
M

Z
Y
a

b

c

d

e

a

A
R
R
A
A

I
M
p
M
S
S

1

t
t
(
l
M
M
2
a
o
T
r

s
c

0
d

The Journal of Systems and Software 85 (2012) 1650–1672

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

alware characteristics and threats on the internet ecosystem

hongqiang Chena, Mema Roussopoulosb, Zhanyan Liangc,
uan Zhangd, Zhongrong Chene, Alex Delisb,∗

Yahoo! Inc., United States
University of Athens, Greece
Guangxi Univ. of Finance & Economics, China
Florida State University, United States
Shire US Inc., United States

r t i c l e i n f o

rticle history:
eceived 6 September 2011
eceived in revised form 7 February 2012
ccepted 7 February 2012
vailable online 28 February 2012

ndexing Terms:
alware propagation mechanisms and

ayloads
alware characteristics and categorization

upport vector machines
elf-organizing maps

a b s t r a c t

Malware encyclopedias now play a vital role in disseminating information about security threats. Coupled
with categorization and generalization capabilities, such encyclopedias might help better defend against
both isolated and clustered specimens.In this paper, we present Malware Evaluator, a classification frame-
work that treats malware categorization as a supervised learning task, builds learning models with both
support vector machines and decision trees and finally, visualizes classifications with self-organizing
maps. Malware Evaluator refrains from using readily available taxonomic features to produce species clas-
sifications. Instead, we generate attributes of malware strains via a tokenization process and select the
attributes used according to their projected information gain. We also deploy word stemming and stop-
word removal techniques to reduce dimensions of the feature space. In contrast to existing approaches,
Malware Evaluator defines its taxonomic features based on the behavior of species throughout their life-
cycle, allowing it to discover properties that previously might have gone unobserved. The learning and

generalization capabilities of the framework also help detect and categorize zero-day attacks. Our proto-
type helps establish that malicious strains improve their penetration rate through multiple propagation
channels as well as compact code footprints; moreover, they attempt to evade detection by resorting to
code polymorphism and information encryption. Malware Evaluator also reveals that breeds in the cat-
egories of Trojan, Infector, Backdoor, and Worm significantly contribute to the malware population and
impose critical risks on the Internet ecosystem.
. Introduction

An avalanche of malware has appeared on the Internet over
he last decade whose goal is to compromise the confiden-
iality, integrity and availability of infected computing systems
Fredrikson et al., 2010). The astonishing growth in malware popu-
ation is articulated by pertinent encyclopedias: for example, by

arch 2009, 340,246 specimens of malware are listed in Trend
icro (2011); of which, only 37,950 species were collected before

000 and 123,802 breeds were compiled in 2006 alone. The surviv-
bility of malware on the Internet ecosystem depends on a number

f factors, one of which is the use of multiple penetration channels.
he Nimda worm, for instance, not only has had much success in cor-
upting numerous machines by camouflaging itself in HTML-based

∗ Corresponding author. Tel.: +30 210 727 5212; fax: +30 210 727 5214
E-mail addresses: zqchen@yahoo-inc.com (Z. Chen), mema@di.uoa.gr (M. Rous-

opoulos), liangzhanyan@163.com (Z. Liang), yzhang@math.fsu.edu (Y. Zhang),
henzhongrong@hotmail.com (Z. Chen), ad@di.uoa.gr (A. Delis).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2012.02.015
© 2012 Elsevier Inc. All rights reserved.

Email messages (CERT, 2001), but has also used backdoors installed
by the Code Red II and Sadmind/IIS codes to break into vulnerable
machines (CERT, 2001). Besides email and backdoors, security vul-
nerabilities found in popular web and database services provide
malware with a large set of potential penetration channels and
greatly increase the speed of penetration as these services elim-
inate any human intervention in malware replication (Fredrikson
et al., 2010). For example, the worm Slammer was reported to have
exploited a buffer overflow in MS-SQL Server Desktop Engine to
infect more than 90% of vulnerable hosts within ten minutes (Moore
et al., 2003).

Malware often locates victim systems using an array of mech-
anisms including host scanning, hit-list gleaning, and network
snooping (Paxson et al., 2002). In the process, affected systems
are bombarded by voluminous network traffic and a large amount
of their computational resources are consumed, inevitably jeopar-

dizing their productivity (Weaver et al., 2003). When successful,
the malware frequently implants in infected machines extra pieces
of code termed payloads that typically lead to information leak-
age, distributed denial-of-service attacks, and security degradation

dx.doi.org/10.1016/j.jss.2012.02.015
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:zqchen@yahoo-inc.com
mailto:mema@di.uoa.gr
mailto:liangzhanyan@163.com
mailto:yzhang@math.fsu.edu
mailto:chenzhongrong@hotmail.com
mailto:ad@di.uoa.gr
dx.doi.org/10.1016/j.jss.2012.02.015

ms an

(
o
r
2
d
a
f
d
s
d

v
p
s
b
a
c
h
e
h
f
b
e
2
a
t
“
a
t
p
s
z
a
a
p
r
p
(

s
k
i
p
p
g
c
c
m
m
t
d
w
o

a
f
a
e
d
i
a
G
M
a
c
f

Z. Chen et al. / The Journal of Syste

Skoudis and Zeltser, 2003). To extend its life span, malware not
nly obfuscates its code with cryptographic techniques, but also
esorts to polymorphism and metamorphism (Kawakoya et al.,
010; Leder et al., 2009). In this regard, each of the produced clones
iversifies in terms of code sequence and functionality, defeating
nti-malware products that exclusively rely on pattern matching
or malware detection (Walenstein et al., 2010). By encroaching
eeply into the operating systems and applications, malware may
tubbornly resist containment and could dramatically increase the
ifficulty of its removal even after it is detected (Costa et al., 2005).

An obvious defense against malware is to eliminate security
ulnerabilities in Internet applications. Unfortunately, stringent
roduct requirements for time-to-market routinely yield loophole-
tricken applications and dampen incentives for developing
ug-free systems. In addition, the abundance of “kiddy scripts”
nd cyberspace attack tools, readily available and often in source
ode, exacerbate the situation, expedite the discovery of new loop-
oles, and help in the formation of new attack variants (Fredrikson
t al., 2010). Consequently, the population of security loopholes
as exploded and ample attack opportunities continue to exist

or malware species. Other defenses against malware that have
een proposed include traffic throttling, domain blacklisting, and
nd-system collaboration (Thomas and Nicol, 2010; Williamson,
002). These however require coordination amongst different
utonomous domains making them difficult to achieve in prac-
ice. As a result, the most common practice is to build malware
defense-frontiers” by using security products such as firewalls,
nti-malware applications and intrusion detection/prevention sys-
ems. By and large, these products mainly rely on detecting telltale
atterns termed signatures derived from already known malicious
pecies and thus, they are ineffective against strains that exploit
ero-day vulnerabilities and whose characteristics are not yet avail-
ble (Walenstein et al., 2010). Finally, to be effective, frequent
pplications of software patches and signature updates for security
roducts are necessary. Unfortunately, the potential service inter-
uption and side effects of such patches often leads to indefinite
ostponement, thus further increasing the vulnerability of systems
Sidiroglou and Keromytis, 2005).

Serving as critical resources against cyber-attacks, security advi-
ories such as the Trend Micro and Symantec encyclopedias play a
ey role as they usually provide detailed descriptions on behav-
or of known species, which help malware risk analysis and unveil
otential threats to the Internet. Unfortunately, today’s encyclo-
edias do not currently offer any automated categorization and
eneralization functionalities; meanwhile, classifying newly dis-
overed species as well as updating the encyclopedias themselves
alls for substantial manual intervention. With limited or no auto-
ated operations, it is extremely difficult to rapidly determine the
ain malware propagation channel, which is critical in achieving

imely response. In the same vein, it is equally cumbersome to
erive from current security advisories the malware distributions
ith respect to specific taxonomic features such as Carried Payload

r Containment Difficulty without significant manual work.
In this paper, we propose and implement Malware Evaluator an

utomated categorization framework, that (a) defines taxonomic
eatures to quickly and efficiently characterize malware life-cycle
spects, (b) automatically classifies malware species, tracks their
volution, and evaluates their impact on Internet, (c) helps users
evelop policy and measures to counter malware attacks, and (d)

dentifies and categorizes zero-day attacks with the help of other
utomated malware analysis tools such as Norman Sandbox and
FI Sandbox. Using machine learning and data mining techniques,

alware Evaluator empowers encyclopedias such as Trend Micro

nd Symantec with automated categorization and summarization
apabilities. Our framework automatically extracts taxonomic
eatures and collects training data from Trend Micro and Symantec
d Software 85 (2012) 1650–1672 1651

encyclopedias to build learning models with support vector
machines (SVMs) and gradient boosting decision trees (GBDTs)
(Friedman, 1999; Vapnik, 1999); it also visualizes classifications
through self-organizing maps (SOMs) (Kohonen, 2000).

We select attributes to help form the feature space of malware
species based on their potential information gain. To contain the
dimensions in the feature space, we use word-stemming and stop-
word removal techniques. Our framework defines uni-labeled as
well as multi-labeled taxonomic features: in the former, only a
single label can be attached to each malware while in the latter,
a piece of malware may simultaneously belong to multiple cate-
gories. For each taxonomic feature, Malware Evaluator attempts to
construct models with a variety of machine learning methods, and
chooses the model with the best performance. More specifically,
Malware Evaluator first decomposes the modeling problem into a
set of tasks and builds a SVM binary classifier for each task to
help differentiate a feature category from the rest; it then con-
structs a multi-class SVM categorizer and a GBDT classifier on
the same training data; finally, it evaluates the resulting mod-
els in terms of classification accuracy, precision, and recall, and
picks the best performer for the taxonomic feature in question.
The constructed learning models help Malware Evaluator systemat-
ically organize malware species in a hierarchical manner based on
taxonomic features. Moreover, the unique learning and summa-
rization features of Malware Evaluator make it possible to quickly
and automatically classify yet-to-be-discovered breeds and assist
in evaluating the malware evolution and its risks.

While experimenting with our Malware Evaluator prototype
implementation, we have quickly and efficiently confirmed that
(1) malware species typically employ multiple attack avenues
to improve penetration rate and carry a variety of payloads to
maximize the return-on-investment, (2) malware avoids detec-
tion by making use of evasion techniques including encryption,
polymorphism, and metamorphism, and finally, (3) Trojan, Infector,
Backdoor, and Worm constitute by far the most significant threats
to the cyberspace. With Malware Evaluator we eliminate the labori-
ous and time-consuming manual inspection and analysis of existing
malware encyclopedias that would otherwise be needed to make
such kinds of observations. Moreover, we are able to make obser-
vations on the evolution of malware over time, enabling us to easily
identify trends in malware characteristics, something not currently
possible via manual inspection. Finally, by integrating with auto-
mated malware analysis tools, the framework is able to recognize
zero-day threats that exploit vulnerabilities unknown to the public.

The rest of our presentation is organized as follows: Section 2
sketches related work and Section 3 presents our framework on
malware categorization. The classifications based on adopted tax-
onomic features for each stage of the malware life cycle – creation,
penetration and activation, discovery and eradication – are dis-
cussed in Sections 4, 5, and 6 respectively. We outline in Section 7
the results regarding malware evolution, its risk to the Internet
ecosystem over time, and the applications of Malware Evaluator in
real world situations. Finally, we conclude in Section 8.

2. Related work

Malicious software is an all-time high threat to the Inter-
net ecosystem as it can irreparably damage computing systems.
Should private information (i.e., passwords, sensitive data, secret
business plans, etc.) be exposed, confidentiality is jeopardized.
Integrity is questioned if lineage and origin of data cannot be prop-

erly authenticated; meanwhile, systems availability deteriorates
should services fail to deliver in a timely manner, rendering it
imperative to detect and prevent malware. The essential challenge
in identifying malware species is to capture the characteristics that

1 ms an

d
b
o
1
i
n
m
(
t
a
c
A
w
s
b
m
a
u
o
t
c
i
e
i

g
m
t
c
c
d
g
(
a
f
l
n
d
c
d
p
m
B
B

c
v
t
n
t
c
a
t
1
i
(
t
b
T
l
p
d
t
f
i
p

652 Z. Chen et al. / The Journal of Syste

istinguish them from benign software. Any telltale sequence of
ytes in malicious binaries or events manifested by malware can
bviously act as patterns for malware detection (Shieh and Gligor,
997). Malware’s traces left on infected machines including mod-

fications to file system, manipulations on registry databases, or
etwork activities, which are typically obtained by static analysis of
alicious binaries, are also exploited to improve detection accuracy

Moser et al., 2007). Unfortunately, static analysis is hardly effec-
ive in fighting against malware species that employ polymorphism
nd metamorphism as identifying obfuscating and self-modifying
ode essentially presents an NP-hard problem (Moser et al., 2007).
s a result, dynamic analysis is used to reveal the behavior of a mal-
are species by running it under a controlled environment termed

andbox (Willems et al., 2007). The information collected in a sand-
ox not only enhances the reliability of malware detection, but also
akes it possible to identify malware variants with polymorphism

nd metamorphism. The analysis results of malware species are
sually assembled into an encyclopedia – a comprehensive account
f malware. For instance, the Trend Micro encyclopedia listed more
han 340,246 by the end of last decade (Trend Micro, 2011). The
ontinual increase in the malware population, however, makes
t next to impossible for an individual to evaluate every species
ncountered. This calls for exchange and correlation of security
nformation among encyclopedias.

To address differences in naming conventions and terminolo-
ies among security advisories, an effort to introduce “common”
alware terminology was reported in Lindqvist (1999). Unfor-

unately, the sophistication in both malware characteristics and
omplex behavior renders the creation of a unified nomenclature a
hallenge. For instance, the simple term malware has numerous
efinitions: in Helenius (2002), malware is defined as a pro-
ram designed to be intentionally harmful while in Brunnstein
1999), malware is any piece of code whose functionality devi-
tes from its specification. In addition, specific naming conventions
or species used by vendors and institutes greatly differ and often
ead to misunderstandings (Scheidl, 1999). An early tiered virus
aming system (Scheidl, 1999) labels each specimen along three
imensions namely, family, group, and variants. However, it is
ounterproductive for researchers to wait for available and stan-
ardized names for newly discovered malware before conducting
ertinent analysis, documentation, and likely quarantine. The way
alware is defined certainly designates its universe: the latter in

ontchev (1998) consists of Bomb, Trojan, Virus, and Worm while in
oney (1999), the universe includes Trapdoor and Backdoor as well.

Ideally, a malware taxonomy should help identify breeds and
larify differences among species (Landwehr et al., 1994). To be of
alue, such a taxonomy should arrange species based on features
hat possess properties of objectivity, operability, and exhaustive-
ess (Krsul, 1998). An objective taxonomic feature is intrinsic to
he specimen under study and should be able to be automati-
ally extracted. Operability requires a feature to be observable
nd measurable ensuring repeatability. Exhaustiveness warrants
he complete coverage of all species in the universe (Lindqvist,
999). Perhaps more important is that the process of catalogu-

ng species in a taxonomy should be deterministic and specific
Lindqvist and Jonsson, 1997); determinism ensures the automa-
ion of the categorization procedure, while specificity guarantees
oth uniqueness and unambiguity in the produced classification.
he complicated nature of contemporary malware makes it chal-
enging to define unambiguous features applicable to the entire
opulation. The key factor Intent of Creator of Helenius (2002) in
etermining the legitimacy of a program is subjective and difficult

o measure; the same applies to the feature User Consent, the dif-
erentiator between malware and benign software (i.e., cleanware)
n Rutkowska (2006). The above features render the categorization
rocess observer-dependent and therefore non-deterministic. The
d Software 85 (2012) 1650–1672

lack of determinism and specificity constitute major obstacles for
deploying automated classification schemes to achieve pragmatic
malware risk analysis.

