
Managing Cohort Movement of Mobile

Sensors via GPS-Free & Compass-Free Node

Localization

Hüseyin Akcan1 Vassil Kriakov2 Hervé Brönnimann2 Alex Delis3

1 Izmir University of Economics, 35330, Balçova, Izmir, Turkey
huseyin.akcan@ieu.edu.tr

2 Polytechnic Institute of New York University, Brooklyn, NY 11201
{vassil,hbr}@cis.poly.edu

3 University of Athens, Athens 15784, Greece
ad@di.uoa.gr

Abstract

A critical problem in mobile ad-hoc wireless sensor networks is each node’s aware-
ness of its position relative to the network. This problem is known as localization.
In this paper, we introduce a variant of this problem, directional localization, where
each node must be aware of both its position and orientation relative to its neigh-
bors. Directional localization is relevant for applications that require uniform area
coverage and coherent movement. Using global positioning systems for localization
in large scale sensor networks may be impractical in enclosed spaces, and might
not be cost effective. In addition, a set of pre-existing anchors with globally known
positions may not always be available. In this context, we propose two distributed
algorithms based on directional localization that facilitate the collaborative move-
ment of nodes in a sensor network without the need for global positioning systems,
seed nodes or a pre-existing infrastructure such as anchors with known positions.
Our first algorithm, GPS-free Directed Localization (GDL) assumes the availability
of a simple digital compass on each sensor node. We relax this requirement in our
second algorithm termed GPS and Compass-free Directed Localization (GCDL).
Through experimentation, we demonstrate that our algorithms scale well for large
numbers of nodes and provide convergent localization over time, despite errors in-
troduced by motion actuators and distance measurements. In addition, we introduce
mechanisms to preserve swarm formation during directed sensor network mobility.
Our simulations confirm that, in a number of realistic scenarios, our algorithms pro-
vide for a mobile sensor network that preserves its formation over time, irrespective
of speed and distance traveled. We also present our method to organize the sensor
nodes in a polygonal geometric shape of our choice even in noisy environments, and
investigate the possible uses of this approach in search-and-rescue type of missions.

Preprint submitted to Elsevier 25 November 2009

1 Introduction

Wireless sensor networks are composed of hundreds, possibly thousands, of
low-cost sensor nodes that are capable of making environmental measure-
ments, performing computations, and communicating with one another. Most
importantly, through small motors or motion actuators, these devices are ca-
pable of physically organizing themselves in order to cooperatively achieve a
desired task [43].

An important problem in mobile sensor networks is each sensor’s awareness
of its position and direction of movement relative to the entire network. This
problem is commonly known as localization [17]. In general, such location
awareness empowers routing algorithms to determine the most efficient mes-
sage paths [21], achieve goals such as optimal area coverage [31], or in mission
critical applications [39]. For example, in aggregation networks [9], node local-
ization is needed in order to construct topology-aware routing overlays that
will reduce message transmission time, increase reliability, and reduce power
consumption. In routing applications, it is sufficient for nodes to be aware of
the coordinates of their neighbors relative to a local coordinate system com-
mon to the entire network [7]. We call this relative localization since each
node’s position is relative to the local coordinate system. To support mobility
applications, a node must move in a specific direction in a manner that is
related to its neighbors. To achieve this, in addition to knowing its neighbors’
positions relative to a common coordinate axis, a node must be aware of the
positions of its neighbors relative to its own direction of movement. This is the
node’s orientation. We call directional localization the problem of determining
the position and the orientation of each sensor in the common coordinate sys-
tem. In the remainder of the paper we may refer to “directional localization”
as simply “localization,” unless otherwise stated.

Providing support for directional localization in mobile sensor networks is a
difficult task. Traditional solutions rely on information supplied externally in
one of two forms: (1) via global positioning systems (GPS) – which requires
additional hardware at additional costs, or (2) via fixed-point reference nodes,
or anchors, whose global locations are known a-priori [8]. Such methods are
most commonly used in static networks [32]. Recent efforts on mobile networks
assume that only a small subset of the moving nodes (seeds) use GPS [19].

Many applications require sensor network mobility in environments where
GPS signals may not be available and pre-existing infrastructures do not exist.
Consider a fire search-and-rescue mission inside a building where a set of mo-
bile nodes explore a floor with the goal to locate the source of fire. The nodes
move collaboratively, in a semi-rigid swarm, taking temperature measurements
while following a path that covers the area. Additional factors may exacerbate

2

the problem further. Environmental errors must be taken into consideration,
otherwise due to node mobility the additive error in the estimated location
can accrue, rendering any algorithm impractical. This is a consequence of me-
chanical errors in evaluating the direction and distance of movement, which
may occur in-between individual measurements. This type of errors can be
due to manufacturing defects or fluctuations in the environment (e.g. surface
friction). Thus, as the movement of the network evolves, the uncertainty of
the position and direction of a node increases.

Our main contributions are distributed algorithms for solving the problem of
directional localization in sensor networks with mobile GPS-free nodes. We
introduce novel, motion-based algorithms for node position and direction cal-
culation with respect to each individual node’s local coordinate system in mo-
bile ad-hoc sensor networks, without global positioning information. Our first
algorithm, GPS-free Directed Localization (GDL), assumes the availability of
a digital compass on each node, and calculates a node’s directional localization
from a single-step movement. In our second algorithm, GPS and Compass free
Directed Localization (GCDL), we relax the compass requirement and com-
pute directional localization with a 2-step motion algorithm. Our algorithms
perform localization in a few steps of movement and are memoryless; in ad-
dition, they are not affected by cumulative position errors. More specifically,
our proposed algorithms:

• provide directional neighbor localization in a network-wide coordinate sys-
tem,
• can function under fairly large motion and distance measurement errors,
• are unaffected by the speed of nodes,
• support a stable network in mobility problems,
• help organize the sensor network in any polygonal shape of our choice.

To experimentally validate our algorithms, we built a simulation framework
tailored to handle the mobility aspects of our algorithms. We analyzed the
impact of the direction and distance errors on the location estimation errors,
and our experiments in diverse operational scenarios demonstrated that the
average localization errors of our algorithms are near constant throughout the
movement. We show how our algorithms can be utilized to create a stable and
structured swarm of sensors without an underlying infrastructure or global
positioning devices. We also effectively organize nodes in any geometric shape
of our choice even in the presence of localization errors.

The remainder of this paper is structured as follows. Our localization algo-
rithms are described in Section 2, while Section 3 outlines their use in coherent
mobility scenarios. In Section 4 we sketch out methods to organize the sen-
sor network in any polygonal shape by the use of our localization algorithms.
The main results of our experimentation are presented in Section 5. Section 6

3

discusses related work, and Section 7 provides the concluding remarks.

2 Localization Algorithms

In this section, we present our GPS-free localization algorithms. Our first
algorithm, GDL, works under the following assumptions:

• Each node has a compass pointing North (or any other common reference
direction).
• Nodes can measure the distance to their neighbors using a known range

measurement method, such as Time of Arrival (TOA) [5], Time Difference
of Arrival (TDOA) [14], or Ultra-Wideband radios [12].
• Motion actuators allow each node to move a specific distance in a specific

direction (with respect to North).
• Actuator, compass and distance measurements are subject to errors caused

by various real world disturbances such as wind, rough terrain, equipment
failures etc.
• Other than the above, no additional positioning equipment or infrastructure

is required.

We give details of our first algorithm in Section 2.1. In Section 2.2 we present
our second algorithm, GCDL, which has the exact same assumptions listed
above but does not require a compass.

2.1 GPS-Free Directed Localization (GDL)

The GDL algorithm makes use of a digital compass and achieves localization
in a 3-stage process termed epoch. GDL consists of two sub-algorithms; Core
localization and Verification. The core localization algorithm generates two
possible relative positions for each neighbor that participates in the localiza-
tion, and the verification algorithm uses a third neighbor to yield the correct
final solution from these two relative positions. Below, we provide a detailed
description of these two algorithms.

