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Abstract

Peer-to-Peeroverlay networks have gained in popularity as they present
an effective alternative to resource-sharing. Users’ anonymity though, has al-
lowed peers to also share malicious artifacts that may be wrongly perceived
as popular resources. A number of proposed reputation schemes attempt to
address this problem by recording the requestor’s satisfaction at the end of
each operation. In such schemes, a node that has no evidence on quality of
a sought resource may consult with recommending peers before a download
operation commences. Existing reputation mechanisms are prone to attacks
that exploit the formation of groups of colluding peers. Thelatter collectively
attempt to either raise or lower one’s reputation value. We propose aReputa-
tion Monitoring Mechanism (RMM)that restricts the extend of those attacks
by continually monitoring the reputation level of each peerover a number of
consecutive time periods orepochs. ShouldRMM observe rapid changes in
the reputation value of a node, it smooths out these variations; thus, it pro-
vides resistance to attacks by colluding peers.RMM actions depend on both
peer reputation value and variations during severalepochsin recent past.
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1 Introduction

Peer-to-Peer (P2P)networks have become a very attractive choice for distributed
resource sharing as they shield users from the inherent heterogeneity of partici-
pant computing systems. Due to lack of inspection and/or assessment of shared
resources, a peer might be deceived and be led to download a malicious or sim-
ply an irrelevant object. To prevent fraud,P2P networks incorporatereputation
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schemes[2, 13, 3, 11, 9, 15, 18] that offer advice to peers regarding reliability of
unknown resources and/or resource-holders.

Upon a number of possible offers, the requesting site has to consult with rec-
ommending peers in the overlay network, termed recommenders, in order to de-
termine the most reputable offerers and resources to download. This process is
vulnerable topseudospoofingandshilling attacks[12]. Pseudospoofingattackers
establish and control multiple virtual peers. Whenever an attacker’s reputation
level is low, it may turn to a new pseudonym and/or create virtual yet fake iden-
tities. These identities will with certainty spread false evidence in favor of the
attacker. InShilling, multiple peers with real IP addresses are actually created
and/or controlled, and are not just simulated, by the attacker. Pseudospoofingis
usually addressed by initiating a challenge-response handshake between the re-
questor and the host of a resource to be downloaded so that theoriginality of the
offerer is established [5].Shilling is certainly more difficult to deal with, as the at-
tackers control legitimate peers with real IP addresses. The only known detection
mechanism clusters votes originated from similar IP addresses and considers them
as a single vote having an average value [6]. However, an attacker that creates and
controls multiple diverse peer identities may exploit these multiple identities to
either increase its reputation or reduce the reputation of others.

Since the number of peers deceived by the colluders continuously increase,
eventually the number of complaints may counterbalance thecolluders’ attempt to
tamper with the reputation level of a site and/or resource. In this way, a reputation
scheme may take a long time before it detectspseudospoofing/shilling activity.
A malicious peer with artificially increased reputation mayexploit this delay to
distribute malicious artifacts. In this context, we propose a distributedReputation
Monitoring Mechanism (RMM)that monitors the reputation levels of peers.RMM
does not only limit the extent of attacks but more importantly attempts to signifi-
cantly reduce the time in which malicious activity goes undetected. As colluding
peers may cause rapid changes at the reputation levels of sites/resources, theRMM
attempts to detect significant variations of reputation values and limit the extent of
the sought change. Once candidate nodes for unlawful activity are determined, the
RMM reprimands these sites following a policy of proportional penalties to their
current level of trustworthiness. Section 2 presents the fundamental structures
used and section 3 outlines a baseline reputation scheme. Section 4 introduces
theRMM and section 5 discusses the core features of our proposed mechanism.
Related work and conclusions are found in sections 6 and 7 respectively.

2 Basic Data Structures

The required data structures that both theBaseline Reputation Scheme (BRS)and
our Reputation Monitoring Mechanism (RMM)use are depicted in Table 1. Both
Direct Peer Experience (DPE)andDirect Resource Experience (DRE)tables are
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the fundamental structures maintained at every peerp in the overlay network.
They help store the “experience” for all download-requestsinitiated by a peerq
in reference to nodes that are willing to act as servers for resources. Both nodes
and distributed resources can be affiliated with such experience ratings. Along
with identifiers ofq, p, ands, these ratings form tuples whose constituent ele-
ments quantify the experience obtained after the completion of sessions between
resource holders and query initiators. The experience concerning a peer may be
computed based on a combination of features including the honesty of a site (i.e.
if it really holds the resource requested), the average response time (determined
by its computation power and its load), the available bandwidth through which it
connects to the network, and finally, the network latency between the requestor
and the resource holder. The resource experience can be alsocomputed based
on quantitative characteristics that include authenticity, level of quality, and rele-
vance to the query criteria. Every entry in the two experience tables regarding a
peerp or a resources containsdp or ds values respectively.