The current malware growth-rate renders categorization efforts
that require manual intervention ineffective; for instance, manu-
ally categorizing all entries of the Trend Micro encyclopedia with
respect to a variety of taxonomic features would be a daunting
task. In Lee and Mody (2006), a malware classification is built
on case-based reasoning and designates a piece of code malicious
should its minimum distance from samples in malware space be
within a specific threshold. Using the unsupervised learning tech-
nique of self-organizing map (SOM) (Kohonen, 2000), DeLooze
(DeLooze., 2004) groups vulnerabilities into two-dimensional grid
according to their textual similarities creating vulnerability clus-
terings. In Venter et al. (2008), a prototype is described that uses
a SOM to initially group vulnerabilities, calibrate the map with
labeled samples, and finally, exploit the outcome as a classifier.
Reports generated by dynamic malware analysis can be also used
to cluster malware specimens (Bailey et al., 2007; Lee and Mody,
2006). In particular, text description generated by dynamic anal-
yses on the behavior of each malware species is transformed
into a sequence of words, and then species are grouped together
according to their sequential distances; the latter are typically
measured by normalized “compression” or “edit” distances. Obvi-
ously, the resulting set of malware clusters can serve as a classifier
should species within the same cluster come from the same fam-
ily and therefore, they share similar characteristics. By nature,
such clustering methods are unsupervised learning techniques
and their grouping process receives no “external” guidance. For
instance, by applying clustering based on normalized compres-
sion distance to a set of 3698 malware species, 403 clusters are
obtained, of which more than 51% has only a single member
(Bailey et al., 2007). Evidently, the weak generalization and skewed
clustering result is hardly useful in malware classification. Other
machine learning and data mining methods including support vec-
tor machines and graph kernels are also occasionally applied to
malware analysis and categorization (Rieck et al., 2008; Wagner
et al., 2009).

Our main objective in proposing Malware Evaluator is to auto-
mate the classification process and offer malware generalization.
In contrast to prior work, we treat classification as a supervised
learning problem and build models for taxonomic features using
Support Vector Machines (SVMs) and Gradient Boosting Deci-
sion Trees (GBDTs); the former minimize classification errors on
selected samples (Schoelkopf and Smola, 2002; Vapnik, 1999),
while the latter harvest the aggregate effect of an ensemble of
weak learners (Friedman, 1999). Compared to alternative learning
methods including Naive Bayes and neural networks, SVMs have
proved to be a superb choice for tasks involving voluminous and
high-dimensional data as well as sparse feature vectors frequently
encountered in real applications (Joachims, 1999). The vast mal-
ware population and its diverse behavior undoubtedly result in a
feature space with very-high dimensions making feature selection
a must in order to contain computational intensity. Techniques
such as information gain, Chi-square, and odds ratio have been
successfully used in text classification (Forman, 2003). Moreover,
the efficiency on solving the quadratic programming optimization
while training SVM binary classifiers has been much improved. For
instance, SVM-Light (Joachims, 1999) and SVM-Torch (Collobert
and Bengio, 2001) accelerate the training process with working
sets and data caching. The SVM modeling complexity can be further
reduced with heuristics and domain-specific optimizations (Ferris

and Munson, 2003; Keerthi and DeCoste, 2005). Similarly, parallel
and distributed computing techniques can be employed to speed-
up the constructions of GBDT models (Tyree et al., 2011; Ye et al.,
2009).

ms and Software 85 (2012) 1650–1672 1653

t
t
a
l
e
T
b
e
a
a
l
h
B
t
t
t
h
S
m
o

3

M
l
o
l

3

b
d
t
e
S
3
g
o
f
e
e
i

i
T
e
c
D
t
b
s
f
o
p
a
i

r

1

Table 1
The WORM SDBOT.APO and JS FEEBS.GJ entries in Trend Micro encyclopedia.

WORM SDBOT.APO JS FEEBS.GJ

General
Malware type: Worm; Aliases:

Virus.Win32.Virut.n
Malware type: JavaScript; Aliases:
Worm.Win32.

(Kaspersky), W32/Virut.remnants
(McAfee), W32.Virut.B

Feebs.gen (Kaspersky), W32.Feebs
(Symantec),

(Symantec), W32/Virut.Gen
(Avira), Mal/Heuri-D

HTML/Feebs.Gen (Avira),
Troj/FeebDl-K (Sophos);

(Sophos); In the wild: Yes;
Destructive: Yes;

In the wild: Yes; Destructive: Yes;
Language: English;

Language: English; Platform:
Windows 2000, XP;

Platform: Windows 98, ME, NT,
2000, XP, Server

Encrypted: Yes Damage potential:
High;

2003; Encrypted: Yes; Damage
potential: High;

Distribution potential: High; Distribution potential: Medium;
Description
Installation and Autostart

Techniques: Upon execution, this
Arrival and Installation: This
malicious JavaScript is

memory-resident worm drops a
copy of itself as the file

embedded in a malicious Web site
and runs on a system

BOXUKITEP.EXE in the Windows
system folder. It then

when a user visits the said Web
site. It may also arrive as

executes its dropped copy before it
terminates and deletes

an attachment to spammed email
messages. It creates the

itself. To enable its automatic
execution at every system

following registry entries as part of
its installation . . .

startup, it creates the following
registry entries: . . .

Download Routine: When executed,
it displays a fake

Network Propagation and Exploits:
This worm spreads

loading page that mimics any of
the following Web-based

via network shares. It uses NetBEUI
functions to get

email providers, saying that there
is no available . . .

available lists of user names and
passwords. It then lists . . .

Antivirus Retaliation: This malicious
JavaScript

Aside from the obtained
credentials, it also uses the

deletes antivirus and
security-related registry subkeys

following list of user names and
passwords: . . .

from the following key: . . .

Detail
Memory resident: Yes; Size of

malware: 37,888 Bytes;
File type: Script; Size of malware:
Varies;

Compression type: Morphine;
Payload 1: Terminates

Payload 1: Deletes antivirus and
security-related

processes; Trigger condition 1:
Upon execution;

registry keys; Payload 2:
Downloads files;
Z. Chen et al. / The Journal of Syste

When a taxonomic feature contains more than two categories,
he learning task should differentiate multiple classes and necessi-
ates a multiclass learning model (Allwein et al., 2000). Through

multiclass-to-binary reduction method, this multiclass prob-
em can be decomposed into a set of binary classification tasks
ach of which distinguishes a category from the rest (Hastie and
ibshirani, 1998). Similarly, the multiclass learning problem can
e solved by partitioning categories into opposing subsets using
rror-correcting (e.g., Hamming) codes so that binary classifiers
re trained on subsets instead of individual classes (Dietterich
nd Bakiri, 1995; Platt et al., 2000). By treating the multiclass
earning problem as a monolithic constrained optimization task
aving a complex quadratic objective function (Bredensteiner and
ennet, 1999), a single multiclass categorizer can be built with
he multiclass-optimization method. Here, the constrained objec-
ive function is decomposed into a series of “small tasks” with each
ask involving only a subset of training data or constraints and
ence, can be solved analytically (Boser et al., 1992; Crammer and
inger, 2001). Malware Evaluator builds SVM models using both the
ulticlass-to-binary reduction and multiclass-optimization meth-

ds while it provides SOM-based visualization for its classifications.

. The proposed Malware Evaluator framework

In this section, we present the salient features of
alware Evaluator. We initially discuss the stages of malware

ife-cycle, then provide the rationale for our design choices and
utline feature vectors, SVM, GBDT, and SOM-based classifications,
earning models and training sets used.

.1. The malware life-cycle

The ongoing explosion of malware population is accompanied
y the emergence of a very large number of variants. Encyclope-
ias treat malware and variants differently: Symantec advisory lists
hreats on a family-basis while the Trend Micro maintains separate
ntry for each piece of either malware or its variant. Hence, while
ymantec encyclopedia lists 10,217 families, Trend Micro maintains
40,246 entries (Trend Micro, 2011; Symantec, 2009). The fast
rowth rate necessitates that encyclopedias cross-reference each
ther to share and correlate facts since it has become vastly difficult
or any single encyclopedia to thoroughly analyze every specimen
ncountered. For example, Table 1 presents the WORM SDBOT.APO
ntry from Trend Micro and it evidently references advisories includ-
ng Kaspersky, Symantec, and McAfee.

Table 1 also shows that Trend Micro provides sufficiently detailed
nformation and organizes its entries in a standardized manner.
he description on each worm features three distinct parts: Gen-
ral, Description, and Detail. General and Detail maintain fields that
haracterize the specimen in question. For example, the feature
istribution Potential in General indicates the geographic spread of

he strain; Payload in Detail describes reported activities conducted
y the breed on compromised systems. Compared to other advi-
ories, the Trend Micro encyclopedia defines a rich set of taxonomic
eatures to characterize malware species. In addition, its structured
rganization can be leveraged to enable systematic and automated
rocessing on collected facts. Therefore, we designate Trend Micro
s our main information resource for our prototype and transform
t into an automated malware classifier.

All malware specimens share a similar life-cycle that consists
oughly of the following phases:
. Creation: A fully functioning malware requires complex com-
puter knowledge and programming skill when built from
scratch. The availability of source code for certain species,
Payload 2: Compromises system
security;

however, makes it straightforward to develop new strains. The
modularized design of many specimens also facilitates the gen-
eration of variants.

2. Penetration & Activation: Once a piece of malware has surfaced
in the Internet ecosystem, it has to permeate into victims. Often,
its built-in penetration engine makes malware self-propagating
and self-replicating. Malware activities are materialized by a
variety of payloads implanted on infected machines, which could
be automatically unleashed or activated with specific conditions
such as time, events, or user operations.

3. Discovery & Eradication: Malware may eventually expose itself
by its own pernicious activities and visible traces. To avoid
detection, malware may resort to evasive techniques such as
information encryption and code polymorphism. By infiltrating
deeply into OS and applications of infected systems, malware
could resist containment and removal.

Strains may exhibit a variety of diverse behaviors in their life-
time ranging from sheerly annoying to extremely malicious. Based

on functionality and behavior, Trend Micro encyclopedia categorizes
species into groups listed in Table 2.

Comprising 55.02% of the entire repertoire, Trojans are by far the
largest class. By circumventing normal authentication processes,

1654 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

Table 2
TrendMicro: Categories of Malware Species.

ID Name Description Num Pct

1 Trojan self-contained programs with benign appearance but hidden malicious features 181711 55.02
2 Backdoor consist of client/server parts, the latter on victims waits for commands from the former 47230 14.30
3 File Infector virus attaching itself to executables such as EXE and COM to propagate 36536 11.06
4 Worm self-contain, self-replicate, propagate via networks without human intervention 36331 11.00
5 JavaScript written in JavaScript and infect other programs in the same language 9196 2.78
6 VBScript written in VBScript and infect other programs in the same language 5647 1.71
7 HTML Script written in scripts supported by Web services and propagate via Web 4614 1.40
8 Macro written in macro programming languages and propagate by attaching to other files 4377 1.33

d is ac
nels
ious m

t
g
t
o
t
a
i
T
m

3

t
a
M
o
m
t
c
I
m
i
e
4
t
t
c
e
M
t
c

w
l
P
i
o
u
M
P
C
n
a
e
s
o
W
d
t
c

9 Boot Virus embed in master boot records (MBR) an
10 Batch Virus a virus replicating through multiple chan
11 Others this category includes attack tools, malic

he Backdoor category contributes 14.30% of the collection. Cate-
ories Infector and Worm provide approximately 11.00% a piece to
he population. Finally, Boot Virus and Batch Virus categories are
nly sparsely populated. The already very large malware popula-
ion coupled with its high-growth rate make it nearly impossible for
single advisory to effectively capture the entire universe of spec-

mens. This inadvertently leads to bias in collections. For instance,
rojans contribute 55.02% to the Trend Micro repertoire but they
ake up only 29.23% of the Symantec collection.

.2. Design rationale for Malware Evaluator

The basic template followed by Trend Micro entries consists of
hree parts as mentioned earlier (Table 1). The General part char-
cterizes the specimen using distinct taxonomic features including
alware Type, Language, and Damage Potential. The Description part

ffers an overview of the strain and outlines reported installation
echanisms, activities conducted, and symptoms of infected sys-

ems. The Detail section analyzes each breed with respect to file
ompression method, storage footprints and specific-payload data.
nformation about taxonomic features of all encyclopedia entries

ust be provided by domain experts, making the task labor-
ntensive and time-consuming. This results in a small portion of
ntries having values for each defined feature; for instance, only
3,548 out of 340,246 strains list a value for the Encryption fea-
ure and less than 12.56% of entries are labeled with respect to
he Destructiveness feature. It is simply impossible to manually
ategorize the large population in Trend Micro based on a vari-
ty of taxonomic features within a reasonable period of time.
alware Evaluator helps in this direction as it automatically derives

axonomic features for species and offers an automated malware
ategorization and generalization process.

In addition to the features extracted from Trend Micro, our frame-
ork defines new characteristics to cover the entire malware

ifecycle. For example, we designate features Attack Avenue, Carried
ayload and Containment Difficulty to illustrate malware behavior
n stages Penetration & Activation as well as Discovery & Eradication
f its lifespan. Some taxonomic features take a number of val-
es (or classes): the Damage Potential feature ranges in the Low,
edium or High classes, while the newly adapted feature Carried

ayload assumes thirteen (13) classes including Execute Arbitrary
ommand, Terminate Process, and Compromise Security. A taxo-
omic feature is multi-label if a specimen can be simultaneously
ssigned to multiple categories of the feature, and uni-label oth-
rwise. In our framework, feature Carried Payload is multi-labeled
ince a malware breed could carry multiple payloads simultane-
usly to conduct a variety of malicious activities. For instance, worm

ORM SDBOT.APO not only kills other normal processes, but also

eactivates many security applications. In contrast, feature Dis-
ribution is uni-labeled as its categories are mutually exclusive,
onsequently, worm WORM SDBOT.APO is only in category High
tivated when infected systems start 1812 0.55
such as infecting files and boot sectors 1621 0.49

obile code, and jokes 1173 0.36

while script JS FEEBS.GJ is considered to have Medium distribution
capability.

The Malware Evaluator performs categorization in three phases:

• Malware representation: the textual description for a specimen
in the Trend Micro encyclopedia is converted into a format suitable
for machine learning.

• Construction of learning model: the framework creates a
machine learned model for each taxonomic feature based on the
training data automatically collected from both Trend Micro and
Symantec encyclopedias.

• Unlabeled-species classification: the constructed learning mod-
els automate the categorization on unlabeled malware from
Trend Micro repertoire as well as strains that may be discovered
in the future.

The categorization with respect to a variety of features not
only assists the assessment of malware risks to cyberspace, but
also helps analyze malware evolution and develop counter-attack
measures. Moreover, we visualize malware categorizations with
self-organizing maps (SOMs) to further uncover specimen-intrinsic
properties.

3.3. Creating malware feature vectors

To transform an encyclopedia entry into a representa-
tion suitable for processing by machine learning algorithms,
Malware Evaluator first applies a tokenization process to the text of
each entry. The text is treated as a bag of words without taking
token positions into account. A “feature vector” for the malware
in question is then formed where each distinct token is consid-
ered as an attribute with its occurrence frequency as the value.
The feature space is the assembly of feature vectors for all species
and its dimensionality is the key determinant for the computa-
tional complexity of the learning task. To reduce the dimensions
of feature space, we use a stopword-elimination process to filter
out tokens that have only grammatical function but do not add
new meaning to the text (Fox, 1992). The stopwords are typically
articles, conjunctions, pronouns, and common prepositions. With
the stopword-elimination process in place, tokens such as “upon”,
“this” and “itself” are excluded for the feature vector of the entry
WORM SDBOT.APO (Table 1).

Using the Porter Stemming algorithm(Porter, 1980),
Malware Evaluator further decreases the number of feature space
dimensions; the algorithm first conflates tokens into their com-
mon stem roots by stripping plurals, past participles, and other
suffixes and subsequently, converts them into their lower-case

counterparts. For instance, tokens in WORM SDBOT.APO such
as “install”, “technique” and “automatic” are transformed into
stems “instal”, “techniqu”, and “automat”, respectively. The num-
ber of feature space dimensions can be dramatically reduced

ms an

b
w
f
t

i

P
i
a
a
t
a
v
a
g
a

M
d
v
fi
w
w

i

i
t
t
B
s
t
a

3

f
i
w
a
d
s
T
t
d
b
c
t

a
s
l
a
c
i
p
t
t
‖
e
t
a
t∑
a
t

Z. Chen et al. / The Journal of Syste

y selecting attributes that have significant information gain,
hich measures the contribution to entropy reduction of a

eature (Forman, 2003). In particular, the information gain of a
erm t with respect to a feature having a set of categories {li,

= 1, 2, . . ., k} can be expressed as G(t) = −
∑k

i=1P(li) log P(li) +
(t)

∑k
i=1P(li|t) log P(li|t) + P(t)

∑k
i=1P(li|t) log P(li|t), where P(li)

s the probability of category li, P(t) is the probability of term t
ppeared in documents while P(t) = 1 − P(t) and finally, P(li|t)
nd P(li|t) are the conditional probabilities of category li given
erm t and t, respectively. An alternative to the above tokenization
pproach is the use of n-gramming to create attributes in feature
ectors; in this, the text of a malware entry is initially tokenized
nd then every token is swept with a n-byte sliding window to
enerate its n-grams. The resulting n-grams are subjected to the
forementioned stemming.

