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Abstract

Peer-to-Peeoverlay networks have gained in popularity as they present
an effective alternative to resource-sharing. Users’ ymity though, has al-
lowed peers to also share malicious artifacts that may beglygerceived
as popular resources. A number of proposed reputation sshattempt to
address this problem by recording the requestor’s satisfaat the end of
each operation. In such schemes, a node that has no evidempelity of
a sought resource may consult with recommending peersebafdownload
operation commences. Existing reputation mechanismsrareefio attacks
that exploit the formation of groups of colluding peers. Tdtéer collectively
attempt to either raise or lower one’s reputation value. Yaéppse dReputa-
tion Monitoring Mechanism (RMMhat restricts the extend of those attacks
by continually monitoring the reputation level of each peesr a number of
consecutive time periods @pochs ShouldRMM observe rapid changes in
the reputation value of a node, it smooths out these vanisitithus, it pro-
vides resistance to attacks by colluding peB8lM actions depend on both
peer reputation value and variations during sevepaichsin recent past.
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1 Introduction

Peer-to-Peer (P2P)etworks have become a very attractive choice for disteithut
resource sharing as they shield users from the inherentdgyeteeity of partici-
pant computing systems. Due to lack of inspection and/assssent of shared
resources, a peer might be deceived and be led to downloadicaus or sim-
ply an irrelevant object. To prevent fraud2P networks incorporatesputation
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scheme$2, 13, 3, 11, 9, 15, 18] that offer advice to peers regardatigbility of
unknown resources and/or resource-holders.

Upon a number of possible offers, the requesting site hasrisuit with rec-
ommending peers in the overlay network, termed recommsniteorder to de-
termine the most reputable offerers and resources to dadnibhis process is
vulnerable tgpseudospoofingndshilling attackg12]. Pseudospoofingttackers
establish and control multiple virtual peers. Whenever tiacker’s reputation
level is low, it may turn to a new pseudonym and/or createusglryet fake iden-
tities. These identities will with certainty spread falsédence in favor of the
attacker. InShilling, multiple peers with real IP addresses are actually created
and/or controlled, and are not just simulated, by the atiaélseudospoofingg
usually addressed by initiating a challenge-responsedteak@ between the re-
guestor and the host of a resource to be downloaded so thatigfieality of the
offerer is established [55hillingis certainly more difficult to deal with, as the at-
tackers control legitimate peers with real IP addresses.offy known detection
mechanism clusters votes originated from similar IP adah®and considers them
as a single vote having an average value [6]. However, ackattéhat creates and
controls multiple diverse peer identities may exploit thesultiple identities to
either increase its reputation or reduce the reputatiorthers.

Since the number of peers deceived by the colluders conisiydncrease,
eventually the number of complaints may counterbalancedheders’ attempt to
tamper with the reputation level of a site and/or resourtéhiks way, a reputation
scheme may take a long time before it detguteudospoofirghilling activity.
A malicious peer with artificially increased reputation nmexploit this delay to
distribute malicious artifacts. In this context, we propasdistributedReputation
Monitoring Mechanism (RMMhat monitors the reputation levels of pedR8IM
does not only limit the extent of attacks but more importaattempts to signifi-
cantly reduce the time in which malicious activity goes uedted. As colluding
peers may cause rapid changes at the reputation levelsgfsiources, tHeRMM
attempts to detect significant variations of reputatiom&aland limit the extent of
the sought change. Once candidate nodes for unlawful gcike determined, the
RMM reprimands these sites following a policy of proportionahalties to their
current level of trustworthiness. Section 2 presents tmeldmental structures
used and section 3 outlines a baseline reputation scherogorsd introduces
the RMM and section 5 discusses the core features of our proposduhanmism.
Related work and conclusions are found in sections 6 and pécéigely.

2 Basic Data Structures

The required data structures that both Baseline Reputation Scheme (BRBJI
our Reputation Monitoring Mechanism (RMM3e are depicted in Table 1. Both
Direct Peer Experience (DPEndDirect Resource Experience (DR&bles are
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the fundamental structures maintained at every pe&r the overlay network.
They help store the “experience” for all download-requéstsated by a peeq

in reference to nodes that are willing to act as servers fueces. Both nodes
and distributed resources can be affiliated with such egpee ratings. Along
with identifiers ofq, p, ands, these ratings form tuples whose constituent ele-
ments quantify the experience obtained after the completiGessions between
resource holders and query initiators. The experienceszointg a peer may be
computed based on a combination of features including thesty of a site (i.e.
if it really holds the resource requested), the averageoresptime (determined
by its computation power and its load), the available badtwihrough which it
connects to the network, and finally, the network latencyvben the requestor
and the resource holder. The resource experience can beaigouted based
on quantitative characteristics that include authemtitatvel of quality, and rele-
vance to the query criteria. Every entry in the two expergetables regarding a
peerp or a resource containsd, or ds values respectively.