Data Structure Definition

Direct Peer Experience
table (DPE)

Stores experienceE(q; p;t) of q after interacting with
site p at timet regardingp’s behavior represented bydp

distinct features that are parameters to peer reputation.
Direct Resource Experi-
ence table (DRE)

Stores experienceE(q; p;s;t) thatq estimates on the re-
sources located inp at timet expressed byds distinct
features that are parameters to resource reputation.

Reputation Table (RT)
applicable toRMM only

For all resource-holders under the responsibility of a
Reputation Variation Monitor (RVM), the entries to this
table consist of the reputation levels (comprised of the
values of thedp contributing features) observed during
the last λ epochs. For each resource-holder,RT also
stores the identities of all otherRVMs also responsible
for specific peers.

Table 1:BRSandRMM pertinent data structures

In our RMM mechanism, each node that is part of the overlay network, is
monitored by a set ofReputation Variation Monitors (RVM)peers. EveryRVM
site maintains aReputation Table (RT)with reputation levels of managed peers
during the lastλ observed time periods, termedepochs. RVM sites are a subset
of the network peers and may undertake the management of reputation levels for
multiple nodes. Since all above information is distributed, single point of failure
is avoided. This helps advance the scalability of the reputation system’s overall
design. In the rest of the discussion, we will refer to a groupof offerers asp and
a single offering node aspi . It is worth pointing out that as the experiences ofq
are maintained in tables stored atq, there is no need of repeating the identity of
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the site in question in the corresponding records. However,we use this extended
format for readability.

3 Baseline Reputation Scheme (BRS)

The Baseline Reputation Scheme (BRS) that we discuss here is derived from the
description of theXRepprotocol [6]. We adopt the distinct five phases ofXRep. In
addition, we offer estimation formulae for the evaluation of all factors involved.
Below, we briefly present the five phases ofBRS.
� Phase I – Resource request:when an initiatorq searches for a resources, it
sends anAskResource query message to itsDirect Neighbor Set (DNS). The
AskResource query requestssand states the criteria that either the resource or
the resource-holder must satisfy.DNSis defined as the group of nodes to whichq
is connected through a direct link and the criteria correspond to features outlined
in Section 2. Each peer in theDNSexamines whether it possesses the requested
resources that may also satisfy the imposed query criteria. In light ofa positive
outcome, a node responds to the initiator with aHoldResource message that
includes the name of the resource offered as well as the properties of both resource
and peer. Otherwise, the query is forwarded toq’s Indirect Neighbor Set (INS)in
a recursive fashion until a number of predefined number of hops h is reached.
To prevent cycles in the forwarding motion and reduce network traffic, if a query
reaches the same peer more than once with a request coming from the same point
of origin, it is neglected.
� Phase II – Recommendation Request:after receivingHoldResourcemes-
sages from multiple offerers in setp and checking their properties1, the initia-
tor q solicits recommendations for all members ofp ands even if it has already
recorded prior experiences with the same peers/resource. If q would reject a spe-
cific peerpi offer with whomq had prior insufficient satisfaction, thenq would
blacklistpi . From this point on,pi may depart from the blacklist only ifq takes
into account indirect evidence. Consequently,q dispatches anAskRecom mes-
sage toDNSneighbors in a similar way used in the handling ofAskResource
messages. Upon receipt of anAskRecom, a peer examines both its experience
tables (DPE andDRE) for the resources and the offerers in setp and ships the
results back to the initiatorq using aPostRecom message. Public key infras-
tructure (PKI) [1] may be used to ensure integrity and authenticity of messages.
� Phase III – Evaluation of Offerer Reputation: the initiator q may receive
several recommendations from trustworthy, un-trustworthy, and unknown2 peers.
This set is denoted asr and we term them as first-line recommenders.q searches
in its DPE for any prior experience with the set of peersr . In addition,q solicits
from both itsDNSandINSneighbors their own direct experiences in reference to

1For example, that the network bandwidth is greater than the requested limit.
2nodes that have not yet interacted withq.
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a particular recommenderr i ; the aggregation of these values makes up the indi-
rect experience ofq about a recommender. If the combined expression of direct
and indirect experiences exceeds a user-defined thresholdθ, thenq accepts the
recommendation; otherwise, the recommendation is discarded. If first-line rec-
ommending sites are unknown, thenq has to evaluate their trustworthiness before
accepting their recommendation. To achieve this,q requests direct experiences
that a set of second-line recommendersr 0 has recorded for each of the first-line
recommending sitesr i . Initiatorq accepts advice from second-line recommenders
r 0 if q’s direct experience with the individual sites in question exceedsθ.

