. One area for clustérand 2, one encountered within its radio range and continually receive

for clusters3 and4, and one for clusteb. The representative reports (updates) about parking spaces. An update informs

clusters arel, 4 and 5, respectively. The method we apply,that either a spot previously reported free is taken or a new

in order to identify the areas and choose the subset of tﬂ@e”'gg exists u:jthe vicinity. E_V'd?]n“}” a Sethf SbUChhupdﬁ
representative clusters is tHemedoid clustering and the May De received at any time in the form of a batch. These

Partitioning Around Medoids (PAM) approach[15]. The data pha_nge may necessitate that the vehicle re—gdjusts the trip
points that are given a@AM input are the cluster centers. initially computed and currently followed. A likely option
would be to have Alg. 2 invoked every time an update is

received. This would clearly pose significant burden on the o
board computing resources. Here, we preseninaremental
approach for possibly adjusting the trip initially genecby
Alg. 2 once a vehicle receives an update. Moreover, we define
the condition that specifies when a vehicle has to invoke 2lg.
anew in order to regenerate a near-optimal trip for the thgavi
updated parking space set stored on-board.

A vehicle examines updates from a batch one-by-one and in
doing so, re-adjusts its trajectory connecting all knowacss.
For every update, the vehicle detects which of the already-
formed clusters that make up its current route is affecfatiel

Fig. 4. Cutting-off Example update reports a spot already-taken, the vehicle has tatrefle
this fact on its storage so that others may be notified prgperl

The rest of the clusters that are not selected in the subseaddition if this space is already part of a cluster, theicleh
of representatives, will be inserted, one by one, in the triparks this cluster in the trajectory as affected. Should the
generated by Alg. 1. At every step, we select the clustapdate report a new position, the vehicle has to detect which
center that is the closest to one of those already selectetlits trajectory clusters is the best candidate to incaafmthis
The chosen cluster will be inserted into the position, in th@ewly-discovered” space. The best such cluster candigate
sequence of already inserted clusters, that gives the tist tthe one that maximizes the scoring functi8f = 1/(rx«r2),
cost for a trip. Alg. 2 termedynchronization Mode, depicts wherer is the radius of a cluster, ang> is the Euclidean
a combined approach that carries out clustering, selediondistance of the new space to the centérof a cluster. If a
best representatives, use of tleact algorithm and finally cluster consists of just a parking space, th&R = 1/r%.
insertion of cut-off clusters. We use the Euclidean distand his scoring functionSF' favors clusters with smaller radius,
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that have a center closer to the new space. If the new space

is not within the maximum radius permitted for any of the [l 18| to(d) L)
current clusters, we generate a new cluster that consists of El s

only this new parking spot. Z dlstlg) +> D dlsnli)+ Y dlsis). L)}

After detecting the cluster affected by a single update, the
vehicle must examine if the clusters must be visited in 4/here
different order. More specifically, if the vehicle followstiap
that sequentially traverses clusters, it must decide whether |S] |S|
to re-order the position of the affected cluster in the sagae L] L]

In this regard, each of the+ 1 possible positions corresponds to(i) =[5 + (=[5 | =147,
to a new trip. We consider the position that correspondsdo th 1] |51
trip with the minimum total cost as the best position for the |L| , |L|

J=1 1=2 j=f(i) j=to(|S])