| Data Structure | Definition |
Direct Peer Experiencg Stores experienc&(q, p,t) of q after interacting with
table (DPE) site p at timet regardingp’s behavior represented luy

distinct features that are parameters to peer reputation.
Direct Resource Experi; Stores experiencE(q, p,s,t) thatq estimates on the ref
ence table (DRE) sources located inp at timet expressed byl distinct
features that are parameters to resource reputation.
Reputation Table (RT) For all resource-holders under the responsibility of a
applicable tRMMonly | Reputation Variation Monitor (RVM}he entries to thig
table consist of the reputation levels (comprised of the
values of thedp contributing features) observed during
the lastA epochs. For each resource-holdBT also
stores the identities of all othé&VMs also responsible
for specific peers.

Table 1:BRSandRMM pertinent data structures

In our RMM mechanism, each node that is part of the overlay network, is
monitored by a set oReputation Variation Monitors (RVM)eers. EverfRVM
site maintains &eputation Table (RTyith reputation levels of managed peers
during the last\ observed time periods, termegochs RVM sites are a subset
of the network peers and may undertake the management dhtepulevels for
multiple nodes. Since all above information is distribyteidgle point of failure
is avoided. This helps advance the scalability of the remrtasystem’s overall
design. In the rest of the discussion, we will refer to a grotipfferers agp and
a single offering node ag;. It is worth pointing out that as the experiencegjof
are maintained in tables storedcatthere is no need of repeating the identity of
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the site in question in the corresponding records. Howeverse this extended
format for readability.

3 Baseline Reputation SchemeBRYS)

The Baseline Reputation SchenBRS that we discuss here is derived from the
description of theXRepprotocol [6]. We adopt the distinct five phasesdiep In
addition, we offer estimation formulae for the evaluatidrath factors involved.
Below, we briefly present the five phasesBRS

e Phase | — Resource requestivhen an initiatorg searches for a resoureegit
sends amAskResour ce query message to iBirect Neighbor Set (DNS)he
AskResour ce query requestsand states the criteria that either the resource or
the resource-holder must satisBINSis defined as the group of nodes to whigh
is connected through a direct link and the criteria corragpo features outlined
in Section 2. Each peer in tHeNSexamines whether it possesses the requested
resources that may also satisfy the imposed query criteria. In lighagfositive
outcome, a node responds to the initiator witHa dResour ce message that
includes the name of the resource offered as well as the giepef both resource
and peer. Otherwise, the query is forwarded'solndirect Neighbor Set (INSh

a recursive fashion until a number of predefined number o&lmis reached.
To prevent cycles in the forwarding motion and reduce netvraffic, if a query
reaches the same peer more than once with a request cominghfecsame point
of origin, it is neglected.

¢ Phase Il - Recommendation Requestfter receivingHol dResour ce mes-
sages from multiple offerers in sptand checking their propertigsthe initia-
tor g solicits recommendations for all membersp@nds even if it has already
recorded prior experiences with the same peers/resotdigavduld reject a spe-
cific peerp; offer with whomq had prior insufficient satisfaction, thepwould
blacklistp;. From this point onp; may depart from the blacklist only & takes
into account indirect evidence. Consequerdlgispatches akskRecommes-
sage taDNSneighbors in a similar way used in the handlingsfkResour ce
messages. Upon receipt of AskRecom a peer examines both its experience
tables DPE andDRE) for the resourca and the offerers in sqt and ships the
results back to the initiatay using aPost Recommessage. Public key infras-
tructure (PKI) [1] may be used to ensure integrity and auibiy of messages.

e Phase Ill — Evaluation of Offerer Reputation: the initiator g may receive
several recommendations from trustworthy, un-trustworhd unknow? peers.
This set is denoted asand we term them as first-line recommendgrsearches

in its DPE for any prior experience with the set of peerdn addition,q solicits
from both itsDNSandINS neighbors their own direct experiences in reference to

1For example, that the network bandwidth is greater thanaheested limit.
nodes that have not yet interacted with
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a particular recommendey; the aggregation of these values makes up the indi-
rect experience aff about a recommender. If the combined expression of direct
and indirect experiences exceeds a user-defined threBhthénq accepts the
recommendation; otherwise, the recommendation is diedard first-line rec-
ommending sites are unknown, thghas to evaluate their trustworthiness before
accepting their recommendation. To achieve thisequests direct experiences
that a set of second-line recommenderbas recorded for each of the first-line
recommending sites. Initiator g accepts advice from second-line recommenders
r"if g's direct experience with the individual sites in questicneeds.

