
A Pragmatic Methodology for Testing

Intrusion Prevention Systems

ZHONGQIANG CHEN1, ALEX DELIS2,* AND PETER WEI3

1Yahoo! Inc., Santa Clara, CA 95054, USA
2University of Athens, Athens, 15784, Greece

3Fortinet Inc., Sunnyvale, CA 94086, USA

*Corresponding author: ad@di.uoa.gr

Intrusion prevention systems (IPSs) not only attempt to detect attacks but also block malicious

traffic and pro-actively tear down pertinent network connections. To effectively thwart attacks,

IPSs have to operate both in real-time and inline fashion. This dual mode renders the design/

implementation and more importantly the testing of IPSs a challenge. In this paper, we propose

an IPS testing framework termed IPS Evaluator which consists of a trace-driven inline simu-

lator-engine, mechanisms for generating and manipulating test cases, and a comprehensive series

of test procedures. The engine features attacker and victim interfaces which bind to the external

and internal ports of an IPS-under-testing (IUT). Our engine employs a bi-directional injection

policy to ensure that replayed packets are subject to security inspection by the IUT before they

are forwarded. Furthermore, the send-and-receive mechanism of our engine allows for the corre-

lation of engine-replayed and IUT-forwarded packets as well as the verification of IUT actions

on detected attacks. Using dynamic addressing and routing techniques, our framework rewrites

both source and destination addresses for every replayed packet on-the-fly. In this way, replayed

packets conform to the specific features of the IUT. We propose algorithms to partition attacker/

victim-emanated packets so that they are subjected to security inspections by the IUT and in

addition, we offer packet manipulation operations to shape replayed traces. We discuss procedures

that help verify the IUT’s detection and prevention accuracy, attack coverage and behavior under

diverse traffic patterns. Finally, we evaluate the strengths of our framework by mainly examining

the open-source IPS Snort-Inline. IPS deficiencies revealed during testing help establish the effec-

tiveness of our approach.

Keywords: testing of intrusion prevention systems; testing methodology; inline operation; detection and

prevention accuracy of IPSs

Received 20 July 2007; revised 21 May 2008

1. INTRODUCTION

Firewalls, anti-virus systems (AVSs), and intrusion detection

systems (IDSs) have become indispensable elements of the

network infrastructure providing protection against attacks

[1–3]. However, such security devices may not always be

effective against exploits. Firewalls mainly differentiate

traffic on fixed ports and protocol fields and fail when it

comes to attacks on standard services including HTTP,

SMTP and DNS [4, 5]. Both AVSs and firewalls do not

inspect traffic initiated within intranets allowing compromised

internal machines to become spring-boards for distributed

denial-of-service incidents [6–9]. Although IDSs may

perform layer-7 inspection on traffic originating from both

internal and external networks, they are ‘passive’ in nature

and do not prevent attacks from reaching their destinations

[5]. In this context, intrusion prevention systems (IPSs)

attempt to address the aforementioned weaknesses by

working in inline fashion between internal and external net-

works. As they examine every passing packet to prevent mal-

icious attacks in real-time, IPSs are considered active devices

[3, 10] that function pro-actively, and so they can drop packets

containing attack signatures, selectively disconnect network

sessions and deny reception of streams from specific sources

[3]. These actions ultimately change the traffic characteristics

as additional packets such as ICMP destination unreachable,

and TCP RESET messages are finally injected into the traffic

by IPSs [10].

Since IPSs virtually operate as switches/routers, they often

provide packet forwarding, network address translation (NAT)

and proxy services all of which are unavailable in IDSs [3, 11].

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on September 2, 2008 doi:10.1093/comjnl/bxn043

The store-and-forward mechanism of IPSs and their tight inte-

gration with the networking infrastructure allow for both

detection/prevention of evasive attacks and traffic normaliza-

tion/scrubbing [12, 13]. As evasive attacks typically manip-

ulate outgoing traffic so that packets are fragmented,

overlapped or shuffled [13], IPSs resort to IP de-fragmentation

and TCP re-assembly to offset such exploits. IPSs may offer

differentiated services based on the traffic types encoun-

tered—such as those generated by instant messaging and

peer-to-peer systems—to limit resource consumption and

avoid network congestion [10]. IPSs are also considered

superior to IDSs when it comes to identification of malicious

traffic as they can judiciously ‘interpret’ the context in

which an attack occurs [10]. For instance, a TCP-based

exploit without the appropriate three-way-handshake pro-

cedure is ineffective even if its packets with malicious

payloads reach their destinations. IPSs are not expected to

forward such TCP traffic in symmetric routing environments,

and therefore do not raise any false alerts. On the contrary,

IDSs generate alarms for such unsuccessful attacks to avoid

packet losses due to their low sniffing rates [14]. IPSs may

also feature platform fingerprinting, vulnerability assessment,

traffic correlation, dissection of application protocols and

abnormal traffic analysis to widen their coverage on attacks

[3, 10].

The dual requirement for IPS real-time and inline operation

in conjunction with their complex services raises concerns

regarding their detection accuracy, successful blocking rates

and overall performance [10, 15]. For instance, false positives

may induce IPSs to block legitimate traffic resulting in self-

inflicted denial of services (DoS) attacks [14, 16]. Under extre-

mely heavy traffic and out-of-resource conditions, the beha-

vior of IPSs is critical to the viability of the protected

systems. Contrary to the fail-open strategy followed by fire-

walls, AVSs and IDSs which all forward traffic without dis-

crimination in such extreme operating conditions, the IPS

fail-close policy insulates protected networks from both

attackers and legitimate users. In light of the above IPS

requirements and system complexity, it is evident that

testing such devices for their compliance with design objec-

tives is not only challenging but also of paramount importance

[14, 15]. Methodologies proposed for testing firewalls, AV

systems and IDSs cannot be directly applied as IPSs necessi-

tate real-time and inline operation, delivery of pro-active

actions against ongoing traffic, normalization of traffic

flows, switching and routing capabilities, real-time IP

de-fragmentation and TCP re-assembly [14, 17, 18]. For

instance, the uni-directional-feeding method used in IDS test-

beds such as Tcpreplay to inject packets into the test

environment from a single network interface is ineffective

here as IPSs refuse to forward any packet arriving at the

wrong interface [15, 19]. Similarly, the send-without-receive

mechanism used by the majority of IDS-testbeds is not appli-

cable to IPSs as the latter do morph their traffic [14, 20].

Although the development of IPSs rapidly progresses to

keep pace with the ever-increasing attack population, work

on IPS testing lags behind and is far from mature [15]. In

this context, we propose a comprehensive methodology to sys-

tematically analyze and establish measurements for an

IPS-under-testing (IUT) with respect to its attack coverage,

detection and prevention accuracy, reliability and robustness

and performance under various types and intensities of

traffic and attacks.

Our proposed trace-driven testbed termed IPS Evaluator

establishes an inline working environment in which data

streams from internal and external networks are injected

into the IUT from different directions; this constitutes a

major deviation from the uni-directional-feeding strategy

used in IDS-testbeds [20]. In order to ensure that every

replayed packet is forwarded and subsequently subjected to

security inspection by the IUT, our testbed uses dynamic

addressing and routing techniques to rewrite source and desti-

nation addresses of replayed packets, so that they conform to

the test environment. To verify the behavior of an IUT and its

actions imposed on the traffic, our testing framework also

employs a send-and-receive mechanism to capture packets

from the IUT and correlate them to replayed packets. Further-

more, our testbed integrates its own retransmission mechan-

ism, traffic re-assembly capability and logging facility. We

also discuss in detail test case generation, traffic manipulation

and test procedures.

We demonstrate the effectiveness of our methodology by

mainly applying it to the testing of the open-source IPS

Snort-Inline and versions of the commercial product For-

tGate. Our findings show that although Snort-Inline displays

satisfactory attack coverage and detection/prevention rates, it

still generates false positives and negatives under some

conditions and misses attacks when it is subjected to stress

tests. The main contributions of the IPS Evaluator are that:

† It offers an inline working environment for IUTs and

injects traffic into IUTs with a bi-directional-feeding

mechanism to ensure that packet streams initiated by

attackers and victims flow in different directions.

† It rewrites on-the-fly source and destination MAC and IP

addresses of replayed packets, so that the latter conform

with the test environment. Thus, packets are forwarded

and subjected to appropriate security inspections by

IUTs.

† Its send-and-receive mechanism detects IUT-imposed

actions on underlying traffic including packet dropping

and connection termination. In addition, the independent

logging mechanism in our engine allows independent

verification on the consistency between an IUT’s actual

behavior and its record of events.

† Its IP defragmentation and NAT process facilitate the

evaluation of IUT’s resistance to evasion attacks.

430 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

† Its integrated traffic partitioning and manipulation

operations help shape the characteristics of the replayed

traffic and automate testing procedures.

The rest of the paper is organized as follows: Section 2 out-

lines related work and Section 3 discusses our proposed trace-

driven simulation-engine. Section 4 presents algorithms used

to partition packets in traces so that the test procedures can

be automated; we also describe our traffic manipulation oper-

ations that help produce test cases with desired features.

Section 5 discusses our suggested procedure for IPS testing,

while Section 6 outlines our experimental evaluation. Con-

cluding remarks and future work are found in Section 7.

2. RELATED WORK

IPS testing has received limited attention thus far. On the con-

trary, a large number of issues pertinent to IDS testing have

been investigated during the last few years [14, 21, 24]. IDS

testing typically examines device detection accuracy, avail-

ability and reliability, latency and throughput, controllability,

as well as alert processing and forensic analysis capabilities

[23–25]. Additional issues in IDS testing entail automated

test case generation [24, 26], test procedures and benchmark-

ing [23, 27, 28], as well as metrics for IDS effectiveness, cov-

erage, and performance [29]. The evaluation of such IDS

features is conducted with the help of either simulation or

live testbeds. In simulation-based testbeds, IDSs-under-testing

are fed with either tool-generated test cases or captured traces;

in contrast, live testbeds directly expose IDSs to real traffic

and attacks [30, 20]. Unfortunately, the existing diversity in

IDS test methodologies makes any attempt for comparing

their effectiveness and test results extremely difficult [17,

18, 31].

The nidsbench is an open-source trace-driven IDS test

platform that can simulate certain evasion attacks, protocol

anomalies and subterfuge activities [20]. Its test cases are

derived from captured traces and are replayed using the

uni-directional-feeding and send-without-receive policies to

the IDS-under-testing. In [22], scripts are used to generate

traffic containing vulnerability exploits, so that attacks can

be automatically launched against an IDS-under-testing. Simi-

larly, in [32], an effort to automate the IDS testing process is

proposed and in which FTP-based attack-free and malicious

traffic streams are created and used to quantify attack detec-

tion and false positive rates. An off-line IDS testbed following

a training-then-testing approach is presented in [17, 18]

requiring a fixed network topology and not fully validated

attacks [33]. A benchmark whose main objective is to

capture the relationship between IDS performance and the

intrinsic regularity in network traffic is discussed in [34].

A two-stage testing approach for establishing an IDS base-

line behavior is discussed in [30]. In the first phase, the IDS is

tested against simple attacks while during the second phase,

the device is examined under complex and sustained attacks

mixed with various types of synthetic background traffic.

The methodology proposed in [35] follows a similar two-stage

approach but it can use realistic background traffic derived

from live networks. By using 27 common attacks and their

variants created with evasive techniques, the testbed in [36]

reveals that IDSs may detect less than 50% of malicious activi-

ties when the traffic intensity is more than 60% of the network

bandwidth. This clearly demonstrates the necessity of testing

IDSs under heavy traffic workloads. Similarly, evasion tech-

niques are used to manipulate traffic before injecting into an

IDS-under-testing in [13, 37], so that capabilities on the identi-

fication of stealthy attacks can be measured. The testbed in

[14] is mainly designed to evaluate commercial IDSs for

their architectures, ease of installation and attack coverage;

tests on multiple commercial IDSs clearly show that detection

rates deteriorate dramatically under heavy traffic workloads or

evasive attacks.

All the above approaches and testbeds share in common the

following characteristics: (a) uni-directional-feeding replay

method is employed as IDSs are passive devices that maintain

single access points in the network and are ‘blind’ to the direc-

tion of intercepted packets, (b) send-without-receive mechanism

is used to handle traffic due to the fact that IDSs do not intervene

and/or change the underlying traffic and (c) event logs from

IDSs are mainly used to evaluate their behavior. Unfortunately,

testing methodologies based on the above features are infeasible

for IPS evaluation due to a number of reasons: first, packets that

have source and destination network addresses within the same

subnet are neither forwarded nor inspected by IPSs. Secondly,

real-time IPS actions on identified malicious connections may

change the characteristics of ongoing traffic [3]. This calls for

testbeds to capture all IPS-emitted packets so that correlation

with replayed packets is feasible and verification of the correct-

ness of IPS counter-measures can be established. Lastly,

IPS-testbeds should be able to independently verify the consist-

ency between actions taken by IPSs and what is actually

recorded on their logs. Discrepancies may reveal problems

with IUT.

Recently, a few IDS testbeds have been reworked to help

test IPSs in a meaningful way; for instance, Tcpreplay has

been modified to replay traces bi-directionally by having both

IP and MAC addresses of packets rewritten before injection

into the IUT [19, 20]. Although such extensions make

replayed packets IUT-forwardable, determining the direction

of packet injection is not automated and does require

manual intervention. In addition, extensions still fail to inde-

pendently assess the correctness of IPS counter-actions. The

trace-driven IPS testbed Tomahawk [15] statically modifies

the content of routing and ARP tables of the test machine to

conform to the environment in which the trace was captured.

Although bi-directional-feeding and independent logging are

in place, the derived test results entail only simple

attack-blocking-rates [15]. We present the main features of

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 431

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

Tomahawk and Tcpreplay in Appendices 1 and 2, respect-

ively. In [14], an IPS-testbed is introduced in which IUTs are

subject to diverse traffic workloads and are assessed for

reliability, availability, detection and blocking accuracy, as

well as latency; stress-tests show that there is still a noticeable

gap and delay between contemporary IPS attack coverage and

real world attacks [14]. Moreover, evasion techniques remain

effective against some IPSs and the performance of IPSs under

heavy workloads suffers [14].

Penetration or pen tests use tool-generated attack traffic

against targets in an ‘active’ way [38]. A penetration test typi-

cally involves an active analysis phase of the system under test

for potential vulnerabilities that may result by its mis-

configuration, hardware/software flaws and operational weak-

nesses followed by an attack phase [39]. Security vulnerabil-

ities identified during penetration tests help assess the impact

of successful attacks and develop defense strategies [38].

Tools including Nessus, NMap, and Metasploit are often

used for penetration testing [40–42]. For instance, Metas-

ploit can launch attacks with various shellcode payloads,

and upon success, payloads are executed on the targeted

systems [42]. Should systems under test be placed behind an

IPS, penetration testing can be used to verify the effectiveness

of the IPS in question. Although this appears to be a viable prop-

osition, it does suffer from the drawback that applications under

attack have to be also replicated in the testing environment,

clearly, an expensive and occasionally an infeasible option.

Even though attack tools can be directly used in IPS testbeds,

it would be challenging to manage both intensity and period

of the resulting attack traffic. Lastly, it is unrealistic to expect

that an IPS testbed would feature a complete selection of

attack tools in order to help conduct thorough and nearly com-

plete tests. In [16], a live IPS-testbed in a production environ-

ment along with measurements for gauging the stability, false

positives and forensic analysis capabilities of the IUT are dis-

cussed. However, such live testbeds lack in terms of test con-

trollability and repeatability especially when it comes to

traffic intensity and network latency. It is nearly impossible

to manipulate attacks in live testbeds as far as their type, rate,

period and intensity are concerned which is certainly a weak-

ness. As simulation methods demonstrate excellent repeatabil-

ity, controllability and comparability in test-case generation,

evaluation procedure, and performance results, in this paper,

we propose our IPS test framework based on a trace-driven

simulation engine. We should point out however that trace-

driven and live testing systems are complementary as IPSs

should be first thoroughly tested in simulated testbeds before

they move to production settings.

3. THE PROPOSED TESTBED PLATFORM

The IPS requirements for inline operation, switching/routing

functionality and proactive real-time counter-measures on

traffic necessitate a significant deviation from the design of

conventional IDS-testbeds [15, 20] whose operation is based

on uni-directional-feeding of packets from a single NIC and

send-without-receive mechanisms [22, 23]. In this section,

we introduce the salient features of our proposed IPS-testbed

termed IPS Evaluator.

3.1. Design rationale and architecture for the IPS
Evaluator

To facilitate the inline mode, an IPS has to maintain at least

two network interfaces, so that it can splice into a network

path and be able to intercept ongoing data flows as the IPS

testbed model of Fig. 1 depicts. For simplicity, we assume

that the IUT has exactly two network interfaces, internal

and external; the former connects to the private network(s)

being protected, while the latter connects to the outside

world. Should test-machines 1 and 2 simulate a victim and

an attacker, a valid network path can be established by attach-

ing the victim and attacker to the internal and external inter-

faces of the IUT, respectively. In the resulting network path,

bi-directional traffic may take place with one data stream tra-

veling from victim to attacker and the second stream going the

opposite direction.

IPS-testbed designs following the IDS-like model of

Fig. 2—where dotted components and/or communication

FIGURE 1. Trace-driven IPS testbed model.

FIGURE 2. An infeasible IPS testbed model.