fiy=TE gy S,

affected cluster. The worst-case time-complexity for Hizgd |g|/[|5|1
a single update i©O(n*m) wherem is the number of pre-
existing spaces and is the number of clusters. Each of the \wjithout loss of generality, we assume that tfpvisits | S|
n+l trips that have to be computed has an individual cogpaces (designated as for i=1.. |S]) which are less than
of O(m). We experimentally investigate how computat|onallyne|L| spaces, (designated QSforj 1...|L|), visited by trip
intensive is the above update procedure in section V-A. .~ A specific parking spos. that is part of the short triy
Updates may either trigger repositioning of existing clugnatches with the spaces of the long tiip that start from
ters or form new clusters; these changes essentially reflg¢t), and end toto(z). The variabler is equal tol when
alterations that affect the initial cluster sequence céedpy |L|mod|S| = 0 and0 otherwise. The distancg(s, ) between
Alg. 2. Should the update-batches heavily modify the statto spacess and! is the Euclidean distance.
of the parking space set a vehicle works with, we might have
to re-invoke Alg. 2. The question here is whether we can D D
continue using incremental adaptations of the clustensece
or we have to resort to something more drastic which is the D D
recompilation of the sequence from scratch (with the new @\
data). We define a distance metric that quantifies the degree
of change between two routes: the route initially desighate E
and the travelling sequence maintained incrementallyougel T ES
we first provide an example for this distance metric and we D .\-
then offer its respective closed-formula. - D D
Consider the situation in Fig. 5. Here, a vehicle was aware
of the available spaces$, 2 and 3 the last time Alg. 2 Fig. 5. Distance between two routes
was invoked. When the vehicle reaches paintit receives
a batch-update that collectively reports spates2 and 3 The interaction between our proposed incremental com-
as OCCUpied and SpaC@S and 5 as available. The initial pu“ng approach and A|g 2 is presented in A|g 3. Every
sequence of say — 2 — 3 changes and through incrementa)ehicle runs this algorithm as a deamon that creates and
computations becomes— 5. The vehicle ats calculates the incrementally updates the trajectory to follow in the prese
distance between the above two trips before it decides to yfecontinuously disseminated information on the status of
Alg. 2. Each spot of the adjusted trip, which visits less §8ac spots. TheSynchThres threshold designates the maximum
corresponds t@/2 spaces of the initial one. We match the firsgjistance between two routes and we use it to determine if the
space of the adjusted trig, with the first2(= [3/2]) spaces, gynchronization Mode has to be immediately applied, instead
1 and2, of the initial trip, and spacg with space2 and space of carrying on the incremental updating. The value of this
3. The distance between the two trips, is a weighted sum of tigeshold depends on how frequently the computing device of
distances of the matched spaces. In this example, the weighfehicle can reserve computational resources to apply2Alg.
for each matching pair |§— = 0.75. For the four matching
pairs 4 with 1, 4 with 2, 5 with 2, 5 with 3 the Euclidean V. EVALUATION
distances are respectively4, 6, and5. The distance between In order to evaluate the proposed method, we built a
the two trips is set a0.75(4 + 4 + 6 + 5) = 14.25. More  simulator and we performed experiments on a part of the Paris
formally, we define the distance between two proposed tripsad network. A sreenshot of the simulator's GUI is given on
S and L as follows: Fig. 6. This simulator uses a simple dissemination protocol
for the parking information, that can be described as fatlow
each vehicle stores for each known available parking space,
Lthe last time we run th&mnchronization Mode Alg. 2 spatial data and a timestamp, that denotes when this space



Algorithm 3 Li ve- Mode Deanon around parking spaces, using the methods we propose in this

Initialization: paper. We also estimate how “close” a trip remains to the
synchSeq = apply Alg. 2 with the known parking spaces as input optimal trip, when we app|y th&l ustering and Cuitti ng Off
curSeq := synchSeq methods. The cost difference of a trip from the optimal estat
Belg'“ this fact; the cost in question is expressed by the function
: while true do . .
2 if there is an addition or deletion in the set of known parkingcgsthen C(a, b, ttot.) qf S.eCtl_On IV-A. The parameters aﬁeCtmg the
i fO(feach changelo ot geographic distribution of parking spaces are the average,
. if a spaces was takerthen St H
5 af fectedCluster = The cluster that contains and standard deviatiosd, for the distance between every two
g (cju_:Seq = curSeq — {af fectedCluster} spots. In the results we present in this papeg was set to
ena i
8 if a new space is availablethen 522m and Std. to 395m. . . .
18. af fectedCluster = The best cluster to contaify based onSF Fig. 7 depicts the effect o®T Clustering with 3 different
: if no cluster could contaig then : :
11 af fectedCluster = A new cluster that contains only values for quality threshol@T hres. This threshold expresses
1%; else the maximum radius a cluster may display. We chanseand
14; enfﬁ]fseq = curSeq — {af fectedGluster} std as the parameters which affect the maximum radius. The
15: end if three levels of clustering are designated as follows:
16: insert a f fectedCluster into the position okurSeq that gives the best Clusterl QTh /3
cost for the corresponding trip ° . res = ave
175 update curSeq with the new insertion . C|USter22QTh7’es — ave/3 + Std/2
18: end for )
19: distance = The distance between the trips fenrSeq and synchSeq o Cluster3:QThres = ave/3 + 2% std
20: if distance > SynchThres then f f
%%: synghSeq = apzlgy Alg. 2 with the known parking spaces as input ;Lhe x_?:_(lf ei(hprtesses thte nl.;rl’:]b(til' of parklggtrﬁllaces kno_wn by
: curSeq = synchSeq e venicle al computes e mrip aroun em. [[h&XlS
%2; ona it expresses the execution time for the computation of thertrip
25: end while milliseconds and logarithmic scale. The execution timedeee
End by Alg. 1 which finds the optimal trip, increases exponeftial