2.1.1 Core localization algorithm

The core localization algorithm works with variable length epochs, where each
epoch involves three distinct stages:
1. Distance measurement between neighbors,
2. Individual movement of the nodes,
3. Exchange of direction and distance values for that epoch between neighbors.

4

Epochs are initiated by nodes whenever they need localization. Possible causes
of localization are sudden increase or decrease in the number of neighbors,
which hints clustering or partitioning in the network, and may require re-
positioning of the nodes. We do not require any other continuity or pattern
between epochs. We also do not assume anything about the temporal duration
of the epochs. However, we assume that the nodes do not change their direction
of movement within an epoch.

d
1

v
2

1α

v1

d
2

2α

x y
1

,
1

x y
0

,
0

x
3

y,
3

n1

n
2 x ,y

2 2

(a)

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

(b)

Fig. 1. Two-step movement where (a) nodes can be localized and (b) in the non-rigid
geometry exceptional configuration.

A typical movement of two nodes n1 and n2 in an epoch is shown in Figure 1(a).
At time t1, n1 is at position (x0, y0) and n2 at (x2, y2), and the nodes measure
the initial inter-distance d1. Between time t1 and t2, each node {ni | i = 1, 2}
moves in a direction αi and covers a distance vi. At time t2, the nodes, now at
positions (x1, y1) and (x3, y3), calculate their inter-distance d2 and exchange
vi and αi information. After receiving this information, each node selects itself
as the origin and calculates the position and direction of the other node, in
its local coordinate system. To solve the equations in the local system of n1,
we choose the position (x0, y0) of n1 as the origin and write:

x1 = v1 cosα1, y1 = v1 sinα1, (1)

x3 = x2 + v2 cosα2, y3 = y2 + v2 sinα2, (2)

(x3 − x1)
2 + (y3 − y1)

2 = d2
2, x2

2 + y2
2 = d2

1. (3)

Substituting equations (1) and (2) into equation (3), we get:

x2A+ y2B = C, (4)

with the appropriate definitions:

A = v2 cosα2 − v1 cosα1, B = v2 sinα2 − v1 sinα1,

C =
1

2

(
d2

2 − d2
1 − v2

1 − v2
2 + 2v1v2 cos(α1 − α2)

)
.

Substituting x2 = (C − y2B)/A and y2 = (C − x2A)/B into x2
2 + y2

2 = d2
1, we

get:
x2

2D − 2x2E + F = 0, y2
2D − 2y2G+H = 0, (5)

5

again with the appropriate definitions:

D = A2 +B2, E = AC, F = C2 − d2
1B

2,

G = BC, H = C2 − d2
1A

2.

Note that the coefficient of x2
2 and y2

2 is the same in both equations (5), namely,
D.

Using (5), each variable solves independently to

x2 =
E ±

√
E2 −DF
D

, y2 =
G±
√
G2 −DH
D

(6)

and solutions can be paired up by using equation (4), as long as D 6= 0. In
practice, one would compute either x2 or y2 using (5) and deduce the other
variable using (4). When A = 0 but B 6= 0, one would compute x2 using (6),
and when A 6= 0 but B = 0, one would compute y2 using (6) instead. If both
A = B = 0, then D = 0 and subsequently an exceptional configuration is
formed; we discuss this case later in exceptional configurations.

CoreLocalization(n1, n2, v1, α1)

1: d1 ← inter-distance(n1, n2)
2: Move node n1 by v1 and α1

3: d2 ← inter-distance(n1, n2)
4: Retrieve v2 and α2 from n2

5: Calculate positions of n2 using equations (4),(5) and (6)

Verification(NeighborPairList NPL)

1: for each neighbor pair (m,n) in NPL do
2: if m and n are neighbors then
3: dm,n ← measured inter-distance(m,n)
4: for each position pair {mi, nj | i, j = 1, 2} do
5: Compute Euclidean distance D between mi and nj

6: if D = dm,n then
7: mark mi and nj as exact positions

Fig. 2. The core localization algorithm calculates two possible positions. The veri-
fication algorithm determines the exact positions between neighbors.

The core localization algorithm to calculate the position of n2 from n1 is
presented in Figure 2. Solving the equations, each node finds two possible
positions for each of its neighbors. Since only one of these solutions is realistic
(the other one is due to “symmetry”), each node has to complete a verification
step, this time using an additional common neighbor (n3).

6

2.1.2 Verification algorithm

In Figure 2, we provide an algorithm that verifies a node’s position using a
third neighbor. This step is required to solve the ambiguity of two possible
positions per neighbor calculated in core localization algorithm. After solving
equations (4) and (6) in the previous section, node n1 has two position esti-
mates {n1,2

j | j = 2, 3} for each of its neighbors n2 and n3. In order to find
the positions and direction, n1 retrieves the distance between n2 and n3 (d2,3)
from either one of these nodes, and simply finds the correct pair of positions
{n1,2

j | j = 2, 3} that has a matching distance.

For rigid geometries and configurations without errors, there can only be one
pair verified. However, for configurations with errors, we relax the algorithm
to select the pair with the closest distance value to d2,3.

2.1.3 Exceptional configurations

The above localization algorithm works for rigid geometries where two possible
positions per neighbor are estimated. Due to various real world disturbances
and equipment errors, nodes do not always get a rigid geometry from their
measurements. In this case equations (4) and (6) have no use. Any time the
core algorithm cannot find meaningful results we reach what we term ex-
ceptional movement configurations. We distinguish two such configurations
named equal parallel movement and excessive error configurations that we
discuss below.

• Equal parallel movement configurations occur when D is equal to zero in
equation (6). This also implies that A = 0 and B = 0 since D = A2+B2. An
example of equal parallel movement configuration is shown in Figure 1(b).
In this case, the nodes move in parallel and keep the exact same distances
(d and v) between them, so that node n2 can be anywhere on a circle at
a distance d away from node n1, and vice verse. The geometry is not rigid
and infinitely many possible solutions exist for both neighbors.
• The second exceptional configuration is that of excessive error. The main

sources of error in our algorithm occur due to distance, actuator and com-
pass measurement inaccuracies. When highly erroneous d, v and α values
create a non-rigid geometry, such that E2 − DF < 0 or G2 − DH < 0 in
equation (6), our core algorithm cannot localize n1 and n2.

Although we cannot entirely avoid the above exceptional configurations, the
core localization part of GDL algorithm can readily detect them. Once detec-
tion takes place, nodes can skip that epoch and can make necessary adjust-
ments (e.g. random changes) to their speed and direction to avoid the same
ill-configuration in the next epoch.

7

2.2 GPS and Compass Free Directed Localization (GCDL)

Additional cost on hardware and unfavourable physical conditions altering
magnetic field restrict the use of compass in certain hostile environments such
as disaster areas. To enhance versatility, we relax the requirement for a com-
pass and achieve localization using our algorithm that controls the mobility of
the nodes. The main idea is to divide the nodes into two groups, blue (dark)
and red (light), and move each group in a stepwise manner while the other
remains stationary. We show that, through the use of geometric properties, we
can localize the neighbors in such a 2-step motion for each group. After local-
ization, nodes can agree on a common virtual north, which essentially has the
same effect as having a compass. This common north resolution also enables
the nodes to perform coherent movement as a network, which is one of our
main goals. Furthermore, by relaxing the requirement for a compass, we re-
lieve our GCDL algorithm from compass related failures such as measurement
or equipment errors, and improve the robustness of our approach.

C1
C2

C3

r3

r1

r2

Fig. 3. The dark node remains fixed while the light node makes two steps, allowing
it to localize the dark node.