432 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

channels do not really exist but they are provided for compari-

son with choices suggested in Fig. 1—are problematic and not

a viable testbed option for the following reason: should the

IUT operate as a switch, the IUT would forward packets

according to its MAC-to-interface table. The latter is initially

empty and over time gets populated by binding the source

MAC address of each received packet with its arrival inter-

face. If attacker-originated packets are fed into the IUT

through its internal networks, the IUT associates the attackers’

MAC addresses to its internal interface. Similarly, victims’

MAC addresses are associated with the IUT’s internal inter-

face as all victim-to-attacker packets reach the IUT via its

internal interface due to the uni-directional-feeding replay

policy. The established MAC-to-interface mapping table

leads the IUT of Fig. 2 to ‘believe’ that both attackers and

victims reside in the same network segment. Hence, the IUT

refuses to forward subsequent packets and foregoes any

further security inspection. In case that an IPS predominantly

functions as a router, its routing table has to be fully config-

ured and consequently the IPS is aware of both internal and

external networks. Any time, an attacker-to-victim packet

originates from the internal network, the IUT is able to ident-

ify the incorrect origin with the help of its routing table and

should not forward the packet.

IPS-testbeds should not be ‘blind’ to the direction of

packets. To this effect, packets from traces should be

grouped into two sets, attacker-and victim-initiated packets,

and be injected into the IUTs from different directions based

on their origin with a bi-directional-feeding policy. In this

manner, replayed packets can be properly forwarded and be

subjected to security inspection by the IUTs. In addition,

IPS-testbeds are also expected to capture traffic due to:

† pro-active behavior of IPSs: streams containing traits of

attacks may be dropped, malicious connections may be

discontinued and possibly additional messages may be

introduced such as ICMP destination unreachable or

TCP RESET.

† traffic normalization: IUTs may remove protocol

anomalies generated by evasion attacks or perform IP

de-fragmentation before forwarding, rendering the out-

going traffic different from that injected.

† network address translation (NAT): IPSs modify source

IP addresses and ports of packets coming off the internal

network before forwarding; similarly, IPSs re-map desti-

nation IP addresses and ports of packets arriving at its

external port.

† discrepancies between IPS actions and its logged events:

IPS testbeds have to record the IUTs’ actions that are not

actually delivered as claimed in their event logs to help

resolve inconsistency analyses.

For these reasons, IPS-testbeds cannot possibly employ a

send-without-receive packet replay method used by most

IDS testbeds.

We could establish a viable IPS-testbed by using different

test machines to simulate both attacker and victim following

the blueprint of Fig. 1. With the help of partition techniques

that we discuss in Section 4, packets in a trace can be

grouped into Pattacker and Pvictim sets based on their origin;

those in Pattacker reach the IUT’s external port via

Network2 and may be forwarded to Network1 while

those in Pvictim travel in the opposite direction. The effective-

ness of the IUT is evaluated by having the IPS-testbed check

whether the replayed packets are equivalent to those reaching

their destination. To honor the temporal features of the orig-

inal traffic, the two test machines should coordinate their

actions. This entails maintenance of transmission order and

time gaps between packets as well as establishing that the

IUT correctly forwards replayed packets, properly normalizes

traffic and finally imposes the specified counter-measures on

identified malicious connections. Additional communications

between the test machines of Fig. 1 are required to carry out

the above coordination. The separate communication link

Network3 of Fig. 1 helps diminish interference between

replayed traffic and control messages. Nevertheless, such a

dedicated link substantially increases both the testbed com-

plexity and cost as additional NICs are required for each test

machine. Furthermore, required communications among test

machines may adversely affect the testbed scalability

especially when it comes to the stress tests as extra communi-

cations slow down traffic injection speeds and demand more

test machines to saturate the IUT’s bandwidth.

Figure 3 depicts our choice for the design of the IPS

Evaluator-testbed. It avoids the extra link (i.e. Network3)

and resorts to fast interprocess communications (IPCs) to

simulate the communications between victim and attacker

test machines. This proposed design is feasible provided that

the single test machine features two different NIC interfaces

controlled, respectively, by the now-co-located attacker(s)

and victim(s).

3.2. A trace-driven simulation-engine for IPS testing

The high-level IPS Evaluator model of Figure 3 consists of a

number of distinct modules including a Traffic Partitioner, a

Simulation Scheduler, a Sender, a Receiver, and a Behavior

Arbitrator. These modules are shown in Fig. 4. In order to

feed a specified traffic trace into the IUT, the Traffic Parti-

tioner first separates packets of the trace into two groups,

Pattacker and Pvictim. The former contains packets initiated by

attackers while the latter holds packets from victims. Sub-

sequently, the Simulation Scheduler constructs a replay plan

based on the characteristics of the trace and specifications

from tester. With the help of Sender, packets in groups Pattacker

and Pvictim are fed into the IUT’s external and internal inter-

faces, respectively; IUT-forwarded packets are captured and

stored by the module Receiver. The Behavior Arbitrator

module observes and records the behavior of the IUTs and

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 433

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

finally delivers the evaluation report. In addition, the Behavior

Arbitrator can also discover any discrepancies between the

IUT event-log and the actions taken by the IPS on the under-

lying traffic. These differences often emanate from IPS design

and/or implementation defects, occasional malfunctions as

well as out-of-resource and/or heavy workload conditions.

For instance, the IUT may state in its log that an attack has

been blocked, but in fact the traffic containing the attack is

still forwarded by the IUT and reaches its victim. Evidently,

incorrect conclusions may be drawn if the IUT’s own log

records are exclusively used in the evaluation of its behavior.

Should the IUT detect a malicious incoming packet, it may

drop it and log the event; a packet may be also dropped in light

of network malfunctions and/or congestion. IPS Evaluator

may retransmit lost packets a configurable number of times

using a timer to trigger the retransmission mechanism. A

packet is considered to be dropped by the IUT and not due

to network congestion if it fails all retransmission attempts.

The use of the retransmission mechanism in the testbed may

cause the observation of the same attack by the IUT multiple

times. The IUT may react differently to exploits delivered with

various types of transportation mechanism. In TCP-based

attacks, for example, a malicious packet and its likely retrans-

mitted instances share the same TCP sequence numbers; thus,

the IUTs should be able to recognize all such packets as part of

a single attack instead of several independent exploits. For

UDP and ICMP-based attacks, however, IUTs cannot dis-

tinguish an attack and its retransmissions. Consequently, the

FIGURE 4. Components of the proposed IPS Evaluator.

FIGURE 3. Trace-driven IPS testbed model with colocated attacker and victim.

434 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

IUT treats the attack and its retransmissions as isolated inci-

dents. To enhance the flexibility of our testbed, we provide a

user-configurable number of retransmissions maxretrans for

TCP, UDP and ICMP transmissions.

By default, IPS Evaluator respects the temporal character-

istics of the trace including packet orders and their time

gaps by adjusting its replay pace according to the timestamps

of packets in the trace. However, our testbed can also be con-

figured to replay a trace with an arbitrary rate (in packets or

bits per second) instead of the original pace. Such a flexibility

in replay speed is valuable when it comes to stress-testing.

Clearly, measurements including throughput, average

network latency and maximum number of concurrent connec-

tions reveal the IPSs capabilities under diverse and stress-

related workloads. Although background traffic can be gener-

ated through the execution of attack-free applications in the

testbed, it is very much desired in an IPS-testbed to have

greater freedom when it comes to the traffic composition as

far as the transport protocols used (TCP, UDP and/or ICMP)

and the intensity of generated traffic streams are concerned.

Our IPS Evaluator can create such workloads in a controlled

manner by injecting both attack or foreground and attack-free

or background traffic into the IUT through the mixing of mul-

tiple streams each replayed at different speed and varying ratio

with the help of the testbed shown in Fig. 5; here, foreground

and background traces, captured separately and stored in

different files, are replayed by using multiple test machines.

Algorithm 1 depicts the main operations of our IPS Evalua-

tor and helps derive test results by replaying a given traffic

trace to an IUT in a bi-directional fashion. Based on the

replay plan created by Simulation Scheduler, the Sender dis-

patches a set of packets using the attacker interface if the

packet under processing is in Pattacker or victim port if the

packet belongs to Pvictim. Similarly, the component Receiver

waits for packets forwarded by the IUT on either the attacker

or victim interface. Our testbed conserves on communication

costs by having Sender and Receiver exchange information

for synchronization and coordination only via module Simu-

lation Scheduler. During the replay process, the IPS Evaluator

may rewrite certain protocol fields such as MAC and IP

addresses on-the-fly in order to ensure conformance of the

replayed packets with the IUT settings and the network con-

figuration of the test environment; this rewriting is performed

by function AddressMap(P) that we discuss in detail in Section

3.3. The IPS evaluator may also create event records when it

detects the IUT’s pro-active countermeasures that terminate

ongoing sessions by dynamically generating TCP RESET or

ICMP destination unreachable messages to either or both

ends of the connection. Furthermore, to ensure that a received

packet is indeed identical to what is replayed, the IPS Evalua-

tor can be configured to compare not only packet header but

also packet payload of IUT-forwarded messages against trans-

mitted packets. To reduce computational overhead, it is typical

to verify packet integrity by checking packet headers only

Algorithm 1. Operation of IPS Evaluator.

1: traffic trace is partitioned into Pattacker and Pvictim by module Traffic Partitioner with Algorithms 5 and 6, which will be described in Section 4;

2: a replay plan is generated by the module Simulation Scheduler according to test specifications;

3: while (more unprocessed packet P in the replay plan) do

4: port attacker if P is in Pattacker(P); port victim otherwise;

5: P is processed with function AddressMap(P) (see discussion in Section 3.3); P is sent out through port by component Sender at most

maxretrans times;

6: while (there is packet P0 received by module Receiver) do

7: invoke function PacketIntegrity(P, P0), which will be described in Section 3.4, a test record is created if P0 is not identical to any

transmitted message so far by comparing packet header and/or payload;

8: generate test record if P0 is TCP RESET OR ICMP unreachable packet that is not in the original trace;

9: end while

10: end while

11: test results are generated by the module Behavior Arbitrator based on the records generated by the IPS-testbed

FIGURE 5. IPS Evaluator with multiple foreground/background

traffic generators.

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 435

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

when it comes to background traffic. We discuss the procedure

for determining packet integrity in Section 3.4.

Throughout this paper, we use a trace of the Nimda attack

whose packets appear in Table 1 as a running example. This

attack exploits security holes in products such as internet

information service (MS-IIS). Once a machine is infected,

Nimda attempts to replicate itself by probing other IIS

servers through multiple mechanisms including the extended

unicode directory traversal vulnerability discussed in

Section 6.1. Here, the attacker is located at host with IP

address 10.80.8.183 and TCP port 32872, while the victim is

a Web server with IP address 10.80.8.221 and TCP port 80.

The first three packets carry out the initial TCP

three-way-handshake procedure between the attacker and

victim. Packet 4, originating from the attacker and with TCP

payload of 64 bytes (see Column ‘TCP hdr/pld’), is an

HTTP request attempting to activate program ‘cmd.exe’ on

victim’s system. When this packet reaches the victim Web

server, the file name in the request—substring preceding

‘?’—is first decoded by IIS based on UTF-8 format for security

inspection. However, a flaw in IIS mistakenly decodes the file-

name part again when the parameter part is handled [43],

forcing the execution of /winnt/system32/cmd.exe with par-

ameter /c dir offering a backdoor to attackers with full

control of the victim machine.

IPSs typically detect Nimda by searching for the telltale

pattern ‘cmd.exe’ in traffic. By configuring an IUT to block

the Nimda attack and with the help of Algorithm 1, our IPS

Evaluator can capture the IUT’s behavior. When processing

the trace of Table 1, Algorithm 1 forms two packet groups:

Pattacker—(1, 3, 4,. . .) and Pvictim ¼ (2, 5, 7,. . .). The simu-

lation scheduler’s replay scheme preserves both order and

interarrival times of the trace packets. For example, the IPS

Evaluator respects the long time-gap between packets 3 and

4. The IUT is deemed effective if packet 4—that contains

the pattern in question—is Sender-transmitted maxretrans

times and still fails to reach the Receiver module.

3.3. Addressing and routing issues in the proposed
IPS-testbed

An IPS may function in either transparent (i.e. as a switch) or

routing mode (i.e. as a router). When in transparent mode, the

IPS establishes a map between the source MAC-address of

every incoming packet and its arrival interface, and forwards

the packet based on its destination MAC-address with the

help of the established map. If no pertinent entry is found in

the map, the IPS floods the packet to all its interfaces except

the one at which the arrival occurred. If the source and desti-

nation MAC addresses of an incoming packet associate with

the same interface, the IPS declines to forward the message

and carries out no security inspection. An IPS in routing

mode maintains a routing table based on protocols such as

RIP and ARP that helps map IP to MAC addresses and

refuses packet forwarding if no route entry is found.

For a packet to be forwarded correctly by the IUT in an

IPS-testbed, its source/destination IP and MAC addresses

should conform those of the test environment. For instance,

when in routing mode, the IUT internal and external interfaces

should belong to different subnets. Without the help of other

routers, the IPS can only handle one-hop routing, requiring

that the source and destination subnets of any incoming

packet be the same as its arrival and departure interfaces on

the IPS, respectively. Apparently, the traffic of Table 1

cannot be forwarded by the IUT in routing mode if the test

environment is configured according to Figure 3; here, the

IUT internal and external interfaces belong to subnets

192.168.5.0 and 192.168.10.0, respectively, but both victim

and attacker of the trace reside on subnet 10.80.8.0 if

netmask 255.255.255.0 is used. Hence, it is necessary to

TABLE 1. Packets in the Nimda attack trace file.

Direction Timestamp TCP hdr/pld Payload Description

protocol: TCP; IP/port for attacker (A): 10.80.8.183/32872; IP/port for victim (V): 10.80.8.221/80

1 A!V 0.000000 40/0 (SYN) Request

2 V!A 0.000223 40/0 (SYNjACK) Reply

3 A!V 0.000631 32/0 (ACK) Confirm

4 A!V 5.514226 32/64 GET /scripts/..%255c../winnt/system32/cmd.exe? /cþdir HTTP/1.1 Attack

5 V!A 5.514313 32/0 (ACK) Acknowledge

6 A!V 6.137619 32/2 j0D 0Aj Attack

7 V!A 6.137692 32/0 (ACK) Ack

8 V!A 6.138571 32/191 HTTP/1.1 200 OKj0D 0AjServer: Microsoft-IIS /5.0j0D 0AjDate: Fri, 11. . . reply

9 A!V 6.138814 32/0 (ACK) Acknowledge

10 V!A 6.156986 32/36 Directory of c:/inetpub/scriptsjOD 0A 0D 0Aj Directory

11 A!V 6.174736 32/0 (ACK) Acknowledge

12 V!A 6.199095 32/40 10/10/2002 02:24p ,DIR.. Content of dir

436 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

rewrite MAC and IP addresses of every packet before the

packet is injected into the IUT:

(i) Should a static method be used, MAC and IP addresses

are changed directly in traces, rendering the resulting

traces useless in other testbeds with different network

topologies and configurations. Such a static method is

also time-consuming as separate traces should be gen-

erated for different test modes (switching or routing)

and different network topologies. Consequently in

addition to support static methods, our IPS Evaluator

can also be configured to employ dynamic addressing

and routing methods.

(ii) In a dynamic addressing scheme, the IPS Evaluator

maintains two non-overlapped IP address pools,

Aattacker and Avictim, to store IP addresses exclusively

used by the packet groups Pattacker and Pvictim; addresses

in these two pools feature the same subnets to the IUT

external and internal interfaces, respectively. Two

mapping tables, Mattacker and Mvictim, store the associ-

ations between source IP addresses in Pattacker and

Aattacker, and source IP addresses in Pvictim and Avictim

respectively. Any time, the module Sender replays a

packet P, it first examines P’s source IP address Psip.

If P belongs to Pattacker, the Sender queries table

Mattacker regarding Psip. If no such entry exists, the

Sender acquires an IP address, denoted as A, from

Aattacker and inserts the tuple ,Psip, A. into Mattacker.

Otherwise, our testbed locates an entry for Psip in

Mattacker, denoted as ,Psip, A . . Subsequently, the

Sender replaces P’s source IP with A. The Sender

applies the same operation to the destination IP

address of P by using Mvictim and Avictim instead.

In switching mode, the IUT forwards packets based on their

destination MAC addresses. To ensure that a replayed packet

P is correctly forwarded, our testbed replaces the source and

destination MAC addresses of P with those of its attacker and

victim interfaces, respectively, if P is in the Pattacker group;

similar replacement is imposed on packets in Pvictim as well.

In routing mode, the IUT forwards packets according to their

destination IP addresses with the help of its routing and ARP

tables. As IP addresses of replayed packets are from Aattacker

or Avictim and no physical device assumes such IP addresses

in the test environment, it is obvious that no corresponding

entries exist in the IUT’s routing and ARP tables. Therefore,

the IUT sends out an ARP request for each IP address that

has no entry in its ARP table. In a clear deviation from static

handling, the component ARP Handler of our IPS Evaluator

creates replies to IUT-issued ARP requests for IP addresses

in Aattacker or Avictim. To this effect, the IUT establishes its

ARP table dynamically.

NAT may prove to be critical in the operation of IPSs as it

allows for the mapping between unregistered/private and

registered/routable IP addresses either statically or

FIGURE 6. An IUT with the functionality of network addressing

translation (NAT).

Algorithm 2. Operation of AddressMap(P) within our IPS Evaluator.

1. Psip and Pdip are the source/destination IP addresses of P; Mattacher, initially empty, maintains associations between addresses in Aattacker and

source addresses of Pattacker; Mvictim, initially empty, maintains associations between addresses in Avictim and source addresses of Pvictim;

2. IPattacker Psip and IPvictim Pdip if P belongs to Pattacker; otherwise, IPattacker Pdip and IPvictim Psip;

3. A (search result in Mattacher with key IPattacker); V (search result in Mvictim with key IPvictim);

4. if (A is empty) then

5. A (next available IP address in pool Aattacker); entry (IPattacker, A) is inserted into Mattacker;

6. end if

7. if (V is empty) then

8. V (next available IP address in pool Avictim); entry (IPvictim, V) is inserted into Mvictim;

9. end if

10. IPattacker and IPvictim of P are replaced with A and, V respectively; Pdp is the destination port of P;

11. if(P belongs to group Pattacker) AND (pair V, Pdp is, in Mnat) then

12. let pair V0, P0dp be the pair associated with V, Pdp in Mnat; replace V and Pdp with V0 and P0dp, respectively;

13. end if

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 437

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

dynamically [11, 44]. Multiple unregistered IP addresses can

be mapped to different routable addresses or a single regis-

tered IP address but with different ports as shown in Fig. 6.