to the number of known parking places. The execution time
for Clusterl also rises when the number of parking spaces
was reported available. Vehicles exchange parking inftiona increases, as the number of clusters that are formed becomes
with other in-range vehicles, and keep the most up-to-ddteger. Cluster2 and Cluster3 form less clusters than @ilist
information. When a vehicle traverses a road segment, tfles aand have reduced execution times.
to detect free parking spaces. A final destination is assigne
to each vehicle, and a vehicle will park only to a parking 100000
space that is within a maximum distance range from the final

Optimal ——
Clusterl ---x---

destination and is larger than the vehicle’s length. E 100 F| Gsters o

The experiments performed are divided in two parts: in % 1000 o
the first, we ascertain the effectiveness of the incremental £
computing and clustering techniques. The metrics used in g 10 I T S
the first part of evaluation, are the execution time for the g 10 ,’D‘ @ B
computation of a trip around a set of parking spaces and
the cost difference of a trip from the optimal trip, using the LT s s v s s 10
cost functionC/(a, b, t:,:) described in section IV-A. In the Parking Places

second part of our experiments, we compare our method to a _ , _ ,

. . . ig. 7. Time to compute the trip around parking places forghgmal and
Best-First approach, where each vehicle goes directly €0 firce ciustering levels
most promising (or “best” at the time) parking space. We use

the following metrics:a) time needed to reach a free parking Fig. 8 presents the cost difference from optimal for the same

space,b) time required to walk from the selected space tg,,eriments with those depicted in Fig. 7. Clusterl has the
the final destination ana) the percentage of vehicles thayagt cost difference in most cases, since it forms clustétts w
managegl to park. parking spaces that are close to each other, and it is likelty t
The_ simulator has been developed dj@va 6an-d all th? these spaces are visited sequentially, in the optimal Ty
experiments were performed on a machine equipped with f4t that the curves of Cluster2 and Cluster3 are rough, is an
Intel Core Duo 3.00GHz CPU andi GB RAM. Throughout i ication that the best first approach for visiting largbsats

the experiments, we assumed a wireless communication raR@earking spaces, gives near-optimal results in some cases
of 50m, a bandwidth o2 Mbps and a vehicle density @0 and high-cost results in other cases

vehicles per km. In Figs. 9 and 10, we compare thap-k method and thé&-
A. Clustering and Cutting Off Impact medoids method for deciding thi, out of 10 spaceg, that will

In Fhe experlments presented here,.we monltored the CO.mZThe computational resources were not sufficient for compgutie optimal
putational time needed by one vehicle to decide the trgplution for a problem size over0 using theExact approach.
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Fig. 6. Screenshot of the simulator's GUI
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Fig. 8. Cost difference from optimal for three clusteringels Fig. 9. Time to compute the trip around parking places, usomgk and

k-medoids methods, to produce a subset of parking spaces

be used as inputin Alg. 1, as described in subsection IV-@. Th ig NN ]
top-k method selects thk spaces with the lower cost, using AN i
cost functionC(a, b, t;,;) described in section IV-A. The- 14 - T g
axis in both figures is the numbek, of spaces that will be 12 | 1
selected by the two methods. We observe that the differences

in the execution time of the two methods are minimal, since
they will always run Alg. 1 with the same input size We also

Cost Diff from Optimal %
=
o
T
Il

K Medoids —+—

o N b O
T
I

observe that wheB0% to 70% of the parking spaces are used TopK x| ]
as representatives, themedoids method shows significantly 2 3 4 5 6 7 8 9
better cost difference. This can be explained by the fadt tha Number of Representatives

top-k method Se!e_CtS the subset of the b_eSt p_arklng spacg@l 10. Cost difference from optimal, usirigp-k andk-medoids methods,
that may be positioned close together, whimedoids selects 1o produce a subset of parking spaces

a subset that represents in a better way, the topology of the
entire parking space set.