We outline our 2-step motion algorithm (Figure 3) using a blue (dark) and a red
(light) node. The blue node is stationary, and the red node performs a 2-step
motion to localize the exact position of the blue node. Each time the red node
communicates with the blue node, a virtual communication circle is formed,
and the distance between the two nodes are measured using a known range
measurement method. As shown in Figure 3, the first virtual communication
circle (C1) results in infinite possibilities for the position of the blue node.
The red node can reduce the possible positions to two by calculating the
intersection of the first and the second (C2) virtual communication circles.
After the second step of the red node, the third (C3) virtual communication
circle is formed, allowing the red node to calculate the exact location of the
blue node. Therefore, in order to exactly find the position of the blue node,
three virtual communication circles are needed. By keeping track of its own
movement distance, in the worst case, the red node gathers enough data to
localize the blue node only after 2-step motion. Note that if the movement
of the red node is directly towards (or away from) the blue node, one step of
the motion is sufficient for localization, since in this case the geometry forms

8

two mutually tangent circles within each other, which intersect at the exact
location of the blue node.

y
0

,
0

x ,y
2 2

d
2

x
3

y,
3

x y
1

,
1v1

v
2 d

1d
0 θ1

θ2

��
��
��
��

x

Fig. 4. GCDL Geometry: the light node moves from x1, y1 to x0, y0 and x2, y2 in
order to determine x3, y3, the position of the stationary dark node.

In order to outline the geometric calculations necessary for localization after
2-step motion we assume the blue node in Figure 4 is stationary at posi-
tion (x3, y3), and the red node moves to positions (x1, y1), (x0, y0), and
(x2, y2) respectively. We also assume that each node has a local coordinate
system, based on an arbitrary north, and nodes can mechanically track their
movements relative to this local coordinate system. For example nodes can
mechanically turn 90◦ based on their local north without requiring a compass.
The movement of the red node is represented by a < distance, angle > pair,
where the angle is relative to the local coordinate system of the red node. The
first movement from position (x1, y1) to (x0, y0) is represented as < v1, θ1 >,
and the second movement from position (x0, y0) to (x2, y2) is represented
by < v2, θ2 > pair. For each position of the red node, we write the following
formulas:

(x3 − x1)
2 + (y3 − y1)

2 = d2
1, (7)

(x3 − x2)
2 + (y3 − y2)

2 = d2
2, (8)

x2
3 + y2

3 = d2
0. (9)

We write the first (x1, y1) and last positions (x2, y2) of the red node as:

x1 = v1 cos (θ1 − π), (10)

y1 = v1 sin (θ1 − π), (11)

x2 = v2 cos θ2, (12)

y2 = v2 sin θ2. (13)

Rewriting Eq.(7) and substituting Eqs.(9,10, 11) we get:

(x3 − x1)
2 + (y3 − y1)

2 = d2
1,

x2
3 − 2x1x3 + x2

1 + y2
3 − 2y2y3 + y2

1 = d2
1,

Observing that x2
1 + y2

1 = v2
1,

d2
0 − y2

3 − 2v1x3 cos (θ1 − π) + v2
1 + y2

3 − 2v1y3 sin (θ1 − π) = d2
1,

9

We calculate x3 as:

x3 =
d2

0 + v2
1 − 2v1y3 sin (θ1 − π)− d2

1

2v1 cos (θ1 − π)
, (14)

Using x3 in Eq.(8), and substituting Eqs.(12,13) we get:

(x3 − x2)
2 + (y3 − y2)

2 = d2
2,

x2
3 − 2x2x3 + x2

2 + y2
3 − 2y2y3 + y2

2 = d2
2,

Again observing that x2
2 + y2

2 = v2
2,

d2
0 −

d2
0 + v2

1 − d2
1 − 2v1y3 sin (θ1 − π)

v1 cos (θ1 − π)
v2 cos θ2 + v2

2 − 2v2y3 sin θ2 = d2
2, (15)

We can now calculate y3 from Eq.(15). To ease the presentation in Eq.(15),
we define B as:

B =
v2 cos θ2

cos (θ1 − π)
2 sin (θ1 − π)− 2v2 sin θ2,

if we simplify, B becomes:

B =
2v2 sin (θ1 − (π + θ2))

cos (θ1 − π)
, (16)

Again, to ease the presentation in Eq.(15), we define A as:

A = d2
2 − d2

0 − v2
2 +

v2 cos θ2

v1 cos (θ1 − π)
(d2

0 + v2
1 − d2

1), (17)

where using Eqs.(16, and 17) y3 becomes:

y3 =
A

B
(18)

The red node can localize the blue node by solving equations (14) and (18).
Next, the red and the blue nodes switch roles, and the blue node moves while
the red node remains stationary, which is outlined in Lock-step Movement
section below. After both groups of nodes complete their 2-step motion, they
agree on a common north for the entire network, which is described in Selecting
a Common North section below.

2.2.1 Lock-step movement

For applications where the mobile sensor nodes are required to move as a
cohort, we configure our GCDL algorithm to perform directional movement.

10

We randomly assign red and blue colors to nodes at each iteration to uniformly
color the nodes in the swarm. Once the direction of movement is known by
all nodes, each group performs a zig-zag movement following the direction, as
shown in Figure 5. A zig-zag movement fits with our algorithm’s requirement
of the 2-step motion, while still allowing the node to move towards a certain
direction. We would like to highlight here that the zig-zag movement can be
performed with different step movement angles. For simplicity of presentation,
we use orthogonal movements as shown in Figure 5.

Movement direction

Fig. 5. Zig-zag motion of nodes towards movement direction.

2.2.2 Selecting a common north

In GCDL, nodes coordinate their movement based on a pseudo-north, since
no compass is used. As the pseudo-north is selected arbitrarily by each node,
and altered by the localization errors throughout the movement, nodes have
to agree on a common north with their neighbors in order to move as a cohort.
When both group of nodes complete their lock-step motion, neighbor nodes
can further communicate to agree on a common north for the entire swarm. In
order to achieve this, each node exchanges calculated position information of
each of its one-hop neighbors, based on its local coordinate system. Each node,
by cross examining its neighbor’s position relative to itself (6 a in Figure 6)
and its own position relative to that specific neighbor (6 b), calculates the skew
in local coordinate systems (6 α in Figure 6). Once the skew between local
coordinate systems is calculated, the nodes can use two methods in order to
agree on a common coordinate system: (1) use a proactive approach and force
the entire swarm to agree on a single coordinate system by using a hierarchy
(e.g. TAG tree [25]), or (2) use a reactive method and store only the variance
(α) for each neighbor, and initiate a local correction each time a direction
information is received from neighbors. The use of the proactive or the reactive
approach is specific to the characteristic of the network and the application.
Both approaches can be used with our GCDL algorithm.

In this section, we presented our localization algorithms. GDL performs local-
ization in single step of the motion through the use of a compass on each node,
while GCDL performs localization without the use of a compass, following a
2-step motion.

11

N

a

α

b

N

Fig. 6. When the relative positions of two nodes are a and b, the skew in their local
coordinate systems is α.

3 Cohort Sensor Network Mobility

Our algorithms are most useful in mobile applications where the entire network
must move in a specific path in order to accomplish a goal. To analyze the
behavior of our localization algorithms in a realistic mobility scenario, we
adapt a mobility model based on the Reference Point Group Mobility (RPGM)
model [18]. Although we considered a range of mobility models [6], we decided
to base our analysis on RPGM due to its generality and simplicity. Here, the
random motion of the individual nodes is modeled in relation to a randomly
chosen directional motion of the entire group. Each node in the group moves
randomly around a fixed reference point and the entire group of reference
points moves along the group’s logical center. Our localization algorithms
computes locations and orientations for nodes and their neighbors. In that
respect, we further generalize the RPGM model so as to make individual
sensors independent of the reference points. Furthermore, because our sensor
network can maintain a semi-rigid structure based solely on local positioning,
it is unnecessary for nodes to be aware of the group’s center and only the
destination point must be specified. It is possible to remove the reference points
because the individual random motion within the group is contextualized by
the random motion of a node’s immediate (one-hop) neighbors. In that sense,
the neighbors represent the reference points of motion.