Let DPEg, 1 be theDirect Peer Experiencthe initiatorg has on the offergp;
at this present time. This can be derived from the experience entEésg, p;,t)
of g's DPE table weighted by @me decay function (f,t). As defined earlier,
E(q,pi,t) states the satisfaction ofregarding node; at distinct timeg where
t <1. The time decay function is used to express the fact thatentgeeer ex-
perience deserves more attention than an old one since pegrhave behaved
differently in the elapsed time. Assuming thlglhasg entries in itsDPE, thenq's
direct peer experience is defined as the weighted averagesd entries:

1 g
DPE;p ==Y E(q,pi,tj) * f(T,t; 1
Eqpit g; (a, pi,ty) = F(T,t5) 1)

g proceeds with the computation of indirect peer experidifteg, p;, T that it
gathers at time from n reputable recommending peers concerning the individual
sitep;:

DPErk,pi ,T (2)

M=

| Pqupl =
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=
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1

The selection of tha first-line reputable peers is accomplished by computing
DPEqr;,T (Egn. 1) for eachr; in the set. Only sites whose value exceeds the
thresholdd qualify for the set. Ifrj is unknown toq, thenq may dispatch a new
query to its vicinity asking for recommendation on The advice of second-
line recommending site; with which g has sufficient direct experience (i.e.,
DPEqi+ > 6) are accepted.

After having computed botBDPEq p;, T andIPEQ,p;i, T, the initiatorqg may
compute the reputation level gf by assigning these factors different weights.
The coefficient, defined by user application level, rangeg0nl] and indicates
how much the initiator wishes to take into account recommaesicexperiences
[2]. Whena < 0.5 the initiator relies more on the recommenders’ experi¢nae
on its own. TheReputation Levedf a peemp; is then defined as:

Rlgp,t = axDPEqgp « + (1 —a) xIPEqp;« 3)

Similarly, we compute th®eputation Levedf resources at sitep; based on
the recommendations received. Tigect Peer Experiencthat the initiatorg has
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on aresourceoriginating from peep; at this presenttimeis termedREyp, s1-
We can derivDRE; p, st Using thev entriesE(q, pi,s,t) found in theDRE table

of g for vinstances of time whete< 1. IREqp, 1 is thelndirect Resource Expe-
riencethe initiatorg obtains at time from m recommending peers. This can be
computed by th®RE records of the recommenders.

<

DREgp st = E(q,pi,Stu) * f(T,tu) 4)

1

1

v u
1 m

IRqupuS,T = m lZlDREH,Di ST 5)

In summary, th&Reputation Levedf a resources located ap; is defined as:

RLq7pi ST = ax DRE(}ypiysvr + (1_ a') * IRE(]7pi7syT (6)

We note that the behavior of a node may be independent of theaton of its
hosted resources and vice versa [3, 6, 18].

e Phase IV — Offerer Selection:an offerer becomes a candidate for downloading
the sought resourceonly if the expressiotiRLgp, : > 6) AND (RLgp, st > ),
qualifies. Frequently, reputation schemes select the repstable peer among the
candidates [6, 14]. As the latter may produce high load femariodes, a random
choice among the top candidates can be used instead [15jreBpfoceeding
with downloading from the selected trustworthy offepgr, the initiatorg begins

a challenge-response handshake withto prevent pseudospoofing [12]. pfy
fails the test, another offerer of the top-list is selectetil the identity of the new
offererpy, is verified.

e Phase V — Resource Download and Experience Updatesodeq sends a
DownloadRegnessage t@,, asking fors. Once the download of completes,
the initiatorq records its experience regarding the offering pgeand the down-
loaded resource at transaction timé&,. This is materialized by adding a record
E(q,pw,tn) in g's DPE table and a recor(q, pw,S,tn) in g's DRE table. Sim-
ilarly, q stores to itDPE structure its own opinion on the first- and second-line
recommender peers in setandr’ that expressed their opinion @q,.