Here, the source IP and port ,IP2:port2. of a victim-orig-

inating packet is rewritten by the IPS as ,IP3:port3.

before forwarding to the outside world. Similarly, the destina-

tion IP and port of its reply packet arriving externally is

mapped back from ,IP3:port3. to ,IP2:port2. with the

help of mapping table built inside the IPS. To handle NAT,

the IPS Evaluator uses a table Mnat to establish the mappings

between the ,IP,port. pair assigned to a packet by the IUT

and its corresponding pair assigned by our engine.

Function AddressMap(P) of Algorithm 2 outlines the key

points in rewriting the source/destination addresses of a

packet P before this packet is transmitted. AddressMap(P) is

invoked by the Sender in Algorithm 1.

3.4. Handling IP Fragmentation in IPS Evaluator

To normalize traffic and provide stateful inspection service,

IPSs may defragment received IP packets before such

fragments are forwarded. This occurs when the size of an IP

packet is larger than the maximum segment size (MSS) sup-

ported by the underlying link, for instance, MSS is 1518 bytes

on an Ethernet network. Nowadays, IP fragmentation is routi-

nely used by evasion attacks and exploits crafted by tools

such asfragroute [13, 20]. In addition, the generated IP frag-

ments can be shuffled, overlapped, and/or duplicated before

transmission. To overcome such evasion exploits, many IPSs

temporarily stage all IP fragments with the same IP identifier

(i.e. IP-ID) before forwarding; once no attack or protocol

anomaly is detected in staged fragments, the stored IP frames

can be forwarded. In actually carrying out the forwarding, an

IPS may just assemble the IP fragments together and refrag-

ment them following its own scheme should aggregate

frames be larger in size than MSS. For instance, in Fig. 7, two

IP fragments with the same IP-ID arrive at the external port

of the IUT, but only their aggregation (i.e. a single complete

IP frame) is forwarded to the IUT internal port. In this

context, the functionality of defragmentation in IPSs may

change the characteristics of injected traffic in terms of

packet numbers, sizes and arrival times. Furthermore, IP frag-

mentation also makes it difficult to verify the integrity of

injected packet in order to determine whether a received frag-

ment is what has been actually sent out by the testbed as the

IUT may refragment the IP packet anew on its own.

A key concern for packet integrity checking is to correctly

demark the first and last fragments of every IP frame in a

traffic trace. For this, our IPS Evaluator clusters replayed IP frag-

ments according to their protocol field IP-ID in IP headers.

Once a packet is replayed by the Sender, it is stored and

re-assembled with replayed fragments having the same IP-ID

with the assistance of the Defrag/Normalizer component. Our

IPS Evaluator uses a hash table and an interval-tree [45] to

organize all IP fragments as depicted in Fig. 8. Similarly, when

a packet P is received by the module Receiver, itsIPfragment

FIGURE 8. IP fragments organized with hash, binary tree and interval tree.

FIGURE 7. An IUT with the functionality of ID de-fragmentation.

438 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

bit in IP header is checked to determine whether it is fragmented;

if not, it is safe for the IPS Evaluator to perform integrity inspec-

tion at packet level. If the received P is indeed a fragment, it is

stored and re-assembled with other received fragments having

the same IP-ID. The packet integrity inspection is conducted

on the aggregated IP frame instead of individual IP fragments.

Overlapping fragments make the IP defragmentation

process complicated. Two or more IP fragments are con-

sidered overlapping if some of their IP payloads share the

same IP fragment offsets. Ambiguity occurs if overlapped

fragments bear different contents in their overlapping parts.

A number of IPSs use the most recently received fragments

or favor-new in the final aggregation while others use the ear-

liest arrival packets or favor-old policy. Our framework can be

configured to perform either favor-new or favor-old IP defrag-

mentation. Algorithm 3 outlines the key functionalities of

PacketIntegrity(P, P0) which verifies the identity of packets

P and P0 with respect to their protocol headers and/or contents.

By applying IP fragmentation to the traffic of Table 1 with the

command ip_frag 75 discussed in Section 4.3, we obtain an

entirely different packet stream shown in Table 2; here, every

original packet with IP payload larger than 75 bytes has been

fragmented into IP frames with smaller payloads. For instance,

packet 4 of Table 1 is split into two pieces: the first with IP

payload 75 bytes and total frame size 109 bytes (including

14-byte Ethernet header and 20-byte IP header), while the

second with IP payload 21 bytes. Packets 4 and 5 of Table 2

reflect the outcome of the IP fragmentation. When this traffic

is replayed by our IPS Evaluator, the Simulation Scheduler

instructs the Defrag/Normalizer to conduct the integrity check

only after both packets 4 and 5 of Table 2 have been replayed

by Sender and received by Receiver. Right after packet 5 is

received, the data structure maintained by IPS Evaluator with

the help of Algorithm 3 has the status shown in Fig. 8. We

should clarify that the TCP payload of packet 4 of Table 1

after its IP fragmentation is divided into two packets; the first

carries the substring upto cmd.e and the second the remaining

command. This attack is expected to be missed by IPSs that

cannot conduct IP defragmentation but simply scan for the

pattern cmd.exe in every IP packet.

4. TEST-CASE GENERATION AND

MANIPULATION OF TRACES FOR IPS-TESTING

Traces that can be used in IPS-testing such as those available

from the MIT’s Lincoln Laboratory, are heavily influenced

by network topologies, host-addresses, subnet masks and

aggregation of streams from different time periods [17]. The

volume of the traces is also significant requiring in excess of

a few hundred MBytes for just one hour traffic. Our own analy-

sis of these data sets pointed out that networks in many traces

essentially form a mesh topology. Hence, there is not a single

location to deploy an IPS-under-testing that could observe all

communications. Such mesh topologies that emerge from

traces complicate issues pertinent to the bi-directional replay

nature of IPS-testbeds. In addition, the ever increasing

number of reported vulnerabilities—15107 upto 2005 according

to common vulnerabilities and exposures (CVE)

[46]— in conjunction with specific combinations of OSs,

services and applications needed for exploits to occur make

it impractical to generate all attack traces in a single network

environment or testbed. It is simply too time-consuming to

Algorithm 3. Procedure PacketIntegrity (P, P0) invoked by Defrag/Normalizer.

1. P is a packet replayed by Sender and P0 is a packet received by Receiver; Mnat, initially empty, maintains associations between pairs

IP/port assigned by IPS/NAT and our testbed; Psip/Psp and Pdip/Pdp are source and destination IP/port of P; P0sip/P0sp and P0dip/P0dp are

source and destination IP/port of P0;

2. if(P belongs to group Pvictim) AND (tuple formed by pairs ‘Psip, Psp’ and ‘P0sip, P0sp’ is in Mnat) then

3. replace P0sip and P0sp of P0 with Psip and Psp;

4. else if (P belongs to group Pattacker) AND (tuple formed by pairs ‘Pdip, Pdp’ and ‘P0dip, P0dp’ is in Mnat) then

5. replace P0dip and P0dp of P0 with Pdip and Pdp;

6. end if

7. S is P’s session returned by Connection Manager of Figure 8 with tuple ,Psip, Psp, Pdip, Pdp, Pprotocol.;

8. if (P or P0 is fragmented packet) then

9. obtain the stream corresponding to ‘Psip! Pdip’ with the help of Stream Manager of Figure 8; insert P and P0 into interval trees

associated with their IP-ID by IP Fragment Manager of Figure 8;

10. return UNDECIDED if P is not the last fragment in IP fragments with the same IP-ID of the given trace;

11. Q (de-fragmented IP frame formed by all fragments with the same IP-ID as P); Q0 (de-fragmented IP frame formed by all

fragments with the same IP-ID as P0);

12. else

13. Q P; Q0 P0;

14. end if

15. return DIFFERENT if any specified protocol fields or contents assume different values in Q and Q0; otherwise, return IDENTICAL;

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 439

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

reconstruct every attack scenario in order to capture the result-

ing traffic. In addition, expecting that all attack tools are avail-

able for IPS-testing is not feasible. Lastly, attack tools hardly

provide the flexibility for manipulating the intensity and

mixture of needed traffic streams required for effective IPS

testing. Thus, it is typical for a testbed to obtain traffic traces

captured and/or generated in diverse network topologies and

configurations. Regardless of the origin and type of a trace, it

is imperative that the IPS Evaluator can effectively distinguish

traffic coming off attackers and victims. To achieve this objec-

tive, our simulation-engine automatically partitions packets in

a traffic trace into two parts based on their origin—Pattacker and

Pvictim—and dynamically rewrites MAC and IP addresses as

needed when a trace is replayed. It is also critical that our

simulation-engine provides traffic manipulation operations to

shape replayed traffic so that the resulting data stream pos-

sesses desired characteristics. The above two issues are

handled by the Traffic Partitioner and Packet Manipulator

components of Fig. 4 and are described in detail in the follow-

ing sections.

4.1. Partitioning traffic traces without constraints
for IPS-testing

As every packet P in a trace maintains a source and a destination

IP address denoted as Psip and Pdip, the trace can be treated as a

TABLE 2. IP fragmented traffic for Nimda trace (Table 1).

Direction IP-ID TCP hdr/ply Payload Description

Protocol: TCP; IP/port for attacker (A): 10.80.8.183/32872; IP/port for victim (V): 10.80.8.221/80

1 A!V 3F15 40/0 (SYN) Attacker request

2 V!A 0000 40/0 (SYNjACK) Victim ack

3 A!V 3F16 32/0 (ACK) Attacker confirm

4 A!V 3F17 32/43 GET /scripts/..%252f../winnt/system32/cmd.e First part of attack in URL

5 A!V 3F17 0/21 Xe?/cþdir HTTP/1.1 Second half of attack in URL

6 V!A 0D65 32/0 (ACK) Victim

7 A!V 3F18 32/2 j0D 0Aj Attacker

8 V!A 0D66 32/0 (ACK) Victim

9 V!A 0D67 32/43 HTTP/1.1 200 OKj0D 0AjServer: . . . First IP fragment

10 V!A 0D67 0/75 Date: Fri, 11 Oct 2002 19:37:45 GMT . . . Second IP fragment

11 V!A 0D67 0/41 . . .Volume Serial Number is E802-9963 . . . Third IP fragment

12 A!V 3F19 32/0 (ACK) Ack

13 V!A 0D68 32/36 Directory of c:/inetpub/scriptsj0D 0A 0D 0Aj Returned directory

14 A!V 3F1A 32/0 (ACK) Ack

15 V!A 0D69 32/40 10/10/2002 02:24p ,DIR.. Content of directory

Algorithm 4. Brute-force method to partition vertices of a graph/trace G(V,E) into two groups.

1: Wmax is the maximum weight among the partitions for G(V,E) so far and is initially zero; Smax holds all partitions with weight of Wmax;

2: Mred is the number of vertices with color red and is initialized to be 1;

3: while (Mred is less than jV j) do

4: compute all possible combinations of Mred from jV j (i.e. Cn k where n ¼ jVjand k ¼ jMredj); results are stored in Set C;

5: while (C is not empty) do

6: remove head element of C and put it into Gred; Gblack (V 2 Gred);

7: compute w ¼
P

(vr[Gred, vb[Gblack) w(vr, vb);

8: if (w . Wmax) then

9: Wmax w; Smax (Gred, Gblack);

10: else if (w ¼Wmax) then

11: insert (Gred, Gblack) into Smax;

12: end if

13: end while

14: Mred (Mred þ 1);

15: end while

16: all partitions in Smax have maximum bichromatic edges of Wmax;

440 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

graph G(V, E), should Psip and Pdip represent vertices in G(V, E).

The edge from Psip to Pdip reflects the flow of packets in this

direction; the edge’s weight w can be the number of packets tra-

veling along this route. In bi–directional traffic, the graph main-

tains the path from Pdip to Psip as well. If a trace exclusively

consists of attacker/victim traffic such as that of Nimda in

Table 1, its corresponding graph G(V, E) should be bipartite

and its vertices could be covered with two colors. If we use a

depth-first-search (DFS) method to color the bipartite [45], the

algorithmic complexity is O(jVj þ jEj), where jVj and jEj are

the numbers of vertices and edges in G. If G turns out to be non-

bipartite, then some packets are exchanged among attackers (or

victims) only and clearly are not IUT-forwardable. To reduce the

number of such un-forwardable packets so that the IUT is forced

to perform security inspections on as many packets as possible,

we try to bipartite G by removing a minimum number of its

edges. In particular, for an undirected graph G(V, E) with

weight function w: E! N, where N is a set of natural

numbers, a two-color assignment c of G is defined as c: V!

(red,black). Given that an edge is ‘monochromatic’ if its two

end points have the same color, we seek a color assignment c

with the minimum weight of monochromatic edgesP
ðv1;v2Þ[E:cðv1Þ¼cðv2Þ

wðv1; v2Þ. The problem at hand is a special

case of the minimum edge deletion K-partition problem with

K ¼ 2 and is known to be not only NP-complete, but also very

difficult to find a polynomialtime approximation scheme with

approximation accuracy guarantee [47, 48].

The straightforward method to tackle the problem at hand is

to enumerate all possible bi-partitions of vertices in the given

graph, compute the number of monochromatic edges for each

partition, and find the partitions with minimum number of

monochromatic edges. Algorithm 4 depicts such a brute-force

method. Suppose that the number of vertices in the specified

graph G(V, E) is jVj ¼n and the vertices are grouped into

Gred and Gblack with sizes of jGredj ¼ nr and jGblackj ¼ nb,

respectively. Clearly, the number of vertices nr in group Gred

can be 1, 2, . . . , (n 2 1), and for a particular nr (1 � nr , n),

the number of all possible combinations of nr from n is Cnr

n.

It can be derived that the total number of partitions is

Pðn�1Þ
nr¼1 ðC

n
nr
Þ ¼

P
nr
¼
Pn

nr¼0ðC
n
nr
Þ � 2 ¼ 2n � 2. Therefore,

the computational complexity of Algorithm 4 is O (2n).

As the G(V, E) corresponding to the Nimda attack of Table 1

has only two vertices, it is trivial to obtain its two partitions with

Algorithm 4, (red: 10.80.8.183, black: 10.80.8.221) or(red:

10.80.8.221, black: 10.80.8.183). Table 3 shows a partial

trace of traffic with more complicated network topology

being generated by theCyberkit attack tool, which integrates

network services including ping, traceroute, finger,and whois

and helps in conducting network reconnaissance [49]. For

instance, by probing a network with Cyberkit-created

ICMP ECHO REQUEST messages,an attacker can ‘fingerprint’

whether the targeted system or network are mis-configured and/

or expose vulnerabilities [46]. IPSs may identify the ICMP

ECHO REQUEST messages in question by detecting a long

string of characters jAAj in the payload of such messages.

The latter is feasible for example through the use of Snort-Inline

signature sid-483 which exploits such a telltale pattern. For

each pair of Psip and Pdip, Table 3 shows the number of

packets traveling and indicates whether an attack is contained.

Figure 9 depicts the undirected graph constructed from the table

in question; every node corresponds to an IP address and the

weight over the edge is the total number of packets exchanged

between the two end-nodes regardless of their directions. In this

regard, the weight of the edge between 67.115.180.150 and

67.117.243.205 is 18 (i.e. 10þ8). The existence of cycles

with odd number of edges renders the graph of Fig. 9 non-

bipartite.One such cycle is formed by nodes 67.117.243.205,

67.115.180.150 and 67.117.243.204.

By applying Algorithm 4 to the graph of Fig. 9, we can obtain

that, among all possible bi-partitioning schemes of the graph, four

partitions achieve the minimum weighted sum of monochromatic

edges (i.e. 6 packets); two of them are (red: 67.117.243.201,

67.117.243.205, 67.117.44.225; black: 67.117.243.207,

67.116.219.220, 67.115.180.150, 67.119.190.203,

67.117.243.204, 67.117.14.146) shown in Fig. 10 and (red:

67.117.243.201, 67.117.243.205; black: 67.117.243.207,

67.116.219.220, 67.115.180.150, 67.119.190.203,

67.117.44.225, 67.117.243.204, 67.117.14.146); two more

TABLE 3. Cyberkit-generated traffic exploiting network vulnerabilities

Psip Pdip Number of pockets Attacks Psip Pdip Number pockets Attacks

67.117.243.201 67.117.243.207 3 67.117.243.205 67.117.243.207 4

67.116.219.220 67.117.243.205 1 67.117.243.205 67.116.219.220 1

67.115.180.150 67.117.243.205 10 yes 67.117.243.205 67.115.180.150 8

67.119.190.203 67.117.243.205 2 67.117.243.205 67.119.190.203 2

67.117.44.225 67.117.243.205 1 67.117.243.205 67.117.44.225 1

67.119.190.203 67.117.243.204 1 67.117.243.204 67.119.190.203 1 Yes

67.117.44.225 67.117.243.204 1 67.117.243.204 67.117.44.225 1

67.115.180.150 67.117.243.204 1 67.117.243.204 67.115.180.150 1

67.117.14.146 67.117.243.205 7 67.117.243.205 67.117.14.146 8

67.117.243.204 67.117.243.205 4 67.117.243.205 67.117.243.204 3

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 441

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

partitions can be materialized by exchanging the roles of colors.

Due to the fact that minimizing the weighted sum of monochro-

matic edges is equivalent to maximizing the weighted sum of

bichromatic edges, we derive the maximum weight of bichro-

matic edges to be 55 (in packets) in the above optimal conditions.