The mobility algorithm we use for directed motion is presented in Figure 7.
The network moves with respect to a direction vector ~D. To maintain a semi-
rigid formation without disconnecting the network, we impose a minimum
neighbor count k that each node strives to attain. This is a best-effort algo-
rithm where nodes attempt to maintain a neighbor distance that is a fraction
of their wireless range. The neighbor distance is adjusted dynamically with
the number of neighbors so that nodes with fewer than k neighbors stay closer
while still moving with the network, which avoids network partitioning espe-
cially at the perimeter of the network. Localization of the one-hop neighbors
is a pre-requisite for the mobility algorithm to run efficiently. However, the
algorithm does not strictly require all neighbors to be localized, it considers

12

MoveNode(Node N, NeighborList NL,
DirectionVector ~D, int k, RangeFactor RF)

1: ~V ← 0
2: count← 0
3: for each localized neighbor n in NL do
4: /* ~uN,n is the vector from N to n */
5: ~V ← ~V + ~uN,n

6: count← count+ 1
7: if count < k then
8: RF ← RF /2
9: ~V ← (RF ∗ range(N) ∗ ~V + ~D)/(count+ 1)

10: Move node N by ~V

Fig. 7. The mobility algorithm for directed motion.

only the localized neighbors and performs the necessary calculations based on
these neighbors. The range(Node N) function returns the wireless range of
node N in terms of distance. When a boundary is reached, a new direction of
movement must be chosen. In our simulations, we implement this as a ricochet
off the boundary surface.

The benefit of our approach is that while an initial direction of motion is
specified for the group, the structure of the network remains cohesive but
independent. An example application of this approach is a swarm of mobile
sensors which move in a general pattern with a specific goal. For example,
a swarm of mobile sensors may move in a zig-zag pattern, with the goal to
discover an oil spill and cover the contaminated area once this spill is found.
In this example, only a virtual boundary must be specified and the network
of sensors will maintain sufficient proximity to communicate, while covering
the area.

The mobility algorithm presented in this section is a general network move-
ment algorithm that requires only local position information. Our localization
algorithms require each node to communicate only with its one-hop neigh-
bors thus avoiding flooding of the network. In this respect, other mobility
algorithms can be plugged in to perform various tasks using our localization
algorithms.

4 Organizing Sensor Nodes In a Geometric Shape

In this section, we present a method to arrange nodes in a certain geometric
shape controlled by a specific coordinator node in the network. In search-
and-rescue type of scenarios nodes move on unknown territory, and explore
the area through the help of their sensors. These can be temperature, noise,

13

infrared, or similar sensors and can be used collectively to help guide the
node movement in unknown or hostile territories. As a motivational example,
assume that we are interested in a network of mobile sensor nodes with tem-
perature sensors, exploring an unknown territory on a mission to detect the
source of a fire. In this scenario, mobile nodes often have to make a decision
on which direction they should move to achieve their objective. In order to do
so, nodes process the temperature readings obtained from the boundary nodes
of the network, and move towards the direction with the highest temperature
readings, as shown in Figure 8. We investigate the idea of arranging the nodes
in a connected polygonal shape of our choice, so that nodes can gather data
more efficiently from diverse fronts of the territory. The size and shape of the
polygon depends on the application or the physical properties of the territory.
Figure 8(a) shows a sensor network organized in a 4x4 square, trying to de-
termine the region of the fire. As the figure shows, the square shape is not
the best choice for this case compared to the L-shape shown in Figure 8(b).
Even though the L-shape uses the same number of nodes as the square shape,
it can expand further into both directions increasing the chances of detecting
the correct region of the fire.

(a) (b)

Fig. 8. Two configurations of a mobile sensor network using temperature sensors to
locate a fire.

In order to organize nodes in a spanning polygonal form, we use one of our
nodes as the coordinator. The coordinator function can be performed by any
of the nodes in the swarm, or a specially equipped node depending on the
application. Our method does not have particular requirements on the co-
ordinator, other than that it defines the origin point for the polygon and it
remains stationary during polygon formation. Nodes accept the coordinator
as the origin (0, 0) and the polygon coordinates are defined relative to the co-
ordinator. Whenever there is a requirement for polygonal network formation,
the constraints regarding the size and shape of the polygon is broadcast by
the coordinator to the rest of the network. The polygon is expressed as a list
of point coordinates that define the boundary lines relative to the origin. The

14

FormPolygon(Polygon p)

1: if Coordinator then
2: /*Arrange the nodes in geometric shape*/
3: Coordinator stops moving
4: Coordinator broadcasts Polygon information
5: Coordinator broadcasts its location as the origin
6: else
7: Nodes that receive Polygon info run FillPolygon algorithm

FillPolygon(Polygon p)

1: Node calculates its position relative to the Coordinator node
2: Node re-broadcasts Polygon info and its relative position
3: if Node is inside the polygon then
4: if Node is close to the boundary then
5: Reduce the speed of the node
6: Force to stay inside the polygon
7: else
8: Perform regular area coverage as in Fig. 7
9: else

10: Find the closest line segment of the polygon
11: Move to the closest line segment to enter inside the polygon

Fig. 9. FormPolygon determines the geometric shape of the entire network. FillPoly-
gon is used by each node to rearrange its position.

algorithm for arranging the network into polygonal formation is presented in
Figure 9(FormPolygon). The area of the polygon should be chosen properly
based on the number of nodes. Nodes should fill the entire area evenly with-
out segmentation, while still maintaining a multi-hop path to the coordinator
node necessary to receive further updates.

Nodes have two fundamental tasks during polygon formation; area coverage
within the polygon, and boundary detection. The localization steps essential to
determine the boundary of the polygon and the neighbor positions are handled
by our available localization algorithms. Using our localization algorithms,
each node can measure the relative positions of each of its neighbors. Upon
receiving the request for the polygonal network formation, nodes within one-
hop distance of the coordinator will update their positions relative to the
origin (coordinator), and re-broadcast the request by including these relative
positions. Iteratively, each node i receiving the request from its neighbor j
receives the polygon information, and the position of node j relative to the
origin. Combining this information with the inter-distance of nodes i and j
obtained from our localization algorithms, each node i can calculate its own
position relative to the origin (coordinator). By the time the request is received
by the entire network, each node receives the polygon border coordinates,
and can calculate its own position relative to the polygon. Nodes use the

15

ray casting algorithm [38] to test whether they are inside the polygon or not.
Nodes use the algorithm presented in Figure 9(FillPolygon) in this stage of the
polygon formation. Nodes that are outside the polygon border calculate the
position of the closest line segment of the polygon and move towards that line
segment’s coordinate to cross the boundary of the polygon. Once the nodes
are inside the polygon area, they do follow the regular area coverage algorithm
previously described in Figure 7. There are two exceptions to this algorithm;
(1) nodes force themselves to stay inside the polygon, (2) nodes that are close
to the boundary of the polygon reduce their movement capability to establish
a physical boundary of nodes near the border for the rest of the network. These
exceptions reduce the unnecessary back and forth movement of the nodes close
to the boundary (especially corners of the polygon) and form a layer around
the boundary much like the effect of surface tension in liquids.

5 Experimental Evaluation

In this section, we evaluate our algorithms in three different types of experi-
mental settings. First, in Section 5.1 we evaluate properties specific to our GDL
algorithm under various simulated error settings, and show that even signif-
icant environment errors do not dominate the performance of our algorithm.
Later, in Section 5.2 we evaluate our GCDL algorithm under various errors
and observe how the errors affect the accuracy of the localization and com-
mon north resolution algorithms. In Section 5.3 we compare GDL and GCDL
with an Absolute Positioning algorithm that uses dead reckoning in various
random and directed mobility scenarios, and observe the effects of cumulative
errors on the localization algorithms. Section 5.4 compares the behaviour of
our algorithms with the Absolute Positioning algorithm during coherent move-
ment of the swarm. Finally, in Section 5.5 we evaluate our polygonal network
formation method for various polygonal shapes.

5.1 Evaluation of the GDL algorithm

Initially, we present results from the GDL algorithm under ideal conditions,
without measurement errors. Subsequently, we introduce independent errors
on angle and distance measurements to simulate real world disturbances.