Over time, a nodg; may occasionally provide service as either offerer or
recommender to an initiating sitge The level of satisfaction is stored @struc-
tures (i.e.DPE) no matter what is the type of service renderedoin the past.
Algorithms 1-4 show the functions of our baseline reputasoheme RS and
Figure 1 depicts a sample session on how a peer is selected.
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Algorithm 1 (BRS - Initiator's Algorithm
1. broadcasfAskResour ce(s, h) [* hnumber of hops */

2: receiveHol dResour ce(s) fromp /*the set of offering peers */
3: broadcasAskRecon{ p, s, h)
4: receivePost Recon( p, ) fromr [* the set of first-line recommenders */
5. forallr do
6: computeDPE(q,r;,T)
7. broadcasfAskRecon{rj, h)
8: receivePost Recon(r;) fromr’  /*set of second-line recommenders */
9: forall r} do
10: if (DPE(q,ry,T) > 6) then
11 accept recommendation df for recommender;
12: end if
13:  end for
14:  computelPE(q,ri,T)
15:  if (DPE(q,ri,T) > 6) AND (IPE(q,ri,T) > 6) then
16: accept recommendation gfon offererp;
17:  endif
18: end for
19: computesreputation fronr set /*in a similar way to that of Steps 5-18 */
20: forallpj do
21:  computeRlgp « (Eqn. 3) ancRLgp, st (EQn. 6)
22:  if (RLgp, 1 > 8) AND (RLgp, st > 6) then
23: p; is candidate for downloading
24: endif
25: end for
26: sort list of candidates
27: repeat
28:  select one of the top, namexl
29: until challenge-response handshake betwgandp,, is successful
30: sendpy Downl oadReq( s) to start download
31: append irDPE the associated experience /* for a;lLrg, recommendingy, */
32: append irDRE experience for resource

Algorithm 2 (BRS - Daemon run by the set of offering peefs
1: loop
2:  receiveAskResour ce( s, h) from an initiatorg

3: if sisincluded in resource repositotlyen

4 reply toq with Hol dResour ce( s)

5. else if within range ofh then

6

7

8:

forward theAskResour ce('s, h- 1) to neighbors
end if

end loop
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Algorithm 3 (BRS - Daemon run by set of recommending peerg’, and sitep
1: loop
2. receiveAskRecon{( pj, s, h)

3:  if records exist ilDPE / DRE for p; or sthen

4 reply toq with Post Recom pj, 9)

5. else if within range ofh then

6

7

8

forward theAskRecom( pj, s, h- 1) to neighbors
end if
. end loop

Algorithm 4 (BRS - Daemon run bypy
1: loop
2:  receiveDownl oadReq( s)
3: sendacopyoftoq
4: end loop

1) g broadcasts aAskRequest seekings

2) p1 andp, respond withHol dResour ce

3) g broadcast#Ask Recomregarding offerers
P1, p2 ands

4) recommenders reply witRost Recon ry, rl\A\
r, recommendy, S, r3, r4 recommenda,;, s
5) asry, rp, r3 andr4 are unknown tag, the
latter broadcast8sk Recons on their behalf

6) second-line recommenders reply with

Post Recomr forry, r forrp, ri forrzand oy
r}, forry (r{ andr; for i=1..4 are all trustworthy T?S
here).

7) after evaluatingpi, p2 ands, g challenge-

response-handshakes wil3 and decides to comnecton o iectneghb) ntor T
downloadsfrompp. | essae e © T o st recommencs
Finally, q appends its own new experience| e © conoadsie

for pa, s, rs, rs, ry andr). Broadcasting is
represented only with arrows to help figure
clarity.

Figure 1:Sample session usirBRS

4 The Reputation Monitoring Mechanism (RMM)

The operation of our proposeRIMM scheme is based dReputation Variation
Monitor (RVM)sites that not only facilitate regular data querying bubals-
dertake an augmented responsibility. The additional akibgp of anRVMis to
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continually monitor the reputation levels of all peers thatupervises. When a
site joins an overlay network, it contacts a trusted/kndwotstrap nodg15]
which randomly selects a number of anonym&4vs; these help monitor the
site in question. The bootstrap node guarantees that adgsfRVMs in conjunc-
tion with the site entering the network do not produce anyusins [15]. It is
expected that collaboratingVMs that oversee the same site are known among
themselves. The identity of RVM is never revealed to supervised pe&¥Ms
use multiple windows in the past, callepochsto better gauge “prior” recorded
site behavior in the network. We simplifgMM's design by recording only the
behavior of sites in previous epochs but not that of theiividdal resources.
The ultimate selection of a downloading node is based on th@BRSrecom-
mendation (that yields “only-current” reputation levets both sites and their
resources) in conjunction with the evaluatiorRdfMs (that produce aggregations
of prior behavior of sites by examining the setafost recent observed epochs).
In doing so, theRMM algorithm attempts to limit abrupt changes of reputation
levels that are often result of collusion [12, 4]. In lightsiddenly popular re-
sourcesRMM will initially slow down steep changes in the reputationdbs/of
peers; however, over time and in step-wise fashiiiM will ultimately accom-
modate such “hot” resources. Last but not least, RMiM follows a third-party
recommendation approach [16, 15] in contrast to previoapgsals [6, 5, 18].