Let DPEq;pi ;τ be theDirect Peer Experiencethe initiatorq has on the offererpi
at this present timeτ. This can be derived from the experience entriesE(q;pi ; t)
of q’s DPE table weighted by atime decay function f(τ; t). As defined earlier,
E(q;pi ; t) states the satisfaction ofq regarding nodepi at distinct timest where
t � τ. The time decay function is used to express the fact that a recent peer ex-
perience deserves more attention than an old one since peersmay have behaved
differently in the elapsed time. Assuming thatq hasg entries in itsDPE, thenq’s
direct peer experience is defined as the weighted average of those entries:

DPEq;pi ;τ =
1
g

g

∑
j=1

E(q;pi ; t j)� f (τ; t j) (1)

q proceeds with the computation of indirect peer experienceIPEq;pi ;τ that it
gathers at timeτ from n reputable recommending peers concerning the individual
sitepi :

IPEq;pi ;τ =
1
n

n

∑
k=1

DPErk;pi ;τ (2)

The selection of then first-line reputable peers is accomplished by computing
DPEq; r i;τ (Eqn. 1) for eachr i in the set. Only sites whose value exceeds the
thresholdθ qualify for the set. Ifr i is unknown toq, thenq may dispatch a new
query to its vicinity asking for recommendation onr i . The advice of second-
line recommending siter 0i with which q has sufficient direct experience (i.e.,
DPEq;r 0

i ;τ
> θ) are accepted.

After having computed bothDPEq;pi;τ and IPEq;pi ;τ, the initiatorq may
compute the reputation level ofpi by assigning these factors different weights.
The coefficienta, defined by user application level, ranges in[0;1℄ and indicates
how much the initiator wishes to take into account recommenders’ experiences
[2]. Whena< 0:5 the initiator relies more on the recommenders’ experiencethan
on its own. TheReputation Levelof a peerpi is then defined as:

RLq;pi ;τ = a�DPEq;pi;τ +(1�a)� IPEq;pi;τ (3)

Similarly, we compute theReputation Levelof resources at sitepi based on
the recommendations received. TheDirect Peer Experiencethat the initiatorq has
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on a resourcesoriginating from peerpi at this present timeτ is termedDREq;pi ;s;τ.
We can deriveDREq;pi ;s;τ using thev entriesE(q;pi ;s; t) found in theDRE table
of q for v instances of time wheret � τ. IREq;pi ;s;τ is theIndirect Resource Expe-
riencethe initiatorq obtains at timeτ from m recommending peers. This can be
computed by theDRE records of the recommenders.

DREq;pi ;s;τ =
1
v

v

∑
u=1

E(q;pi ;s; tu)� f (τ; tu) (4)

IREq;pi ;s;τ =
1
m

m

∑
l=1

DREr l ;pi ;s;τ (5)

In summary, theReputation Levelof a resources located atpi is defined as:

RLq;pi ;s;τ = a�DREq;pi;s;τ +(1�a)� IREq;pi;s;τ (6)

We note that the behavior of a node may be independent of the reputation of its
hosted resources and vice versa [3, 6, 18].
� Phase IV – Offerer Selection:an offerer becomes a candidate for downloading
the sought resources only if the expression(RLq;pi ;τ > θ) AND (RLq;pi ;s;τ > θ),
qualifies. Frequently, reputation schemes select the most reputable peer among the
candidates [6, 14]. As the latter may produce high load for a few nodes, a random
choice among the top candidates can be used instead [15]. Before proceeding
with downloading from the selected trustworthy offererpw, the initiatorq begins
a challenge-response handshake withpw to prevent pseudospoofing [12]. Ifpw
fails the test, another offerer of the top-list is selected until the identity of the new
offererp0w is verified.
� Phase V – Resource Download and Experience Updates:nodeq sends a
DownloadReqmessage topw asking fors. Once the download ofs completes,
the initiatorq records its experience regarding the offering peerpw and the down-
loaded resources at transaction timetn. This is materialized by adding a record
E(q;pw; tn) in q’s DPE table and a recordE(q;pw;s; tn) in q’s DRE table. Sim-
ilarly, q stores to itsDPE structure its own opinion on the first- and second-line
recommender peers in setsr andr 0 that expressed their opinion onpw.