Although Algorithm 4 is only viable for small graphs, we

use it as a baseline for comparison with the approximate algor-

ithm that we introduce later to limit the number of monochro-

matic edges. Our heuristic algorithm works as follows: once

we ensure that a graph is non-bipartite, we sort vertices of G

by decreasing order of their degrees (i.e. number of edges inci-

dent to a vertex) and place them into a queue Q. Initially, all

vertices of G are set to UNCOLORED; ultimately, they are

to be marked as RED or BLACK. For each vertex u in Q, we

assign it an unused color if such a color is available. Other-

wise, its neighbors—vertices with edges to u—are examined

and two weighted sums sr and sb are computed as:

sr ¼
P
ððu;vÞ[E: cðvÞ¼redÞwðu; vÞ; sb ¼

P
ððu;vÞ[E: cðvÞ¼blackÞwðu; vÞ.

Vertex u gets a RED color if sr , sb, and BLACK otherwise.

Such a color assignment strategy attempts to generate

minimum number of monochromatic edges in the neighbor-

hood of vertex u. Once all vertices have been processed, we

split them up in RED and BLACK groups; one group is desig-

nated as the attackers and the other as the victims. Algorithm 5

outlines our approach for partitioning a trace using a two

coloring scheme. The overall complexity of Algorithm 5 is

Algorithm 5. Partitioning vertices of a graph/trace G(V,E) into two groups

1: vertices of G are sorted according to their non-increasing orders of degrees and the results are put into set A;

2: for (each element u in A) do

3: visit[u] UNVISITED; partition[u] UNCOLORED;

4: end for

5: put the first element u of A into a queue Q; visit[u] VISITING; partition[u] RED;

6: while (Q is not empty) do

7: remove first element u from Q; two weighted sums sr and sb are initialized to be zero;

8: for (each neighbor v of vertex u) do

9: sr þ¼(weight of edge (u, v)) if (partition[v] ¼ RED); sb þ¼(weight of edge (u, v)) if (partition[v] ¼ BLACK);

10: if (visit[v] is UNVISITED) then

11: visit[v] VISITING and push v into queue Q;

12: end if

13: end for

14: if (partition[u] ¼ UNCOLORED) then

15: partition[u] RED if (sr , sb) and partition[u] BLACK otherwise; visit[u] VISITED;

16: end if

17: end while

18: V of G(V,E) are split into groups red and black with color RED and BLACK respectively;

FIGURE 9. Cyberkit trace graph-representation.

FIGURE 10. Bipartite of Fig. 9 with minimum monochromatic

edges.

442 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

O(jVj log (jVj) þ jEj) with the sorting operation having

complexity O(jVj log (jVj) and the rest of the operations

O(jVj þ jEj).

By applying Algorithm 5 to the graph of Figure 9, we obtain

that nodes 67.117.243.201, 67.117.243.205 and

67.117.243.204 form one group while the rest are in the

second group as depicted in Fig. 12. The sum of the monochro-

matic edges in the resulting partition is 7 (in packets). The

bichromatic edges can be computed to be 54 (in packets),

which is within 2% of the optimal value (i.e. 55 packets

found by brute-force method in Algorithm 4). With this parti-

tioning in place, packets between 67.117.243.205 and

67.117.243.204 are not replayed by our engine as both vertices

are within the same partition. In contrast, communications

between 67.115.180.150 and 67.117.243.205 as well as

67.119.190.203 and 67.117.243.204, which contain malicious

attacks, are injected into the IUT. It is worth pointing out that

although node 67.117.243.207 shares the same subnet with

nodes 67.117.243.201, 67.117.243.204 and 67.117.243.205

if subnet mask 255.255.255.0 is in use, they fall into different

groups and so their traffic is injected into the IUT from differ-

ent directions. If the IUT operates in routing mode including

NAT, Psip and Pdip are rewritten with addresses that

conform with the test environment. In this regard, if the test

environment is configured according to Fig. 3, IPS Evaluator

maintains the address mapping table shown in Fig. 11.

4.2. Partitioning traffic traces with constraints

for IPS-testing

It is often required that packets containing attacks are fed into

IUT so that false negatives are not generated. Failing to do so

may cause the IUT to generate false negatives. To avoid such

negatives, testers should be able to impose constraints on

packet partitioning in order to warrant that specific packets

are ultimately replayed. The IPS Evaluator does not honor

subnet masking in traffic traces by default as demonstrated

in Fig. 12, where node 67.117.243.207 falls into different

group from nodes 67.117.243.201, 67.117.243.204, and

67.117.243.205 even though they share the same prefix

67.117.243. Obviously, the resulting traffic partitioning may

not be desirable. For instance, testers may know that a

number of subnet or host addresses belong to the internal

systems and should be assigned in the same group (e.g. red).

Testers may also refrain from replaying packets due to ARP

requests/replies, some types of ICMP packets or DNS mess-

ages, simply because such packets are not only irrelevant to

the ongoing testing but also may require services outside the

test bed and interfere with the test process. Therefore, con-

straints often emanated from human expertise or manual ana-

lyses of traces can be integrated into our IPS Evaluator.

Algorithm 6 fulfills stated constraints as follows: if specific

subnets, IP addresses or packets are not to be replayed, their

corresponding vertices and/or edges are simply omitted

when graph G is constructed. For any other constraints in

forms of subnets, IP addresses or packets, we commence by

constructing a new graph G0 (V0, E0) in which V0 and E0

include all vertices and edges appearing in the constraints;

clearly, V0,V and E0,E. If G0 is non-bipartite, then conflicts

exist in the stated constraints which are thus impossible to

satisfy simultaneously. Testers should refine their constraints

to eliminate such inconsistencies. If G0 is bipartite, then a two-

coloring scheme c0 for G0 can be generated with the help of

DFS. Vertices in G then inherit their color assignments from

c0 if such vertices also appear in G0. We sort all vertices of

G according to their non-increasing degree order and store

the results in a queue Q. When processing a vertex u in Q,
FIGURE 11. The address table generated by our testbed if we use

the test environment configuration of Fig. 3.

FIGURE 12. Bipartite graph for trace in Fig. 9 generated by Algor-

ithm 5.

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 443

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

we assign it an unused color if available; otherwise, we deter-

mine the color of u with the help of two weighted sums sr and

sb formed by u’s neighbors in a fashion similar to Algorithm

5. Algorithm 6 shows our heuristic method for partitioning a

trace graph G with constraints.

While partitioning with Algorithm 5, nodes 67.117.243.204

and 67.117.243.205 are assigned the same color (i.e. red), and

communications between the two nodes are not visible to IUT.

By specifying the constraint that packets exchanged between

67.117.243.204 and 67.117.243.205 of Table 3 must be

included in the resulting partition, we can obtain with the

help of Algorithm 6 one such partition: the red group contains

nodes 67.117.243.201, 67.117.243.205 and 67.117.44.225,

while the black group consists of nodes 67.117.243.207,

67.116.219.220, 67.115.180.150, 67.119.190.203,

67.117.243.204, and 67.117.14.146; which happens to be

one of the optimal partitions generated by Algorithm

4. Clearly, vertices 67.117.243.204 and 67.117.243.205 are

assigned to different partitions, forcing their communications

to be replayed by the simulation engine to IUT in different

directions and therefore inspected by the IUT.

4.3. Manipulation operations for shaping traffic

In testing IPSs, it is imperative that we can shape the replayed

traffic to possess desired properties such as background/fore-

ground traffic mixture and attack intensity. To this effect,

traffic might selectively include specific attack types and/or

simulate the behavior of particular applications. Moreover,

we should be able to test the IUT for its ability of carrying

out protocol normalization or scrubbing [12, 13]. Traffic

scrubbing is a required and important feature of IPSs as proto-

col inconsistencies and ambiguities resulting from different

protocol implementations are often exploited by intruders

[13]. Testing for normalization is feasible only if traffic con-

tains overlapping IP or TCP fragments, out-of-order packets

as well as packets with invalid sequence numbers and unex-

pected protocol headers. Although the fragroute tool can

be used to carry out some of the above manipulations, its

scope is limited as its operations are applied to individual

packets only [13, 20].

To provide flexible and comprehensive traffic manipulation

operations, we design multiple traffic operators by extending

fragroute’s repertoire. Typically, these operations are

specified in a script processed by the Simulation Scheduler

component of our IPS Evaluator in Fig. 4 and are applied to

traces before replay. Along with the baseline set of

fragroute-like instructions that includes ip_frag,

tcp_seg, order, drop, dup, ip_chaff, ip_opt,

ip_ttl, ip_tos, tcp_chaff and tcp_opt to manip-

ulate packets [20], we offer a range of additional operations

some of which are presented in Table 4. We use the notation

(.)þ to indicate that items within the parenthesis may be

repeated multiple times. This enhanced set of traffic shaping

commands allows us to easily replace content of packets,

segment/merge, duplicate, insert, delete, reshuffle, set specific

Algorithm 6 Partitioning vertices of a graph/trace G(V,E) into two groups with constraints

1: construct G0 using vertices and edges specified in constraints; exit if G0 is not a bipartite;

2: G0 is colored with RED and BLACK: Cred groups vertices with color RED while Cblack for vertices with color BLACK;

3: vertices of G are sorted according to their non-increasing orders of degrees and the results are put into set A;

4: for(each vertex u of A)

5: visit[u] UNVISITED;

6: vertex partition[u] RED if u is in Cred; partition[u] BLACK if u is in Cblack; otherwise, partition[u] UNCOLORED;

7: end for

8: u (first element of A); visit[u] VISITING; partition[u] RED; put u into query Q;

9: while (Q is not empty) do

10: remove first element u from Q; two weighted sums sr and sb are initialized to be zero;

11: (each neighbor v of vertex u) do

12: srþ¼(weight of edge (u, v)) if (partition[v] ¼ RED); sbþ¼(weight of edge (u, v)) if (partition[v] ¼ BLACK);

13. if(visit[v] is UNVISITED)

14: visit[v] VISITING and push v into queue Q;

15: end if

16: end for

17: if (partition[u] ¼ UNCOLORED) then

18: partition[u] RED if (sr , sb) and partition[u] BLACK otherwise; visit[u] VISITED;

19: end for

20: end while

21: V of G(V, E) are split into groups red and black containing vertices with color RED and BLACK respectively;

444 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

order for packets, modify protocol fields in TCP, UDP, ICMP

and IP headers and generate temporal properties of traffic

including delay and retransmission.

We only outline the function of tcp_load and

tcp_scatter for brevity as most of the operators in

Table 4 are self-explanatory. With tcp_load, we replace

the payload of all TCP packets originating from source port

port-num with the content of a file designated by file-name.

Multiple pairs of port-num and file-name can be used to

change the payloads of multiple traffic streams. Clearly,

tcp_load is a stream-based instead of packet-oriented oper-

ator. The command tcp_scatter partitions a TCP packet

index into smaller segments whose size are specified with

the sizes option. If multiple values are specified in sizes, the

resulting segments assume the corresponding sizes in the pro-

vided order.

5. IPS TEST PROCEDURES

The inline and real-time operation of IPSs calls for new test

procedures that can efficiently verify their effectiveness,

attack coverage and overall performance. The multiple

options which IPSs offer for handling attacks raise new

issues for testing as it is no longer valid to examine

the IUT’s behavior exclusively based on its event log; the

latter may differ from what actually occurs. Moreover, the

continual appearance of new attack variants and vulnerabil-

ities further exacerbate matters when it comes to IPS

testing. With intrusion techniques becoming both versatile

and divergent, it is increasingly challenging, if not unrealis-

tic, for IPS testbeds to generate all possible exploits in an

exhaustive and enumeration-based testing scheme. There-

fore, we predominantly resort to group-based testing strat-

egy. We focus on a number of widely-recognized attack

families with each family represented by a set of test cases

[43, 46, 50, 51]. It is generally accepted that such attack

classifications offer an equally-effective alternative to

enumeration-based testing for IPSs [14, 15]. In our group-

based testing approach, attacks are first classified into

groups systematically so that species within the same

group possess similar characteristics. Representatives are

then selected from each attack group and their corresponding

traffic traces are used to evaluate IPSs. An IPS is considered

to be able to identify all attacks in a group if it successfully

detects the selected attacks; otherwise, the IPS is further

tested by using every attack in the group. Clearly, the effec-

tiveness of group-based testing heavily depends on the attack

classification scheme employed. In Appendix 3, we discuss

conditions under which group-based testing methods are

more efficient in terms of the test cases used than traditional

enumeration-based counterparts.

5.1. Classifying attack traffic and generating testing

workloads

Classification of computer attacks is a multi-faceted task that

entails considerations and evaluations on attack objectives,

TABLE 4. Format and description of traffic manipulation commands applied by IPS Evaluator the traces.

Command Format Description

Payload manipulation

tcp_load (port-num

file-name)þ
Payload of packets from port-num are replaced with respective content from file-name

tcp_replace index filename [size] Content of packet index is replaced with that in filename

tcp_scatter index (size)þ Packet index is segmented into several packets with size of size

tcp_sign index length string Packet index is changed to have size length and content string

Order manipulation

tcp_split index (size)þ TCP packet index is split into segments with sizes in size

chop_insert from to size

[checksum]

A new packet derived from packet from is generated with size and checksum and

inserted after packet to

dup_insert from to A new packet, clone of from (identical payload and header), is created and inserted

after packet to

Protocol field manipulation

ip_field index (name value)þ Value in name field of packet index is changed to value

icmp_field index (name value)þ Value in name field of packet index is changed to value

udp_ field index (name value)þ Value in name field of packet index is changed to value

tcp_flag (index flags)þ Flag field in TCP header of packet index is changed to flags

tcp_port (from-port to-port)þ from-port appeared in all packets is changed to to-port

tcp_field index (name value)þ Value in name field of packet index is changed to value

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 445

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

intrusion techniques involved, system vulnerabilities

exploited and damages caused. The objective of an attack

may range from reconnaissance to penetration and DoS. The

intrusion genre includes Viruses, Worms, Trojans or Back-

doors that exploit system vulnerabilities existing on operating

systems, network protocols and applications. Organizations

such as the CVE and Bugtraq uniquely name every known

vulnerability or attack without attempting to offer a classifi-

cation scheme [43, 46]. Snort-Inline [51] and X-Force [50]

group attacks mainly based on exploited services; the former

uses a flat classification structure while the latter forms a

mesh in its categorization scheme. The above classification

schemes may be inflexible in practice as they are inherently

non-hierarchical and ambiguous. To overcome this limitation,

we developed our own classification scheme by clustering

attacks and their corresponding traces hierarchically with mul-

tiple features such as intrusion types, exploited services and

severity levels of vulnerability. To facilitate the classification

of attack traces, we first establish the associations between

attack traces and the CVE database, then develop classifier

to categorize automatically the CVE database with different

taxonomic features to produce diverse classifications. For

instance, Table 5 shows a service-based vulnerability classifi-

cation resulting from our scheme. Here, web-related services

are the most frequently exploited applications as they harbor

about 61% of known loopholes; SQL, Mail, and FTP services

constitute the next most favorite targets. Column num of

Table 5 indicates the number of distinct attacks in the CVE

database involved in each service class. The classification

scheme of Table 5 is non-mutually exclusive as a single

CVE-entry may describe multiple service vulnerabilities and

exposures. Evidently, a single attack may simultaneously

target multiple loopholes on more than one services, conse-

quently, an attack trace may be assigned to multiple groups.

To provide additional flexibility in our group-based testing,

the IPS Evaluator can also classify attacks according to their

malware type (i.e. intrusion type) such as Virus, Worm,

Trojan and Backdoor. Along the above lines, the IPS Evalua-

tor can also organize attacks hierarchically based on malware

type, service types as well as severity levels, offering a multi-

level classification scheme. For instance, by classifying

attacks first on malware type and then on services exploited,

we have Nimda first fall into the Worm category and then

within the Web service sub-group. Moreover, Nimda can be

labeled as highly severe due to its potent nature. Clearly, by

adjusting the granularity of the hierarchy for the attack classi-

fication scheme, we can readily create the required number of

attack groups and therefore the number of test cases.

The workload traffic characteristics of the test cases gener-

ated significantly impact the performance of the IPS-under-

testing [14]. These features include the ratio with which the

TCP/UDP/ICMP protocols partake in the testing workload,

the average packet size, the ratio of packet overhead to

payload and the packet generation rates [52]. In addition, the

mixture of foreground and background traffic, types of exploits,

attack intensity and various evasion methods all play an import-

ant role in the evaluation of the IUT behavior. These features

help produce diverse types of traffic that may force IPSs to

analyze the protocol headers of all packets and/or inspect

packet-payloads using layer-7 analysis. Traffic with desired

characteristics could be generated and captured in real-world

network environments, stored in testbeds and then directly

used in IPS test procedures. However, the often voluminous

storage requirements for such traces impose significant con-

straints on testbed resources. For instance, to capture the

traffic in a network with bandwidth of 100 Mbit/s for 1 h

requires upto 45 GBytes. Such volumes can readily force the

testbeds to reach out-of-resources state while in stress testing.

TABLE 5. The service-based classification of vulnerabilities.