To eliminate biases due to difference in sizes of malware entries,
alware Evaluator normalizes every feature vector to unit length by
ividing the weight of each attribute in the feature vector with the
ector’s Euclidean length. Our experiments show that the classi-
cation performance can be improved by scaling each attribute
ith its inverse document frequency (IDF). More specifically, the
eight wi of the ith attribute of feature vector v with d dimensions

s computed as: wi = ci log(N/ni)/
√∑d

j=1(cj log(N/nj)
2 ; here, ci

s the raw term frequency of the ith attribute of vector v, N is the
otal malware population, and ni is the number of malware entries
hat contain the token represented by the ith attribute (Salton and
uckley, 1988). With the above stopword elimination and word
temming, we reduce the feature space dimensionality from 32,975
o 19,556; this can be further reduced to 17,601, should 90% of the
ttributes with highest information gain be selected.

.4. Automating malware classification

In order to automate the malware classification, the proposed
ramework resorts to state-of-the-art machine learning techniques
ncluding supervised learning methods such as SVM and GBDT as

ell as unsupervised learning methods such as SOM. Meanwhile, to
ttain the best classification performance, the framework employs
iversified modeling methods simultaneously based on the same
et of training data. The set of training data can be represented as
= {xi, yi}, (i = 1, . . . , m), here, each data point xi ∈ Rd with d fea-

ures has a true label (or class) yi ∈ Y = {l1, . . ., lk}. With the training
ata at hand, a supervised learning task is to construct a model that
alances the classification performance on T and its generalization
apability on unseen examples, while a unsupervised learning task
ries to find hidden structure in T.

Learning models built by the Support Vector Machines (SVMs)
ttempt to minimize the classification errors on a set of randomly
elected samples (Vapnik, 1999). When the label set is Y = {l1 = − 1,
2 = + 1}, the constructed learning model is a binary classifier sep-
rating data points in positive (+1) category from its negative (-1)
ounterparts with a hyperplane that maximizes the summation of
ts shortest distances to the closest positive and negative exam-
les. By expressing the separating hyperplane as w · x + b = 0 with
he weight vector w ∈ Rd, inner-product operator (·), and bias b,
he objective function of an SVM-binary classifier is to minimize
w‖2/2 + Cb

∑m
i �i, where parameter Cb is a penalty to classification

rrors, and �i(�i ≥ 0, i = 1, . . ., m) is a non-negative slack variable for
he ith sample in T so that w · xi + b ≥ +1 − �i for positive samples
nd w · xi + b ≤ −1 + �i for negative samples. In practice, the objec-

ive function is transformed into its Wolfe dual form to maximize

m
i ˛i − 1/2

∑m
i,j˛i˛jyiyjxi · xj , subjected to 0 ≤˛i ≤ Cb (i = 1, . . ., m)

nd
∑m

i ˛iyi = 0. Parameter ˛i (i = 1, . . ., m) is a non-negative mul-
iplier for each constraint. The objective function in the Wolfe form
d Software 85 (2012) 1650–1672 1655

is convex and its constraints also form a convex set, rendering it a
convex quadratic programming (QP) problem, thus, its solution is
given by w =

∑m
i ˛iyixi. Data points with their corresponding ˛i > 0

form the set of support vectors S = {s1, s2, . . . }. An unseen example
x is assigned label +1, if formula

∑|S|
i=1˛iyisi · x + b is positive, and

label -1 otherwise.
If the label set Y = {l1 = 1, . . ., lk = k} has k > 2, multiclass-SVM

learning model is built using two approaches: multiclass-to-binary
reduction and multiclass-optimization methods. In the multiclass-
to-binary reduction method, the learning problem is reduced to
a set of binary classification tasks and a binary classifier is inde-
pendently built for each label lk with the one-against-rest training
technique (Hastie and Tibshirani, 1998). In constructing training
data for the classifier designated to label lk, data points with label lk
are considered as positive while the remaining samples are treated
as negative; in this manner, we create an SVM-binary learner.
Hence, the resulting learning model by the multiclass-to-binary
reduction method consists of k binary classifiers (termed SVM-
binaries). In contrast, the multiclass-optimization method defines
a monolithic objective function with complex constraints cov-
ering all classes so that a single multiclass categorizer, termed
SVM-multiclass, is created. Similar to a SVM-binary classifier, the
objective function for a multiclass categorizer can be defined to
minimize ‖W‖2/2 + Cm

∑m
i=1�i subject to Wyi

· xi + ıyi,r − Wr · xi ≥
1 − �i (∀i, r). Here, W is a matrix of weights with size k × n, Wr is the
rth row of W, ıi,j is a loss function that generates an output of 1 if i = j
and 0 otherwise, and parameter Cm controls the balance between
training errors and classification accuracy. Similarly, the objective
function of the multiclass categorizer is also converted to its Wolfe
dual form for the derivation of its solution (Crammer and Singer,
2001).

From the Wolfe dual form of the objective function for an SVM
classifier and its corresponding solution, we can observe that data
points appear only with the form of inner-product (i.e., xi · xj). By
specifying a mapping function � : Rd �→ H, we can transform fea-
ture vectors of training data from Rd into a space H with higher
dimensions so that the model constructed in H only depends on
data points through functions of the form �(xi)�(xj). With a ker-
nel function K(xi, xj) = �(xi)�(xj), we can replace xi · xj by K(xi, xj)
in objective functions and their constraints, and so build the learn-
ing model in space H by using K without explicit computation of
�. Along the same lines, the label of an unseen example can be
obtained by computing inner-products of its feature vector and
parameter w (or W) via function K instead of �.

It is well established that the performance of a machine learning
method is governed by a set of tunable parameters such as ker-
nels used in SVM, which could be polynomial, radial basis functions
(RBFs), or sigmoid functions (Vapnik, 1999); therefore, the perfor-
mance may vary along with changes in parameter settings. Also,
it is unlikely for a modeling method to deliver satisfactory perfor-
mance for all learning tasks. Thus, in Malware Evaluator, a malware
classification model is also built with Gradient Boosting Decision
Tree (GBDT) technique, which is an ensemble of weak prediction
learners – decision trees (Friedman, 1999). For the given training
set T, the GBDT method seeks an approximation F̂(x) to a func-
tion F*(x) that minimizes the expected value of some specified loss
function L(y, F(x)), which could be squared-error, absolute error,
or binomial log-likelihood function. The approximation F̂(x) can be
expressed as a weighted sum of functions bi(x) chosen from a base
set B of decision trees (i.e., the weak learners), and GBDT attempts
to minimize the average value of the loss function on T. Starting

with a model consisting of a constant function F0(x), GBDT incre-
mentally expands the model in a greedy and iterative fashion. More
specifically, at the kth iteration, GBDT would select a decision tree
bk(x) to partition the input space into r disjoint regions Rjk(j = 1,

1 ms an

2
d
b

i
t

u

t
c
t
o
i
t
m
m
F
o
a
h
r

u
a
2
s
o
h
a
v
i
b
t
f
t
d
t
S
i
s

w
1
x
c
t
f
i
w
G
w
�
i
o
c
b
t
l
i
m

3

n
f

656 Z. Chen et al. / The Journal of Syste

, . . ., r, and r is the number of leaf nodes in the tree) and pre-
icts a constant value bjk for each region, so that the decision tree

k(x) can be written as bk(x) = ∑r
j=1bjkI(x ∈ Rjk), where I(.) is the

dentity function. Then �m is chosen to minimize the loss func-
ion �m = arg min

�

∑n
i=1L(yi, Fm−1(xi) + �bm(xi)), and the model is

pdated as Fm(x) = Fm−1(x) + �mbm(x).
Fitting the training set too closely can lead to degradation of

he model’s generalization ability. One regularization parameter to
ontrol data overfitting is the number of gradient boosting itera-
ions (i.e., the number of trees in the model). Similarly, the number
f terminal (or leaf) nodes in decision trees can control the max-
mum level of interactions between variables in the model and,
herefore, is able to affect data overfitting. Another regularization

ethod is to use parameter �, the learning rate, to manipulate
odel’s generalization ability by modifying the update rule as

m(x) = Fm−1(x) + � · �mbm(x), here 0 < � ≤ 1. By fitting a base learner
n a subset rather than the whole set of training data at each iter-
tion, randomness is introduced into the GBDT algorithm and may
elp prevent overfitting, thus, such a subsampling technique can
egularize the learning process as well.

In contrast to SVM and GBDT, Self-Organizing Maps (SOMs) are
nsupervised learning methods that transform data point from
high-dimensional space into a low-dimensional one (Kohonen,

000); during this transformation, similar features of the former
pace retain their spatially-clustered nature in the latter. Consisting
f components called “neurons” that are typically arranged into a
exagonal or rectangular grid, an SOM associates each neuron with
weight vector that has the same dimensionality d as the feature
ectors of input data. In training an SOM with competitive learn-
ng methods, neurons in different parts of the map are activated
y distinct input patterns, while adjacent nodes respond similarly
o the same stimulus as follows: Euclidean distances between the
eature vector of each input and weight vectors of all neurons in
he map are computed and the cell with the smallest distance is
esignated as the best matching unit (BMU) for the input in ques-
ion. The weights of the BMU and its neighboring neurons in the
OM lattice are subsequently adjusted so that they resemble the
nput vector and could become winners with high probability when
imilar input instances are encountered in the future.

The weight vector wi for node i decreases with time as well as
ith its distance from the BMU according to the formula: wi(t +

) = wi(t) + hic(t)˛(t){x(t) − wi(t)}, where t is the training epoch,
(t) is the input vector, hic(t) is the neighborhood function with
representing the BMU, and ˛(t) is the learning rate that mono-

onically diminishes with t. The simplest form of neighborhood
unction hic(t) is known as Bubble; in this, a neighborhood set Nc(t)
s defined for each node c and hic = 1 if node i ∈ Nc(t) or hic = 0 other-

ise. Another neighborhood kernel used by Malware Evaluator is the
aussian function expressed as hic(t) = exp (− (‖ rc − ri ‖ 2)/(2�2(t)))
ith rc and ri the radius vectors of nodes c and i, respectively, and
(t) a monotonically decreasing function of time t. The monotonic-

ty of ˛ and � guarantees that the neighborhood for a neuron shrinks
ver time and vanishes completely at the end of the training pro-
ess. The fact that a SOM not only adjusts the weight of the winner
ut also those of its neighboring cells leads to the capability of spa-
ial clustering and topology preservation. By calibrating the SOM
attice with labeled input data so that the BMU for an input sample
nherits the label of this sample, the map can serve as a classifier by

arking unknown data points with labels of their associated BMUs.

.5. Developing training data and learning models
Malware Evaluator creates a SVM learning model for each taxo-
omic feature based on the training data it automatically collects

rom both Trend Micro and Symantec encyclopedias. The produced
d Software 85 (2012) 1650–1672

training data may be inadequate due to the fact that these two
collections that categorize information on taxonomic features are
manually generated by domain experts. Malware Evaluator attempts
to overcome this issue by expanding the training data with entries
that match telltale patterns unique to taxonomic features. The
sparse malware feature vectors resulting from the brief malware
entry descriptions justify our choice for SVMs in Malware Evaluator.
SVMs are a superb choice when it comes to learning tasks that
demonstrate dense concepts and sparse feature vectors.

Training data for a taxonomic feature can be expressed as
T = {xi, yi}, (i = 1, . . ., m), where xi ∈ Rd is the feature vector for
the ith data point and yi ∈ Y = {l1, . . ., lk} is its true label. The
materialization of features and their corresponding T is labor-
intensive and requires significant amount of time when performed
manually. Malware Evaluator automates the collection of training
data by taking advantage of taxonomic features defined in the
Trend Micro malware encyclopedia as shown in the General and
Detail parts of worm WORM SDBOT.APO and script JS FEEBS.GJ
(Table 1). Trend Micro-extracted training data is insufficient for
the creation of a robust learning model as only a small frac-
tion of entries provides information pertinent to the taxonomic
feature in question. To address this, our framework enlarges
the size of its training data by mining resources in the refer-
ence pool of the Trend Micro encyclopedia such as Symantec. In
this regard, the Symantec advisory entries W 32.Virut.B and W
32.Feebs are referenced by WORM SDBOT.APO and JS FEEBS.GJ of
Trend Micro respectively; and the corresponding Symantec entries
provide information on features including Distribution and Threat
Containment. The Malware Evaluator can be also configured to extend
training data with Trend Micro entries that match keywords unique
to the taxonomic feature in question.

With the training data for a taxonomic feature at hand,
Malware Evaluator can create an SVM-based learning model. If set
Y contains only two labels, a binary learning model is material-
ized. For a taxonomic feature with |Y|> 2, the learning problem is
decomposed into |Y| binary classification tasks with the multiclass-
to-binary reduction method, and subsequently |Y| binary classifiers
are obtained with the one-against-rest training method. For a
uni-label taxonomic feature, Malware Evaluator creates a multiclass
categorizer with the multiclass-optimization training method.
Malware Evaluator saves the generated learning models to classify
unlabeled malware breeds or newly identified species. For a multi-
label taxonomic feature, an unlabeled malware could be assigned
to multiple categories as long as the corresponding binary classi-
fiers produce positive values. In contrast for a uni-label taxonomic
feature, Malware Evaluator places a malware into the category with
the largest output if the model consists of multiple binary classi-
fiers or the class with the highest confidence when a multi-class
model is used.

Our framework employs an n-fold cross-validation method to
evaluate the performance of a learning model in terms of classi-
fication accuracy, precision, recall, and Fˇ measure. The training
data set T is first partitioned into n equally-sized groups {Ti, i = 1,
. . ., n}, and each group assumes the same malware distribution as
T so that each partition contains samples from all possible classes.
Subsequently, the cross-validation process carries out the following
steps in the ith of its n iterations:

– Training Phase: partition Ti is held out to act as the validation
set while the remaining n − 1 partitions are combined together
to form a new training set Ai =

⋃
j /= iTj, used to build a learning
model Li.
– Labeling Phase: data points in validation set Ti are labeled with

the learning model Li; a sample in Ti is classified correctly if its
assigned label by Li coincides with its true label.

ms and Software 85 (2012) 1650–1672 1657

–

C
r
F
P
c
l
t
t
s
b
M
m
t

3

t
i
a
t
n
t
m
F
t
t
m

n
u
m
r
C
s
q
m
t
p
b
t
i
i
n
m
s
A
p

4

c

4

v
p
v
c

0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
M

a
lw

a
re

s

Classification on Affected Platform

Training Data
Testing Data

Total
Z. Chen et al. / The Journal of Syste

Measuring Phase: performance metrics including classification
accuracy, precision, recall, and Fˇ-measure for the model Li are
computed.

lassification accuracy is defined as the ratio of the number of cor-
ectly classified examples over the size of the validation set. The

ˇ-measure computes the weighted harmonic mean of precision
and recall R with the formula Fˇ = (1 + ˇ2)PR/(ˇ2P + R). The pre-

ision P for a class is the ratio between the number of correctly
abeled samples over the total number of samples that are assigned
o the class. Recall R is the ratio of correctly labeled samples over
he total number of samples that actually belong to the class. By
etting ˇ = 1 so that precision P and recall R are considered to
e equally important, we obtain the F1-measure as F1 = 2PR/(P + R).
etrics such as classification accuracy and precision for a learning
odel are the average of measures obtained in the n iterations of

he cross-validation process.