Over time, a nodepi may occasionally provide service as either offerer or
recommender to an initiating siteq. The level of satisfaction is stored atq struc-
tures (i.e.,DPE) no matter what is the type of service rendered byp in the past.
Algorithms 1-4 show the functions of our baseline reputation scheme (BRS) and
Figure 1 depicts a sample session on how a peer is selected.
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Algorithm 1 (BRS) - Initiator’s Algorithm

1: broadcastAskResource(s,h) /* h number of hops */
2: receiveHoldResource(s) from p /* the set of offering peers */
3: broadcastAskRecom(p,s,h)
4: receivePostRecom(p,s) from r /* the set of first-line recommenders */
5: for all r i do
6: computeDPE(q; r i ;τ)
7: broadcastAskRecom(r i,h)
8: receivePostRecom(r i) from r 0 /* set of second-line recommenders */
9: for all r 0

k do
10: if (DPE(q; r 0

k ;τ) > θ) then
11: accept recommendation ofr 0

k for recommenderr i
12: end if
13: end for
14: computeIPE(q; r i ;τ)
15: if (DPE(q; r i ;τ) > θ) AND (IPE(q; r i ;τ)> θ) then
16: accept recommendation ofr i on offererpj
17: end if
18: end for
19: computes reputation fromr set /* in a similar way to that of Steps 5–18 */
20: for all p j do
21: computeRLq;pj ;τ (Eqn. 3) andRLq;pj ;s;τ (Eqn. 6)
22: if (RLq;pj ;τ > θ) AND (RLq;pj ;s;τ > θ) then
23: pj is candidate for downloading
24: end if
25: end for
26: sort list of candidates
27: repeat
28: select one of the top, namedpw
29: until challenge-response handshake betweenq andpw is successful
30: sendpw DownloadReq(s) to start download
31: append inDPE the associated experience /* for allrx,r 0

y recommendingpw */
32: append inDRE experience for resources

Algorithm 2 (BRS) - Daemon1 run by the set of offering peersp
1: loop
2: receiveAskResource(s,h) from an initiatorq
3: if s is included in resource repositorythen
4: reply toq with HoldResource(s)
5: else if within range ofh then
6: forward theAskResource(s,h-1) to neighbors
7: end if
8: end loop
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Algorithm 3 (BRS) - Daemon2 run by set of recommending peersr , r 0, and sitesp
1: loop
2: receiveAskRecom(pi,s,h)
3: if records exist inDPE / DRE for pi or s then
4: reply toq with PostRecom(pi,s)
5: else if within range ofh then
6: forward theAskRecom(pi,s,h-1) to neighbors
7: end if
8: end loop

Algorithm 4 (BRS) - Daemon3 run bypw

1: loop
2: receiveDownloadReq(s)
3: send a copy ofs to q
4: end loop

1) q broadcasts anAskRequest seekings

2) p1 andp2 respond withHoldResource

3) q broadcastsAskRecom regarding offerers

p1, p2 ands

4) recommenders reply withPostRecom; r1,

r2 recommendp1, s; r3, r4 recommendp2, s

5) as r1, r2, r3 and r4 are unknown toq, the

latter broadcastsAskRecoms on their behalf

6) second-line recommenders reply with

PostRecom; r 0

1 for r1, r 0

2 for r2, r 0

3 for r3 and

r 0

4 for r4 (r 0

i andr i for i=1..4 are all trustworthy

here).

7) after evaluatingp1, p2 and s, q challenge-

response-handshakes withp2 and decides to

downloads from p2.

Finally, q appends its own new experience

for p2, s, r3, r4, r 0

3 and r 0

4. Broadcasting is

represented only with arrows to help figure

clarity.
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Figure 1:Sample session usingBRS

4 The Reputation Monitoring Mechanism (RMM)

The operation of our proposedRMM scheme is based onReputation Variation
Monitor (RVM)sites that not only facilitate regular data querying but also un-
dertake an augmented responsibility. The additional obligation of anRVM is to