In Figs. 11 and 12 we apply clustering and then we Keepdifference remains the same lasnoves overt, for Cluster2,
of the clusters, as representatives, usingkthedoids method. and remains the same for all the valuekofor Cluster3. This
The z-axis denotek in both figures, and the three clusterings because, in most cases, Cluster2 does not form, more than
levels are the same as in Figs. 7 and 8. We observe that the doslusters, and Cluster3 does not form more thaClusterl



forms more clusters, and the cost difference from optimal is

better than Cluster2 only when a sufficiently large number of

. 0 Clustering Bz -
these clusters are used as representatives. Note that wdten m 8 Cutting Off &=
than5 clusters are used as representatives, the cost difference & 1%
from optimal is less than0%, for Clusterl. g 100 ) i

<
S
10000 : ‘ ‘ E 10 l !
Clusterl —+— 2
—_ Cluster2 ---x--- nj
g Cluster3 - 1 -
2 1 2 3 4 5
E 1000 3 Clustering Level
[}
£
b= Fig. 13. Time to compute the trip around parking places fastering and
-% 100 oz F g g g cutting off methods
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Fig. 11. Time to compute the trip around parking places, gisilustering 20

and cutting off
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(i.e., executes Alg. 2) its trip after every update is reediv
When the number of updates, since the last time the vehicle
synchronized its trip, is less thanthe cost difference remains
below2%. Cost difference rises t¢% for 5 to 7 updates, and
reache9% for 8 updates.

Fig. 12. Cost difference from optimal, using clustering autting off

1000

A comparison between the clustering and cutting off meth-
ods, is given in Figs. 13 and 14. For each experiment per-
formed using clustering, that producésclusters, we run an
experiment using-medoids, keepingL representatives for all
the spaces. In both cases therepresentatives make up the
input to Alg. 1. We used clustering levels which are more
fine-grained than the& levels used before. As Figs. 13, 14
show, cutting off gives a significantly better outcome than L
the clustering method, for all the clustering levels, wtilie Y2 3 4 s 6 7 s
execution time is slightly more in most cases. This outcome Updates to be merged in the trip
indicates that it is better to find the optimal trip for a numbq:ig 15
L of representatives for the whole parking space set, and thgse
insert the rest of the spaces in this trip one by one, thanrfindi
the optimal trip forL clusters, and then visit the spaces inside The experiments we carried out in this section overall
a cluster using a best-first approach. indicate thative-Mode features low computational overheads

Figs. 15 and 16 respectively depict the computational oveand the re-adjusted route it yields is close to the optimpl tr
head and the deviation from the optimal trip wheive- When clustering is performed with a large radius for cluster
Mode is in use. In Fig. 15, a vehicle re-adjusts its trajectorgr when cutting off is performed with a small number of
for a number of updates. The execution time for handlingpresentatives, the formed route may be considerablyewors
these updates, starts frofims for one or two updates, thenthan the optimal. The most efficient way to keep the size of the
increases linearly, and finally reach&80ms for 8 updates. problem small and attain a near-optimal solution is to alifi
Fig. 16 presents the cost difference from the optimal tripleploy clustering with a small radius and subsequentlyst u
if instead of applyingLive-Mode, a vehicle “synchronizes” k-medoids to selectk representative clusters.

[ LiveMode ——1

100 E

Execution time (millisecs)

Execution Time for merging a number of updates, giire Live-
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Fig. 16. Cost difference from optimal, after a number of updausing the Fig. 17. Time to find a parking space free for thiee-Mode and Best-First
Live-Mode approaches

B. Live-Mode versus Best-First

In this set of experiments, we examine how much time 400
a vehicle gains following a route that optimizes the cost 350
functionC(a, b, t) compared to a trip realized using a best-first 228
approach at every iteration. Regardless of the approaemtak
the cost function remains the same and takes into account the
time needed to arrive to parking space, the time required to