No. Service Description num. pct Examples

1 WEB vulnerabilities in Web related services including HTTP, HTML, CGI and PHP 9,171 60.71 CVE-2000-0010

2 SQL vulnerabilities in products based on SQL such as ORACLE and INFORMIX 1 736 11.49 CVE-2001-0326

3 MAIL vulnerabilities on mail services such as SMTP, IMAP, POP and MIME 1 728 11.44 CVE-2001-0143

4 FTP security loopholes in File Transfer Protocols 727 4.81 CVE-1999-0017

5 CVS concurrent version systems such as CVS, SUBVERSION 250 1.65 CVE-2000-0338

6 DNS flaws in Domain Name Services such as BIND 247 1.64 CVE-2004-0150

7 SunRPC exploits targeting services based on SUN RPC, NIS, NFS 224 1.48 CVE-2001-0662

8 SSL Secure Socket Layer 160 1.06 CVE-1999-0428

9 SSH Secure Shell related attacks 152 1.01 CVE-2002-1024

10 TELNET Telnet related exploits 147 0.97 CVE-1999-0073

11 DECRPC exploits based on SMB, MS RPC, NETBIOS, SAMBA 140 0.93 CVE-2002-1104

12 SNMP Simple Network Management Protocols 110 0.73 CVE-1999-0472

13 LDAP Light-weight Directory Access Protocols 94 0.62 CVE-1999-0895

14 Total 15 107 100.00

446 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

Therefore, in the test procedures of our IPS Evaluator, we pre-

dominantly use a subset of real-world attacks as templates and

derive various traffic streams on-the-fly with designated fea-

tures. The latter is accomplished with the help of traffic manipu-

lation operators of Section 4.3.

5.2. Tests on prevention effectiveness and attack

coverage

Similar to IDSs, it is important that an IPS provides a good

coverage for exploits under a wide range of foreground/back-

ground traffic intensities. However, the most critical aspect in

assessing an IPS on its prevention effectiveness is the consist-

ency between what is log-recorded in the unit and what actu-

ally occurs during testing. The inconsistency between an IPS’s

event log and the actions it takes on the underlying traffic may

reveal defects on system design, flaws in system implemen-

tation and system mis-configurations. For instance, many

security devices including the open-source peer-to-peer detec-

tion/prevention IPP2P system and early Snort-Inline versions

assume that TCP packets with flags SYN, FIN or RESET

should not contain any payload and hence, they simply

forward such packets without any security inspection. This

is obviously a poor choice that a testing framework should

expose. Moreover, in a number of open-source IPSs such as

Snort-Inline and Bro, the functionalities of attack detection

and delivery of countermeasure actions are performed by

different subsystems or even external-to-IPS programs. Evi-

dently, such choices may lead to inconsistencies between

what is recorded in the IPS event-log and the actions taken

on the ongoing traffic.

Upon detecting an attack, an IPS may forward, shape, block

or carry protective actions on the traffic. While forwarding, an

IPS lets an attack pass through but creates an alert record on its

event log for subsequent forensic analysis. Through shaping,

an IPS attempts to limit the bandwidth consumption by

streams typically generated by applications such as instant

messaging or peer-to-peer systems. When operating in block-

ing, an IPS drops malicious packets; discards all subsequent

packets from the same session, refuses attempted connections

from the same source host and/or subnet or even blocks all

traffic for a period of time. In pro-active protection mode, an

IPS actually tears down a bad connection by dispatching

TCP RESET packets or ICMP destination unreachable mess-

ages to either or both ends of the session.

We build our procedure for testing IPS prevention effective-

ness and attack coverage by first considering a group-based

classification scheme (e.g. a sample scheme is depicted in

Table 5). We form a representative set of attacks A—typically

several dozens—based on their popularity, scope of distri-

bution, complexity, severity and propagation mechanism.

For instance, A may include DeepThroat and Back

Orifice from the Trojans group, Tribe Flood Network

2000 (TFN2K) and Stacheldraht from the DoS Attacks

class, as well as Nimda, Slammer and Sasser of the

Worm group. To help automate the generation of the attack

set A, our framework can be instructed to sample different

attack types with specified mixture ratio. The attack sampling

process is controlled by a seed so that repeatability is guaran-

teed. At first, we partition A into sets Pattacker and Pvictim with

the help of Algorithm 5. We could also use Algorithm 6

instead, should we have to accommodate additional tester-

imposed constraints. The packets of Pattacker and Pvictim are

then injected into the IUT via its external and internal inter-

faces, respectively, and using the IUT’s log as well as the

recording mechanism of our IPS Evaluator, we seek to estab-

lish the IUT baseline behavior. By swapping the roles of

attacker and victim so that sets Pattacker and Pvictim are fed to

the IUT through its corresponding internal and external inter-

faces, we can verify whether the IUT detects attacks originated

from both internal and external networks.

We subsequently create a set of variant attacks V similar to

those found in A. We accomplish this by employing different

versions of attacks, attacks that use different exploits for the

same vulnerability, attacks that target different operating

systems and finally attacks in A that feature different yet

valid protocols fields. We should point out that most variant

attacks in V can be generated with the help of our shaping

operations in Table 4. For instance, various versions of the

DeepThroat Trojan uses slightly different banners, which

are typically used as telltale patterns by IPSs to detect Deep-

Throat traffic. The banner used in DeepThroat version 1.0

is –Ahhhhhhhhhh My Mouth Is Open SHEEP, where SHEEP

is the host name of the victim’s machine. Based on the traffic

of DeepThroat version 1.0, we can easily simulate Deep-

Throat communications for versions 2.0, 3.0 and 3.1 by

changing the banner to SHEEP -Ahhhhh My Mouth Is Open

(v2), SHEEP -Ahhhhh My Mouth Is Open (v3.0), and

SHEEP -Ahhhh My Mouth Is Open (v3.1) with the help of

traffic operator udp_replace, which is similar to tcp_re-

place of Table 4. Then, all attacks in V are fed into the IUT

whose reaction is recorded with the help of the IPS Evaluator

component Behavior Arbitrator. Based on the behavior that

the IUT exhibits under both A and V, we can evaluate its

attack coverage by computing the ratio of detected attacks

by the IUT over the total attacks in both A and V. Suppose

that Snort-Inline is fed with the traffic of DeepThroat

version 1.0 in A and traffic simulating versions 2.0, 3.0 and

3.1 in V, it only raises alerts for DeepThroat versions 1.0

and 3.1 with the help of its signature database, but fails to

recognize connections created by DeepThroat version 2.0

and 3.0, therefore achieving attack coverage of 50%.

To assess the prevention effectiveness of an IUT, we use

background or benevolent application traffic B in conjunction

with the above set A (or V). B consists of TCP and UDP traffic

and is mixed with foreground traffic in A in a ratio a (in attacks

per packet and by default, 80% is background traffic and 20%

foreground traffic). Similar to attack-set A, background traffic

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 447

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

set B can be created automatically with specified mixture of

application types such as HTTP, FTP and SMTP. In this

way, a number of distinct experiments are formulated in

which the average packet size in B may ranges from 64 to

1518 bytes, the connection creation rate is between 1000 to

250 000 connections per second and the average life-time of

connections is set between 10 to 60 000 ms. Initially, the

IUT is configured to forward all detected attacks fed from A

and during the experiments, the IPS Evaluator records all

actions to help us ensure that the IUT is capable of identifying

all malicious events. We repeat the above process for each IPS

reaction option including blocking, shaping and pro-active

protection and collect appropriate statistics. To finally deter-

mine the consistency of the IUT’s external behavior, we cor-

relate the IUT event-logs with what has been recorded by

our testbed. We may repeat the above process while mixing

attack traffic in A (or V) and background traffic in B with

various ratios a and random orders to more accurately map

the prevention effectiveness of the IUT in light of diverse

traffic streams. Similar to attack coverage, the attack preven-

tion consistency can be computed as the ratio of attacks suc-

cessfully blocked by the IUT over the total reported attacks

in IUT’s event-log.

5.3. False positives and negatives in IPS-testing

The IUT attack detection accuracy is a key aspect that has to

be evaluated and in this regard, we use the notions of attack

detection and prevention rates. The former is defined as the

ratio of the number of attacks detected over the number of

attacks contained in IPS-injected traffic and the latter is the

ratio of blocked attacks over the number of attacks launched.

A false positive is an IPS-generated alert for attack-free traffic

deemed malicious, while a false negative occurs when an IPS

fails to detect/prevent a real attack and treats it as legitimate

traffic. It is worth pointing out that false positives/negatives

can be defined with respect to attacker, victim and security

device [53]. In the victim-centric definition, false positives

not only refer to events during which attacks were detected

yet they did not actually took place, but also include attacks

reported by the security device that did not have any effect

on victim systems. In this context, the Snort-Inline-reported

alert WEB-FRONTPAGE/_vti_bin/access is considered to be

a false positive in an Apache web server environment as

such an attack is only effective to IIS [54]. In the view point

of the attacker, this action may be deemed successful if the

intent were to fingerprint a web server. Clearly, the intention

of the attackers are not measurable and/or testable by IPSs.

Moreover, as the features of end-systems may vary greatly,

their ‘views’ on false positives/negatives may also be very

diverse. Consequently, we adopt more IPS-centric definitions

in this paper: a false positive is an event raised incorrectly by

an IPS with respect to the IPS’s configuration. A false negative

refers to an event that is expected to generate an alert accord-

ing to the IPS’s configuration but the IPS fails to do so [53].

There exist close relationships and therefore trade-offs

among attack coverage, attack detection rate and false posi-

tives/negatives. For example, to achieve better attack cover-

age, an IPS may use a large signature base and relax

checking conditions for some attack types; this may result in

false positives since some normal traffic may be mistakenly

identified as malicious. In addition, IPSs may generate false

positives if they do not perform stateful inspection. For

instance, a successful TCP-based attack should perform the

normal three-way-handshake process before the real attack

can proceed; otherwise, it is ineffective even if its malicious

traffic reaches the target system, and IPSs without stateful

inspections may still raise alarms for such ineffective

attacks. However, to conduct stateful inspection, IPSs have

to track every session. With a finite session table, IPSs may

begin to drop new sessions or evict old connections under

heavy traffic loads causing a self-inflicted denial of service.

Therefore, the following aspects are critical as far as

IPS-testing is concerned:

† Attack detection and prevention accuracy: we focus on

whether the IUT blocks legitimate traffic.

† Stateful inspection capability: we aim at verifying

whether the IUT maintains state information for sessions

even under heavy traffic loads.

† Signature quality: we examine the quality of signatures

used by the IUT. Fixed-port signatures can miss attacks

that successfully target other ports. Real-world attacks

typically target services instead of fixed ports and ser-

vices can be provided on dynamic ports in addition to

default ports [55]. For instance, about 2% of web

servers provide services through non-standard ports

(i.e. other than TCP-80). Thus, fixed-port signatures are

expected to generate significant false negative rates [55].

To accomplish the above objectives in quantifying false posi-

tives and negatives as well as IUT detection and prevention

rates, we use sets A and B of Section 5.2 and proceed in a four-

phase procedure:

(i) By randomizing or reshuffling the order of attacks in A

and then replaying the traffic, we can observe and

record in our testbed the baseline behavior of the

IUT. This step is repeated several times (20 times by

default) with A being reshuffled before replay; the

goal here is to ensure that detection/prevention accu-

racy and stateful inspection of the IUT are not affected

by the order of attacks.

(ii) We then generate artificial/ineffective attacks as

follows: for each TCP-based attack in A, we remove

the three-way-handshake process making it a fake

attack. Similarly, for each buffer-overflow attack, we

modify its payload with operations tcp_load,

448 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

tcp_sign and tcp_replace so that the payload is

less than the size of the target buffer, making the attack

invalid. We further change the fixed-port attacks to

target alternative ports with operations tcp_port

and udp_field. The resulting traffic is injected into

the IUT and the step is repeated multiple times using

reshuffling. Using ineffective attacks, we seek to quan-

tify the IUT’s false positive rate.

(iii) Subsequently, we create variant, yet effective attacks

from A by using shaping operations including

dup_insert to reorder packets, chop_insert

to fragment and retransmit packets and tcp_port

to change targeting ports. The resulting set is fed

into the IUT multiple times using reshuffling and in

this way, we compute the IUT’s false negative rate.

(iv) In the final phase, we repeat the above three phases but

we add background traffic from B in various intensi-

ties. Our objective here is to determine whether the

IUT mis-classifies attacks or blocks legitimate traffic

by mistake.

5.4. Testing IPS’s resistance to evasion techniques

To avoid being detected, some attacks resort to evasion tech-

niques including exploitation of TCP/IP protocol ambiguities,

uniform resource locator URL obfuscation and service-

oriented evasion mechanisms [13, 14]. TCP/IP protocol

anomalies occur when an outgoing packet is split into multiple

small fragments, some of which may present overlapping

sequence number and different payloads. This is the case

with traffic of Table 2 which is obtained by fragmenting the

IP packets of Table 1 using the ip_frag 75 command of

Section 4.3. URL obfuscation techniques manipulate URL

strings so that embedded malicious messages change their

appearance to evade detection. For example, Nimda uses

various character encoding schemes such as UTF-8 and hex

codes to transform its malicious commands by rewriting a

number of characters in URLs. As URLs can be encoded in

a multitude of ways, an IPS should have the capability of

recognizing all possible encoding schemes to defeat URL

evasion attacks.

A number of URL obfuscation attacks also exploit ambigu-

ities in Web protocols and inconsistencies in their implemen-

tations as manifested by tools such as Whisker and

SideStep [56, 57]; Table 6 depicts a number of such obfus-

cation techniques; here, we denote the original URI with

org_URI and the randomly generated string with rand_str.

While some URL obfuscation techniques such as self-

reference and TAB for delimiter are straightforward and

require little effort by IPSs to identify, others including fake

parameter and HTTP request pipelining demand complex

decoding and/or deep inspection. Service-oriented evasion

mechanisms exploit loopholes in applications protocols and/

or their implementations such as FTP, RPC, SNMP and

DNS. For example, by inserting data flows of telnet option

negotiations into FTP control traffic, attackers may evade

IPS detection if the latter does not perform FTP and Telnet pro-

tocol analysis [57]. Similarly, by using fragmented SunRPC

records, attackers can split an RPC-based attack into multiple

RPC fragments which can be still effective if reaching the

victim but may not be detected by IPSs without RPC defrag-

mentation functionality [57]. Furthermore, chunked encoding

in HTTP services and rarely used message types in DNS are

also exploited by evasion techniques [37].

TABLE 6. Some URL obfuscation techniques.

URL evasion technique Content manipulation Descriptions

Prepend long random string Concatenation of rand str and org URI Random string prepended to original URI

Random case sensitivity Randomly choose characters in org URI and flip their

cases

Change case for some bytes in URI

Directory self-reference All character ‘/’ in org URI is replaced by string “/./” Change all / to“./”

Windows directory separator All character ‘/’ of org URI is replaced with

double-backslash

Use backslash instead of slash in URI

Non-UTF8 URI encoding Randomly choose characters in org URI and replace with

hex

Change randomly select byte by its hex

Fake parameter /rand str1 . html%3Frand str2¼/../org URI Fake parameter ‘html?rand str2¼‘, which is

removed by ‘/../’.

Premature URL ending /%20HTTP /1.1%0D%0AAccept%3A%20rand/../..org URI Fake URL end ‘%20HTTP /1.1%0D%0A’,

which is removed by‘../..’

TAB as requested spacer Replace all whitespace in org URI with tablet key Change empty space to tab

Request pipelining GET / HTTP/1.1j0D 0AjHost: fortinet.com . . .j0D 0A 0D

0Aj GET /cgi bin%2Fph%66 HTTP/1.1j0D 0A 0D 0Aj
More than one HTTP requests within a TCP

packet, some chars are encoded in hex

POST instead of GET POST / HTTP/1.1j0D 0Aj . . . Parameters in data section of the request

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 449

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

To investigate the IPS resistance to the aforementioned

evasion attacks in the context of our testbed, we use both

attack set A and background traffic set B constructed in

Section 5.2, but we mainly focus on attacks targeting HTTP,

FTP, DNS, SMB and SunRPC. Attacks in A are replayed to

the IUT to establish the IPS baseline behavior. Then, for

each attack in A, we create multiple variants by using the

above evasive techniques. More specifically, the IPS Evalua-

tor can generate most of the TCP/IP protocol anomalies

through traffic manipulation operations such as ip_frag,

tcp_seg, ip_field, tcp_field, udp_field and icmp_-

field of Table 4. URL obfuscation and service-oriented

attacks can be created by commands tcp_load, tcp_re-

place and tcp_sign to rewrite the payload of TCP

packets. All variants of attacks are injected into the IUT

along with background traffic from B in various intensities.

Based on the observed log-based IUT behavior in the above

tests, our IPS Evaluator can evaluate the IUT’s capability on

evasion attack detection/prevention by computing the ratio

of detected attacks over total evasive attacks generated. It is

clear that without TCP/IP reassembly functionality, an IPS

fails to identify any TCP/IP protocol anomaly; similarly, the

IPS misses URL obfuscation and service-oriented evasion

attacks without deep security inspection and application proto-

col dissection (i.e. layer-7 analysis).

5.5. Testing IPSs for performance

The deployment of IPSs either in switching or routing mode

should not affect network performance noticeably. To this

end, a number of IPSs opt for generating only a single alert

for all identical attacks occurring in a row to save both CPU

cycles and disk space. Similarly, for a session containing mul-

tiple attacks, IPSs may selectively record the first occurrence of

exploits and skip the rest. The objective of our performance-

specific testing procedure is to reveal the above peculiarity of

IPSs, establish repeatability of experiments and quantify IPS

throughput, latency and detection rates under typical,

load-intensive and even out-of-resource settings. We resort to

interleaved UDP/TCP and signature-based attacks so that

IUTs are forced to scan every packet payload to detect all inci-

dents requiring significant resource commitment. By increas-

ing the number of concurrent attacks, we examine the

behavior of IUTs as far as their session management is con-

cerned. Every session contains a single type of malicious

activity so that traffic workloads yield comparable results

among different IPSs. In addition by increasing the life-span

of injected connections, the IPS Evaluator forces the IUT to

track more concurrent sessions and work under out-of-resource

condition. Hence, the IUT may drop new sessions or evict old

connections causing deterioration in performance.