Dariotaki & Delis: Detecting Reputation Variations in P2P Networks 9

continually monitor the reputation levels of all peers thatit supervises. When a
site joins an overlay network, it contacts a trusted/knownbootstrap node[15]
which randomly selects a number of anonymousRVMs; these help monitor the
site in question. The bootstrap node guarantees that designatedRVMs in conjunc-
tion with the site entering the network do not produce any collusions [15]. It is
expected that collaboratingRVMs that oversee the same site are known among
themselves. The identity of aRVM is never revealed to supervised peers.RVMs
use multiple windows in the past, calledepochs, to better gauge “prior” recorded
site behavior in the network. We simplifyRMM’s design by recording only the
behavior of sites in previous epochs but not that of their individual resources.
The ultimate selection of a downloading node is based on boththe BRSrecom-
mendation (that yields “only-current” reputation levels for both sites and their
resources) in conjunction with the evaluation ofRVMs (that produce aggregations
of prior behavior of sites by examining the set ofλ most recent observed epochs).
In doing so, theRMM algorithm attempts to limit abrupt changes of reputation
levels that are often result of collusion [12, 4]. In light ofsuddenly popular re-
sources,RMM will initially slow down steep changes in the reputation levels of
peers; however, over time and in step-wise fashion,RMM will ultimately accom-
modate such “hot” resources. Last but not least, ourRMM follows a third-party
recommendation approach [16, 15] in contrast to previous proposals [6, 5, 18].

We enhance theBRSalgorithm by substitutingPhase IVas follows: the initia-
tor q consults with theRVMs (via a broadcast) that were supervising the offering
peers, concerning their reputation levels in the recent past. Once pertinent answers
are received,q re-evaluates all offerersp which have qualified in theBRStest. The
filtered list of peersp0 is computed by considering bothBRSrecommendations as
well as those of the overseeingRVMs. Last,q changes the line-up of its reputable
peers in order to select a top one. Below, we discuss the required five steps that
now constitute thePhase IV in theRMM algorithm.
� Step IV(a) – Early Offerer Selection: once all offerersp have been evalu-
ated in terms of both peer and resource quality at the presenttime, the initiator
q discards those offers that do not meet the expected reputation thresholdθ for
both sought resources and furnishing peer (i.e., requires (RLq;pi ;τ > θ) AND
(RLq;pi ;s;τ > θ) ). Qualifying offerersp0 (a subset ofp) proceed to the next step.
� Step IV(b) – Reputation Variation Request: for each offereri in thep0 set,q
dispatches anAskRVM message towards its associatedRVMs. We employRVM
identity-hiding [7, 14] to prevent peers from startingDenial-of-Service attacksto-
wards the associatedRVMs. Asq cannot be aware of theRVM identities3 commu-
nication is established through amutual anonymitycommunication protocol [7,
14, 19]. We employ anonymous communication betweenRVMs and initiators
to prevent global eavesdroppers from identifying the nodesassigned to specific
RVMs. As mentioned in Section 2, everyRVMmanages aReputation Table (RT)

3Overseeing thei candidate peer in thep0 set.
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that stores the reputation levels for a subset of the potential offerers during the pre-
viousλ observed epochs. We assume that the duration of an epoch is application
and/or user defined. At the end of each such period, aRVMdetermines the repu-
tation of its own offerers using Eqn. (3) of theBRS. As soon as aRVMcomputes
a new reputation value, it logically shifts all previous values one epoch back. The
oldest of theλ values is discarded. Upon receipt of anAskRVM message, aRVM
searches itsRT structure to locate theλ appropriate reputation values. These are
anonymously transported toq via aRVMReply message.
�Step IV(c) – Evaluation of Offerer Reputation Variation: as soon asq re-
ceives all pertinentRVMReply messages, it re-evaluates the reputation of all of-
ferers in the setp0. For each such offereri, the initiator obtains a maximum of
λ�NRVMi reputation values; here,λ represents the number of epochs observed
andNRVMi is the number ofRVMsthat coordinate thei-th element ofp0. Note
thatNRVMi may be different for each element in the setp0. Sinceq is not aware
of the real identity ofRVMpeers, it cannot evaluate their trustworthiness. On the
other hand, theRVMsknow their counterparts; thus, when they dispatchRVM-
Reply messages duringStep IV(b), they may also include reputation-related
experiences (i.e., Eqn. 3) for each other.