We enhance thBRSalgorithm by substitutinfhase IVas follows: the initia-
tor g consults with theRVMs (via a broadcast) that were supervising the offering
peers, concerning their reputation levels in the recerit Pae pertinent answers
are receivedj re-evaluates all offerepwhich have qualified in thBRStest. The
filtered list of peerp’ is computed by considering boBRSrecommendations as
well as those of the overseeiRYMs. Last,q changes the line-up of its reputable
peers in order to select a top one. Below, we discuss therezjfive steps that
now constitute th&hase 1Vin theRMM algorithm.

e Step IV(a) — Early Offerer Selection: once all offererp have been evalu-
ated in terms of both peer and resource quality at the préiseat the initiator
g discards those offers that do not meet the expected reputdaieshold for
both sought resource and furnishing peer (i.e., requireRlgp  >6) AND
(RLg,p;.st > 0) ). Qualifying offererg’ (a subset op) proceed to the next step.
¢ Step IV(b) — Reputation Variation Request:for each offerei in thep’ set,q
dispatches ahskRVMmessage towards its associaRdMs We employRVM
identity-hiding [7, 14] to prevent peers from startiDgnial-of-Service attack®-
wards the associatd®VMs As ¢ cannot be aware of tHeVMidentities commu-
nication is established throughnautual anonymitgommunication protocol [7,
14, 19]. We employ anonymous communication betwB&Ms and initiators
to prevent global eavesdroppers from identifying the nasigned to specific
RVMs. As mentioned in Section 2, eveRM manages &eputation Table (RT)

30Overseeing theécandidate peer in the' set.
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that stores the reputation levels for a subset of the patieferers during the pre-
viousA observed epochs. We assume that the duration of an epocplicadion
and/or user defined. At the end of each such peridRly ¥ determines the repu-
tation of its own offerers using Eqn. (3) of tlBRS As soon as &VMcomputes
a new reputation value, it logically shifts all previouswes$ one epoch back. The
oldest of the\ values is discarded. Upon receipt of Aak RvMmessage, RVM
searches itRT structure to locate thk appropriate reputation values. These are
anonymously transported tpvia aRVMRepl y message.
eStep IV(c) — Evaluation of Offerer Reputation Variation: as soon ag re-
ceives all pertinenRVMRepl y messages, it re-evaluates the reputation of all of-
ferers in the sep’. For each such offerer the initiator obtains a maximum of
A x=Nryvy reputation values; here, represents the number of epochs observed
andNrvy is the number oRVMsthat coordinate théth element ofp’. Note
thatNrvy may be different for each element in the pétSinceq is not aware
of the real identity oRVM peers, it cannot evaluate their trustworthiness. On the
other hand, thé&kVMsknow their counterparts; thus, when they dispaRsivi
Repl y messages durin§tep 1V(b), they may also include reputation-related
experiences (i.e., Egn. 3) for each other.

Let Rrvi,, represent the reputation value tHR¥ M, perceives forRVM,.
AV Rrvi, corresponds to the average reputation valuedr@mputes foRV M,
after receiving reputation values that all otli®vMs perceive folRV M, at this
point:

AV Rg 1 NRVW_lR (7
VM Nrvm, — 1 y:%#x RVMey

The initiatorq is now able to discard responses of untrustwof@Ms(whose
level is less tha®) and selects to trust qualifying peers, termeRVML..n].
g takes into account only thereputation levels that each of tnésites has dis-
patched. The initiator then computes the averRgputation Levetoncerning
offererp; for each epoch denotm as follows:

I
RLpi’,t:szlRLRVN((7pi’,t 1<t<A (8)

For every offerep] theA — 1 Relative Variation Valueat this time may be com-
puted as:

Rl —Rlye
1 min{REy ¢, Ry }
Here, c represents the last epoch andanges over th@ — 1 prior time inter-
vals. When the averagReputation Levedf the offererp; increases\/pmt be-

comes negative triggering a reputation decrease. Comeapgly, when the aver-
ageReputation Levedf p{ signals an increase in reputation level value. When the

,  with2<t<A and —1§Vpir7c,t§1 (9)

Vpi’ ot =
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current and one of the — 1 Reputation Levelalues are one, the resulting zero
variation points into an entirely reputable p@éfor the specific combination of
epochs in consideration.