.6. Key taxonomic features

In Malware Evaluator, a set of taxonomic features are defined
o characterize the behavior of malware in various stages of
ts life cycle and each taxonomic feature captures a certain
spect of malware. Table 3 presents the main taxonomic fea-
ures Malware Evaluator uses; column Feature designates the feature
ame, column Description provides a brief summary of the charac-
eristics of the feature and column Stage describes the phase in

alware life cycle with which this taxonomic feature is associated.
or instance, taxonomic feature Attack Avenue, which belongs in
he Penetration-stage of the malware lifecycle, tracks the propaga-
ion channels, such as Emails and instant messengers, employed by

alware to invade victim systems.
For each taxonomic feature, multiple machine learning tech-

iques including SVM-binary, SVM-multiclass, GBDT, and SOM, are
sed to generalize the characteristics of malware. Based on perfor-
ance measures including classification accuracy, precision, and

ecall, the best model is chosen for every specific taxonomic feature.
olumn Model and Accuracy of Table 3 lists the Malware Evaluator-
elected machine learning model for the taxonomic feature in
uestion. For example, the model constructed by the SVM-binary
ethod has the best categorization performance for taxonomic fea-

ure Targeted Language, and its classification accuracy is 99.84%. The
erformance of a machine learning method is typically regulated
y a bundle of tunable parameters (e.g., the size of forest in GBDT,
he learning rate in SOM, and the kernel in SVM), and therefore,
t may vary along with changes in parameter values. In addition,
t is impractical to traverse the entire space formed by the combi-
ation of tunable parameters, which could be infinite; thus, there
ay not be a model that is always the winner under all possible

ettings. Hence, multiple models do appear in Column Model and
ccuracy. Detailed discussions on taxonomic features of Table 3 are
resented in forthcoming sections as column Section indicates.

. The inception of the malware life-cycle

In this section, we elaborate on the taxonomic features that
haracterize the behavior of malware during its Creation stage.

.1. Affected computing platforms

Just like any other application, malware materializes its ser-

ices with APIs provided by the OS. Should a specimen be able to
enetrate these APIs, it can then successfully encroach on many
ariants of the OS in question. For instance, script JS FEEBS.GJ is
apable of compromising six members of the Windows OS family
Platform Identifier (1:DOS, 2:95, 3:98, 4:ME, 5:NT, 6:XP, 7:2K, 8:2003)

Fig. 1. Classification on Affected Platform with stemming and stopword elimination.

including Win98 and Server 2003. To improve penetration, malware
attempts to adjust its attack strategy and pack a different set of
code depending on the targeted OS, leading to divergent behavior
across different platforms. In this respect, XML BADBUN.A installs
JavaScript and IRC scripts when the victims belong to the Windows
family while it pushes Python and Perl scripts to Linux distribu-
tions. Although a plethora of OSs operate in the Internet ecosystem,
opportunistic malware authors often aim at platforms with large
user bases or rich applications. Species targeting Linux, Unix, and
Macintosh are only occasionally observed. In contrast, Microsoft OSs
including DOS, Win95, Win98, ME, NT, XP, 2000, and 2003 (includ-
ing newer versions such as Vista and Win 7) make up the most
favorite targets. Hence, Malware Evaluator defines Affected Platform
as a core taxonomic feature in terms of OS and focuses on the
above eight Windows members; the latter are designated as the
categories with identifiers 1–8. We treat the Affected Platform fea-
ture as multi-labeled; JS FEEBS.GJ (of Table 1) clearly shows that
malware simultaneously penetrates multiple OSs.

We automatically construct the training data required for the
Affected Platform feature by extracting Trend Micro entries that have
information on the field System Affected. For instance, the worm
WORM SDBOT.APO (Table 1) may act as candidate for training data
of the categories Win2000 and XP. We then generate feature vectors
for entries in the training data through the tokenization process
and build the Token-based Learner model by using the multiclass-to-
binary reduction method of Section 3. In the process, we also enable
stemming and stopword removal. By categorizing species in the
Trend Micro repertoire with the above Token-based Learner model
which essentially consists of eight binary classifiers, we obtain the
malware distribution of Fig. 1.

Clearly, Win2000 and WinME have been the most popular tar-
gets while XP, NT, and Win98 also attract many assaults. In contrast,
only a few species manage to intrude Win2003 mainly due to its rel-
atively small user base. The sum population for categories Win2000
and WinME alone is obviously larger than the total number of enti-
ties in the Trend Micro encyclopedia (i.e., 340,246), indicating that
some malware strains indeed bombard multiple computing plat-
forms at the same time.

Fig. 2 depicts the categorization performance by the eight Token-
based Learner binary classifiers. The categorization accuracy of the
binary learning models ranges between 97.51% achieved by the
WinME learner to 100.00% attained by the DOS classifier. Clearly,

all binary classifiers deliver similar categorization precision. Their
recall and F1-measures, however, differ significantly; the Win2000
categorizer performs the worst with recall 85.25% and F1-measure
91.36%. The average classification accuracy for the eight binary

1658 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

Table 3
Taxonomic features, models, and their categorization accuracy.

Stage Feature Description Model and accuracy Section

Creation Affected Platform Vulnerable Operating systems (OSs) SVM-binaries (98.34) 4.1
Targeted Language Attacked Languages SVM-binaries (99.84) 4.2
File Type Types of files in malware SVM-binaries (98.83) 4.3

Penetration Attack Avenue Installation mechanisms to infect systems SVM (93.12), GBDT (98.63) 5.1
In the Wild Executables or source code publicly accessible GBDT (98.56), SVM (100.00) 5.2

Activation Damage Potential Expose confidentials, destroy integrity SVM-multiclass (99.94) 5.3
Destructiveness Damage file systems, stability, and productivity SVM-multiclass (99.66) 5.4
Carried Payload Malicious activities after invading victims SVM-binaries (96.65) 7.3

Discovery Message Compression Compressed files or network traffic SVM (98.84) 6.1
Information Encryption Cryptographic methods employed by malware SVM-multiclass (99.81) 7.4
Memory Resident Stay in main memory after execution SVM-multiclass (99.31) 7.4

tise to
tise to

c
F

f
w
f
a
f
e
r
b
t
i
M
T

4

b
w
s
f
c
i
f
t

F

Eradication Removal Difficulty Skill, tools, and exper
Containment Difficulty Skill, tools, and exper

lassifiers is 98.34%, meanwhile, the average precision, recall, and
1-measure are 98.95%, 89.38%, and 93.90%, respectively.

To investigate the impact on the classification performance of
eature spaces created with tokenization and n-gram processes,
e also build an Ngram-based Learner model that is trained on

eature vectors formed with n-grams (n = 3). We observe that
ll Token-based Learner binary classifiers consistently outper-
orm their counterparts in the Ngram-based Learner model. For
xample, the NT classifier in Token-based Learner achieves catego-
ization accuracy 97.73%; this is better than the 94.31% attained
y its Ngram-based Learner counterpart. The average classifica-
ion accuracy of 98.34% attained by the Token-based Learner model
s higher than the 95.98% of the Ngram-based Learner. Hence,
alware Evaluator uses the tokenization process along with the

oken-based Learner model as its default option.

.2. Multilingual systems targeted by malware

OSs and applications that make use of national languages often
ecome malware targets. Computing systems and components
ith localization features turned on frequently introduce language-

pecific security loopholes and so provide the required launch pads
or attacks. For instance, entry CVE-2008-0730 in the dictionary of

ommon vulnerabilities and exposures (CVEs) records loopholes in
nput methods for Korean, Thai, and Simplified/Traditional Chinese
or Sun Solaris10 that may grant unauthorized accesses. Similarly,
he vulnerability in the Japanese PHP Gallery Hosting described

0.85

0.90

0.95

1.00

1.05

0 1 2 3 4 5 6 7 8 9

M
ea

su
re

m
en

ts

Platform Identifier (1:DOS, 2:95, 3:98, 4:ME, 5:NT, 6:XP, 7:2K, 8:2003)

Categorization Performance on Affected Platform

Accuracy
Precision

Recall
F1 measure

ig. 2. Classification accuracy, precision, recall, and F1-measure for Affected Platform.
remove malware SVM (96.63), GBDT (98.24) 6.2
quarantine malware SOM (95.78), GBDT (97.05) 7.4

in CVE-2007-5733 may allow for the execution of arbitrary code
on affected systems. As a result, opportunistic malware authors
often create species that take advantage of language specific fea-
tures and therefore, they infect only a certain user population.
Malware Evaluator defines Targeted Language as a feature that not
only designates the language-specific malware behavior but also
helps determine the origin, geographical distribution, and infec-
tious species population; the exploitation of language specific
loopholes typically requires cultural background and knowledge,
implying a strong connection between malware creators and
regions where the exploited languages prevail.

The taxonomic feature Targeted Language is multi-labeled since
a specimen could simultaneously exploit multiple language-
specific features. To maximize return-on-investment, opportunis-
tic creators tend to attack languages with large populations.
However, it is not uncommon for languages spoken by smaller
groups to fall victim occasionally. The latter clearly indicates
how widespread malware species are. For instance, hosts using
Czech localization are targeted by file infector HELLWEEN, while
worm WORM LASTWORD.A and Trojan TROJ JIGA.A attack machines
localized in Bosnian and Vietnamese languages, respectively. To
collect ample training data for a robust learning model, we focus
on languages with larger populations as well as rich samples in
the Trend Micro encyclopedia, and select Chinese, English, Ger-
man, Japanese, Portuguese, and Spanish as the categories for the
Targeted Language feature; we assign numeric identifiers 1 to 6 to
the above languages in respective order.

We retrieve entries with information on field Language from
the Trend Micro encyclopedia to generate training data for fea-
ture Targeted Language. By using the multiclass-to-binary reduction
method and setting parameter Cb = 300, which delivers the best
trade-off between F1-measure and training time in our experi-
ments, we construct a learning model that consists of six binary
classifiers, each of which recognizes one category from the
Targeted Language feature. Fig. 3 depicts the malware distribution
among the different categories obtained by the constructed model.
Our main observation is that 79.34% of the species attack English-
based computing platforms, while the next frequently targeted
language, Chinese, attracts only 15.80% of assaults. Invasions into
OSs tailored to Japanese, Spanish, Germany, and Portuguese only
occur occasionally. The average classification accuracy achieved
by the six binary classifiers of the learning model is 99.84%, and
the average precision, recall, and F1-measure are at 99.68%, 99.11%,
and 99.39%, respectively, indicating that the categorization by the

model is by and large bias-free.

To evaluate the impact of parameter Cb on the categorization
performance, we construct a series of learning models by varying Cb
in the range of [50, . . ., 400] and derive their classification accuracy,

Z. Chen et al. / The Journal of Systems an

0

 50000

 100000

 150000

 200000

 250000

0 1 2 3 4 5 6 7

P
e

rc
e

n
ta

g
e

 o
f

M
a

lw
a

re
Classification on File Type

Training Data
Testing Data

Total

p
o
f
c
i
m
h
f
t
c
t

4

e
i
u
e
t
t
b
t
i

Language Identifier (1: CN, 2: EN, 3: DE, 4: JP, 5: PT, 6:ES)

Fig. 3. Malware distribution on feature Targeted Language.

recision, recall, and F1-measure shown in Fig. 4. The insensitivity
f the categorization accuracy to parameter Cb is evident as it per-
orms almost perfectly in the entire chosen Cb spectrum. On the
ontrary, recall and F1-measure can be improved significantly by
ncreasing parameter Cb from 50 to 100, however, the enhance-

ent is marginal beyond Cb > 100. As expected, a larger Cb imposes
eavier penalty on any training error committed by the model and

orces the latter to make fewer categorization mistakes to minimize
he objective function. Consequently, large Cb values deliver better
lassification performance at the cost of a smaller margin around
he separating hyperplane.

.3. File types used to encapsulate malware

To be effective once within compromised systems, malware
ncapsulates its code in one or more file formats that are compat-
ble with those of the targeted environment. A number of attacks
se scripting languages such as text-based JavaScript and Perl to
nable rapid development; scripts are essentially independent of
he underlying OS. Nevertheless, OS-specific file formats prevail as
hey help improve code efficiency and provide backward compati-

ility. In this respect, the executable and link format (ELF) is unique
o Linux, while dynamic linked library (DLL) objects are prevalent
n the Windows OS family. Obviously, a piece of malware becomes

0.70

0.80

0.90

1.00

1.10

1.20

0 50 100 150 200 250 300 350 400 450

M
e

a
su

re
m

e
n

ts

Parameter Cb

Classification Performance vs. Parameter Cb

Accuracy
Precision

Recall
F1-measure

Fig. 4. Classification performance on feature Targeted Language.
d Software 85 (2012) 1650–1672 1659

ineffective should it land on working environments incompatible
with its own file format(s). Malware Evaluator introduces the
File Type taxonomic feature to indicate frequent formats used by
malware; classes of the File Type include: BAT, DLL, DOC, DOS, EXE,
HTML, MACRO, PE, and SCRIPT; we assign them identifiers in the
range 1, . . ., 9 respectively. As it is common practice for malware
to pack a bunch of different type files together, this taxonomic
feature is multi-labeled. For instance, in the package of backdoor
BKDR BIFROSE.YK, file types EXE and PE co-exist.

The Trend Micro designated File Type field helps Malware Evaluator
in the creation of training data for the feature in discussion. For
instance, specimen JS FEEBS.GJ (Table 1) is collected into the set of
training data as its Detail section clearly indicates its file type to be
script. By activating stemming and stopword removal, we build a
learning model termed Stemming with the help of the multiclass-
to-binary reduction method. Using the Trend Micro repertoire, we
establish that the malware distribution has the following char-
acteristics: 79.95% of the species ship as PE files, while 68.29%
encapsulate themselves in the EXE format. In contrast, only a very
small portion of strains pack as DOC and BAT mainly due to their
direct human readability. By evaluating the categorization accuracy
of the binary classifiers for the Stemming model; we can observe
that the highest accuracy is attained by the DOS classifier while the
lowest by the PE learner.

To evaluate the impact word stemming and stopword-
elimination have on the classification performance, we build
two additional learning models: No-Stemming and No-Stemming-
Stopword. The respective names indicate how these two models
function. Our analysis reveals that most binary classifiers in the
No-Stemming outperform their Stemming counterparts. The average
classification accuracy of models for Stemming, No-Stemming and
No-Stemming-Stopword models stand at 98.83%, 98.98%, and 98.87%
respectively. The fact that the No-Stemming and No-Stemming-
Stopword models offer slightly higher classification accuracies than
Stemming demonstrates the overhead of the stemming process. In
the same manner, the slight deterioration in the categorization
accuracy by No-Stemming-Stopword if compared to No-Stemming
manifests the harmful impact of adding stopwords into the feature
space. The No-Stemming model generates a 36,621-dimensional
feature space which is notably larger than the 32,975 dimensions
of Stemming; No-Stemming-Stopword further enlarges the feature
space to contain 36,824 attributes as it treats stopwords as fea-
tures. By default, Malware Evaluator carries out word stemming and
stopword removal so that the size of the produced feature space
does not adversely affect the model training time.

5. Penetration and activation

By sowing its code across wide geographical regions and using
compromised systems to attack others, malware infects hosts in the
Internet with a domino effect. In this section, we identify taxonomic
features that play a major role during the Penetration & Activation
stage of malware life-cycle.

5.1. Propagation mechanisms

At first, a strain often infects a small set of hosts or seeds which
are then used as launching pads for creating epidemics. The channel
used to ship malicious code between hosts is known as the penetra-
tion mechanism. This mechanism is materialized through a set of
malware components – target selector, penetrator, and code trans-

porter – that coordinate actions among themselves. The selector
probes Internet hosts to discover new targets; as soon as a candi-
date is identified, the penetrator tries to gain an entry by means of
vulnerability exploitation or backdoors installed by other species.

1660 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

Table 4
Major penetration channels utilized by malware species.