Let RRVMx;y represent the reputation value thatRVMx perceives forRVMy.
AVRRVMx corresponds to the average reputation value thatq computes forRVMx

after receiving reputation values that all otherRVMs perceive forRVMx at this
point:

AVRRVMx =
1

NRVMx �1

NRVMx�1

∑
y=1;y6=x

RRVMx;y (7)

The initiatorq is now able to discard responses of untrustworthyRVMs(whose
level is less thanθ) and selects to trustn0 qualifying peers, termedRVM’[1..n0].
q takes into account only theλ reputation levels that each of then0 sites has dis-
patched. The initiator then computes the averageReputation Levelconcerning
offererp0i for each epoch denotedRLp0

i ;t
as follows:

RLp0

i ;t
=

1
n0

n0

∑
k=1

RLRVM0

k;p
0

i ;t
1� t � λ (8)

For every offererp0i theλ�1 Relative Variation Valuesat this time may be com-
puted as:

Vp0

i ;c;t
=

RLp0

i ;t
�RLp0

i ;c

1�min
n

RLp0

i ;t
;RLp0

i ;c

o

; with 2� t � λ and �1�Vp0

i ;c;t
� 1 (9)

Here,c represents the last epoch andt ranges over theλ�1 prior time inter-
vals. When the averageReputation Levelof the offererp0i increases,Vp0

i ;c;t
be-

comes negative triggering a reputation decrease. Correspondingly, when the aver-
ageReputation Levelof p0i signals an increase in reputation level value. When the
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current and one of theλ�1 Reputation Levelvalues are one, the resulting zero
variation points into an entirely reputable peerp0i for the specific combination of
epochs in consideration.

Note that the higher the difference is between the old and thenew average
Reputation Levelof an offererp0i the higher the absolute valuejVp0

i ;c;t
j is. RMM

reprimands peers commensurately to their “stature” in the network. We deem a
reputation that ranges in high values more significant than one that varies in low
values. For example in Figure 2,A’s absoluteVp0

i ;c;t
is higher than that ofB. This

is despite the fact that the change in the reputation ofB is higher than that of
A. As A enjoys higher reputation value, it is more likely to be designated as the
selected resource provider, and thus, it must be reprimanded more strictly. More-
over,B is given a chance to behave well and improve its reputation. Due to the fact
that RMM is not memoryless, it impacts the reputation levels of peersin a way
proportional toλ as Figure 3 depicts.RMM smooths out changes and deliber-
ately follows either ascending or descending trend in a slowfashion; this is useful
to prevent pseudospoofing or shilling attacks but impedes nodes that suddenly
become “hot”. AsRVMscannot be strictly synchronized, their responses to the
initiator q may reflect different time periods. This can be reduced by encouraging
RVMsto gossip with their counterparts whenever idle.
�Step IV(d) – Reputation Update: the initiatorq re-evaluates theReputation
Levelof each trustworthy offererp0i as follows:

RL0q;p0

i ;τ
= RLq;p0

i ;τ
+

λ

∑
t=2

(zt � jRLp0

i ;t
�RLp0

i ;c
j �Vp0

i;c;t
);

λ

∑
t=2

zt = 1 (10)

whereRLq;p0

i ;τ
is theReputation Levelof p0i at this timeτ (Eqn. 3),RLp0

i ;t
�RLp0

i ;c

represents the difference ofp0i ’s reputation level between thetth epoch and the
most recent recorded onec, Vp0

i ;c;t
is theRelative Variation Valuederived with

Eqn. 9, andzt are user-defined coefficients that are identical to all qualified offer-
ers inp0. Thezcoefficient values correspond to the weight that one elects to have
when dealing withλ�1 epochs.
� Step IV(e) – Final Offerer Selection:the candidate peers in thep0i are sorted
according to their recomputed reputation level and the initiator q selects one of
the top to reduce the probability for always overloading thetop-performer. Be-
fore downloading,q carries out a challenge-response handshake to ensure no im-
personation. Algorithms 5-7 show howBRSshould be enhanced to produce our
Reputation Monitoring Mechanism. Figure 4 depicts a sample session withRMM.

The finalPhase Vof RMM is identical to that ofBRS. Although the initiator’s
opinion of theRVMs behavior would in principle be desirable, it is impossible
due to their anonymity.
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schemes. It is shown thatRMM smooths
out any attempt to artificially increase or
decrease theReputation Levelof the re-
source holder.
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Algorithm 5 RMM Scheme - Initiator’s Algorithm

1: /* The following segment is inserted after line 25 of Algorithm 1 */
2: for all p 0

i do
3: send anonymousAskRVM(p0

i) to supervisingRVMs
4: receiveRVMReply(p0

i)
5: end for
6: for all RVMk of p0

i do
7: compute the reputation ofRVMk (Eqn. 7)
8: discard responses from untrustworthyRVMs
9: end for

10: select then0 most reputableRVMs calledRVM0

11: for all p 0

i do
12: compute theλ�1 relative variation values (Eqn. 9)
13: compute the new reputation value ofp0

i (Eqn. 10)
14: end for

Algorithm 6 RMM Scheme -Daemon4 run by allRVMs
1: loop
2: receiveAskRVM(p0

i)
3: if RT contains records for the reputation values ofp0

i then
4: send anonymously toq a RVMReply(p0

i) returningλ variation values along
with the reputation values of the otherRVMs as perceived at this site.