Note that the higher the difference is between the old andhéwe average
Reputation Levedf an offererp; the higher the absolute valyé, | is. RMM
reprimands peers commensurately to their “stature” in ttevork. We deem a
reputation that ranges in high values more significant thentbat varies in low
values. For example in Figure &s absolute\/pir’c’t is higher than that oB. This
is despite the fact that the change in the reputatioB &f higher than that of
A. As A enjoys higher reputation value, it is more likely to be dasigd as the
selected resource provider, and thus, it must be reprintamaee strictly. More-
over,Bis given a chance to behave well and improve its reputatiae.td the fact
thatRMM is not memoryless, it impacts the reputation levels of paesway
proportional toA as Figure 3 depictd/RMM smooths out changes and deliber-
ately follows either ascending or descending trend in a &alvion; this is useful
to prevent pseudospoofing or shilling attacks but impedeesdhat suddenly
become “hot”. AsSRVMscannot be strictly synchronized, their responses to the
initiator g may reflect different time periods. This can be reduced bperaging
RVMsto gossip with their counterparts whenever idle.
eStep 1V(d) — Reputation Update: the initiator g re-evaluates th&®eputation
Levelof each trustworthy offergs; as follows:

A A
RL(qypi’,r =Rlgpq "‘t;(zt # [RLy ¢ — Rlgy ol ¥V c) t;Z‘ =1 (10)

whereRLy y . is theReputation Levedf pj at this timet (Eqn. 3)'W—W
represents the difference pf's reputation level between th# epoch and the
most recent recorded ore Vy .. is the Relative Variation Valuelerived with
Eqgn. 9, and; are user-defined coefficients that are identical to all Gjedloffer-
ers inp’. Thez coefficient values correspond to the weight that one elediave
when dealing with\ — 1 epochs.
e Step IV(e) — Final Offerer Selection:the candidate peers in tipe are sorted
according to their recomputed reputation level and théaitait q selects one of
the top to reduce the probability for always overloading titye-performer. Be-
fore downloadingg carries out a challenge-response handshake to ensure no im-
personation. Algorithms 5-7 show hddRSshould be enhanced to produce our
Reputation Monitoring Mechanisrrigure 4 depicts a sample session viRikM.
The finalPhase Vof RMM is identical to that oBRS Although the initiator’s
opinion of theRVMs behavior would in principle be desirable, it is impossible
due to their anonymity.
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Figure 3:TheReputation Levetomputed
by a peer, with no previous experience
on the resource holder, in both reputation
schemes. It is shown th&MM smooths

that of B (0.39), even though the actualout any attempt to artificially increase or
change is 0.15 and 0.17 respectively, bedecrease th&®eputation Levebf the re-
cause@Aranges in higher reputation levels.source holder.

1) g broadcasts aAskRequest seekings

2) p1 andp, respond withtHol dResour ce

3) g broadcast#AskRecomregarding offerers
P1, P2 ands

4) recommenders reply witRost Recom rq,
r, recommends,s; rs, r4 recommends;,s

5) asry, rp, r3 andr4 are unknown tag, the
latter broadcast8sk Recons on their behalf
6) second-line recommenders
Post Recom r/ for rq, r}, for rp, rf for rz and
r}, forry (r{ andr; for i=1..4 are all trustworthy
here).

7) q sends an anonymouss kRVM asking for
reputation variations op; andp;

8) RVM;, RVM, andRV Mz, RV M, report toq
(via aRVMRepl y) regardingp; andp,

9) after re-evaluating;, p2 ands, g challenge-
response-handshakes wifh and decides to
downloads from pj.

Finally, g appends tdPE/DREits experience
onpg, s, ry, rp, ry andr,.

reply with

r1(py ooeoo

connection to direct neighbor &) initiator fist-line recommender

message route
& offerer second-line recommend

& download site @ RvMnode

rrrrrrr RVM route

,,,,, download route

Figure 4:Our reputation scheme after addiRfyIM functionality
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Algorithm 5 RMM Scheme - Initiator’s Algorithm

. I* The following segment is inserted after line 25 of Algbit 1 */
2: forallp{ do

3:  send anonymousskRVM pj) to supervisindRVMs
4:  receiveRVMRepl y( pj)