Best-First vs Live-Mode

Best-First
Live-Mode EXX=

150
100

Walking Time(virtual)
N
=}
o

walk from this spot to the final destination and finally, the 58 @@ %@ %@
probability to find the spot still free. 0.25 05 0.725
Three different ratios).25, 0.5, 0.725, are selected for the Parking Places Per Vehicle

number of available parking spaces per vehicle. The startin o _ o _ _
. . . . . . Fig. 18. Walking time to the final destination faive-Mode and Best-First
point and final destination of a vehicle are chosen usi proaches
uniform distribution, inside predefined regions of the roat+
work. We generate pairs of vehicles, having the same startin
point and final destination. One vehicle is using duve- .
Mode approach while the second uses the best-first techniga@se for both approaches, in all cases. In general, we would
The specific settings for thkive-Mode are ave - std for the expect that a vehicle using the Best-First approach would
maximum radius of clusters, arfdfor the maximum number perform better than those enabled witlve-Mode as it tries
of representatives. In all our experimentation, we mantae to aggressively select a spot very close to the destination.
space per vehicle ratio constant by generating new pairs l@wever this does not frequently occur in our experiments
vehicles and new parking spaces as needed. since Best-First vehicle find their top picks occupied and so
Figs. 17, 18 and 19 respectively show the average tirtieey have to settle for inferior choices.

needed to find a free parking space, the time needed tas Fig. 19 shows, the percentage of vehicles finding a free
walk from that parking space to the final destination, anshace consistently remains higher for tiiee-Mode approach.
the percentage of vehicles that found a free space using thif results of Fig. 19 are in line with those presented in
two approached.ive-Mode demonstrates better results in alligs. 17 and 18; simply the differences become more pro-
three cases. Vehicles that operatge-Mode choose to, first, nounced for ratio®.5 and0.725.

visit areas where there is a high density of parking spaces.

In contrast, Best-First vehicles elect to visit spots thad a

their best option regarding their final destination and eotr

position, even if these spots lie on areas with low-density 100

of available spaces. The fierce competition among vehicles Best-First Ezzema

using the Best-First approach does not allow any significant 80 | o LverMode ESSST

improvement when the ratio of spaces per vehicle increases.
Fig. 17 shows that for all space ratios examiné&dse-

Mode attains better average time if compared with its Best-

First counterpart. The biggest gains appear for ratibhsnd

0.725 where Live-Mode can help vehicle effectively travel 0

around empty spots. For space rafi@5, the difference of

time required to park betweehive-Mode and Best-First is

noticeably smaller due to higher competition for spaces. Fig. 19. Percentage of vehicles that found a parking spaeeférLive-Mode
As Fig. 18 depicts the walking time to the destination ignd Best-First approaches

Best-First vs Live-Mode

60

40

20

Vehicles Parked %

0.25 0.5 0.725
Parking Places Per Vehicle



VI. CONCLUSIONS [10]

In this paper, we address the problem a driver faces while
trying to locate a parking position in an urban environmerﬁ.l]
We assume that vehicles are equipped withicle-to-vehicle
communication equipment which also features computationa
and storage capabilities. As the vehicle navigates, it con-
tinuously receives reports about available spots closéi¢o {7
area the driver intends to park from oncoming traffic. We
formulate the problem using thBme-Varying TSP approach
and propose methods that reduce complexity for Mitshard
problem. Our methods attempt to present a good trade-pf]
between optimality of the solution adopted and computafion
requirements. We developed a detailed simulation engiae tfy s
helped us experimentally evaluate our approach. Using & Bes
First baseline approach we demonstrate thatTome-Varying  [16!
TSP approach can have substantial performance benefit. We
showed that our methods, if combined properly, can produce
a near-optimal trip with respect to the deployed cost-fiomct
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Appendix 1

Finally, our experimentation indicates that the increrabn
updating approacHige-mode) maintains close-to-optimal tra
jectories in the presence of continuously disseminatekipgr
information.

The problem of finding the longest trip can be formulated to
" the MAX-TSP[16], which is alsoNP-hard. We select a greedy
algorithm that offers d /3-approximation of the time needed
for the longest trip[16]; this appears in Alg. 4. The algiomit
initially chooses a directed edge of maximum weight and then
continues to choose edges of maximum weight subject to the
We would like to thank Herald Kllapi for his help with therequirement that the collection be contained in a direcyetec
simulation environment and his comments. This work has bewith all the nodes. In our work, nodes are the parking spaces
partially supported by th®4Science IFP7-project funded by and the weight of a directed edge is the drive time from the
the European Commission. first corresponding space to the second. The value obtaied b
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Alg. 4 is multiplied by3 before provided as input to Alg. 1;
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