5.1.1 Experiments under ideal conditions

In this experiment we simulate nodes randomly placed in a 100x100 area under
a uniform spacial distribution. Each simulation is run for 100 epochs, and

16

the results are averaged. At each epoch, nodes perform a random walk with
random speed [0, 5), random angle [0, 2π) and fixed radio range of 6. The speed
and angle are selected using a uniform random distribution. Node density
represents the number of nodes over the total deployment area. GDL requires
two neighbors to accurately find each other’s positions. Figure 10 displays the
percentage of nodes, whose positions are not calculated accurately for different
node densities. For small node densities, we observe that not all nodes can be
localized. The reason is that nodes do not have neighbors to calculate positions,
or do not have common neighbors. As we can see from Figure 10, the percent
of non-localized nodes approaches zero for densities greater than 0.02. From
this graph we can conclude that our algorithm calculates node positions for
dense networks, and introduces minor node localization failures, less than as
3%, for sparse networks.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.02 0.04 0.06 0.08 0.1

%
 N

od
e

no
n-

lo
ca

liz
ed

Node density

Fig. 10. Percent of non-localized nodes for different node densities.

5.1.2 Introducing measurement errors

We now relax the ideal condition assumption and introduce errors on distance
and angle measurements. In the real world, measurements may be quite inac-
curate due to weather, terrain conditions and equipment failures. To simulate
these errors, we add uniform random noise to all our measurements. For dis-
tance measures we add percent error relative to the measured value, and for
angle measures we add absolute percent error (percent of 2π) to the measured
value. The reason for introducing absolute percent error for angle measures is
to simulate large errors that may occur due to mechanical part inaccuracies
or failures during rotations. These errors change our algorithm’s behavior in
one of two ways: (1) the algorithm calculates the positions with limited accu-
racy; or (2) excessive error configurations, defined in Section 2, prevent the
algorithm from localizing some of the nodes. Figure 11 (a) shows the aver-
age position error of our algorithm for different values of noise on angle and
distance measurements. The effects of excessive error configurations on our

17

algorithm appear in Figure 11 (b). We postulate that 30% noise on angle and
distance measurements is a significant error rate for real world conditions.
Even so, Figure 11 (b) shows that the portion of non-localized nodes remains
below 16% at all times, and drops below 10% for errors lower than 10%.
These results indicate that our GDL algorithm provides node localization for
the larger proportion of the swarm, even in the face of extreme measurement
deviations. We further corroborate this claim by carrying out tests in random
and directed movement scenarios in Section 5.3.

 0 0.05 0.1 0.15 0.2 0.25 0.3

Angle error
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Distance error

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Avg. Position Error

(a)

 0 0.05 0.1 0.15 0.2 0.25 0.3

Angle error
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Distance error

 0
 2
 4
 6
 8

 10
 12
 14
 16

% Nodes non-localized

(b)

Fig. 11. Effects of angle and distance measurement noise on position error (a), and
percent of non-localized nodes (b), for GDL

In order to evaluate the effects of movement speed and wireless range we tested
our GDL algorithm under high noise, with a fixed wireless range (10 units) and
variable speed values for nodes. 1 We apply an upper limit to the speed, such
that the nodes do not move a distance greater than their wireless range per
epoch. In any sensor network scenario, if a node moves by a distance greater
than its wireless range in one epoch, it is highly probable that its neighborhood
will change at each step, which would make it impossible to localize. We can
see in Figure 12 that the localization error of our algorithm is nearly constant
for increasing speed. The maximum speed supported by our algorithm is the
wireless range distance traveled throughout an epoch. In our experiments, this
is 10 units of distance traveled per epoch.

5.2 Evaluation of the GCDL algorithm

In this section, we evaluate the effects of various environment errors on the
common north resolution method of our GCDL algorithm. As the metric to

1 As our GCDL algorithm performs a lock-step motion, we exclude GCDL from
this movement speed experiment.

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

Lo
ca

tio
n

E
rr

or
 (

M
ea

n)

Speed

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10Lo
ca

tio
n

E
rr

or
 (

S
ta

nd
ar

d
D

ev
ia

tio
n)

Speed

Fig. 12. Mean and standard deviation of position error of GDL vs. speed of nodes
with a wireless range of 10 units and speed measured in units per epoch.

measure the common north error of the swarm, we use the average difference
between the real and the calculated norths of each neighbor per epoch.

We first evaluate whether the duration of the movement affects the common
north error. We simulate 100 nodes in a 100x100 area. In random motion,
nodes can cover at most 5 units and have a fixed radio range of 15 units. We
assume that in directed motion nodes move at a maximum speed of 3 units
per epoch and the radio range is set to 5 units. All experiments are performed
100 times, and the average values are reported. We test our algorithm for two
different uniform random noise levels: high and low as well as in random mo-
tion and directed motion scenarios. High noise level is up to ±30% of distance
measurements and up to ±2π/10 of angle measurements. Low noise level is
up to ±3% of distance measurements and up to ±2π/100 of angle measure-
ments. In this experiment, after each epoch, nodes resolve the common north
variance with their neighbors and the average error per node is calculated.
Figure 13 shows that for both random and directed movement scenarios, the
average error on common north remains constant throughout the total number
of epochs. This is expected as we do not store any information other than the
current motion per epoch. All calculations are performed from scratch based
on the new neighborhood after the 2-step motion. Thus, GCDL is free from
incremental errors.

Having established that the common north error is not affected by the number
of epochs, we vary the distance and angle measurement noise and see how it
affects the common north error in Figure 14. In this figure, we can observe
that the amount of noise on the angle and the distance measurements both
affect the common north error of the GCDL algorithm. The common north
error is zero for environments free of error, and the error increases linearly
with the angle and distance errors when they are introduced. For a low noise
level, the common north errors are approximately 10◦ and 2◦ respectively

19

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

C
o
m

m
o
n
 N

o
rt

h
 E

rr
o
r

(D
e
g
re

e
s)

No of rounds

High noise
Low noise

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000 2000 3000 4000

C
o
m

m
o
n
 N

o
rt

h
 E

rr
o
r

(D
e
g
re

e
s)

No of rounds

High noise
Low noise

(b)

Fig. 13. Effect of number of epochs on selected common north angle, (a) random
motion, and (b) directed motion, for GCDL

 0
 0.1

 0.2
 0.3

Angle error 0

 0.1

 0.2

 0.3

Distance error

 0
 10
 20
 30
 40
 50

Common north error

(a)

 0
 0.1

 0.2
 0.3

Angle error 0

 0.1

 0.2

 0.3

Distance error

 0
 5

 10
 15
 20

Common north error

(b)

Fig. 14. Percent error of angle and distance measurement noise on selected common
north error in degrees, (a) random motion, and (b) directed motion, for GCDL.

for random and directed motion. For a high noise level, the errors become
approximately 34◦ and 14◦, respectively. The common north errors are quite
reasonable considering that we assume ±2π/100 (±3.6◦) and ±2π/10 (±36◦)
errors on angle measurements caused by node actuators, respectively for low
and high noise levels.

5.3 Comparison with an absolute positioning algorithm

In this section, we compare our algorithms with an Absolute Positioning al-
gorithm. In this algorithm, we assume that nodes know their initial positions
in the deployment area, thanks to an anchor point or another type of global

20

positioning infrastructure. We also assume that once nodes receive their initial
position, they do not receive any additional positioning information, relative
or absolute. To this effect, nodes keep track of their own movements. By ex-
changing location information with immediate neighbors, each node is able
to keep track of the positions of others. This scenario occurs when nodes are
deployed from a known position and asked to explore a possibly remote area
where they cannot maintain communication with the anchor at the deploy-
ment position.

We simulate two different mobility scenarios. The first is based on random
movement, where 100 nodes with fixed radio range of 15 units can cover a
distance of at most 5 units per epoch. The second scenario is the directed
movement described in Section 3. Nodes sweep the area in a zig-zag manner,
with radio range of 5 units and maximum per-epoch distance of 3 units. An
example trajectory of the nodes in the directed movement scenario is shown
in Figure 20. There is no global path information available. Rather, the nodes
detect the boundaries of the environment and make movement decisions as a
response to these environmental readings.