ID Channel Description Sample keywords

1 Exploit Exploits loopholes such as buffer overflow exploit, vulnerability
2 Email/Attachment Embed in email bodies or attachments as links or files email attachment, spam
3 Network Share camouflage as shared files in trusted networks shared folder, network share
4 Peer-to-Peer Ship as shared files in P2P networks such as KaZaA peer-to-peer, Gnutella

t mes
es to i
d wit

O
m
b
n
m
t
h
f

f
a
e
o
d
(
w
m
t
a
i
r
F
t
s
a
e
J
u
t
2
a
t

5 Instant Messenger Spread via instan
6 Drive-by Download Hide in web pag
7 Dropped-by Malware bundle and sprea

nce the target is corrupted, the code transporter moves the entire
alware body into the victim. Malware may become ineffective in

ringing about epidemics should all potential propagation chan-
els be blocked. Thus, it is vital to be able to classify penetration
echanisms and so we introduce the Attack Avenue taxonomic fea-

ure. Our comprehensive analysis on species listed in Trend Micro
as led to the adoption of the main categories listed in Table 4 as

ar as this feature is concerned.
The Trend Micro encyclopedia does not define the Attack Avenue

eature and so, Malware Evaluator resorts to pattern matching to cre-
te the required training data. We search the Trend Micro malware
ncyclopedia for patterns specified in column Sample Keywords
f Table 4; we consider any entry that yields a match as can-
idate for training data. In this respect, entry WORM SDBOT.APO
Table 1) makes it into the training data as it matches the net-
ork share pattern. Feature Attack Avenue is multi-labeled as a
alware specimen can simultaneously deploy multiple installa-

ion mechanisms. Once training data are in place, we construct
feature space with all possible attributes and build the learn-

ng model Full-Feature with the help of the multiclass-to-binary
eduction method. Fig. 5 shows the malware categorization that
ull-Feature delivers. Email/attachments make up the prime pene-
ration channel for malware spread as more than 52.15% Trend Micro
pecies are embedded in Email messages as links, macros, or
ttached entities. By encapsulating themselves into web pages and
xploiting misconfigured Web-server hosts that use ActiveX and
ava Applets, approximately 13.00% of malware breeds can infect
nguarded systems; this is mostly achieved via drive-by downloads
hat automatically fetch contaminated web-content (Cova et al.,

010). Peer-to-peer and Instant Messaging (P2P/IM) applications
lso significantly contribute to the proliferation of malware. With
he exception of Email/attachments, all other penetration avenues

0

 50000

 100000

 150000

 200000

 250000

0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 M

al
w

ar
e

Attack Avenue Identifier (1:exploit, 2:email, 3:share, 4:p2p, 5:im ...)

Classification on Attack Avenue

Training Data
Testing Data

Total

Fig. 5. Malware distribution based on the Attack Avenue feature.
sengers such as AOL and MSN internet relay chat, Skype
nfect visitors’ systems drive-by, malicious web site
h other software package dropped by malware

appear to be equally attractive to species; this is an indicator that
malware seizes every possible opportunity to infect the Internet
ecosystem.

To analyze the effect of the feature space sizes on the classifi-
cation performance, we build three additional learners based on
attribute sets that contain top-50%, top-60%, and top-70%, respec-
tively, of the features with the highest information gains. Fig. 6
shows the performance of the newly trained models along with that
of the Full Feature model. Overall, differences in classification accu-
racy, precision, recall, and F1-measure for the four models seem to
be insignificant although the model based on top-70% of features
offers slightly better classification precision. It is also interesting to
observe that the learner with the full feature set actually slightly
deteriorates in its performance compared to the model built on
top-70% attributes, indicating that attributes with low information
gains are in fact noise and interfere with the learning capability of
the generated model. In comparison, with categorization accuracy
98.63%, the GBDT model built on the same training data delivers
much better classification performance (i.e., Table 3).

5.2. In the wild

When a malicious specimen is either active or its code is encoun-
tered in real environments, Trend Micro marks it as found In the
Wild; otherwise, the specimen is considered to be “at the zoo” and
unavailable to the public. For instance, as both WORM SDBOT.APO
and JS FEEBS.GJ (Table 1) are observed in the real world and hence
are found in the wild. To cause Internet epidemics, a specimen
needs to be activated and unleashed in the wild. In this respect,

Malware Evaluator uses taxonomic feature In the Wild, which com-
prises two exclusive categories Yes and No, to characterize the
malware availability. By collecting training data for the In the Wild

86.00

88.00

90.00

92.00

94.00

96.00

0 1 2 3 4 5

M
ea

su
re

m
en

ts

Model Identifier (1:50%, 2:60%, 3:70%, 4:100%)

Categorization Performance on Attack Avenue

Accuracy
Precision

Recall
F1 measure

Fig. 6. Classification performance on Attack Avenue feature.

Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672 1661

f
g

1

2

3

4

n
d
m
4
t
b
d
i
s

h
i
w
n
t
i
b
a
e
a
O
m
i
a
m
l
t
t

Fig. 7. SOM U-matrix for feature In the Wild.

eature from Trend Micro, we generate a SOM map with a 10 × 10
rid of hexagonal-shaped neurons using the following procedure:

. Initialization: Weight vectors of neurons, which have the same
dimensions as feature vectors of samples in training data, are
initialized with random values.

. Training: By using neighborhood function Bubble and learning
rate ˛ = 0.05, weight vectors of neurons are updated according
to training data with competitive learning techniques described
in Section 3.4.

. Refinement: The map is further refined by repeating the Training
step with a fine-grained learning rate ˛ = 0.02.

. Calibration: The best matched unit (BMU) for each sample in the
training data is identified. The BMU inherits the sample’s label
as well.

By representing each node with its average distance to its closest
eighbors and further mapping it to gray scale in [0, 100] with the
arkest color 0 representing the longest distance, we obtain the U-
atrix for the SOM depicted in Fig. 7. Neurons labeled Yes occupy

3 out of 100 nodes and are mainly located at the middle right of
he map, while the 31 nodes for category No scatter around the
oarders along with unlabeled cells. The No-labeled nodes have
arker colors compared to those of the Yes class implying that nodes

n category Yes look more similar and homogeneous due to their
maller average distances among themselves.

In the Trend Micro encyclopedia, the specimen family JS FEEBS
as 271 members, each of which has its own unique name consist-

ng of three parts: malware type, family name, and suffix. The mal-
are type is typically an acronym for the genre described in column

ame of Table 2. The family name identifies a group of specimens
hat share the same code base and therefore have similar character-
stics and behavior. Members in the same family are differentiated
y suffixes that are assigned in alphabetical or numerical order
ccording to their discovery date. Therefore, the JavaScript-
ncapsulated strains JS FEEBS.GI and JS FEEBS.GK are the immediate
scendant and descendant of the JS FEEBS.GJ instance in its family.
bviously, the chronological relationship of species in the same
alware family can be obtained by sorting their names in ascend-

ng alphabetical order. With the sorted list of species in a family
t hand, we can identify the best matching unit (BMU) in a SOM

ap for each family member, and connect BMUs in the chrono-

ogical orders of their corresponding specimens to obtain a curve
ermed “genealogical trajectory”, which outlines the evolution of
he malware family in question with respect to a specified feature.
Fig. 8. Genealogical trajectory of In the Wild.

Fig. 8 shows the genealogical trajectory of the family JS FEEBS
in reference to the In the Wild feature. The BMUs of the 271 fam-
ily members only fill 12 out of 100 SOM neurons, indicating that
many species in fact select the same cells as their BMUs. By des-
ignating the upper left corner of the SOM as the origin and upper
edge the x axis while left edge the y axis, we can derive that 171
specimens fall into the cell at (9, 9), while 42 are trapped into node
(7, 6). In addition, only two occupied nodes at (3, 0) and (9, 9) are
No-labeled while the remaining belong to category Yes. BMUs for
the oldest members in the JS FEEBS family –JS FEEBS-1, JS FEEBS.A,
and JS FEEBS.D – are located at (7, 6), (5, 4), and (9, 9), respectively.
Meanwhile, cells (7, 6) and (5, 4) are labeled as Yes whereas node
(9, 9) is in class No, indicating that some variants are not success-
fully released in real-world environments. Furthermore, specimen
JS FEEBS.GJ outlined in Table 1 chooses neuron (8, 5) as its BMU,
while both of its immediate ascendant and descendant JS FEEBS.GI
and JS FEEBS.GK are represented by BMU at (9, 9), resulting in line
segments from (9, 9) to (8, 5) and (8, 5) to (9, 9). Therefore, species in
the JS FEEBS family appear to keep switching between in-the-wild
and at-the-zoo, manifesting its meandering evolution route.

With the same training data, we also build a number of clas-
sifiers based on the multiclass-optimization method by varying
Cm in the range of [101, 108]; Cm essentially controls the trade-off
between training errors and classification accuracy. Fig. 9 depicts
the relationship between log (Cm) and categorization performance.
The classification accuracy starts off at 96.92% when Cm = 100 and
steadily improves while increasing log (Cm); it reaches 99.33% when
log (Cm) ≥ 6. In a way reminiscent of the Cb parameter of the binary
SVMs, Cm trades training errors for margins of separating hyper-
planes: a large Cm imposes heavy punishment on training errors
committed by SVM models and compels the latter to reduce train-
ing errors, leading to a higher classification accuracy.

Based on the same set of training data, we also construct a series
of classifiers by using Gradient Boosting Decision Tree (GBDT) algo-
rithm. Every GBDT classifier comprises a set of n decision trees, and
each tree has 4 leaf nodes. By varying n in the range of [2, 10], we
obtain a sequence of GBDT models, and evaluate their categoriza-
tion performance, which is presented in Fig. 10. With only as few
trees and leaf nodes as 2 and 4, a GBDT model is able to achieve
quite remarkable classification performance. Compared to models
created by SVM method, all GBDT classifiers behave much better

in terms of classification accuracy, precision, recall, and F1 mea-
sure if parameter Cm below 105 is used in SVM model generation.
Unfortunately, the performance of GBDT models only improves

1662 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

95.00

96.00

97.00

98.00

99.00

100.00

101.00

102.00

 0 1 2 3 4 5 6 7 8

M
e
a
su

re
m

e
n
ts

Classification Performance vs. Parameter Cm

Accuracy
Precision

Recall
F1-measure

m
d

5

c
a
a
a
m
t
s
i
u
c
c
D

1

2

Parameter Cm

Fig. 9. Classification performance by SVM on In the Wild.

arginally by increasing the number of trees or leaf nodes due to
ata overfitting issue.

.3. Damage potential

Certain species are specifically created to delete or corrupt files,
ausing direct damage to the integrity of victim hosts. Others such
s in the Backdoor and Trojan families work mostly in “background”
nd gradually consume both CPU-cycles and bandwidth eventually
ffecting the victim’s productivity. To hide its malicious activities,
alware typically alters configuration files, lowers security set-

ings, or changes the behavior of utilities on victim systems. Some
pecies even aggressively terminate security applications includ-
ng anti-virus and firewall services so that attacks go completely
ndetected. We therefore propose the Damage Potential feature to
haracterize the inherent malware capability of compromising the
onfidentiality and integrity of a system. The uni-labeled feature
amage Potential is made up of following three categories:

. High: species corrupt system data or files beyond recovery.
Furthermore, members of this category could gather sensitive

information or generate heavy network activities.

. Medium: data and files contaminated by strains in this category
can only be recovered with special utilities and tools. Breeds

97.00

97.50

98.00

98.50

99.00

99.50

100.00

 2 3 4 5 6 7 8 9 10

M
ea

su
re

m
en

ts

Number of trees

Classification Performance of Decision Tree

Accuracy
Precision

Recall
F1-measure

Fig. 10. Classification performance by GBDT on In the Wild.
Fig. 11. The U-matrix for feature Damage Potential.

may automatically execute arbitrary commands, create massive
spams and terminate security applications.

3. Low: malware only modifies non-mission-critical data/files and
modifications can be readily undone without resorting to spe-
cialized tools. Other side-effects can be reversed by simply
restarting the system.

We automatically gather training data for the Damage Potential
feature from Trend Micro entries that maintain information in
the corresponding field. The SVM learning model built with the
multiclass-optimization method helps us understand the malware
distribution on feature in discussion: 70.48% malware strains have
low damage potential, rendering them security noise in the ecosys-
tem. On the contrary, about 14.89% and 14.63% of the species have
medium and high damage potential to the cyberspace respectively;
they both call for effective mechanisms to prevent from break-
ing out. Fig. 11 shows the U-matrix for the SOM that consists of
a 10 × 10 grid of neurons and is created based on the same train-
ing data. Apparently, neurons with the same labels tend to cluster
together. Here, nodes for classes Low and Medium mainly reside at
the left and right of the SOM, while the narrow gap between them
belongs to category High. The relatively dark color for Low-occupied
region reveals that the average distance between its neurons are
larger than those for classes Medium and High. The continuous
estates for category Medium point out that its members share sim-
ilar features and are so more homogeneous compared to the other
two classes.

In the construction process of the SOM map, weight vectors of
neurons are adjusted according to input samples so that character-
istics of the latter could be preserved in certain cells of the map. It
is therefore reasonable to expect that a dominant attribute in the
feature space should still remain its significance in the SOM lattice
with high probability. In the proposed framework, each attribute
of a weight vector actually represents a token that appears in the
Trend Micro repertoire. We define the plane map for the SOM’s
ith attribute as the lattice formed by the ith component in the
weight vector of every neuron. To determine dominant attributes
for Damage Potential, we thoroughly analyze its plane maps and
evaluate the contribution of each token. Fig. 12 presents the plane
map for token exploit, which is a major contributor to the feature
in question. The figure is generated by mapping attribute weights

into gray levels in [0, 1] with 0 the darkest and 1 the lightest. A
cell assumes a gray value of 0.5 if its converted gray level is less
than 0.5 to improve the readability. The observation that token
exploit assumes extremely large values for neurons of class High

Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672 1663

r
t
v
g
0
f
d

5

r
h
c
t
d
s
d
i
f
W
t
J

h
S
r
b
(
l
s
S
t
a
R
S

o
r
w
v
t
O
G
4

75.00

80.00

85.00

90.00

95.00

100.00

 0 1 2 3 4 5

M
e
a
su

re
m

e
n
ts

Model Identifier (1:SVM-50, 2:SVM-300, SOM-Hexa, 3:SOM-Rect)

Categorization Performance on Destructiveness

Accuracy
Precision

Recall
F1 measure

Fig. 13. Classification performance on Destructiveness by SVM and SOM.

80.00

82.00

84.00

86.00

88.00

 10 20 30 40 50 60 70 80 90

M
e
a
su

re
m

e
n
ts

Number of leaves

Performance of Decision Tree with Varying Leaves

Accuracy
Precision

Recall
F1-measure
Fig. 12. Plane map of token exploit on Damage Potential.

enders the token a significant distinguisher for the feature. In addi-
ion, the strong clique formed by the 7 nodes that have highest
alues for token exploit is centered at cell (2, 3) and has average
ray value 0.83, much higher than the average of the entire plane –
.10. Therefore, token exploit is considered the dominant attributes
or the Damage Potential feature and can act as a strong category
ifferentiator.

.4. Destructiveness

A piece of malware is deemed destructive if it either cor-
upts a victim’s file system or even worse formats the entire
ard drive. Malware is also destructive should it excessively
onsume resources and affect the availability of the victim sys-
em. Through compromised systems, malware can also create
istributed denial of service (DDoS) attacks typically using inten-
ive network traffic equally affecting availability. Malware Evaluator
efines the Destructiveness feature to capture the effect malware

mposes on the system availability. The uni-labeled Destructiveness
eature consists of two categories: Yes and No. For instance, worm

ORM SDBOT.APO and script JS FEEBS.GJ (Table 1) are destruc-
ive; on the contrary, their ascendants WORM SDBOT.APL and
S FEEBS.GH are examples for the No category.

We create training data by retrieving Trend Micro entries that
ave information on the Destructiveness field. We then construct
OM-Hexa, a SOM map whose neurons are in hexagonal shape. The
esulting SOM map can act as a classifier to label unseen samples
y letting the input sample inherit the label of its best matched unit
BMU). By changing the neuron lattice from hexagonal to rectangu-
ar shape, we obtain another SOM map termed SOM-Rect. With the
ame training data, we also build two SVM learning models named
VM-50 and SVM-300 with parameter Cb set to 50 and 300 respec-
ively. Fig. 13 presents the categorization performance of SVM-50
nd SVM-300 along with those attained by SOM-Hexa and SOM-
ect. Clearly, model SOM-Hexa outperforms SOM-Rect, but models
VM-50 and SVM-300 dramatically exceed their SOM counterparts.