In our IPS performance testing, we mainly manipulate two

parameters: attack density and traffic intensity, the former

defines the mixture of foreground and background traffic

while the latter control the total traffic bandwidth. To facilitate

the creation of attack with specified intensities, we first select

all single-attack traces of A constructed in Section 5.2. We

then further decompose A into a UDP-based attack portion

Audp and a TCP-based subset Atcp. For instance, the Audp

may contain the Slammer attack with a single packet of

376 bytes, while Atcp could contain the 16 Nimda packets of

which only four have payload as Table 1 shows. Given the

attack density a (in attacks per packet and 0 , a, 1), the

IPS Evaluator computes the number of packets N in A and

extracts (1/a 2 1)N packets from the background traffic set

B to form the traffic mixture, which has N/a packets in total.

For each specified traffic intensity b (in packets per second),

which is typically proportional to the IUT rated or nominal

speed, the IPS Evaluator determines the replay speed and

timestamps for each packet with the help of the Simulation

Scheduler component. Clearly, the replay procedure lasts N/

(ab) seconds and by adjusting the number of attacks selected

from A and therefore the number of packets N in selected

attack traces, we can control the feeding period.

By configuring the IPS Evaluator to take blocking action on

all identified attacks, our testbed with settings shown in Fig. 5

randomly interleaves packets from attack sets Audp and Atcp as

well as background traffic set B before feeding them into the

IUT according to Algorithm 1 with the specified rate b

packets per second. In the above tests, we monitor the IUT

throughput and measure network latency in addition to detec-

tion/prevention rates. IUT throughput is the ratio of total

traffic in terms of packets encountered over the duration of

observation, and latency is the average time gap between a

packet leaving its source and reaching its destination for all

packets in the replayed traffic. By specifying different traffic

intensities in the range of the IUT-rated speed and even

larger than the IUT nominal rate if needed, we can obtain

the maximum IUT throughput; this is the highest replayed

traffic intensity that does not cause either blocking of legiti-

mate traffic or forwarding of attack streams.

To test IPSs in the presence of massive concurrent connec-

tions, under heavy workloads and/or out-of-resources settings,

we configure the IUT to take blocking action so we can readily

identify instances of no-detection. Then with the help of our

shaping operations tcp_scatter, ip_frag or tcp_seg,

we split every attack trace in Atcp into two or more

IP-fragments. In this manner, we create two new traffic sets:

A0tcp and A00tcp, the former consists of the prime IP-fragments

of all attacks in Atcp and the latter contains all the remaining

fragments. Subsequently, we replay A0tcp followed by near

the IPS-stated-maximum number of concurrent connections

from background set B for a specified period of time typically

ranging from 0.30 to 60 s. Finally, the second part of attacks

A00tcp is replayed. The rationale of the above test procedure is

to force the IUT to operate in the out-of-resource state so

that the IUT exhausts its session table and may start dropping

sessions. Our IPS Evaluator evaluates the IUT performance

450 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

based on its action against attacks in A0tcp and traffic in B.

Obviously, the performance of IUT may actually degrade if

the IPS forwards attacks or blocks legitimate traffic due to

session management problems and/or out-of-resource

situations.

6. EXPERIMENTAL EVALUATION OF IPSs
USING THE TESTBED

We implemented the IPS Evaluator in C and Perl and used our

testing methodology to examine a number of IPSs in order to

investigate their features and performance aspects. For

brevity, we outline key aspects of our experimentation with

Snort-Inline and FortiGate 2.80 [51, 58]. Snort-Inline is a

lightweight IPS based on the IPtables/Netfilter, a

packet-filtering utility to intercept and manipulate packets

and libnet, a library that helps send out TCP RESET and

ICMP destination unreachable messages. By performing

pattern matching and analyzing traffic flow characteristics,

Snort-Inline can detect and prevent various incidents such as

buffer overflows, portscans, and protocol anomalies.

Snort-Inline may take configurable actions on the malicious

packets including alerting, dropping, or tearing down connec-

tions; limited stateful inspection capability and service-

specific inspections are also provided. Figure 13 shows the

various components of a test machine on which Snort-Inline

is deployed as an IPS. Snort-Inline functions atop the IPta-

bles/Netfilter and libnet modules and generates two

types of verdicts: NF_DROP for malicious traffic or NF_AC-

CEPT for normal data streams based on rules specified in the

configuration file snort.conf. Through the command ‘iptables

-A INPUT -p ALL -j QUEUE’, one may have the IPta-

bles/Netfilter module receive all the streams from all

network interfaces. The command ‘snort-inline -c snort.conf

-Q’ helps configure Snort-Inline to fetch packets from the

IPtables/Netfilter module while generates NF_DROP/

NF_ACCEPT verdicts.

In our experimentation we used Snort-Inline v.2.3.2 along

with its 4637 rules that are enabled by default. To pro-actively

terminate attack connections, Snort-Inline may generate extra

messages such as TCP RESET or ICMP destination unreach-

able transmitted via libnet. We should point out that non-

routable packets are dropped by the Router/Bridge

module of Fig. 13. As a result, they are not delivered to

Snort-Inline and consequently they are not subject to security

inspection. Hence, we use Algorithms 5 and 6 in our testbed

to partition traffic traces so that replayed packets are

IPS-routable.

FortiGate is an IPS/anti-virus product that detects and

prevents attacks using multiple techniques including pattern

matching, anomaly analysis, traffic correlation and layer-7

protocol dissection. Machines in our testbed are equipped

with Intel 1.80 GHz, 512 MBytes of main memory, and 80

GBytes disk storage running either Red Hat Linux Kernel

2.4.7 or Windows 2000. All machines maintain two network

cards and are connected via 100/1000 Mbit/s switches. Here,

we also use the out-of-box FortiGate configuration with

respective signatures enabled. Results reported here pertain

the default behavior of the IUTs. In case that a false posi-

tive/negative is generated by an IUT, we analyze whether it

can be corrected by manipulating the IUT’s configurable par-

ameters without any update on attack signatures or executa-

bles and present corresponding correcting measures if

available. The traces used in our experiments are mainly cap-

tured or synthesized by the Threat Analysis Center (TAC) of

Fortinet [59]. The set of traffic traces used covers most vulner-

abilities presented in Table 5.

6.1. Attack coverage and prevention effectiveness

Initially in this set of experiments, we form a set of attacks A

that includes Nimda and Slammer according to the guide-

lines of Section 5.2. We serially inject this set into the IUTs

to determine the baseline behavior of Snort-Inline and Forti-

Gate for their attack coverage and prevention effectiveness.

We group packets of A into two sets Pattacker and Pvictim and

feed them into IUT’s external and internal interfaces in both

FIGURE 13. Components of Snort-Inline IPS system.

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 451

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

possible ways. For most traces, the automatic traffic partition-

ing schemes generated by Algorithm 5 are valid and therefore

can be used directly; only a few test cases with mesh network

topologies or special IP addresses require tester intervention to

specify constraints for Algorithm 6. For instance, this is the

case when the DoS attack tool Stacheldraht is used. It gen-

erates messages with source IP address 3.3.3.3—a pattern

often used by IPSs to detect attacks. Here, we craft constraints

to avoid rewriting the IP address 3.3.3.3. Our testing shows

that both Snort-Inline and FortiGate successfully detect and

prevent all attacks in A initiated either internally or externally.

IUTs may generate multiple alerts for a single attack due to

overlapping coverage of non-orthogonal signatures. For

instance, Snort-Inline identifies Nimda by searching for

pattern ‘cmd.exe’ in traffic — this telltale appears in the

payload of packet 4 of Table 1. The signature for

detecting Nimda in Snort-Inline is defined as alert tcp

$EXTERNAL_NET any!$HTTP_SERVERS $HTTP_PORTS

(msg:‘WEB-IIS cmd.exe access’; flow:to_server,established;

uricontent:‘cmd.exe’ nocase; classtype:web-application-

attack; sid:1002; rev:8;). In the out-of-box configuration of

Snort-Inline, both $EXTERNAL_NET and $HTTP_SERVERS

are set to ‘any’ indicating that every incoming packet should

be matched against the signature. In addition to pattern match-

ing, Snort-Inline also subjects Nimda traffic to HTTP protocol

dissection. Thus, Snort-Inline generates two alerts: the first

alert WEB-IIS cmd.exe access is due to the afore-mentioned

signature sid-1002 and the second alert is due to the detection

of Double Decoding Attack in payload ‘..%255c..’ by

Snort-Inline’s HTTP inspector. In comparison, FortiGate

assigns a severity level (e.g., high, medium, low and informa-

tional) to each signature and can be configured to report the

alarm with the highest severity when multiple rules are

satisfied by a session. In what follows, we consider that an

IPS successfully detects an attack as long as one of the

invoked alarms is relevant.

In the next phase of this set of experiments, we generate var-

iants of each attack in A with the help of the shaping operators

of Table 4. For instance in the context of Nimda, we generate

variants by changing the payload of packet 4 with command

tcp_replace. Table 7 shows the payloads for some such

rewritten packets using various URL encoding mechanisms

including hex-encoding (payload 2), unicode scheme

(payload 5), and invalid string (payload 6). We also create var-

iants with the help of the evasion techniques of Table 6. For

instance, payload 7 employs hex-encoding to transform the

telltale cmd.exe to cmd%2Eexe, effectively hiding the mali-

cious content. Snort-Inline raises the alarm Double Decoding

Attack, but occasionally does not produce the alert WEB-IIS

cmd.exe access indicating that some URLs with evasive tech-

niques are not decoded appropriately. In contrast, the

out-of-box configuration of FortiGate generates WEB-IIS

cmd.exe access alerts for all Nimda variants indicating the

correct behavior of its HTTP protocol analyzer.

In the last phase of this set of experiments, we investigate

the coverage of IUTs for non-content-based incidents such

as portscans. We use our testbed to simulate activities of

network scanners such as Nmap and Hping [41, 60]; both

are considered attack tools in our categorization scheme and

are typically launched by attackers to fingerprint OSs and ser-

vices of victims. Snort-Inline features a dedicated module

portscan to detect both horizontal and vertical portscans

[51, 61]. Snort-Inline identifies a vertical portscan mainly by

checking the condition that a few hosts contact a small set

of destination hosts but the numbers of unique ports and

invalid responses (e.g. TCP RESETs) from destination hosts

TABLE 7. Payloads of variant Nimda attacks.

No Payload Description Snort-Inline FortiGate

1 GET /scripts/..%252f../winnt/system32/cmd.exe?/cþdir HTTP/1.1 Original payload As expected As expected

2 GET /scripts/..%%35%63../winnt/system32/cmd.exe?/cþdir HTTP/1.1 ‘%252f’ to ‘%%35%63’ As expected As expected

3 GET /scripts/..%%35%63../..%%35%63../..%%35%63.. /winnt/system32/

cmd.exe?/cþdir HTTP/1.1

‘%252f’ to

‘%%35%63’repeat 3

times

As expected As expected

4 GET /scripts/..%255C../winnt/system32/cmd.exe?/cþdir HTTP/1.1 ‘%252f’ to ‘%255C’ As expected As expected

5 GET /scripts/..%C0%AF../winnt/system32/cmd.exe?/cþdir HTTP/1.1 ‘%252f’ to ‘%C0%AF’ As expected As expected

6 GET /scripts/..%C0%9V../winnt/system32/cmd.exe?/cþdir HTTP/1.1 ‘%252f’ to ‘%C0%9V’ As expected As expected

7 GET /scripts/..%252f../winnt/system32/cmd%2Eexe?/cþdir HTTP/1.1 cmd.exe: cmd%2Eexe As expected As expected

8 GET /scripts/..%252f../winnt/system32/cmd%252eexe?/cþdir cmd.exe: cmd%252eexe As expected As expected

9 GET /scripts/..%252f../winnt/system32/cmd%32%65exe?/cþdir cmd.exe:

cmd%32%65exe

As expected As expected

10 GET /scripts/..%252f../winnt/system32/cmd%U002Eexe?/cþdir cmd.exe:

cmd%U002Eexe

As expected As expected

11 GET /%20HTTP /1.1%0D%0AAccept%3A%20rand/../../scripts/..%252f../winnt/

system32/cmd%2Eexe?/cþdir HTTP/1.1

premature URL and

md.exe to cmd%2Eexe

As expected As expected

452 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

are significant. Similarly, a horizontal portscan is also reported

if an attacker attempts to connect simultaneously to many

hosts on a small number of unique destination ports but the

number of invalid responses from destinations is relatively

high (i.e. more than 5).

Our testbed can simulate various types of portscans. For

example to generate a horizontal portscan, we can extract

the first two packets from the Nimda attack of Table 1 and

manipulate them as follows: the first packet containing a

TCP SYN message is duplicated n times and the destination

IPs of the resulting packets are randomized1. The second

extracted packet containing a TCP SYNjACK message is also

cloned m times with a TCP RST bit added to each replicated

packet. The first half of Table 8 presents the resulting traffic

stream with n ¼ m¼ 5. Vertical portscan can be simulated

similarly by manipulating ports instead of IPs and an sample

is depicted at the second half of Table 8 with n ¼ m ¼ 5.

We should point out that n and m are not necessarily the

same and by varying these two parameters, we can test the sen-

sitivity of IPSs to portscans, which is defined as the lowest

traffic intensity triggering IPS alerts. We vary n and m in

range [2, 15] to simulate horizontal portscans and feed the

resulting traffic into Snort-Inline, which generates the alert

‘(portscan) TCP Portsweep’, if the replayed traffic is con-

sidered to be a horizontal portscan. Figure 14 depicts the out-

comes of all the experiments that results from the different

values of n and m. We differentiate between test cases yielding

Snort-Inline alerts from those that do not. Evidently,

Snort-Inline raises alarms for horizontal portscans only when

the number of TCP RESET packets from scanned hosts is

larger than 5. Port-scan activities triggering low responses

slip Snort-Inline’s detection. In this regard, the first half of

TABLE 8. Horizontal and vertical portscans simulated in our testbed.

Timestamp src IP src por dst IP dst port pkt len TCP hdr/pld TCP flag Description

Horizontal portscan

1 0.000000 10.80.8.183 32872 10.80.8.221 80 74 40/0 SYN Request

2 0.000100 10.80.8.221 80 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

3 0.000200 10.80.8.183 32872 10.80.8.222 80 74 40/0 SYN Request

4 0.000300 10.80.8.222 80 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

5 0.000400 10.80.8.183 32872 10.80.8.223 80 74 40/0 SYN Request

6 0.000500 10.80.8.223 80 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

7 0.000600 10.80.8.183 32872 10.80.8.224 80 74 40/0 SYN Request

8 0.000700 10.80.8.224 80 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

9 0.000800 10.80.8.183 32872 10.80.8.225 80 74 40/0 SYN Request

10 0.000900 10.80.8.225 80 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

Vertical portscan

1 0.000000 10.80.8.183 32872 10.80.8.221 80 74 40/0 SYN Request

2 0.000100 10.80.8.221 80 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

3 0.000200 10.80.8.183 32872 10.80.8.221 81 74 40/0 SYN Request

4 0.000300 10.80.8.221 81 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

5 0.000400 10.80.8.183 32872 10.80.8.221 82 74 40/0 SYN Request

6 0.000500 10.80.8.221 82 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

7 0.000600 10.80.8.183 32872 10.80.8.221 83 74 40/0 SYN Request

8 0.000700 10.80.8.221 83 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

9 0.000800 10.80.8.183 32872 10.80.8.221 84 74 40/0 SYN Request

10 0.000900 10.80.8.221 84 10.80.8.183 32872 74 40/0 SYNjACKjRST Reply RESET pkt

FIGURE 14. Snort-Inline sensitivity to portscans.

1Most IPSs including Snort-Inline detect portscans based on statistical

characteristics of traffic, therefore, randomization and sequentialization have

the same effect.

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 453

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

the trace in Table 8 is the horizontal portscan with the lightest

traffic intensity detected by Snort-Inline. Similarly, the second

half of Table 8 provides the minimum set of packets that

causes Snort-Inline to identify as vertical portscan and raise

the ‘(portscan) TCP Portscan’ alert. We should point out

that Snort-Inline computes statistical characteristics of ports-

can traffic with a sliding time-window, therefore, the replay

speed of traffic traces also determines whether a portscan

alert is raised.

6.2. Testing for false positives and negatives

Exposing possible weaknesses of IUTs regarding their false

negatives/positives is of vital importance to the overall IPS

testing procedure. To this end, we follow the four-phase pro-

cedure described in Section 5.2 by constructing an attack set

A and background traffic set B. The set A typically contains

80 attack traces and consists of TCP-based Atcp and

UDP-oriented Audp attacks; the ratio between Atcp and Audp

is configurable with a default value of 80:20. To better facili-

tate and automate the testing procedure, we define about 40

template scripts with the help of the Table 4 traffic operators

and apply these scripts to traces in A to generate upto 3000

attack variants. Table 9 shows a portion of such scripts

applied to the Nimda trace of Table 1 and the respective out-

comes for both Snort-Inline and FortiGate.

In particular, script no-handshake creates an ineffective

Nimda attack without the normal TCP three-way-handshake

procedure by removing the first three packets in the trace of

Table 1. Both Snort-Inline and FortiGate raise no alarm for

the traffic as the connection status ESTABLISHED is one of

the conditions triggering an alert for the Nimda attack.

Although the ‘Double Decoding Attack’ alert is still generated

by Snort-Inline, we consider it acceptable as such an alert is

typically used as auxiliary information only by system admin-

istrators. Similarly, script normal-retrans simulates a normal

retransmission by duplicating Nimda’s packet which forces

Snort-Inline to produce a false alarm as it regards the traffic

to be evasive retransmission by its TCP protocol dissector.

Although such an alarm can be turned off, Snort-Inline’s

ability to detect evasion attacks is also disabled as a result.