In Figures 15 and 16, we show the average errors for all algorithms over the
progression of up to 4,000 epochs, for two different uniform random noise lev-
els: high and low, in random motion (Figure 15) and directed motion (Figure
16) scenarios. Since our algorithms calculate distances within each epoch and
do not use any cumulative data, the errors of our algorithms are nearly con-
stant over the number of epochs, for both scenarios. Although the absolute
positioning algorithm starts with a low error value, small measurement errors
accumulate over each epoch and cause a continuously increasing error. The
mean error of the GDL is as much as 2 times and the mean error of the GCDL
is as much as 10 times lower than the mean error of the absolute positioning
algorithm. The high error values in the absolute positioning algorithm reflect
on the effects of cumulative errors and show that it is not a robust solution for
high noise scenarios. On the other hand, our localization algorithms provide
consistent behavior in the above-mentioned scenarios.

In order to further evaluate the effects of the noise level on the performance of
our algorithms, we create three different noise distributions, all based on high
noise level. In Figure 17 we present these distributions. Linear distribution is
the high noise level already used in previous experiments (See Figs. 15 and
16). The SQRT represents a scenario where the random noise increases with
the square root of the distance. Similarly, the SQR represents that the random
noise increases with the square of the distance. For example, if a node performs
a movement of 5 units in SQR noise distribution, the noise level will be ±30%∗
52 = ±7.5, which means the node will move a distance in the range of between
−2.5 and 12.5 units. Since we already presented the results of the Linear noise
distribution, here we only test our algorithms with the SQRT and SQR noise

21

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

L
o

ca
tio

n
 E

rr
o

r
(M

e
a

n
)

No of rounds

High noise: Abs. pos. alg.
High noise: GDL

High noise: GCDL
Low noise: Abs. pos. alg.

Low noise: GDL
Low noise: GCDL.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000L
o

ca
tio

n
 E

rr
o

r
(S

ta
n

d
a

rd
 D

e
vi

a
tio

n
)

No of rounds

High noise: Abs. pos. alg.
High noise: GDL

High noise: GCDL
Low noise: Abs. pos. alg.

Low noise: GDL
Low noise: GCDL

Fig. 15. Mean and standard deviation of position error vs. number of epochs for our
algorithms and the absolute positioning algorithm performing random movement.

distributions performing random motion, and present the results in Figure 18.
In both noise distributions our algorithms outperform the absolute positioning
algorithm. In SQRT noise distribution, the mean error of GDL is as much as 2
times, and the mean error of GCDL is as much as 18 times lower than the mean
error of the absolute positioning algorithm. In SQR noise distribution, the
mean error of GDL and GCDL are respectively 3.5 and 11 times lower than the
mean error of the absolute positioning algorithm. For all algorithms, the errors
in SQRT noise distribution is less than the errors in SQR distribution. We
also observe that even in SQR noise distribution, the errors of our algorithms
are almost constant for increased number of epochs, which again is a feature
of the memoryless design of our algorithms. As a cross examination of the
behavior of the algorithms in Linear and SQR noise distributions, we observe
that although the error of absolute positioning algorithm increases by a factor

22

 0

 1

 2

 3

 4

 5

 1000 2000 3000 4000

L
o

ca
tio

n
 E

rr
o

r
(M

e
a

n
)

No of rounds

High noise: Abs. pos. alg.
High noise: GDL

High noise: GCDL
Low noise: Abs. pos. alg.

Low noise: GDL
Low noise: GCDL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000 3000 4000L
o

ca
tio

n
 E

rr
o

r
(S

ta
n

d
a

rd
 D

e
vi

a
tio

n
)

No of rounds

High noise: Abs. pos. alg.
High noise: GDL

High noise: GCDL
Low noise: Abs. pos. alg.

Low noise: GDL
Low noise: GCDL

Fig. 16. Mean and standard deviation of position error vs. number of epochs for our
algorithms and the absolute positioning algorithm performing directed movement.

of 3, the errors of our algorithms increase by a factor of less than 2. We can
conclude that our algorithms are more immune to noise than the absolute
positioning algorithm.

Figure 19 presents the average CPU time each node spent calculating Equa-
tions (4) and (6) in GDL and Equations (14) and (18) in GCDL, for both
random and directed mobility scenarios. Since we do not have access to real
sensor hardware, we ran the experiments on a Pentium IV 3 GHz machine
and present the average time spent per localization in order to compare the
performance of our algorithms. As shown in the figure, the CPU overhead is
less for GCDL compared to GDL, which is a direct result of the number of
calculations required by each algorithm.

23

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5

M
a
x

N
o
is

e
 (

d
is

ta
n
ce

)

Movement Distance

SQR
Linear
SQRT

Fig. 17. Various distributions of high noise levels used in our experiments.

5.4 Observing cohort movement of mobile nodes

In Figures 21, 22 and 23 we present the snapshots of the simulations of the
absolute positioning algorithm, our GDL and GCDL algorithms, respectively,
performing a zig-zag directed movement (as in Figure 20) under high noise.
All simulations use the same movement algorithm as described in Section 3.
Because of the cumulative errors, the absolute positioning algorithm is not
capable of maintaining the topology of the network and becomes disconnected
(Figure 21). On the other hand, our algorithms maintain connectivity at all
times while forming a nice semi-rigid topology, which complies with one of our
main goals to enable coherent movement of nodes as a swarm even under high
noise. The swarm organization for GCDL algorithm is more ”packed” than its
GDL counterpart. This behavior is caused by the separation of nodes into two
groups, red and blue. Nodes can only localize their neighbors in the opposite
group, and not the ones in their own group. The movement algorithm instructs
the nodes to keep a specific distance between localized neighbors. This works
for the opposite group nodes, since they are localized, but the nodes in the
same group cannot localize each other and for this reason they might stay close
to each other. Even in this case, GCDL succeeds to maintain the connectivity
and semi-rigid topology of the swarm. The results in Figures 15, 16, 22, and
23 also support our claim that even under high noise settings, environmental
errors do not deteriorate our algorithm’s behavior; effects of these errors are
constant through epochs. As seen in Figure 22, occasionally a few nodes (two
in this case) disconnect from the network. This happens when nodes near the
network’s perimeter cannot be localized. Although the number of these nodes
is small, they can be further controlled by forcing stricter k-neighborhood rules
in the mobility algorithm.

24

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

L
o

ca
tio

n
 E

rr
o

r
(M

e
a

n
)

Number of rounds

SQR: Abs. pos. alg.
SQR: GDL
SQR: GCDL

SQRT: Abs. pos. alg.
SQRT: GDL
SQRT: GCDL

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000L
o

ca
tio

n
 E

rr
o

r
(S

ta
n

d
a

rd
 D

e
vi

a
tio

n
)

Number of rounds

SQR: Abs. pos. alg.
SQR: GDL
SQR: GCDL

SQRT: Abs. pos. alg.
SQRT: GDL
SQRT: GCDL

Fig. 18. Mean and standard deviation of position error vs. number of epochs for our
algorithms and the absolute positioning algorithm performing random movement.

Movement GDL GCDL

Random 1.95 ms 1.08 ms

Directed 2.06 ms 1.12 ms

Fig. 19. Average time in milliseconds (ms) spent for localization calculations in core
GDL and GCDL algorithms.