With the same training data at hand, we also construct a group
f GBDT models that have the same settings including learning
ate and number of leaf nodes but differ in the number of trees
hich vary in the range of [10, 200]. Resorting to 10-fold cross-

alidation method, we measure the classification performance of

he resulting GBDT models and compare it with that of SVM models.
ur experiments indicate that the categorization measurements of
BDT models are quite similar after the number of trees increases to
0. More specifically, the classification accuracy is around 84.65%,
Fig. 14. Impact by number of leaves on classification performance for
Destructiveness.

while precision and recall are about 83.80% and 83.02%, respec-
tively. By comparing the performance of GBDT models with that of
SVM and SOM classifiers shown in Fig. 13, we can observe that GBDT
outperforms SOM, but is inferior to SVM. To further investigate the
impact on the categorization performance by the number of leaf
nodes in the GBDT models, we train a sequence of GBDT models
by fixing the number of trees to be 200 but vary their numbers of
leaf nodes in [10, 90]. The classification performance of the result-
ing GBDT models is presented in Fig. 14. The best performance is
achieved when the GBDT model consists of 60 leaf nodes in each of
its 200 trees. In contrast, the worst performer is the GBDT model
that has only 10 leaf nodes in its trees. It is also obvious from the
figure that the performance of GBDT models is relatively insensi-
tive to the number of leaf nodes when the latter is beyond 30. In
comparison, the model built by SVM-multiclass method based on
the same training data delivers the best classification performance
with accuracy of 99.66% (shown in Table 3).

6. Discovery and eradication
The specimen life expectancy is mostly determined by the
time spent without being detected. To avoid discovery, malware
attempts to maintain control over victims for as long as possible by

1664 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

50.00

60.00

70.00

80.00

90.00

100.00

110.00

 0 1 2 3 4 5 6 7 8

M
ea

su
re

m
en

ts

Kernel Id (1: linear, 2:poly-1, 3:poly-2, 4:rbf-1, 5:rbf-2, 6:sigmoid-1, 7:sigmoid-2)

Performance on File Compression by Various Kernels

Accuracy
Precision

Recall
F1 measure

F

t
a
a
u
r
D

6

r
T
t
c
t
e
e
p
t
n
b
e
p
p

a
W
p
r
b
p
p
r

d
i
k

1

2

 0

 30000

 60000

 90000

 120000

 150000

 180000

 210000

 240000

 270000

 0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 M

al
w

ar
e

Population on File Compression Type

Training Data
Testing Data

Total

tise, and little or no expertise is necessary for breeds in the last
ig. 15. Impact on performance for feature Compression Type by different kernels.

ypically employing cryptographic techniques to scramble its data
nd communication channels. Malware also tries to defeat firewalls
nd related security applications by compressing its executables
sing a variety of file packing methods. In this section, we elabo-
ate on the features that characterize malware behavior during its
iscovery & Eradication stage.

.1. File compression

Malware routinely applies compression on its executables to
educe both its storage footprint and network transmission times.
o this way, malware obfuscates its content and original digi-
al structure diminishing its exposure to scrutiny. In general, file
ompression may help deter reverse engineering and elude detec-
ion by pattern-based anti-malware devices. To achieve the same
ffect as uncompressed binaries, malware usually transforms its
xecutable into a self-extracting archive that consists of the com-
ressed file and a decompression engine to unpack the file and
hen transfer control to it on the fly. In Malware Evaluator, we desig-
ate the File Compression feature to help characterize the malware
ehavior on how packing executables occurs. As it is impractical to
numerate all potential compression algorithms especially when
roprietary packing mechanisms are involved, we focus on the most
opular compression methods listed in Table 5.

The training data for the multi-labeled File Compression feature
re constructed from the Trend Micro encyclopedia. For instance,
ORM SDBOT.APO worm (Table 1) compacts its files in the Mor-

hine format before shipping. By using the multiclass-to-binary
eduction method with parameter Cb = 500 and a linear kernel, we
uild a SVM model termed Linear, and present its categorization
erformance in Fig. 15. Categorization accuracy is at 97.13%, and its
recision, recall, and F1-measure are at 97.53%, 71.08%, and 81.81%,
espectively.

To evaluate the impact on categorization performance under
ifferent SVM kernel functions, we train learning models with var-

ous kernels whose performance is shown in Fig. 15. The used
ernels are:

. Polynomial kernels in the form of (xi · xj + 1)d with variable expo-
nent d and for brevity, we only describe results with d = 1 and 2

(termed poly-1 and poly-2 in Fig. 15).

. Radial basis functions (RBFs) expressed as exp(−�‖xi − xj‖2) with
various �; Fig. 15 only shows the results for � = 1and2.
Compression Id (1:Aspack, 2:AsProtect, 3:FSG, 4:MEW, 5:Morphine, 6:NSPack, ...)

Fig. 16. Malware distribution in the categories of Compression Type with RBF kernel.

3. Sigmoid functions in the format of tanh(xi · xj + c) with tunable
parameter c and the results in Fig. 15 are for c = 0.5 and 1 (denoted
as sigmoid-1 and sigmoid-2).

Fig. 15 depicts that sigmoid functions deliver the worst cate-
gorization performance, while RBFs outperform other kernel types
especially in terms of recall and F1-measures. Compared to linear
kernels, the construction of learning models with RBFs demands
many more CPU-cycles, therefore, Malware Evaluator employs lin-
ear kernel functions as its default option. The malware distribution
for feature File Compression generated by the learner RBF-1 with
Cb = 500 is portrayed in Fig. 16. Evidently, 64.95% species resort
to UPX compression method, while 49.09% and 24.36% employ
PECompact and FSG, respectively, rendering them the most popular
packing methods. In comparison, compression approaches Upack
and Upolyx are much less frequently used.

6.2. Removal difficulty

Although it is important to identify implanted malware, it is
even more critical to quarantine and eventually eradicate the
detected artifacts completely. To extend its life span even after
being detected, a specimen may resort to a variety of methods
to resist containment and removal. By contaminating file sys-
tems and registry databases with multiple files and keys, malware
could permeate deeply into infected machines essentially increas-
ing the difficulty of being completely removed. Once about to be
removed, malware often resists by destroying host applications. To
completely remove malware from infected machines, specimen-
installed files should be expunged while corrupt data have to be
sanitized or recovered. The removal process also involves dele-
tion of registry entries created by malware and termination of
processes associated with the specimen in question. The purging
of various specimen types calls for diverse skills, utilities as well
as coordination among geographically distributed sites as far as
network-aware species are concerned.

The Malware Evaluator defines the Removal Difficulty feature to
characterize both skills and technologies required for malware
elimination. We designate three levels Difficult, Moderate, and Easy;
the Difficult class is reserved for species that demand diverse experi-
ence and specialized techniques for malware elimination, while the
removal of strains in class Moderate involves some kind of exper-
Easy category. We use the Symantec security advisory to collect
training data for the Removal Difficulty feature as such information
is unavailable in Trend Micro. For instance, W32.Virut.B worm is easy

Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672 1665

Table 5
File compression methods by malware of Trend Micro encyclopedia.

ID Compression Description

1 Aspack A Win32 executable compressor capable of reducing file size and resisting reverse engineering
2 AsProtect A tool designed to compress and encrypt applications and counteract reverse engineering
3 FSG A file compressor especially suitable for small EXE or ASM files
4 MEW A EXE-packer based on LZMA and ApPack methods and having a good compression ratio
5 Morphine A simple packer/cryptor that is usually used to hide malicious code
6 NSPack an executable compressor for exe, dll, ocx, and scr files, also pack 64-bit executables
7 PECompact A compressor for code, data, and import/export table with proprietary compression algorithm

Packe
file p

ler tha

t
i
a
f
o
d
s
u
t
s

6

e
o
m
b
i
u
o
o
b
a
A
c
I
t
b
{
}
o

f
t
t
t
a
r
t
h
a
p
n
e
s
u
i
F
f
t
f
a

8 UPX Ultimate
9 Upack Upack is a
10 Upolyx A scramb

o be removed from infected systems; in contrast, strain W32.Feebs
s rather difficult to eradicate completely. With the training data
t hand, we build a SVM learning model for the Removal Difficulty
eature using the multiclass-optimization reduction method, and
bserve that among 340,246 species in the Trend Micro encyclope-
ia, 248,599 (about 73.06%) can be easily removed from infected
ystems. In contrast, 26.90% malware strains require advanced
tilities and complex skill for their complete elimination, some fur-
her demand experienced security experts with customized and
pecially-crafted tools for their removal.

.3. Categorization performance of combined models

Thus far, the machine learned models are built individually for
ach taxonomic feature; similarly, the constructed models for a tax-
nomic feature are verified independently of other features. It is
ore efficient, however, if models of all taxonomic features are

uilt based on the same set of training data and their performance
s evaluated using the same set of validation data. One benefit of
sing the same training data set and validation data set for all tax-
nomic features is that the categorization performance for models
f taxonomic features as a whole (denoted as combined model) can
e easily determined. Suppose that, for instance, separate models
re constructed for taxonomic features in the set {Damage Potential,
ttack Avenue }, and the resulting two models are used together to
lassify a sample whose set of true tags is {High, {Exploit, Email} }.
f the set of labels given by the combined model is {High, {Exploit} },
hen the combined model mislabels the sample. Similarly, the com-
ined model still misbehaves if the assigned set of labels is {High,
Email} }, {High, {Exploit, Email, P2P} }, or {Low, {Exploit, Email}
. Thus, the categorization performance of the combined model can
nly be as good as the weakest classifier in the combined model.

Although the idea of building and verifying models of taxonomic
eatures on a single set of training data and a single set of valida-
ion data is tempting, it is difficult to implement in practice. First,
o make such a model-building method feasible, each data point in
he training data set and validation data set must have values on
ll taxonomic features. Unfortunately, such a constraint drastically
educes the number of candidates for training data and valida-
ion data. For example, in Trend Micro, less than 13% of its entries
ave values for taxonomic features Encryption or Destructiveness,
nd less than 11% of the entries have values for both features. The
ercentage of entries with information on more than three taxo-
omic features could be much lower, making it unlikely to gather
nough training data for the combined model. Second, even if a
et of training data could be successfully constructed, it is highly
nlikely that the distribution of values for every taxonomic feature

n the training data set is similar to that in the entire repertoire.
inally, the data of the training set may overfit certain taxonomic

eatures, but may be under-populated for others; this thus, affects
he categorization performance of all models as a whole. There-
ore, it is unrealistic to train models for all taxonomic features with
universal set of training data.
r for eXecutables is an open-source packer performing in-place decompression
acker based on LZMA compression
t transfers UPX packed files through its polymorphic decryption engine

Model validation faces the same dilemma as training data col-
lection as it is extremely difficult to obtain a set of adequate data to
fit all taxonomic features. As a compromise, we obtain a picture of
the classification performance of the combined model carried out
the following methodology:

• we build a model for each individual taxonomic feature indepen-
dently,

• we collect a set of validation data such that each data point in the
set has tags for all taxonomic features,

• we use the collected set of validation data to measure the cate-
gorization performance of the combined model.

We apply the above procedure to evaluate the combined model
formed by taxonomic features in stages Penetration and Activation
listed in Table 3. The average classification accuracy of the five
models in the set stands at 98.98% while the classification accu-
racy of the combined model derived by the afore procedure is at
95.45%. Clearly, the combined model performs slightly worse than
the weakest classifier in the set of models, which has categorization
accuracy 96.65%, but much worse than the average accuracy deliv-
ered by the models. In the same manner, the average classification
accuracy of models for all taxonomic features depicted in Table 3
is 98.86%, while the classification accuracy of the combined model
consisting of all models is 91.54%, indicating that the performance
of the combined model deteriorates by about 7.32% compared to
the average performance of the models.

7. Malware risks and trends

Malware Evaluator not only categorizes species with respect to
a variety of taxonomic features but also helps evaluate threats
and shed light on malware evolution. In this section, we first
identify and categorize an array of evasive techniques used by
species to resist eradication. We then carry out summarization
on malware characteristics along the File Size and Discovery Date
dimensions to reveal trends about malware footprints and prop-
agation. We also conduct malware classification according to
Attack Avenue, Carried Payload, and Discovery Date features to better
understand how species tend to attack targets. Finally, we analyze
the risks imposed by malware.

7.1. Enhanced malware evasive capabilities

Anti-malware products typically identify species by search-
ing files or network traffic for specific telltale patterns termed
signatures. To derive such signatures, experts often analyze mal-
ware code and trace its behavior through reverse engineering,

debugging, and disassembling. Patterns, however, can be read-
ily changed by malware creators with the help of encryption,
polymorphism, and metamorphism (Leder et al., 2009). Malware
could also integrate anti-debugging and anti-reverse-engineering

1 ms an

t
a
h
e
t

•

•

•

•

e
i
o
y
t
2
o
r
a
2
t
m
m
t

/
s
w
h
s
t
a
D
a
i
T
g
p
o

7

i
i
t
h
f

we can observe that about half of strains in Backdoor and Tro-
jan are footprint-compact. For the Infector and Worm classes the
number of footprint-compact breeds is even higher at 78.72% and
82.87% respectively. Obviously, the majority of species manifest

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

A
cc

u
m

u
la

te
d
 D

is
tr

ib
u
tio

n

Distributions of File Sizes for Malware Types

Backdoor
Infector
Trojan

VBScript
Worm
666 Z. Chen et al. / The Journal of Syste

echniques rendering its code very challenging to dissect and
nalyze. Malware Evaluator defines the Concealment feature that
elps characterize malware behavior on how it tries to hide its
xistence and conceal its spurious activities. The feature contains
he following categories:

Stealth: Stealth malware deliberately attempts to conceal changes
it manages to accomplish on victim systems. Various stealthy
techniques exist to hide alterations in files, processes, registry
settings, and activity traces. For instance, a strain may intercept
and modify system calls to remove its appearance from lists of
files or processes, and “restore” original sizes on infected files.
Polymorphism/Metamorphism: A polymorphic strain automati-
cally morphs its code into different mutant versions without
changing underlying functions when clones are generated. Meta-
morphism not only dynamically changes code sequences, but also
constantly modifies functionalities.
Armor: Strains of this class integrate anti-debugging and anti-
reversed-engineering techniques into their code to slow down
or even prevent altogether the analysis of their functions and
behavior conducted by experts through disassembly, traces, and
sand-boxing.
Obfuscation: Members of this category conceal their presence in
infected systems by a variety of obfuscation methods including
misleading names for their files, creation of hidden folders, and
randomized file names or communication ports used.

Through pattern searching in the text body of the Trend Micro
ntities, we construct training data for feature Concealment, build
ts respective classifier, and then build a malware hierarchy based
n taxonomic features Concealment and Discovery Date. The anal-
sis on the hierarchy points out that, after its first peak in 2000,
he Stealth category appears to steadily decline to a valley around
006 and then re-gains momentum. Similarly, obfuscation meth-
ds are frequently employed and the population of class Obfuscation
each its peak in 2006. In comparison, the use of anti-debugging and
nti-reverse-engineering techniques only becomes significant in
008–2009, indicating increased effectiveness in their fight against
he anti-malware community. It is worth observing that poly-
orphism and metamorphism fail to become major techniques for
alware concealment mainly due to their design and implemen-

ation complexity.
Encryption techniques are not only critical for code poly-

metamorphism, but also essential for data and network traffic
crambling. Multiple layers of encryption are also used for mal-
are to further complicate its identification. Although encryption
elps species evade detection by anti-malware products, it does
o at the cost of code complexity and degraded performance in
erms of penetration rate and execution speed. The malware hier-
rchy with respect to taxonomic features Information Encryption and
iscovery Date indicates that the majority of species actually prop-
gate in plaintext. This is indicative of the fact that performance
s still the predominant design criterion in malware development.
he percentage of strains created each year that employ crypto-
raphic methods is at the level of approximately 10% over the
ast decade. This implies that encryption still remains an effective
ption in eluding detection.

.2. Use of compact malware footprints

The size of specimen footprint characterized by feature File Size
n Malware Evaluator clearly affects both the malware functional-

ty and penetration speed. For a specimen entering victim systems
hrough bundling with other software, its transportation to infected
osts inevitably slows down if a large code footprint is required. The

ootmark is also constrained when it penetrates targets by taking
d Software 85 (2012) 1650–1672

advantage of security vulnerabilities such as buffer overflows as the
exploitation can only be successful if the malicious code is within
a certain range of sizes. A sizable malware also requires large stor-
age space in the compromised systems leaving a visible trace that
facilitates its detection. Overall, specimen authors try to optimize
their artifacts so that a trade-off between storage consumption and
malware functionality can be achieved.