5: end for
6
7
8
9

[N

. for all RV M, of p do
. compute the reputation &V M, (Eqn. 7)
. discard responses from untrustworfRYMs
: end for
10: select theY most reputabl&®V Ms calledRV M
11: forall p{ do
12:  compute the\ — 1 relative variation values (Eqn. 9)
13:  compute the new reputation valuemf(Eqn. 10)
14: end for

Algorithm 6 RMM Scheme Daemon run by allRV Ms
1: loop
2:  receiveAskRVM pj)
3:  if RT contains records for the reputation valuepptthen
4: send anonymously tq a RVMRepl y( pi) returningA variation values along
with the reputation values of the othB¥ Ms as perceived at this site.
5. endif
6: end loop

Algorithm 7 RMM Scheme - UpdatBT atRV Ms

1: /* grvmis theRV Mthat acts as query initiator */
2: loop

3:  wait until epoch finishes

4:  forall pj supervised by the sido

5: [* with values appearing iRT */

6: computeRLggypi,t

7: shift A reputation values 1 epoch back  /* make space for the resliiteo6 */
8: appenRLgg,pi;t INtO RT structure  /* just vacated position in line 7 */

9: end for
10: end loop

5 Discussion oRMM Main Features

Attack Resistance:Our approach is resistant to attacks targeting reputdtased
systems. In particular, it prevenpseudospoofingince the query initiator has a
challenge-response handshake with the selected offétke bfferer is a virtual
node it will not be able to verify its existence and consedyethe fraud is re-
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vealed. The handshake measure could be also employed indbmmendation
process of botBRSandRMM; however it is not deemed necessary as the recom-
menders are evaluated by third parties.

Concerningshilling, no technique may prevent the formation of groups that
jointly try to alter reputation values of peers. The introtion of Reputation Mon-
itoring Mechanismensures that even if peers collaborate, the reputatiomsehe
can resist abrupt changes in the reputation values of nBdé%sl smooths out the
reputation variations and prevents peers from easilyiafjeheir own reputation
level. In order to attain better overall behavior, we aptite that peers have to
bind with permanent identities that cannot be easily madifieis manner, we
avoid having sites that unilaterally reset their own repatalevel to a default
value.

A general-purpose security issue that affects any rejutagistem isnessage
transmissiorj4]. A peer might reply honestly when asked about its expegeon
another peer, but man-in-the-middlenay mediate the communication between
initiator and recommender and tamper with the recommesdeply message.
Public Key Infrastructure (PKI) [1] can be used to ensuregnity and verify
message origination. There is no reason to impose confadigntn message ex-
change as a peer’s reputation is not secret. Moreover, &r twgprotect peers that
act asRVMs we imposeanonymityconstraints. If a malicious peer were allowed
to identify its overseeingRVMsit could potentially initiate aDenial-of-Service
attack in order to prevent distribution of prior reputati@iues.

Another possible attack is the impersonation BAGM SinceRVMsare anony-
mous, the initiator cannot directly communicate with thenverify identity. To
overcome this issue, the bootstrap peer creates a priubiekey pair(C,D)
that is distributed only to thRVMs[15]. The assigned offergx, becomes aware
only of the public keyD. This private-public key pair is different from the pairs
that theRVMsandp; use as individual peers. Whenreplies to the initiator with
aHol dResour ce message, it includes the public kBy Also, whenRVMsare
requested the reputation variation valuepgfthey encrypt their response with
their private keyC and the initiator decrypt it with the public kdy. In this way,
no peer is capable of impersonatin@¥Munless it is aware dt.

RVM Failure: As RVM peers remain part of the2P network, they always re-
serve the right to disconnect whenever they wish. If suche gdisconnects, it
may designate a new site at random (as ifffhéM site were thédootstrapnode)

in order to take over th®VM responsibilities. A hardware failure, a networking
problem, or even an attack may forcR"®Mnode to go offline without notice. Its
absence will be detected by R/M counterparts and subsequently, following an
assignment policy (such as random), anofRéM node may take over.

Depending on the case, either the disconnecting peer orfaisycounterparts
is responsible to inform the nelRVM site about the previous reputation values of
their supervised peer. In addition, the nBWM gets informed of the identities of
the restRVMsthat are responsible for the same peer. Subsequently, thRX&
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notices the resRVMsthat it has replaced the departed peer.