5.5 Forming geometric shapes

In previous sections, we observe in general that if area coverage and cohort
movement algorithms are applied, sensor network acquires an oval or circular
shape. As we presented in Section 4, there might be cases which require the

25

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Fig. 20. Directed trajectory of nodes performing zig-zag movement.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Fig. 21. Snapshots of absolute positioning algorithm performing directed motion in
Figure 20.

sensor network to be organized in a predefined geometric shape. In this section
we apply our algorithms presented in Section 4 for various geometric shapes
and present the results. Figure 24 shows a sensor network of 100 nodes or-
ganizing themselves in various geometric shapes (triangle, rectangle, octagon
and L-shape). The red node in the middle is the coordinator node, and the
circle around the coordinator node represents the wireless range of each sen-
sor. The blue nodes assume they are on the inside and the purple nodes are
on the outside of the geometric shape. The top row shows the sensor locations
when there are no measurement errors. The nodes can organize themselves
quite well. With some exceptions in the corner cases the shapes are quite ac-
curate. We can see the surface tension effect near the borders (especially in
the triangle shape), and how this tension effect helps the inner nodes perform
area coverage. The middle row shows a simulation in low noise scenario. Again
in this low noise environment, nodes can organize themselves quite well. Com-

26

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Fig. 22. Snapshots of GDL algorithm performing directed motion in Figure 20.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Fig. 23. Snapshots of the GCDL algorithm performing directed motion in Figure
20.

pared to the ideal case without errors, the shapes have some deformations, and
some miss-located nodes. Nevertheless, the observed shapes visually resemble
well the expected shapes. The bottom row shows a simulation in a high noise
scenario in which the error level is too high in order for the nodes to be able
to precisely organize themselves in a geometric shape. The nodes cannot form
the border lines in this case because of the large errors, and once the borders
are not established, the rest of the nodes cannot organize themselves. Even in
this case resemblances to the original shape in triangle and partly in L-shape

27

can be observed.

Fig. 24. Snapshots of geometric shape formation. Top row: without noise. Middle
row: under low noise. Bottom row: under high noise.

6 Related Work

Hightower et al. [16] has a survey on location systems. Early research on
sensor localization problems have primarily focused on static sensor networks
[10, 13, 15, 20, 26–28, 32, 35–37]. Recently, however, more attention has been
given to mobile environments. Problems in mobile sensor networks have been
investigated mainly in conjunction with a particular positioning infrastructure
(anchors, seed nodes, beacons) or under random movement scenarios [7].

Low precision for close range and limited coverage (especially indoors) of GPS
systems led to the investigation of GPS-free localization for mobile nodes. One
common technique used is to exploit wireless communication. Bulusu et al. [4]
use known reference points to send periodic beacon messages. By receiving
beacons from these reference points, nodes can localize themselves. The ac-
curacy of the localization depends on the distance to the reference points.
Priyantha et al. [32] also use beacons for localization, but they assume the
real locations of the reference points are unknown. The problem of calculating
global geometry from local information is proved to be NP-hard [41]. For static

28

nodes, and only using Euclidean distances, Bădoiu et al. [2] propose a con-
stant factor, quasipolynomial-time approximation algorithm. The algorithm
requires complete graph information, which results in substantial communica-
tion overheads [2] in mobile wireless networks. Priyantha et al. [33] propose
assisting the static network in distance measurements with a mobile node to
achieve the global rigidity required for accurate localization.

In [7], relative localization in mobile sensor networks is accomplished through
triangulation of neighbor nodes using a common one-hop neighbor. The au-
thors propose algorithms for building a relative coordinate system based on
a central node, or a dense group of nodes called Location Reference Group.
Although this work is similar to ours in that it estimates positioning in a
mobile environment without seed nodes, its primary focus is on negotiating a
relative coordinate system for the entire network. While this solution finds ap-
plications in routing protocols, it is not applicable in mobility scenarios where
directed motion is required, because the relative coordinate system used does
not map to the real node positions.

Infrastructure free localization is also pursued in the robotics. Kurazume et
al. [23] uses a lock-step motion similar to the one used in our GCDL algorithm,
but assumes the initial locations of the robots are known, and robots can
measure angles between each other, which are extra constraints that we are
able to avoid by introducing the zig-zag motion. Franceschini et al. [11] and
Langendoen et al. [24] have side by side comparisons of some of the existing
localization algorithms.

In [19], a sequential Monte Carlo method is used to probabilistically estimate
the locations of nodes in a network with a few seeds. Seeds are those nodes
which know their precise location, through the use of GPS, for example. Due
to the model’s dependence on the prior estimates, the location errors are cu-
mulative and a re-sampling step must be introduced. The re-sampling process
requires each node to collect as much as fifty samples before a good estimate
can be made. Rudafshani et al. [34] again use Monte Carlo method in both
mobile and static sensor networks to achieve localization. A method based
on predictions is presented in [22], where nodes in the network use a dead
reckoning model to estimate the movements of all other nodes. Position in-
formation is adjusted for granularity so that distant pairs of nodes maintain
less accurate position information than pairs which are closer to each other.
Dead reckoning is also used in [42] to localize nodes in sparse mobile sensor
networks. Xu et al. [40] use accelerometers to detect mobility in wireless sensor
networks and efficiently update the neighborhood information based on the
mobility. Since no directional localization is used, the method is not suitable
for group mobility.

Concerning distance and motion detection error, Rayleigh fading may intro-

29

duce significant errors due to the motion of the sensor in cases where signal
strength is used for neighbor distance estimation. This problem is studied
in [3], where the location estimation is based on power measurement of sig-
nals received from two anchored beacons with known locations. The authors
explore how the speed of mobile nodes detrimentally affects their localiza-
tion accuracy. The mechanisms introduced in [3] can complement our work
to improve the neighbor distance measurement error for high speed sensors.
Distance measurement methods are surveyed in [5, 30]. The Time of Arrival
(TOA) method finds the distance between a transmitter and a receiver through
the use of one way propagation time. Time Difference of Arrival (TDOA) is
another method to estimate the distance [14]. The TDOA method uses RF
and ultrasound signals to estimate the distance accurately, at the expense of
additional ultrasound transmitters and receivers. Ultra-Wideband radios en-
able accurate ranging for sensor networks. Gezici et al. [12] surveys the recent
advances in the standardization of Ultra-Wideband radios, and possible appli-
cations to sensor localization. Recently, Park et al. [29] combined the ranging
features of Ultra-Wideband radios with hyperbola fitting to perform neighbor
localization without using any infrastructure.

7 Conclusions

We propose two distributed algorithms to address the directional node lo-
calization problem in wireless sensor networks: GDL where each node has a
digital compass, and GCDL which does not require a compass. Both of our
directional localization algorithms enable nodes to coordinate their movement
relative to their one-hop neighbors, and maintain a semi-rigid structure that
results in a coherent movement of the swarm. During mobility, measurement
errors or real world disturbances tend to accumulate over time and affect the
structure of the swarm, eventually disorganizing it. To avoid this undesir-
able effect, our algorithms perform localization in a few epochs of the node
movement and work only with the data gathered within that time frame. We
design our algorithms to work with local knowledge only, without the use of
any global positioning infrastructure such as GPS, anchor points, and seed
nodes.

We also propose a method to dynamically organize mobile sensor nodes into
various polygonal network formations in order to guide their movement es-
pecially in search-and-rescue type of missions. We tested our algorithms with
various simulated real-world errors, in both random and directional mobility
scenarios and observed that they perform coherent movement even in high
noise settings. In addition, we have compared our algorithms with an absolute
positioning approach and observed that our techniques are superior both in
terms of localization errors and in maintaining coherent swarm movement in
diverse mobility scenarios.

30

8 Acknowledgments

A preliminary version of this work appeared in the Proceedings of the 5th
ACM International Workshop on Data Engineering for Wireless and Mobile
Access (MobiDE’06), in June 2006 [1]. This work is partially supported by
NSF CAREER Grant CCR-0133599 and the University of Athens Research
Foundation.

The authors also wish to thank Leonidas Guibas of Stanford University for
the insightful discussion leading to 2-step motion, and Goce Trajcevski of
Northwestern University for his comments and suggestions.

References

[1] H. Akcan, V. Kriakov, H. Brönnimann, and A. Delis. GPS-Free node
localization in mobile wireless sensor networks. In Proceedings of the 5th ACM
International Workshop on Data Engineering for Wireless and Mobile Access
(MobiDE’06), pages 35–42, Chicago, Illinois, USA, June 2006.

[2] M. Badoiu, E. D. Demaine, M. T. Hajiaghayi, and P. Indyk. Low-dimensional
embedding with extra information. In Symposium on Computational Geometry,
pages 320–329, Brooklyn, New York, USA, 2004.