The mutant behavior and customized functionalities of malware
complicate the definition of the File Size feature. First, malware
could tailor its footprint according to dynamics in affected sys-
tems including OSs present and network bandwidth availability.
Second, malware is capable of transferring files in an amortized
fashion so that a piece of stub code is initially installed which
later downloads the rest of the code on demand. Periodic self-
updates also fluctuate the malware size during its life-cycle. Finally,
it is common for strains to compress their files to enable efficient
transportation and storage. For instance, the WORM SDBOT.AAB
has a memory footprint of 218,624 Bytes when compressed but
unfolds to 2,060,288 Bytes once unpacked. In Malware Evaluator,
we represent a specimen with its smallest uncompressed
footprint, should it manifest diversified behavior in its sizes
over time.

For the File Size feature, we specify the following seven cate-
gories: 5, 25, 50, 100, 300, 800 and >800 in KBytes. We construct
training data by extracting Trend Micro entries that have infor-
mation in the Size of Malware field and converse the respective
sizes into the above seven buckets. For example, the footprint of
37,888 Bytes for WORM SDBOT.APO makes it a member of the 50
bucket. We then build an SVM model for File Size based on the
derived training data. The feature File Size and its malware catego-
rization help us investigate the relationship between species genre
and storage footprint. To this end, we classify malware accord-
ing to feature Malware Type and then categorize each group with
respect to feature File Size, and present portion of classification
results in Fig. 17. The cumulative distributions for Backdoor and
Trojan demonstrate strong similarity, that is, 47.40% and 50.63%
of their members have memory footprints of up to 100 KBytes.
The Infector and Worm categories also demonstrate similar accu-
mulated distributions. By considering a breed to have a compact
footprint when its memory consumption is less than 100 KBytes,
0.0000
 0 50 100 150 200 250 300

File Size (KBytes)

Fig. 17. Cumulative malware distribution on Malware Type and File Size.

Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672 1667

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

 0 50 100 150 200 250 300

A
cc

um
ul

at
ed

 D
is

tr
ib

ut
io

n
Trending on Malware File Size

2005
2006
2007
2008
2009

t
O
g
c
f

t
D
r
r
8
2
b
t
t
c
9
3
d
3

7

l
i
t
s
m
t
i
m
p
l
a
m
t

a
g
m
a
t
3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

 0 1 2 3 4 5 6 7 8 9 10

A
cc

um
ul

at
ed

 D
is

tr
ib

ut
io

n

Number of Payloads

Trending on Number of Payloads Carried by Malware

2001
2003
2005
2007
2009
File Size (KBytes)

Fig. 18. Accumulated malware distribution on Discovery Date and File Size.

iny footprints to attain widespread effect through light payloads.
n the other hand, some strains in Backdoor and Trojan cate-
ories typically attempt to reside permanently on victim systems
alling for a much larger set of payloads and necessitate heavy
ootprints.

To obtain a better insight into the temporal trend with regards
o malware footprint, we classify malware using the File Size and
iscovery Date features. Fig. 18 shows that species tend to have

educed storage footprints chronologically: only 3.39% of species
equire storage less than 5 KBytes in 2006. This number becomes
.33% in 2007 and jumps up to 12.91% and 17.89%, respectively for
008 and 2009. Similarly, about 52.51% of the malware population
orn in 2006 are footprint-compact, while 77.73% and 71.43% of
he species discovered in 2007 and 2009 are footprint-tight, fur-
her confirming the trend for reduced footprints. Malware storage
onsumption distributions for 2008 and 2009 are heavy-tailed as
.55% and 10.27% of their members fall outside the range of [0,
00] KBytes. In contrast, only 3.35%, 0.35%, and 1.00% of species
iscovered in 2005, 2006, and 2007 consume storage larger than
00 KBytes.

.3. Diversified attack avenues and multiple payloads

Malware typically carries a variety of payloads including those
isted in Column payload of Table 6. Here, the categorization regard-
ng the Carried Payload and Discovery Date features demonstrates
hat payloads do evolve over time. The majority of the 2000-born
pecies is designed to affect the stability of victims. In 2006, infor-
ation theft becomes a popular payload and file-download was

he most favorite activity in 2009. By sorting categories accord-
ng to Carried Payload on a yearly basis, we obtain the top three

ost frequently employed payloads. In 2000, the top three types of
ayload were System Instability, File Manipulation, and File Down-

oad; in 2005, the top three were File Manipulation, Integrity Impact,
nd Process Termination. Evidently, it is difficult to find out a com-
on payload that appears in the top-three payloads throughout

he years.
Table 6 also shows that payloads Message Display, Proxy Service,

nd Command Execution become “out of fashion” as they typically
enerate visible effects revealing the very existence of the speci-

ens. In contrast, payloads File Manipulation, Information Leakage,

nd File Download are heavily utilized. For instance, about 20.29% of
he 2007-born species carry payload of File Download; this becomes
2.21% and 29.38%, respectively, for 2008 and 2009. It is worth
Fig. 19. Accumulated distribution of malware with respect to number of payloads.

pointing out that the Security Degradation payload fails to become a
lethal weapon in malware’s arsenal. Obviously, improved detection
capabilities of anti-malware products weaken the effectiveness of
attacks. Moreover, visible specimen effects caused by disabling fire-
walls or blocking accesses to anti-malware sites also lead to rapid
reaction by administrators.

The summation of species over all rows and columns of Table 6
yields a population much larger than the total number of entries in
the Trend Micro repertoire (i.e., 340,246), implying that a number
of strains carry multiple payloads simultaneously. Our malware
classification based on the number of payloads carried reveals
that 12.34% of strains uses only one type of payload. In contrast,
51.28% of species actually pack four different payload types in
their distributions, while about 10% carry more than four differ-
ent payloads. For instance, TROJ AOL.BUDDY.P can unleash nine
types of payload and WORM AGOBOT.AU features 10 types of
payload in its arsenal including Configuration Change, Process Ter-
mination, and Email Spam. The evolution on malware payload
can be further analyzed by classifying strains with respect to
Carried Payload and Discovery Date features depicted in Fig. 19. From
those species born in 2001, only 3.90% have a single payload (i.e.,
singleton) and 72.43% carry four payloads. As we move to 2005,
2006 and 2009, the singletons steadily increase at 8.17%, 16.89%,
and 55.47% respectively. On the other hand, the malware popu-
lation that use multiple types of payload significantly increases:
although in 2001 only 2.90% species carry more than four pay-
loads, in 2003 and 2005 the corresponding percentiles are at
18.35% and 27.03%.

The evolving malware attack avenues can be analyzed with
the help of the categorization on features Discovery Date and
Attack Avenue shown in Fig. 20. The “Attack Avenues = 1” bars depict
species that penetrate target systems using a single attack channel;
Fig. 20 depicts that most one-attack-channel malware were created
in 2006. The peak for “Attack Avenues = 2” occurs in 2005, while the
spikes for “Attack Avenues = 3” and “Attack Avenues = 4” coincide in
2009. The existence of multiple pinnacles in the bar chart signifies
that opportunistic authors use any penetration mechanisms they
have at their disposal. Furthermore, a significant portion of strains
discovered in 2008 and 2009 penetrate targets with more than two
attack mechanisms, signifying the chronological trend for multi-
ple spread channels. The combination of malware characteristics

including reduced storage footprint, multi-payloads, and diversi-
fied attack avenues clearly underlines the modularity as well as
the maturity in malware creation.

1668 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

Table 6
Malware classification based on type of payload and discovery date.

ID Payload 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1 System Instability 20156 7229 761 2519 5246 976 1193 12139 477 143
2 Security Degradation 125 2802 267 92 228 536 7213 328 166 102
3 Email Spam 6519 15689 811 3753 1898 824 645 7803 183 91
4 File Manipulation 17036 15313 5445 13518 13940 42723 109993 10650 2252 1119
5 Information Leakage 8211 25297 3924 8412 14219 19530 109108 11702 1933 598
6 Proxy Service 4210 2171 152 251 402 780 403 1455 827 895
7 DDoS Attacks 1621 351 1074 3269 1196 13753 1447 3202 257 22
8 Process Termination 5449 11017 2392 8731 3760 39802 2469 4538 545 200
9 Command Execution 1056 816 455 607 1992 1344 3483 486 153 436
10 Download 9167 25113 3180 9047 16928 6212 111092 17466 4525 1807

54
87
98

7

n
i
t
q
e
t
a
n
f
r
a
c
i

R
o
d
F
d
t
3
f
o
p
R

11 Integrity Impact 5096 3401 3175 94
12 Configuration Change 9040 14143 3049 52
13 Message Display 3260 2462 1011 21

.4. Evaluating risks imposed by malware

Efficient incident responses and effective defense strategies
ecessitate malware risk assessment. However, the diverse behav-

or and sophisticated characteristics of malware make it a challenge
o objectively ascertain threats to the Internet ecosystem. Conse-
uently, domain experts undertake the time-consuming task of
valuating malware risks. In this context, our dissection shows
hat less than 15% of the species in the Symantec encyclopedia
re analyzed with respect to their threats on the Internet, and
early all Trend Micro entries assume the default category Low

or the feature Risk. To automate the evaluation on malware
isks, Malware Evaluator defines the Risk Level feature. This feature
ttempts to quantify the threat imposed by malware based on the
haracteristics, which cover the entire specimen life-cycle, listed
n Table 7.

To quantify the contribution of the above characteristics to the
isk Level feature, we design a scoring system to estimate the risk
f each malware. This scoring mechanism is configurable and its
efault settings appear in Column Default Scoring Method of Table 7.
or instance, the WORM SDBOT.APO worm of Table 1 attacks two
ifferent OSs causing 2 points to be added to its risk score; in addi-
ion, each of its high damage and distribution potential contributes
points to its risk score as well. By summing up the contributions

rom all features described in Table 7 for WORM SDBOT.APO, we
btain risk-score 26. Based on our extensive evaluation with the

roposed scoring approach, we designate five categories for the
isk Level feature:

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

 2000 2002 2004 2006 2008 2010

N
um

be
r

of
 M

al
w

ar
e

(%
)

Discovery Year

Categorization on Evasion Methods

Attack Avenues = 1
Attack Avenues = 2
Attack Avenues = 3
Attack Avenues = 4

Fig. 20. Number of installation venues employed by malware.
6533 42011 10550 5619 766 238
11366 5290 108531 6708 1705 385

1757 600 7402 3991 260 115

1. Extremely Critical: this category accommodates the most danger-
ous malware species that possess significant damaging power
and high distribution potential. Specimens of this category typ-
ically have risk scores >32 (configurable).

2. Highly Critical: this group contains malware strains that are
highly dangerous, difficult to contain, and their risk scores are
above the threshold 28.

3. Moderately Critical: this class may carry multiple payloads or
employ multiple attack channels, and have medium system
impact or distribution potential. The default threshold for risk
score is larger than 22.

4. Mildly Critical: This category holds malware specimens that have
limited damage or distribution potential, and their risk scores are
greater than a specified threshold (greater than 15 by default).

5. Slightly Critical: Members of this group pose little or negligible
threat.

The thresholds on risk scores for the above-described cate-
gories are derived as follows. First, 2000 species are randomly
selected from entries in Symantec which have information on
field Risk Level. Their risk scores are then computed according
to the rules defined in Table 7. Finally, they are sorted based
on their risk scores and thresholds are picked to minimize the
number of mis-classified species. Our categorization with respect
to the Risk Level feature based on the above-described criteria
allows us to determine that both WORM SDBOT.APO and JS FEEBS.GJ
of Table 1 are part of the Moderately Critical category. In com-
parison, WORM SDBOT.CZX, TROJ VB.BLA, and BKDR IRCBOT.QB are
placed in the Extremely Critical class, while species W97M HILITE.A,
IRC DOLLY.B, and WORM SDBOT.HD are Highly Critical.

The malware classification with respect to Malware Type and
Risk Level helps us better understand risks imposed by various
types of malware. The majority of malware labeled Extremely Crit-
ical originate from malware of Trojan, Infector, Backdoor and Worm
types. Member of the Highly Critical category emanate mostly from
the Infector malware type and the Moderately Critical class mainly
gets its population from the Backdoor, Worm and Trojan families. By
ordering malware types according to their percentages of species
in categories Extremely Critical and Highly Critical, we can clearly
observe that Infector imposes the most serious threat to the Internet
thus far, while the next three dangerous types are Trojan, Backdoor
and Worm. To analyze the evolution of risks imposed by mal-
ware, we categorize malware according to features Risk Level and
Discovery Date. The analysis on the resulting classification reveals
that the majority of species discovered in 2001, 2004, 2006, 2008,
and 2009 are only mildly critical, while most of the species cre-

ated in other years are considered as moderately critical. We have
encountered slightly critical strains mainly discovered in 2000, and
the lion’s share of species with label of highly and extremely critical
are from 2001 and 2009 respectively. By computing the annual ratio

Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672 1669

Table 7
Features used in Malware Evaluator to evaluate malware risk.

Stage Feature Description Default scoring method

Creation Affected Platform Operating systems (OSs) vulnerable to malware Number of OSs affected
Targeted language Languages attacked by malware Number of affected languages

Penetration In the Wild Malware in executables or source code publicly accessible Yes = 2, No = 1
Distribution Areas affected by malware (Low, Medium, High) Low = 1, High = 3
Attack Avenue Installation mechanisms to infect systems Number of attack channels

Activation Damage potential Expose confidential information or destroy system integrity Low: 1, Medium: 2, High: 3
Destructiveness Damage file systems, stability, and productivity No: 1, Yes: 2
Carried payload Malicious activities after invading victims Number of payloads

Discovery Information encryption Cryptographic methods employed by malware No: 1, Yes: 2
Message Compression Compress files or network flows to avoid detection number of compression types
Memory resident Stay at main memory after execution No: 1, Yes: 2

pertis
pertis

b
m
i
a
w
i
e

7

i
o
r
A
o
a
t
O
p
a
m
(
t
b
t

Eradication Containment difficulty Skill, tools, and ex
Removal difficulty Skill, tools, and ex

etween extremely/highly and moderately/mildly/slightly critical
alware, we find that the ratio reaches its peak in 2001, then falls

nto a valley around 2005; it then rises again in 2008 and forms
nother peak in 2009. It is therefore reasonable to expect that mal-
are risk fluctuates over time, demanding constant monitoring of

ts evolution as well as continuous effort toward containment and
radication.

.5. Malware evaluator in action

In this section, we discuss how Malware Evaluator can be used
n practice using two Trend Micro-provided case studies. In the first
f these two studies, company A, has installed a computer secu-
ity system on its machines to detect and prevent malware attacks.
lthough no serious intrusion has ever occurred, the large volume
f attempted attacks reported by the computer security system is
heavy burden to its site security office. We use Malware Evaluator

o help find measures to reduce the volume of attempted attacks.
bviously, an attack cannot be launched if all of its potential
ropagation channels are effectively cut off. Thus, we extract all
ttempted attacks reported by the security system in the past six
onths, most of which are members of the WORM SDBOT family
refer to Table 1 for one of its species WORM SDBOT.APO), evaluate
heir attack venues using Malware Evaluator, and derive the distri-
ution of attack venues shown in Fig. 21. Clearly, more than 35% of
he attacks use network share as launching pads, while about 40%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 M

al
w

ar
e

Channel Id (1:exploit, 2:email, 3:share, 4:p2p, 5:im , 6:drive, 7:drop)

Propagation Channels Used by Malware in Company A

Channel

Fig. 21. Penetration channels of malware in company A.
e required to quarantine malware Easy = 1, Difficult = 3
e required to remove malware Easy = 1, Difficult = 3

of the attempted intrusions come from IM and P2P applications.
Based on this information, we suggested to the company to limit
the use of network share, IM, and P2P in its work environment,
and as a result, the attempted attacks reported in company A have
significantly decreased.