In contrast, FortiGate recognizes the retransmission. The

script diff-checksums yields two TCP packets with the same

sequence number and packet size but different payloads and

checksums; the first packet is attack-free while the second con-

tains malicious content. In using this script, we sought to

establish whether the IUT considers the second packet as a

simple retransmission. Both systems successfully detect the

attack and mark it as an evasive-retransmission. The test

case same-checksum features two packets with the same

sequence number, payload size and checksums with the first

packet being attack-free and the second malicious.

Snort-Inline generates a false negative as it only compares

checksums to determine the identity of the original packet

and its retransmitted clone. The logic to determine the identity

of packets is hard-coded in the TCP protocol dissector of

Snort-Inline and thus, it is not configurable by testers.

Snort-Inline behaves as expected in scripts acked-retrans

and forward-overlap; the former represents the retransmission

of an acknowledged packet, while in the latter, packet 4 is first

duplicated and then the original packet is split into two seg-

ments of sizes 20 and 44 bytes with the copy being rewritten

with random content. Although Snort-Inline correctly ident-

ifies overlapping packets and proceeds to normalize traffic

using the favor new policy, it does forward the overlapping

packets intact, providing an opportunity for evasion attacks.

In both acked-retrans and forward-overlap cases, the IPS Eva-

luator helps establish that FortiGate produces no false posi-

tives/negatives. In the acked-part-retrans case, we initially

split packet 4 into two segments of sizes 20 and 44, then repli-

cate the first segment and place it after packet 6. Hence, a

portion of the original packet 4 is retransmitted once the

TABLE 9. Scripts that help expose False positives/negatives for Snort-Inline and FortiGate.

No Name Command sequence Description Snort-Inline FortiGate

0 No-handshake drop 0, 1, 2 conn. without 3way handshake As expected As expected

1 Normal-retrans dup insert 4 4 normal pkt retransmission False positive As expected

2 Diff-checksums chop insert 4 3 0 pkt retrans with different checksums As expected As expected

3 Same-checksum chop insert 4 4 0 0 pkt retrans. with same checksum False positive As expected

4 Acked-retrans dup insert 4 5 retransmit acknowledged packet As expected As expected

5 Acked-part-retrans tcp split 4 20 44; dup insert 4 6 split pkt 4 and insert first behind pkt 6 False positive As expected

6 Forward-overlap dup insert 4 4; tcp split 4 20 44; pkt 4 is duplicated then split tcp replace 6 file

64 into two, pkt 6 is replaced

As expected As expected

7 Sport-alter tcp port 32872 32771 change port 32872 to 32771 (RPC) False positive As expected

8 Dport-alter tcp port 80 8080 port 80 changes to 8080 As expected As expected

9 Ip-fragment ip frag 75 IP payload splits into 75-byte pieces As expected As expected

10 Method-type tcp replace GET, PUT HTTP method from GET to PUT False positive As expected

11 Alt-exploit tcp replace scripts msadc exploit other vulnerability As expected As expected

454 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

entire packet has been acknowledged, forcing Snort-Inline to

produce an alert of window violation which is a false positive;

instead, FortiGate treats the traffic as normal and produces no

alert.

When the IUT mis-classifies incoming traffic and analyzes

it with incorrect protocols, false positives can be produced.

The script sport-alter is such an example in which the client

of the HTTP connection happens to use 32771 as its source

port. This port is registered by the RPC services. Snort-Inline

treats this test as an RPC incomplete record attack, obviously a

false positive. In script dport-alter, we change the Web-server

port from 80 to other popular HTTP ports such as 8080 and

both Snort-Inline and FortiGate fail to identify Nimda

under their default configurations. This may not be considered

to be a false negative in the viewpoint of IPSs as Snort-Inline

and FortiGate only detect Web-specific attacks against servers

listening on TCP port 80 by default. However, IPSs may be

expected to raise alarm for script dport-alter if IIS web

servers indeed provide services on port 8080. By adding

TCP port 8080 as one of Web service ports recognized by

their HTTP protocol analyzers, both IUTs can detect the

attack. The evasive attack generated by the script ip-fragment

is successfully detected by both Snort-Inline and FortiGate

even though the telltale pattern is spread over multiple IP frag-

ments. Similarly, script alt-exploit exploits the fact that direc-

tory traversal vulnerability is independent of the root

directories, and changes the directory name from scripts to

msadc; the resulting attack variant, which is still effective, is

recognized by both Snort-Inline and FortiGate. The two

IPSs while operating in IPS Evaluator behave differently in

the traffic created by script method-type, which creates an inef-

fective attack by changing HTTP method from GET to PUT.

Snort-Inline raises an alert, indicating that HTTP methods

such as GET and PUT are not a triggering condition for its

Nimda signature.

All the above results along with many other experiments we

carried out point to the fact that Snort-Inline generates mul-

tiple false positives/negatives indicating loopholes in its

attack detection mechanisms, protocol analysis and signature

crafting; by comparison, FortiGate delivers improved attack

detection accuracy.

6.3. Testing IPSs for performance

The IPS Evaluator helps us carry out stateful inspection and

examine resistance to evasion attacks of IPSs under intense

concurrent foreground and background traffic. By using the

approach outlined in Section 5.5, we generate an attack set

A as well as a background set B using predominantly two par-

ameters: attack density a and traffic intensity b. While

attempting to best ascertain the IUT’s counter-evasion capa-

bility, we manipulate the traffic traces in A with the help of

script ip-fragment defined in Table 9. For instance, by apply-

ing the command ip_frag 75 of script ip-fragment to the

Nimda traffic in A, we obtain an evasive variant of the

Nimda attack shown in Table 2; here, the telltale cmd.exe is

fragmented between packets 4 and 5 containing strings

cmd.e and xe, respectively. In general, we apply IP fragmenta-

tion for all packets in A with the rationale that signatures

exploited by IUTs for attack detection are split in multiple

IP fragments. Consequently, IPSs should feature

IP-defragmentation to actually identify evasive attacks. With

each attack density a in the range of [0, 0.80] and traffic inten-

sity b proportional to the IUT’s pro-rated speed (e.g. [10%,

75%]), the IPS Evaluator computes the number of packets N

in A, randomly selects (1/a 2 1)N packets from background

set B, and replays the resulting traffic mixture to both

Snort-Inline and FortiGate with the specified traffic intensity

(i.e. b packets per second). The two IPSs successfully detect

such attacks in various combinations of a and b, and in this

way we verify their IP de-fragmentation functionality.

To test the IUT’s management of session information for

long-lasting streams, we proceed as follows: we split attacks

into two parts Atcp
0 and Atcp

00 as we outline in Section 5.5;

for Nimda in particular, packets 1–4 become part of Atcp
0

and packets 5–15 as well as TCP termination procedure (not

shown in the table) are grouped in Atcp
00. After feeding the

IUT with Atcp
0, we generate 10 000 concurrent background

sessions for Snort-Inline and 250 000 for FortiGate each

lasting upto 60 s by using as many as 10 test machines;

finally, we inject the Atcp
00 part of the traffic. Both Snort-Inline

and FortiGate can identify the involved attacks demonstrating

reliable session tracking capabilities; for Snort-Inline

however, this is only attained for much fewer concurrent con-

nections—10 000—and only if the background sessions last

upto 30 s. When the background traffic features longer con-

nections, Snort-Inline starts dropping sessions with the

longest inactive time; this session pruning yields false

negatives.

Following the test procedure of Section 5.5 and generating

IPS traffic with intensity ranging between 10 and 600 Mbit/s

with up to 10 test machines, we establish that the maximum

throughput achieved by Snort-Inline before any false posi-

tives/negatives appear is only 17 Mbits; for FortiGate, this

rate is at approximately 600 Mbit/s with the equipment

vendor-rated at 400 Mbit/s. Actually, the same conclusion

has been independently reached by the NSS-Lab [14]. Under

the maximum throughput, the latency achieved by

Snort-Inline is 300 ms and by FortiGate is 200 ms, while the

average response time for background HTTP sessions is

220 ms for Snort-Inline and 200 ms for FortiGate. It is also

worth pointing out that due to inexpensive IPC used in our fra-

mework, each test machine can readily generate upto 90 Mbit/

s traffic out when the network interface cards are at 100 Mbit/

s. If the IUTs are equipped with 1000 Mbit/s NICs, test

machines can comfortably flood a network segment with

600 Mbit/s traffic. Consequently in order to test IUTs with

rated networks of 1–4 Gbit/s bandwidth, our framework

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 455

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

requires only a handful of machines to form the necessary

testbed (of Fig. 5). Our experiments also indicate that the bot-

tleneck when high-volume traffic is involved—easily gener-

ated by repeating a small trace such as that of Table 1—

appears to be the network driver within the OS. This occurs

due to excessive memory-to-memory copying between

kernel and user space taking place during stress-tests that

involve voluminous traffic. Such a bottleneck in stress-test,

which is also observed by other testbeds such as tcpreplay

[19], could be mitigated by allocating much more memory

to the network driver.

To further investigate the relationship between traffic inten-

sity and the capability of an IPS on detecting attacks, we use

the traffic trace labeled as ‘1999 train set, week one, Wednes-

day’ from MIT’s Lincoln Laboratory [62]. By configuring

Snort-Inline to work in bridge mode so that it forwards all

traffic and by feeding it with the 351.5 MB MIT trace with

various replay speeds in the range of [1, 25] Mbit/s, we

record the number of alerts generated by Snort-Inline and its

processing (wall) time. Figures 15 and 16 show the respective

results. When the trace is replayed with its original speed,

Snort-Inline generates 73 989 alerts. The change in replay

speed may distort the temporal characteristics of the original

traffic and therefore may affect the number of alerts generated

by IPSs. However, the noticeable drop on the number of alerts

after 17 Mbit/s is attributed to the fact that Snort-Inline cannot

effectively deal with the intensive traffic streams. As the

replay speed increases, the observed wall time gets diminished

as Figure 16 depicts, indicating the accuracy with which our

testbed controls the trace-feeding rate.

Overall, FortiGate demonstrates good attack detection

accuracy and offers a broader attack coverage if compared

to Snort-Inline; also, FortiGate allows upto a half million con-

current connections, provides lower network latency and

handles better long-lived sessions. Through our testing, we

also established that Snort-Inline occasionally generated mul-

tiple different alerts for a single attack exposing a problem

with overlapping coverage by different signatures. In addition,

service-oriented evasion attacks targeting SSH and SSL were

missed revealing problems in the deep inspection capabilities

of Snort-Inline. We have also used the IPS Evaluator to bench-

mark a handful of available IPSs including products from

Juniper, SonicWall, and TippingPoint. There are a number

of issues shared by most IPSs that we have used in our evalu-

ation which briefly are:

† Multiple alerts may be raised for a single attack due to the

complexity of vulnerabilities and/or exploits as well as the

overlapping coverage of different signatures used by IPSs.

† Trade-offs exist among false positives/negatives, attack

coverage and performance. A better attack coverage

requires a larger signature base which often adversely

affects the IPS performance.

† Incomplete coverage on possible attack vectors does influ-

ence the prevention capabilities of IPSs. As it is desired to

apply preventive actions on specific groups of attacks, we

found that it is extremely difficult for many IPSs to entirely

prevent all types of say instant messaging and/or

peer-to-peer communications from occurring.

† Inconsistencies between event-logs and actions taken by

the IUT on underlying traffic are predominantly due to

defects in IPS design, implementation and configuration.

Delegation of preventive actions to different subsystems

or even physical devices is often the source for

out-of-synchronization conditions among different IPS

components.

7. CONCLUSIONS AND FUTURE WORK

Diverse attacks and exploits attempt to gain unauthorized

access, reduce the availability of system resources and/or

FIGURE 16. Snort-Inline processing time for the trace ‘1999 Train

Week1 Wednesday’.

FIGURE 15. Alerts generated by Snort-Inline for the Lincoln trace

‘1999 Train Week1 Wednesday’

456 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

entirely compromise targeted computing systems. IPSs are

deployed to detect and block such malicious activities in real-

time; their inline mode of operation and delivery of real-time

countermeasures make IPS development and more impor-

tantly IPS testing a challenge. In this paper, we propose a

methodology for IPS testing built around a trace-driven

testbed termed the IPS Evaluator. The proposed testbed

offers an inline working environment for IPSs-under-testing

(IUTs) in which IUTs constitute the splicing points between

attacker and victim interfaces of test machines. The key objec-

tives of our testing are to help thoroughly investigate attack

coverage, verify attack detection/prevention rates and finally

determine the behavior of IUTs under various traffic loads.

Our IPS Evaluator framework features a number of novel

characteristics that include a bi-directional-feeding mechan-

ism to inject traffic into the IUTs, dynamic rewriting of

source and destination MAC and IP addresses for replayed

traffic, use of a send-and-receive mechanism to allow for the

effective correlation of replayed and forwarded packets, incor-

poration of IP de-fragmentation and NAT and finally inte-

gration of an independent logging mechanism to distinguish

packet losses due to network malfunctions from IUT’s block-

ing actions. To maximize the number of replayed packets that

are forwarded and subjected to security inspection by IUTs,

our testbed partitions packets in traces into two groups:

packets originated from the attacker(s) and those from the

victim(s). Our testbed is capable of taking into account user-

specified conditions to yield more constrained partitioning.

We also offer a number of traffic manipulation operations

that help shape replayed flows.

We used our proposed methodology to evaluate contempor-

ary IPSs including the Snort-Inline, an open source IPS and

FortiGate, an anti-virus/IPS device. Our testing demonstrated

both strengths and weaknesses for Snort-Inline; although it

offers satisfactory attack coverage and detection rates,

Snort-Inline generates false positives and negatives under a

number of conditions and misses attacks when subject to

volumes of heavy traffic. Our approach also helped us locate

weaknesses of IPSs related to deep inspection and occasional

inconsistency between event logs and actions taking place. We

intend to extend our work by providing an automatic attack

classification mechanism so that newly discovered attacks

can be easily included in our testing; establishing benchmarks

and measurements to help compare test results from different

IPS testbeds; and integrating our methodology with others to

facilitate testing of multi-functional security systems.

ACKNOWLEDGMENTS

We are very grateful to the anonymous reviewers for their

valuable comments that helped us significantly improve the

presentation of our work. We are also indebted to Minya

Chen and Shiyan Hu for discussions on algorithmic aspects

and to Joe Zhu, Hong Huang, Ping Wu and Chi Zhang of

Fortinet for providing traffic traces and many comments

on our testing methodology.

FUNDING

This work was partially supported by a European Social Funds

and National Resources Pythagoras Grant and the University

of Athens Research Foundation.

REFERENCES

[1] Cheswick, W., Bellovin, S. and Rubin, A. (2003) Firewalls and

Internet Security (2nd ed), Professional Computing Series,

Addison-Wesley, Boston, MA.

[2] Shieh, S.-P. and Gligor, V. (1997) On a pattern-oriented model

for intrusion detection. IEEE Trans. Knowl. Data Eng., 9,

661–667.

[3] Xinidis, K., Charitakis, I., Antonatos, S., Anagnostakis, K.G.

and Markatos, E.P. (2006) An active splitter architecture for

intrusion detection and prevention. IEEE Trans. Dependable

Secur. Comput., 3, 31–44.

[4] Valeur, F., Vigna, G., Kruegel, C. and Kemmerer, R.A. (2004)

A comprehensive approach to intrusion detection alert

correlation. IEEE Trans. Dependable Secur. Comput., 1,

146–169.

[5] Bass, T. (2000) Intrusion detection systems and multisensor

data fusion: creating cyberspace situational awareness.

Commun. ACM, 43, 99–105.

[6] Kiam, Y., Lau, W.C., Chuah, M.C. and Chao, H.J. (2006)

PacketScore: a statistics-based packet filtering scheme against

distributed denial-of-service attacks. IEEE Trans. Dependable

Secur. Comput., 3, 141–155.

[7] Mirkovic, J. and Reiher, P. (2005) D-WARD: A source-end

defense against flooding denial-of-service attacks. IEEE

Trans. Dependable Secur. Comput., 2, 216–232.

[8] Yuan, J. and Mills, K. (2005) Monitoring the macroscopic effect

of DDoS flooding attacks. IEEE Trans. Dependable Secur.

Comput., 2, 324–335.

[9] Wang, H., Zhang, D. and Shin, K.G. (2004) Change-point

monitoring for the detection of DoS attacks. IEEE Trans.

Dependable Secur. Comput., 1, 193–208.

[10] Yee, A. (2003) Network intrusions: from detection to

prevention. Inform. Secur. Bull., 8, 11–16.

[11] RFC1631 (1994) The IP Network Address Translator (NAT).

Internet Engineering Task Force. Tokyo, Japan.

[12] Malan, G.R., Watson, D., Jahanian, F. and Howell, P. (2000)

Transport and Application Protocol Scrubbing. Proc.

INFOCOM Conf., Tel Aviv, Israel, March, pp. 1381–1390.

IEEE.

[13] Ptacek, T. and Newsham, T. (1998) Insertion, Evasion, and

Denial of Service: Eluding Network Intrusion Detection.

Technical Report. Secure Networks, Inc., Alberta, Calgary,

Canada.

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 457

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

[14] Group, T.N. (2008) Intrusion prevention system (IPS) group

test. http://www.nss.co.uk.

[15] http://tomahawk.sourceforge.net (2007) A methodology and

toolset for evaluating network based intrusion prevention

systems. TippingPoint Technologies. http://www.tomahawktest

tool.org/resources.html.

[16] Snyder, J., Newman, D. and Thayer, R. (2004) In the wild: IPS

tested on a live production network. Network World Fusion.

Network World, Inc. http://www.networkworld.com. http://

www.nwfusion.com/reviews/2004/0216ipsintro.html.

[17] Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W.,

Cunningham, K. and Zissman, M.A. (2000) Evaluating

Intrusion Detection Systems: The 1998 DARPA Off-line

Intrusion Detection Evaluation. Proc. DARPA Information

Survivability Conf. Exposition: DISCEX-2000, Los Alamitos,

CA, January, pp. 12–26. IEEE Computer Society.