5: end if
6: end loop

Algorithm 7 RMM Scheme - UpdateRT at RVMs
1: /* qRVM is theRVM that acts as query initiator */
2: loop
3: wait until epoch finishes
4: for all p i supervised by the sitedo
5: /* with values appearing inRT */
6: computeRLqRVM;pi ;τ
7: shift λ reputation values 1 epoch back /* make space for the result ofline 6 */
8: appendRLqRVM;pi ;τ into RT structure /* just vacated position in line 7 */
9: end for

10: end loop

5 Discussion ofRMM Main Features

Attack Resistance:Our approach is resistant to attacks targeting reputation-based
systems. In particular, it preventspseudospoofingsince the query initiator has a
challenge-response handshake with the selected offerer. If the offerer is a virtual
node it will not be able to verify its existence and consequently, the fraud is re-
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vealed. The handshake measure could be also employed in the recommendation
process of bothBRSandRMM; however it is not deemed necessary as the recom-
menders are evaluated by third parties.

Concerningshilling, no technique may prevent the formation of groups that
jointly try to alter reputation values of peers. The introduction ofReputation Mon-
itoring Mechanismensures that even if peers collaborate, the reputation scheme
can resist abrupt changes in the reputation values of nodes.RMM smooths out the
reputation variations and prevents peers from easily altering their own reputation
level. In order to attain better overall behavior, we anticipate that peers have to
bind with permanent identities that cannot be easily modified; this manner, we
avoid having sites that unilaterally reset their own reputation level to a default
value.

A general-purpose security issue that affects any reputation system ismessage
transmission[4]. A peer might reply honestly when asked about its experience on
another peer, but aman-in-the-middlemay mediate the communication between
initiator and recommender and tamper with the recommender’s reply message.
Public Key Infrastructure (PKI) [1] can be used to ensure integrity and verify
message origination. There is no reason to impose confidentiality in message ex-
change as a peer’s reputation is not secret. Moreover, in order to protect peers that
act asRVMs, we imposeanonymityconstraints. If a malicious peer were allowed
to identify its overseeingRVMsit could potentially initiate aDenial-of-Service
attack in order to prevent distribution of prior reputationvalues.

Another possible attack is the impersonation of aRVM. SinceRVMsare anony-
mous, the initiator cannot directly communicate with them to verify identity. To
overcome this issue, the bootstrap peer creates a private-public key pairhC;Di

that is distributed only to theRVMs[15]. The assigned offererpi becomes aware
only of the public keyD. This private-public key pair is different from the pairs
that theRVMsandpi use as individual peers. Whenpi replies to the initiator with
aHoldResource message, it includes the public keyD. Also, whenRVMsare
requested the reputation variation values ofpi , they encrypt their response with
their private keyC and the initiator decrypt it with the public keyD. In this way,
no peer is capable of impersonating aRVMunless it is aware ofC.
RVM Failure: As RVM peers remain part of theP2Pnetwork, they always re-
serve the right to disconnect whenever they wish. If such a peer disconnects, it
may designate a new site at random (as if theRVMsite were thebootstrapnode)
in order to take over theRVM responsibilities. A hardware failure, a networking
problem, or even an attack may force aRVMnode to go offline without notice. Its
absence will be detected by itsRVMcounterparts and subsequently, following an
assignment policy (such as random), anotherRVMnode may take over.

Depending on the case, either the disconnecting peer or any of its counterparts
is responsible to inform the newRVMsite about the previous reputation values of
their supervised peer. In addition, the newRVMgets informed of the identities of
the restRVMsthat are responsible for the same peer. Subsequently, the new RVM
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notices the restRVMsthat it has replaced the departed peer.
Number of Epochs and Duration: The designation of theλ number ofepochs
and theepochduration require calibration in a specific application environment. In
networks with high traffic, we should avoid using many and small period epochs,
as this would impose a significant load on theRVMs.