[3] P. Bergamo and G. Mazzini. Localization in Sensor Networks with Fading
and Mobility. In Personal, Indoor and Mobile Radio Communications, pages
750–754, 2002.

[4] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization
for very small devices. IEEE Personal Communications Magazine, 7(5):28–34,
October 2000.

[5] J. Caffery and G. Stüber. Overview of radiolocation in cdma cellular systems.
IEEE Communications Mag., 36(4):38–45, 1998.

[6] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing, 2(5):483–
502, 2002.

[7] S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free Positioning in Mobile Ad
Hoc Networks. Cluster Computing, 5(2):157–167, 2002.

[8] K. Chintalapudi, R. Govindan, G. Sukhatme, and A. Dhariwal. Ad-Hoc
Localization Using Ranging and Sectoring. In INFOCOM, pages 2662 – 2672,
Hong Kong, China, 2004.

[9] J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate Aggregation
Techniques for Sensor Databases. In ICDE, pages 449–460, Boston, MA, USA,
2004.

31

[10] L. Doherty, K. Pister, and L. El Ghaoui. Convex position estimation in wireless
sensor networks. In INFOCOM, pages 1655–1663, Anchorage, AK, USA, 2001.

[11] F. Franceschini, M. Galetto, D. Maisano, and L. Mastrogiacomo. A
review of localization algorithms for distributed wireless sensor networks in
manufacturing. International Journal of Computer Integrated Manufacturing,
pages 1–19, June 2007.

[12] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and
Z. Sahinoglu. Localization via ultra-wideband radios: a look at positioning
aspects for future sensor networks. Signal Processing Magazine, IEEE, 22(4):70–
84, July 2005.

[13] G. Giorgetti, S. K. S. Gupta, and G. Manes. Wireless localization using
self-organizing maps. In Proceedings of the 6th International Conference
on Information Processing In Sensor Networks (IPSN’07), pages 293–302,
Cambridge, Massachusetts, USA, April 2007.

[14] L. Girod and D. Estrin. Robust range estimation using acoustic and multimodal
sensing. In IEEE/RSI Int. Conf. on Intelligent Robots and Systems (IROS),
pages 1312–1320, Maui, HI, USA, 2001.

[15] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-
free localization schemes for large scale sensor networks. In Proceedings of
the 9th annual International Conference on Mobile Computing and Networking
(MobiCom’03), pages 81–95, San Diego, CA, USA, September 2003.

[16] J. Hightower and G. Borriello. Location systems for ubiquitous computing.
IEEE Computer, 34(8):57–66, 2001.

[17] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
System Architecture Directions for Networked Sensors. In Architectural Support
for Programming Languages and Operating Systems, pages 93–104, Cambridge,
MA, USA, 2000.

[18] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model for ad hoc
wireless networks. In Proceedings of the International Workshop on Modeling
Analysis and Simulation of Wireless and Mobile System (MSWiM’99), pages
53–60, Seattle, WA, USA, 1999.

[19] L. Hu and D. Evans. Localization for mobile sensor networks. In Proceedings
of the International Conference on Mobile Computing and Networking
(MOBICOM’04), pages 45–57, Philadelphia, PA, USA, 2004.

[20] R. Iyengar and B. Sikdar. Scalable and distributed GPS free positioning for
sensor networks. In Proceedings of the IEEE International Conference on
Communications (ICC’03), pages 338–342, Anchorage, AK, USA, May 2003.

[21] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing (LAR) in mobile ad hoc
networks. Wireless Networks, 6(4):307–321, 2000.

32

[22] V. Kumar and S. R. Das. Performance of dead reckoning-based location service
for mobile ad hoc networks. Wireless Communications and Mobile Computing,
4(2):189–202, 2004.

[23] R. Kurazume, S. Nagata, and S. Hirose. Cooperative positioning with multiple
robots. In IEEE International Conference on Robotics and Automation, pages
1250–1257 vol.2, San Diego, CA, USA, May 1994.

[24] K. Langendoen and N. Reijers. Distributed localization in wireless sensor
networks: a quantitative comparison. Computer Networks, 43(4):499–518, 2003.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny
aggregation service for ad-hoc sensor networks. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation (OSDI), Boston,
MA, USA, 2002.

[26] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network
localization with noisy range measurements. In Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems (SenSys’04),
pages 50–61, Baltimore, MD, USA, 2004.

[27] R. L. Moses, D. Krishnamurthy, and R. M. Patterson. A self-localization method
for wireless sensor networks. EURASIP Journal on Applied Signal Processing,
2003(4):348–358, 2003.

[28] R. Nagpal, H. E. Shrobe, and J. Bachrach. Organizing a global coordinate
system from local information on an ad hoc sensor network. In Proceedings of the
2nd International Conference on Information Processing In Sensor Networks
(IPSN’03), pages 333–348, Palo Alto, California, USA, 2003.

[29] J. Park, E. D. Demaine, and S. J. Teller. Moving-baseline localization. In
Proceedings of the 7th International Conference on Information Processing In
Sensor Networks (IPSN’08), pages 15–26, St. Louis, Missouri, USA, April 2008.

[30] N. Patwari, J. Ash, S. Kyperountas, I. Hero, A.O., R. Moses, and N. Correal.
Locating the nodes: cooperative localization in wireless sensor networks. Signal
Processing Magazine, IEEE, 22(4):54–69, July 2005.

[31] S. Poduri and G. S. Sukhatme. Constrained Coverage for Mobile Sensor
Networks. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 165 – 171, New Orleans, LA, USA, 2004.

[32] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-
free distributed localization in sensor networks. In Proceedings of the First
International Conference on Embedded Networked Sensor Systems (SenSys’03),
pages 340–341, Los Angeles, CA, USA, 2003.

[33] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. J. Teller. Mobile-
assisted localization in wireless sensor networks. In INFOCOM, pages 172–183,
Miami, FL, USA, March 2005.

33

[34] M. Rudafshani and S. Datta. Localization in wireless sensor networks. In
Proceedings of the 6th International Conference on Information Processing In
Sensor Networks (IPSN’07), pages 51–60, Cambridge, Massachusetts, USA,
April 2007.

[35] C. Savarese, J. M. Rabaey, and K. Langendoen. Robust positioning algorithms
for distributed ad-hoc wireless sensor networks. In USENIX, pages 317–327,
Monterey, CA, USA, 2002.

[36] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Proceedings of the 7th annual
International Conference on Mobile Computing and Networking (MobiCom’01),
pages 166–179, New York, NY, USA, 2001. ACM Press.

[37] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from mere
connectivity. In Proceedings of the 4th ACM International Symposium on Mobile
Ad Hoc Networking & Computing (MobiHoc’03), pages 201–212, Annapolis,
Maryland, USA, 2003.

[38] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization of
ten hidden-surface algorithms. ACM Comput. Surv., 6(1):1–55, 1974.

[39] G. Trajcevski, P. Scheuermann, and H. Brönnimann. Mission-critical
management of mobile sensors: or, how to guide a flock of sensors. In Proceedings
of the First International Workshop on Data Management for Sensor Networks
(DMSN’04), pages 111–118, Toronto, Canada, 2004.

[40] Y. Xu, Y. Ouyang, Z. Le, J. Ford, and F. Makedon. Mobile anchor-
free localization for wireless sensor networks. In Proceedings of the Third
IEEE International Conference on Distributed Computing in Sensor Systems
(DCOSS’07), pages 96–109, Santa Fe, NM, USA, June 2007.

[41] Y. Yemini. Some theoretical aspects of position-location problems. In 20th
Annual Symposium on Foundations of Computer Science (FOCS), pages 1–8,
San Juan, Puerto Rico, 1979.

[42] P. Zhang and M. Martonosi. Locale: Collaborative localization estimation for
sparse mobile sensor networks. In IPSN ’08: Proceedings of the 7th International
Conference on Information Processing In Sensor Networks, pages 195–206, St.
Louis, Missouri, USA, April 2008.

[43] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing
Approach. Morgan Kaufmann, 2004.

34