[18] Haines, J.A., Rossey, L.M., Lippmann, R.P. and Cunningham,

R.K. (2001) Extending the DARPA Off-Line Intrusion

Detection Evaluations. Proc. DARPA Information

Survivability Conf. Exposition (DISCEX-01), Anaheim, CA,

January, pp. 35–45. IEEE Computer Society.

[19] Turner, A. (2007) Tcpreplay: Pcap editing and replay tools for

UNIX. http://tcpreplay.synfin.net.

[20] Song, D., Shaffer, G. and Undy, M. (1999) Nidsbench — A

Network Intrusion Detection Test Suite. 2nd Int. Workshop on

Recent Advances in Intrusion Detection (RAID 1999), West

Lafayette, IN, September, pp. 1–21. Anzen Computing.

[21] Puketza, N.J., Zhang, K., Chung, M., Mukherjee, B. and Olsson,

R.A. (1996) A methodology for testing intrusion detection

systems. IEEE Trans. Softw. Eng., 22, 719–729.

[22] Puketza, N., Chung, M., Olsson, R.A. and Mukherjee, B. (1997)

A software platform for testing intrusion detection systems.

IEEE Softw., 14, 43–51.

[23] Antonatos, S., Anagnostakis, K.G. and Markatos, E.P. (2004)

Generating Realistic Workloads for Network Intrusion

Detection Systems. Proc. 4rth Int. Workshop on Software and

Performance (WOSP’04), Redwood Shores, CA, January,

pp. 207–215. ACM.

[24] Dawson, S. and Jahanian, F. (1995) Probing and Fault Injection

of Protocol Implementations. Proc. 15th IEEE Int. Conf.

Distributed Computing Systems, Vancouver, BC, Canada,

May/June, pp. 351–359. IEEE.

[25] Hall, M. and Wiley, K. (2002) Capacity Verification for High

Speed Network Intrusion Detection Systems. Fifth Int.

Symp. Recent Advances in Intrusion Detection (RAID 2002),

Zurich, Switzerland, October, pp. 239–251. Springer, Berlin/

Heidelberg.

[26] Chang, S., Shieh, S.-P. and Jong, C. (2000) A security testing

system for vulnerability detection. J. Comput., 12, 7–21.

[27] Athanasiades, N., Abler, R., Levine, J., Owen, H. and Riley, G.

(2003) Intrusion Detection Testing and Benchmarking

Methodologies. Proc. First IEEE Int. Workshop on

Information Assurance, Darmstadt, Germany, March, pp.

63–72. IEEE.

[28] Robert, D., Terrence, C., Brian, W., Eric, M. and Luigi, S.

(1999) Testing and evaluating computer intrusion detection

systems. Commun. ACM, 42, 53–61.

[29] Schaelicke, L., Slabach, T., Moore, B. and Freeland, C. (2003)

Characterizing the Performance of Network Intrusion Detection

Sensors. Proc. 6th Int. Symposium on Recent Advances in

Intrusion Detection (RAID 2003), Berlin-Heidelberg,

New York, September, pp. 155–172. Springer.

[30] MTR-97W096 (1997) Intrusion Detection Fly-Off: Implications

for the United States Navy. McLean, VA.

[31] Maxion, R. (1998) Measuring Intrusion Detection Systems. The

First Int. Workshop on Recent Advances in Intrusion Detection

(RAID-98), Louvain-la-Neuve, Belgium, September, pp. 1–41.

ACM.

[32] Debar, H. and Wespi, A. (1998) Reference Audit Information

Generation for Intrusion Detection Systems. Proc. 14th Int.

Information Security Conf. IFIP SEC’98, Vienna, Austria,

September, pp. 405–417. IFIP.

[33] Mchugh, J. (2000) Testing Intrusion Detection Systems: A

Critique of the 1998 and 1999 DARPA Intrusion Detection

System Evaluations as Performed by Lincoln Laboratory.

ACM Trans. Inf. Syst. Secur., 3, 262–294.

[34] Maxion, R.A. and Tan, K.M.C. (2000) Benchmarking

Anomaly-Based Detection Systems. 1st Int. Conf. Dependable

Systems and Networks, New York, NY, June, pp. 623–630. IEEE.

[35] Mueller, P. and Shipley, G. (2001) Dragon claws its way to the

top. Network Computing, August, pp. 45–67. United Business

Media LLC. www.networkcomputing.com.

[36] Yocom, B. and Brown, K. (2001) Intrusion Battleground

Evolves. Network World Fusion, October, pp. 53–62.

Network World, Inc. http://www.networkworld.com, http://

www.nwfusion.com/reviews/2004/0216ipsintro.html.

[37] Vigna, G., Kemmerer, R.A. and Blix, P. (2001) Designing a

Web of Highly-Configurable Intrusion Detection Sensors.

Proc. 4th Int. Symp. Recent Advances in Intrusion Detection

(RAID 2001), Davis, CA, October, pp. 69–84. Springer.

[38] Geer, D. and Harthorne, J. (2002) Penetration Testing: A Duet.

Proc. 18th Annual Conf. Computer Security Applications, Las

Vegas, NV, December, pp. 185–195. IEEE Computer Society.

[39] Arkin, B., Stender, S. and Mcgraw, G. (2005) Software

penetration testing. IEEE Secur. Priv., 3, 84–87.

[40] Security, T.N. (2008) Nessus: the network vulnerability

scanner. http://www.nessus.org.

[41] Fyodor (2008) Nmap: A Security Scanner. http://www.insecure.

org.

[42] LLC, M. (2008) The metasploit project. http://www.netasploit.

org.

[43] Focus, S. (2004) BugTraq vulnerability database. http://www.

securityfocus.com.

[44] Shieh, S.-P., Ho, F., Huang, Y. and Luo, J. (2000) Network

address translators: effects on security protocols and applications

in the TCP/IP Stack. IEEE Internet Comput., 4, 42–49.

[45] Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (1997)

Introduction to Algorithms. The MIT Press, Cambridge, MA.

458 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

[46] MITRE Organization (2005) Common vulnerabilities and

exposures. http://cve.mitre.org/.

[47] Sahni, S.K. and Gonzales, T.F. (1976) P-complete

approximation problems. J. ACM, 23, 555–565.

[48] Kann, V., Khanna, S., Lagergren, J. and Panconesi, A. (1997)

Hardness of approximating MAX K-CUT and its dual.

Chicago J. Theor. Comput. Sci., 1997, 1–18.

[49] Neijens, L. (2008) The cyberkit network utility. http://www.

gknw.net/cyberkit.

[50] Systems, I.S. (2004) X-Force Security Center. http://xforce.iss.

net/security_center.

[51] Roesch, M. (1999) Snort – Lightweight Intrusion Detection for

Networks. USENIX 13th Systems Administration Conf. –

LISA’99, Seattle, Washington, USA, November, pp. 229–238.

The USENIX Assoication.

[52] Willigner, W., Taqqu, M.S. and Erramilli, A. (1996) A

Bibliographical Guide to Self-Similar Traffic and Performance

Modeling for Modern High-Speed Networks. In Kelly, F.P.,

Zachary, S. and Ziedins, I.(eds) Stochastic Networks: Theory

and Applications, Vol. 4, pp. 339–366.

[53] InSecure (2008) On the definition of false positive. http://

seclists.org/focus-ids/2005/Oct/0102.html.

[54] Afonso, J., Monteiro, E. and Costa, V. (2006) Development of

an Integrated Solution for Intrusion Detection: A Model

Based on Data Correlation. Proc. Int. Conf. Networking and

Services, Silicon Valley, CA, July, 37. IEEE Computer Society.

[55] Dreger, H., Feldmann, A., Mai, M., Paxson, V. and Sommer, R.

(2006) Dynamic Application-Layer Protocol Analysis for

Network Intrusion Detection. Proc. 15th USENIX Security Symp.,

Vancouver, BC, Canada, July–August, pp. 257–272. USENIX.

[56] The Whisker Project (2004) Libwhisker: a Perl module for

HTTP testing. http://sourceforge.net/projects/whisker.

[57] Tool, T.S. (2004). SideStep: IDS evasion tool. http://www.

robertgraham.com/tmp/sidestep.html.

[58] Inc, F.. (2007). FortiGate: an anti-virus and intrusion

prevention system. http://www.fortinet.com.

[59] Chen, Z., Wei, P. and Delis, A. (2008) Catching remote

administration trojans. Softw. Pract Exp., 38, 667–703.

[60] Sanfilippo, S. (2008) Hping: an active network security tool.

http://www.hping.org.

[61] Staniford, S., Hoagland, J.A. and Mcalemey, J.M. (2002)

Practical automated detection of stealthy portscans.

J. Computer Secur., 10, 105–136.

[62] MIT Lincoln Laboratory (2008) DARPA intrusion detection

evaluation data sets. http://www.ll.mit.edu/mission/

communications/ist/corpora/ideval/data/index.html.

APPENDIX 1: TOMAHAWK

Tomahawk is a command-line IPS testing tool developed by

TippingPoint for testing IPS devices as well as network and

security performance evaluation [15]. Each test machine in

Tomahawk is equipped with three NICs: two cards (eth0

and eth1) connect to the internal and external ports of the

IUT while the third NIC acts as management and control

channel. Tomahawk employs a trace-driven method to

conduct IPS tests that honors packet orders in traces during

the feeding process. To determine the injection direction for

a packet, Tomahawk divides trace packets into those initiated

by the internal network and the rest originating from the exter-

nal network; the former is replayed via NIC eth0 while the

latter via eth1. Packets are parsed by the Tomahawk sequen-

tially and partitioned exclusively based on their appearance

order in traffic traces. An IP address is considered to be exter-

nal if it acts as an source address in its very first appearance in

a trace. Similarly, an IP is treated as an internal address, if it is

first encountered as a destination address in a trace. Toma-

hawk re-transmits a packet after a default 0.2 s timeout

period elapses in order to deal with packet-loss due to

actions taken by the IUT. To ensure that injected packets are

forwarded and subject to security inspection by IUTs, Toma-

hawk rewrites the MAC addresses of replayed packets

on-the-fly. Moreover, each packet’s source/destination IP

addresses are also rewritten and the packet’s checksum is

updated accordingly. Tomahawk uses either pipelining or par-

allel replay to generate high volume traffic when IPS

stress-testing takes place. It also provides mechanisms to accu-

rately control the bandwidth consumed by each test machine

and concurrent connections.

Tomahawk offers a testbed that helps conduct basic tests for

IPS performance evaluation. However, Tomahawk cannot test

IPS functionalities when the IUT function in routing mode as

it provides no address resolution capability on MAC and IP

associations. Its simplistic traffic partitioning method tends

to generate packets that are un-forwardable to IUTs. Suppose

that the first three packets of the Cyberkit in Table 3 is

(67.117.243.204, 67.117.44.225), (67.119.190.203,

67.117.243.205), and (67.117.243.204, 67.119.190.203). Here,

IP address pair (IPsrc, IPdst) represents a packet from IPsrc to

IPdst. After processing the first two packets, Tomahawk estab-

lishes that both IP addresses 67.117.243.204 and

67.119.190.203 belong to the internal network. When replaying

packet 3, Tomahawk rewrites it to have identical source and

destination MAC addresses simply due to the fact that both its

source and destination IP addresses are bound to the internal

network. Hence, the IUT declines to forward packet 3 and

imposes no security inspection on it causing a false negative.

Moreover, Tomahawk features no IP de-fragmentation mechan-

ism and consequently it cannot evaluate the capabilities of IPSs

with respect to traffic normalization and evasion resistance.

Finally, the Tomahawk provides no capabilities for manipulat-

ing replayed packets so that the ensued traffic can be shaped to

display characteristics such as specific traffic intensity, protocol

mixture, and attack density.

APPENDIX 2: TCPREPLAY

Tcpreplay is a suite of utilities that help in the testing

of network devices such as IDSs/IPSs [19]. Following a

A PRAGMATIC METHODOLOGY FOR TESTING IPSS 459

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

trace-driven methodology, Tcpreplay injects a captured

trace to devices under testing through either one or two

NICs. In dual NIC replay mode, packets in a trace are classi-

fied into client or server initiated according to their origin.

Before replay, some protocol fields at data-link, network and

transport layers can be rewritten so that the resulting data

streams are forwarded and inspected by the IUT. The main uti-

lities of Tcpreplay suite include: (i) tcpprep: a tool that

determines the origin of a packet and classifies packets into

two groups—client-and server-initiated, (ii) tcprewrite: an

editor for traffic traces that can rewrite some protocol fields

in TCP/IP packet headers and (iii) tcpreplay: a utility that

feeds IUTs with traffic traces via the two NICs at arbitrary

speeds. Utility tcpreplay also takes into account the manipu-

lation effects on the packet streams by other tools such as

tcpprep and tcprewrite.

To ensure that client-initiated traffic indeed goes through

the IUT in one direction while server-originated traffic tra-

verses the opposite, the tcpprep resorts to heuristic rules. For

a replayed packet to be processed correctly and subject to

security inspection by the IUT, it has to be IUT-forwardable.

Tcprewrite helps in this direction as it can change the source

and destination MAC addresses of packets in traces. Further-

more, tcprewrite also allows to map IP addresses from one

subnet to another subnet. The utility tcprewrite supports

limited TCP/UDP editing as far as ports, packet sizes, and

checksums are concerned. With the help of tcpprep and tcpre-

write, tcpreplay may replay the rewritten trace with a specified

speed. The trace can be injected as quickly as the network

infrastructure of the test environment permits, at fixed pace

(packets or bits per second), or at rates proportional to its orig-

inal speed. To control the replayed period, tcpreplay can be

instructed to replay the same trace multiple times.

Compared to the Tomahawk, the packet partitioning

method of Tcpreplay may generate more viable packet

classifications and yields more packets that are IUT-

forwardable. In addition, Tcpreplay may rewrite some pro-

tocol fields before a packet is replayed. However, Tcpreplay

employs ‘send-without-receive’ replay policy and provides no

mechanism to record the security performance of IUTs. Thus,

it cannot accurately evaluate attack coverage, detection/pre-

vention accuracy, and traffic normalization of IUTs without

heavy manual intervention. Similar to Tomahawk, the

Tcpreplay does not perform IP de-fragmentation and

NAT. This lack in capability renders Tcpreplay ineffective

when it comes to testing the resistance of IUTs to evasive

attacks. Tcpreplay cannot derive test cases or attack var-

iants based on existing traffic traces. This puts a burden on

testers who have to manually generate and capture all test-

cases in real-world environments. Finally, Tcpreplay can

only test IUTs when the latter work in switching mode as it

does not have any address resolution functionality.

APPENDIX 3: GROUP-BASED TESTING

The population of attacks and their variants expands exponen-

tially every year. For instance, CVE dictionary contains 15 107

vulnerabilities and exposures in 2005, but increases to 30 000

in 2007. Similarly, the number of attack signatures employed

in Snort-Inline also enlarges steadily and it is 4 637 in version

v.2.3.2. In our testbed, we attempt to use group-based testing

method to generate test cases instead of the traditional

enumeration-based method as the latter has become impracti-

cal. By classifying attacks into groups and testing IPSs with

representative attacks selected from each group rather than

the entire attack repertoire, we expect to reduce the number

of test cases and consequently improve testing efficiency. In

the group-based testing, the n attacks are first classified into

k groups with each group n/k attacks; an attack is selected

from each group and used to test the IPS. If it successfully

detects the attack, the IPS is considered to be able to identify

other attacks in the group. In case that the IPS fails to detect

the selected attack, it is further tested by using every attack

in the group.

To compute the number of test cases N generated in the

group-based testing method, we assume that the IPS can

detect a given attack with probability p. We further assume

that each attack trace is used X times on average, then X is a

random variable with probability distribution q: q ¼ p when

X ¼ k/n and q ¼ 1 2 p when X ¼ (n þ k)/n. The expectation

of X is E(X) ¼ pk/n þ (1 2 p)(n þ k)/n ¼ 1 2 p þ k/n, there-

fore, N ¼ nE(X) ¼ (1 2 p)n þ k. When enumeration-based

testing method is employed, the number of test cases is n as

each attack is used for once. The group-based method is

more efficient than enumeration-based method when N , n,

which can be easily manipulated into k , pn. For instance,

when p ¼ 0.9 and n ¼ 15 107, group-based testing method

generates fewer test cases as long as attacks are classified

into less than 13 597 groups. In our testbed, the number of

groups k can be adjusted with the help of our proposed hier-

archical classification scheme for attack categorization.

460 Z. CHEN et al.

THE COMPUTER JOURNAL, Vol. 52 No. 4, 2009

	A Pragmatic Methodology for Testing Intrusion Prevention Systems
	INTRODUCTION
	RELATED WORK
	THE PROPOSED TESTBED PLATFORM
	Design rationale and architecture for the IPS Evaluator
	A trace-driven simulation-engine for IPS testing
	Addressing and routing issues in the proposed IPS-testbed
	Handling IP Fragmentation in IPS Evaluator

	TEST-CASE GENERATION AND MANIPULATION OF TRACES FOR IPS-TESTING
	Partitioning traffic traces without constraints for IPS-testing
	Partitioning traffic traces with constraints for IPS-testing
	Manipulation operations for shaping traffic

	IPS TEST PROCEDURES
	Classifying attack traffic and generating testing workloads
	Tests on prevention effectiveness and attack coverage
	False positives and negatives in IPS-testing
	Testing IPS’s resistance to evasion techniques
	Testing IPSs for performance

	EXPERIMENTAL EVALUATION OF IPSs USING THE TESTBED
	Attack coverage and prevention effectiveness
	Testing for false positives and negatives
	Testing IPSs for performance

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	FUNDING
	REFERENCES
	APPENDIX 1: TOMAHAWK
	APPENDIX 2: TCPREPLAY
	APPENDIX 3: GROUP-BASED TESTING