There is a dependence between the epoch duration and the average frequency
fx at which the most popular peers receive download requests. We may examine
requests on popular peers as they are expected to have the most rapid reputation
variations. An epoch should be sufficiently short to preventloosing peaks in the
reputation curve. The network populationN may also determine the number of
epochs observed (i.e.,λ) and their duration. We anticipate that small networks are
less prone to rapid reputation variations and therefore we may employ fewepochs
with long duration to effectively capture the active history of nodes. In contrast,
in larger networks where the likelihood of conspiracy is greater, we expect to
observe more frequent reputation variations; thus, the number of observedepochs
should be increased while their duration should be decreased.
Space Overhead and Communication Cost:In terms of space overhead, each
peerq runningBRSmaintains two repositoriesDPE andDRE. Siteq may adopt
any replacement policy (i.e.LRU) in order to limit the recorded experiences to
a manageable number of entries. TheRMM algorithm imposes some additional
space requirements forRVM. EachRVMsite storesλ*Np reputation records in its
RT structure whereNp is the average number of peers assigned to an individual
RVM. Last, everyRVMnode has to be aware of the aggregate reputation levels of
all its counterparts at a time.

BRSutilizes broadcasting to seek resources as well as recommendations for
peers and resources. As the broadcasting travels maximumh legs, we assume
h=2 average hop propagation for a message. Should each peer talk to averagek
peers, then the average number of messages handled iskh=2. If each peer forwards
queries to its most reputable neighborskr , it is equiprobable that it will reach
also reputable resource holders. In this case, the number ofmessages decreases
askr << k. The fact that a site may occasionally receive the same requesting
message twice (i.e., the message has to be discarded), helpsto further reduce
the above average estimation. Ifkh=2 becomes too large, aP2P DHT protocol
(such asChord [17]) may reduce the number of messages needed to locate a
resource to approximatelyO(logN) with N being the number of nodes. The use
of such a routing protocol would lack the resource holder selection through the
most reputable neighbors.

TheRMM algorithmrequires an extra cost for the anonymous communication
between an initiator and the correspondingRVMs. If Tarzan’s mechanism [7] is
deployed, a cost proportional to the network populationO(N) incurs.
Initial reputation selection: According to [10], the best initial reputation value is
0.3 for reputation schemes where reputation values range in[0;1℄ and where peers
maintain their identities. They select a value that is lowerthan the middle(0:5)
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because in most schemes it is not very difficult to raise someone’s reputation. In
our approach though, we have no reason to set the initial reputation to anything
but 0:5, as it is more difficult for an already reputable peer to raise its reputation.

6 Related Work

In the context ofBRS, [2] proposed a trust management scheme based on com-
plaints instead of the actual experience of the requestors.A possible disadvantage
of this approach is that a peer with no history may be considered as trustworthy
as it lacks complaints. InTrustMe[15], RCert [11], andP2Prep[5], there is no
differentiation between peer behavior and resource quality. XRep[6], a follow-
up of theP2Prepsystem, maintains two types of structures that store behavior
for both peers and resources. [3] offers a classification of trust factors and intro-
duces thecontext-specificvoting. In [18], multidimensional trust is exploited and
Bayesian networksare used to express peer/resource satisfaction.SHARPpro-
poses the binding of resources withleasesthat expire within finite periods of time
to attain secure peering [8]. Our work builds upon these earlier efforts and pro-
poses theRMM mechanism that continually monitors the reputation of nodes in
addition to that of resources. The notion ofepochis used to quantify the quality
perceived by nodes regarding the trustworthiness of resource contributing peers.
In our approach, an initiator selects the most reputable offerer by utilizing the
encountered reputation values over the lastλ observed epochs.

7 Conclusions

The deployment of reputation schemes in overlay networks isnecessitated by the
fact that requesting peers may not be certain of the intention of resource offer-
ers. In this paper, we propose theReputation Monitoring Mechanismthat protects
peers from being deceived by malicious nodes. This is also the case even if faulty
nodes attempt to control other legitimate peers and concealtheir misbehavior. We
suggest that each offerer peer is assigned to a set ofReputation Variation Mon-
itor (RVM) sites.RVM’s main goal is to monitor reputation changes of resource
offering peers during a number of epochs. Hence, any resource requestor should
consult with the supervisingRVMsof any offerer to ascertain level of confidence.
RMM detects abnormal peer behavior by monitoring abrupt reputation changes
and so prevents the establishment of false reputation.RMM operates as an advi-
sory mechanism that helps a user make the best possible decision in reference to
the reputation of a resource-holder.RMM can be also employed to enhance se-
curity in P2Pnetworks as it is able to cooperatively function with any underline
protocol and reputation scheme.
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