Number of Epochs and Duration: The designation of th& number ofepochs
and theepochduration require calibration in a specific application @omiment. In
networks with high traffic, we should avoid using many and Isperiod epochs,
as this would impose a significant load on R€Ms

There is a dependence between the epoch duration and tlageav¥ezquency
fx at which the most popular peers receive download requegtsnily examine
reqguests on popular peers as they are expected to have theapiolsreputation
variations. An epoch should be sufficiently short to preveasing peaks in the
reputation curve. The network populatibhmay also determine the number of
epochs observed (i.e\) and their duration. We anticipate that small networks are
less prone to rapid reputation variations and therefore exgemploy fewepochs
with long duration to effectively capture the active histof nodes. In contrast,
in larger networks where the likelihood of conspiracy isageg, we expect to
observe more frequent reputation variations; thus, thelraumof observeeépochs
should be increased while their duration should be decdease
Space Overhead and Communication Costin terms of space overhead, each
peerg runningBRSmaintains two repositorid3PE andDRE. Siteq may adopt
any replacement policy (i.¢.RU) in order to limit the recorded experiences to
a manageable number of entries. TREIM algorithm imposes some additional
space requirements f&VM EachRVMsite stores\* N, reputation records in its
RT structure wherd\; is the average number of peers assigned to an individual
RVM Last, everfRVMnode has to be aware of the aggregate reputation levels of
all its counterparts at a time.

BRSutilizes broadcasting to seek resources as well as recoduatiens for
peers and resources. As the broadcasting travels maximlegs, we assume
h/2 average hop propagation for a message. Should each pe&y taleragek
peers, then the average number of messages handf#d.if each peer forwards
queries to its most reputable neighbéysit is equiprobable that it will reach
also reputable resource holders. In this case, the numbees$ages decreases
ask. << k. The fact that a site may occasionally receive the same stigge
message twice (i.e., the message has to be discarded),tbefipther reduce
the above average estimation.k¥2 becomes too large, B2P DHT protocol
(such asChord [17]) may reduce the number of messages needed to locate a
resource to approximatef(logN) with N being the number of nodes. The use
of such a routing protocol would lack the resource holdegct@in through the
most reputable neighbors.

TheRMM algorithmrequires an extra cost for the anonymous communication
between an initiator and the correspondiRgMs If Tarzaris mechanism [7] is
deployed, a cost proportional to the network popula@giY) incurs.

Initial reputation selection: According to [10], the best initial reputation value is
0.3 for reputation schemes where reputation values rari@elinand where peers
maintain their identities. They select a value that is lottxan the middl€0.5)
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because in most schemes it is not very difficult to raise sor@saeputation. In
our approach though, we have no reason to set the initiatagpo to anything
but 05, as it is more difficult for an already reputable peer tog#is reputation.

6 Related Work

In the context oBRS [2] proposed a trust management scheme based on com-
plaints instead of the actual experience of the requesigressible disadvantage
of this approach is that a peer with no history may be consitlas trustworthy
as it lacks complaints. IirustMe[15], RCert[11], andP2Prep[5], there is no
differentiation between peer behavior and resource gqudRep[6], a follow-

up of theP2Prepsystem, maintains two types of structures that store behavi
for both peers and resources. [3] offers a classificatiomust factors and intro-
duces theontext-specifigoting. In [18], multidimensional trust is exploited and
Bayesian networkare used to express peer/resource satisfacBbtARPpro-
poses the binding of resources wiéaseghat expire within finite periods of time
to attain secure peering [8]. Our work builds upon thesdezagfforts and pro-
poses thd(RMM mechanism that continually monitors the reputation of 1sade
addition to that of resources. The notionegfochis used to quantify the quality
perceived by nodes regarding the trustworthiness of resatontributing peers.
In our approach, an initiator selects the most reputablereffby utilizing the
encountered reputation values over the dagbserved epochs.

7 Conclusions

The deployment of reputation schemes in overlay networkedessitated by the
fact that requesting peers may not be certain of the intergfaesource offer-
ers. In this paper, we propose tReputation Monitoring Mechanisthat protects
peers from being deceived by malicious nodes. This is alsadie even if faulty
nodes attempt to control other legitimate peers and coiceialmisbehavior. We
suggest that each offerer peer is assigned to a deepfitation Variation Mon-
itor (RVM) sites.RVMs main goal is to monitor reputation changes of resource
offering peers during a number of epochs. Hence, any resageriestor should
consult with the supervisingVMsof any offerer to ascertain level of confidence.
RMM detects abnormal peer behavior by monitoring abrupt reéjputehanges
and so prevents the establishment of false reputa®&M operates as an advi-
sory mechanism that helps a user make the best possibléoteiciseference to
the reputation of a resource-holdBMM can be also employed to enhance se-
curity in P2P networks as it is able to cooperatively function with any ericie
protocol and reputation scheme.
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