In our second case study, similar to company A, company B
also deploys a network security device to shield its intranet from
external attacks. Unfortunately, this network security device was
accidentally misconfigured to work on detection mode instead of
prevention mode, that is, attacks are detected and reported but
still allowed to pass through the device. As a result, the intranet
was invaded and infected by malware. Depending on the serious-
ness of the invasion, the company wanted to determine which
measure to adopt: complete re-installation of fresh systems on all
machines or removal of malware from infected machines. To eval-
uate the impact of the aftermath, we analyzed, with the help of
Malware Evaluator payloads carried by malware species detected by
the network security device, and generated the distribution of pay-
loads, which is delineated in Fig. 22. We observed that the most
visible impact of malware payloads on the infected systems is the
compromise of their integrity, implying that critical system com-
ponents and configurations had been corrupted. In addition, more

than 15% of the payloads carried by malware may have exposed
sensitive information such as passwords and business secrets to
attackers. Moreover, the security services including firewalls and
anti-viruses on the infected machines had been deactivated or

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 M

al
w

ar
e

Payload Id (1:stability, 2:security, ... 5:proxy ... 11:integrity ...)

Payloads Carried by Malware in Company B

Payload

Fig. 22. Payloads carried by malware in company B.

1670 Z. Chen et al. / The Journal of Systems and Software 85 (2012) 1650–1672

Table 8
Interaction between Malware Evaluator and other malware analysis tools.

Sandbox Sandbox output (excerpt) Damage P. Destructiveness Attack Avenue

1 Norman [Changes to filesystem] * Creates file C:/WINDOWS/SYSTEM32/ . . . High No Share,
[Changes to registry] * Creates value 11Removal” = . . . DroppedBy
in key “HKLM/Software/Microsoft/. . .”
[Network services] * Looks for an Internet connection.
* Connects to “some.domain.com” on port 9889 (TCP).
[Security issues] * Possible backdoor functionality . . .

2 Norman [General information] * File might be compressed. High Yes Exploit,
[Changes to filesystem] * Creates file C:/WINDOWS/Jammer2nd.exe.
[Changes to registry] * Creates value “Jammer2nd” = “C:/WINDOWS/ . . .”
in key “HKLM/Software/Microsoft/Windows/CurrentVersion/Run”.
[Process/window information] * Will automatically restart after boot . . .

3 GFI Filesystem: New Files (2): Creates File: C:/DOCUMENT/ . . . High Yes Exploit
Find Files (12): %SystemRoot%/system32/*, %SystemRoot%/ . . .
Opened Files (16): /./PIPE/lsarpc, %SystemRoot%/system32
Creates Mutex (8): Name: RasPbFile, Opens Mutex (1)

: (%Sy
ARE/ .

c
a
s

a
t
g
s
r
o
S
y
t
a
f
o
r
a
d
m

p
W
C
a
a
A
t
F
p
T
i
t
s
m
m
v
d
o
s
o
E
t
b

G

Process: Creates Process – Filename () CommandLine
Registry: Reads (15): HKEY LOCAL MACHINE/SOFTW

ontaminated (see payload type 2 in Fig. 22). Based on the above
nalysis, we recommended to company B that all systems be rein-
talled.

Malware Evaluator can also play a significant role in identifying
nd categorizing zero-day attacks, which are newly created and
hus are not recognized by any computer security products. By inte-
rating Malware Evaluator with automated malware analysis tools
uch as Norman Sandbox and GFI Sandbox, we identify and catego-
ize zero-day attacks with the following procedure: (a) the sample
f the potential zero-day attack is fed into Norman Sandbox or GFI
andbox so that its behavior is automatically analyzed; (b) the anal-
sis report created by Norman Sandbox or GFI Sandbox acts as input
o Malware Evaluator, where the report is rewritten and then treated
s a bag of words to form attribute vector and labels are generated
or its taxonomic features listed in Table 3; (c) the labels of tax-
nomic features for the sample can be used by security experts,
esearchers, or administrators as a guide to further study the char-
cteristics of potential attack. In Table 8, we present several cases to
emonstrate the interaction between Malware Evaluator and auto-
ated malware analysis tools Norman Sandbox and GFI Sandbox.
When we receive the first sample of Table 8, we scan it with

opular anti-malware products but none identifies it as malware.
e then go through the above-described procedure for the sample.

olumn Sandbox Output (Excerpt) shows the analysis report gener-
ted by Norman Sandbox, and labels assigned by Malware Evaluator
re presented in Columns Damage Potential, Destructiveness, and
ttack Avenue. As the sample could bring heavy damage to a sys-
em when infected, it is highly likely to be a malware specimen.
urther investigation by security experts confirms that the sam-
le under study is a new variant of the worm SPYBOT family.
he report for the second sample delivered by Norman Sandbox
ndicates that the sample might insert itself into the victim sys-
em in compressed format. After landing on the infected host, the
ample pollutes victim’s file system with multiple files, creates a
utex, and changes system’s registry. Furthermore, the sample also
odifies the infected system’s configurations so that it can sur-

ive system reboot. Such behavior of the malicious sample clearly
estroys the integrity of victim hosts as its label is “High” for tax-
nomic feature Damage Potential assigned by Malware Evaluator. By
canning the sample with anti-malware products, the sample turns
ut to be a new variant of WORM NETSKY, a mass-mailing worm.
xtensive manual analysis on this sample by experts revealed that

he sample can infect hosts not only by exploiting vulnerabilities,
ut also through emails.

In the same manner, Malware Evaluator can also interact with
FI Sandbox to recognize and classify zero-day malware species as
stemRoot
. .

demonstrated in sample 3 of Table 8. Although the output format
of GFI Sandbox is different from Norman Sandbox, both create report
on various behavioral aspects of the given sample. The high damage
and destructive impact caused by the sample reveal with high con-
fidence that the sample is a malware. In-depth analysis by experts
indicated that the sample probably was a newly created backdoor
that could infect systems through IRC in addition to exploiting
vulnerabilities in victim machines. To further demonstrate the
capability on categorization of newly discovered malware samples,
we build a model, with the help of Malware Evaluator to discrimi-
nate SPYBOT family from other malware species. Being fed with
sample 1 of Table 8 to the model, the model accepts the sample to
be its member; on the contrary, it firmly rejects both samples 2 and
3. Similarly, the machined learned model constructed to recognize
the worm WORM NETSKY family can successfully identify sample 2
in Table 8 as part of it but decline the other samples.

8. Conclusions and future work

In this paper, we present Malware Evaluator, a framework that
transforms malware encyclopedias such as Trend Micro into an
automated classifier which not only clusters species according to
taxonomic features, but also helps evaluate malware evolution and
detect zero-day attacks. Our framework treats malware classifi-
cation as a supervised learning task, builds models for taxonomic
features with support vector machines (SVMs) and gradient boost-
ing decision trees (GBDTs), and visualizes malware categorizations
with self-organizing maps. The textual description of each entry in
the Trend Micro repertoire is collapsed into a bag of words so that the
entry in question can be represented with a feature vector; in this
vector, each word is an attribute having value the word occurrence-
frequency in the entry. We reduce dimensions of feature space with
stopword removal and word stemming, while selecting attributes
according to their information gains further condenses the space
footprint. Training data are automatically extracted from both
Trend Micro and Symantec encyclopedias.

The key feature of Malware Evaluator is that it is an auto-
mated classifier, thus enabling observations about malware
characteristics and evolution to be made quickly, something not
previously possible with existing encyclopedias which require
manual categorization and analysis. Classifications on taxonomic
features that characterize malware in its entire lifecycle demon-

strate that Malware Evaluator delivers high accuracy, precision,
recall, and F1-measurements. The trend analysis conducted with
Malware Evaluator points out that malware spares no effort in
shrinking its storage footprint to improve propagation speed and

ms an

r
t
w
i
a
m
w
s
e
c
I
e
w
i
t

t
o
s
w
t
D
w
i
i
b
f
o
e
b
d
t
f

A

o
w
C
P

R

A

B

B

B

B

B

B

C

C

C

Z. Chen et al. / The Journal of Syste

educe visible traces left on infected systems. To elude detec-
ion, species often resort to obfuscation and stealth techniques,
hile the integration of anti-debugging and reverse engineer-

ng deterrence mechanisms into malware code further defeats
nti-malware products that rely on telltale pattern matching for
alware identification. Malware Evaluator also exposes the mal-
are trend to penetrate hosts with diversified attack avenues and

ubsequently unleash multiple payloads to enhance its damaging
ffects on infected systems. Furthermore, the risk assessment we
onducted using Malware Evaluator has established that Trojan,
nfector, Backdoor, and Worm impose critical threats to the Internet
cosystem and in all likelihood will continue to dominate the mal-
are landscape in the future. Finally, the use of Malware Evaluator

n real-world cases demonstrates its ability to help defend against
hreats and recognize zero-day attacks.

We plan to extend our work in a number of directions: we intend
o design a much larger set of taxonomic features with properties
f determinism and specificity to thoroughly characterize malware
pecies while keeping the classification process automated. We
ill also attempt to strengthen our presentation with visualization

echniques such as Generative Topographic Maps and Smoothed
ata Histograms. In this way, intricate structures revealed by mal-
are categorizations could be effectively projected. We plan to

nvestigate additional feature selection methods such as mutual
nformation and Chi-square to possibly offer a better trade-off
etween dimensionality of feature space and categorization per-
ormance. To enhance the integration of Malware Evaluator with
ther automated malware analysis tools, we aim to thoroughly
valuate the performance of Malware Evaluator on texts generated
y software such as Norman Sandbox compared to human-created
escriptions. Finally, we will make publicly available our toolkit
o help monitor malware dynamics in the Internet ecosystem and
orecast the evolution of species as well as their characteristics.

cknowledgements

We are grateful to reviewers for their comments and Peter Wei
f Trend Micro Inc. for fruitful discussions on the proposed frame-
ork. This work has been partially supported by the European
ommission D4Science II FP7 Project and the ERC Starting Grant
roject (no 279237).

eferences

llwein, E.L., Schapire, R.E., Singer, Y., Kaelbling, P., 2000. Reducing multiclass to
binary: a unifying approach for margin classifiers. Journal of Machine Learning
Research 1, 113–141.

ailey, M., Oberbeide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J., 2007. Auto-
mated classification and analysis of internet malware. In: The 10th Symposium
on Recent Advances in Intrusion Detection (RAID’07), Gold Coast, Australia,
September. Springer, pp. 178–197.

oney, D.G., 1999, June. The Plague: An Army of Software Agents for Information
Warfare. Technical Report. Department of Computer Science, School of Engi-
neering and Applied Science, Washington DC.

ontchev, V.V., 1998. Methodology of Computer Anti-Virus Research. Technical
Report. University of Hamburg, Germany.

oser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin
classifiers. In: Proceedings of the Fifth Annual ACM Workshop on Computational
Learning Theory, Pittsburgh, PA, USA, July. ACM Press, pp. 144–152.

redensteiner, E.J., Bennet, K.P., 1999. Multicategory classification by support vec-
tor machines. Computational Optimizations and Applications 12 (December),
53–79.

runnstein, K., 1999. From antivirus to antimalware software and beyond: another
approach to the protection of customers from dysfunctional system behaviour.
In: Proceedings of the 22nd National Information System Security Conference,
Arlington, VA, USA, October. NIST, pp. 1–14.

ERT, 2001. CERT Advisory CA-2001-26 Nimda Worm, http://www.cert.org/

advisories/CA-2001-26.html.

ollobert, R., Bengio, S., 2001. SVMtorch: support vector machines for large-scale
regression problems. Journal of Machine Learning Research (JMLR) 1, 143–160.

osta, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P., 2005.
Vigilante: end-to-end containment of internet worms. In: Proceedings of the
d Software 85 (2012) 1650–1672 1671

20th ACM Symposium on Operating Systems Principles (SOSP2005), Brighton,
United Kingdom, October. ACM, New York, NY, USA, pp. 133–147.

Cova, M., Kruegel, C., Vigna, G., 2010. Detection and analysis of drive-by-download
attacks and malicious Javascript code. In: Proceedings of the World Wide Web
Conference, Raleigh, NC, USA, April. ACM, pp. 1–10.

Crammer, K., Singer, Y., 2001. On the algorithmic implementation of multi-
class kernel-based vector machines. Journal of Machine Learning Research 2
(December), 265–292.

DeLooze, L.L., 2004. Classification of computer attacks using a self-organizing map.
In: Proceedings of the Fifth Annual IEEE SMC Workshop on Information Assur-
ance, June. IEEE, pp. 365–369.

Dietterich, T.G., Bakiri, G., 1995. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2 (January),
263–286.

Ferris, M., Munson, T., 2003. Interior-point methods for massive support vector
machines. SIAM Journal of Optimization 13 (3), 783–804.

Forman, G., 2003. An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research 3, 1289–1305.

Fox, C., 1992. Lexical Analysis and Stoplist – Data Structures and Algorithms. Prentice
Hall.

Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X., 2010. Synthesizing
near-optimal malware specifications from suspicious behaviors. In: 2010 IEEE
Symposium on Security and Privacy, Oaklan, CA, USA, May. IEEE, pp. 45–60.

Friedman, J.H., 1999. Greedy function approximation: a gradient boosting machine.
Annals of Statistics 29, 1189–1232.

Hastie, T., Tibshirani, R., 1998. Classification by pairwise coupling. The Annals of
Statistics 26 (2), 451–471.

Helenius, M., 2002. A system to support the analysis of antivirus products’ virus
detection capabilities. Tampereen Yliopisto, ISBN 951-44-5370-0.

Rutkowska, J., 2006. Introducing Stealth Malware Taxonomy,
http://invisiblethings.org/papers/malware-taxonomy.pdf.

Joachims, T., 1999. Making large-scale support vector machine learning practical.
In: Schoelkopf, B., Burges, C., Smola, A. (Eds.), Advances in Kernel Methods –
Support Vector Learning. MIT Press, Cambridge, MA, pp. 169–184 (Chapter 11).

Kawakoya, Y., Iwamura, M., Itoh, M., 2010. Memory behavior-based automatic mal-
ware unpacking in stealth debugging environment. In: 2010 5th International
Conference on Malicious and Unwanted Software (Malware), Nacy, Lorraine,
October, pp. 39–46.

Keerthi, S., DeCoste, D., 2005. A modified finite newton method for fast solution of
large scale linear SVMs. Journal of Machine Learning Research (JMLR) 6, 341–361.

Kohonen, T., 2000. Self-Organizing Maps, third edition. Springer, Berlin.
Krsul, I.V., 1998, May. Software Vulnerability Analysis. Technical Report. Purdue

University.
Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S., 1994. A taxonomy of computer

program security flaws, with examples. ACM Computing Surveys 26 (September
(3)).

Leder, F., Steinbock, B., Martini, P., 2009. Classification and detection of metamor-
phic malware using value set analysis. In: 2009 4th International Conference on
Malicious and Unwanted Software (Malware), Montreal, QC, October, pp. 39–46.

Lee, T., Mody, J., 2006. Behavioral classification. In: Proceedings of the EICAR Con-
ference, Hamburg, Germany, April/May. European Expert Group for IT Security,
pp. 1–17.

Lindqvist, U, 1999. On the Fundamentals of Analysis and Detection of Computer
Misuse. Technical Report. Department of Computer Engineering, Chalmers Uni-
versity of Technology, Goteborg, Sweden.

Lindqvist, U., Jonsson, E., 1997. How to systematically classify computer security
intrusions. In: Proceedings of the 1997 IEEE Symposium on Security & Privacy,
Oakland, CA, November. IEEE Computer Society Press, pp. 154–163.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N., 2003. Inside
the slammer worm. IEEE Magazine of Security and Privacy 1 (July/August (4)),
33–39.

Moser, A., Kruegel, C., Kirda, E., 2007. Limits of static analysis for malware detection.
In: 23rd Annual Computer Security Applications Conference (ACSAC).

Paxson, V., Staniford, S., Weaver, N., 2002. How to own the internet in your spare
time. In: Proceedings of the 11th USENIX Security Symposium (Security’02), San
Francisco, CA, USA, August, pp. 1–19.

Platt, J.C., Cristianini, N., Shawe-Taylor, J., 2000. Large margin DAGs for multi-
class classification. Advances in Neural Information Processing Systems 12,
547–553.

Porter, M.F., 1980. An algorithm for suffix stripping. Program 14 (3), 130–137.
Rieck, K., Holz, T., Willems, C., Dussel, P., Laskov, P., 2008. Learning and classifica-

tion of malware behavior. In: The 5th International Conference on Detection of
Intrusion Detections and Malware, and Vulnerability Assessment (DIMVA’08),
Paris, France, July. Springer, pp. 108–125.

Salton, G., Buckley, C., 1988. Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24 (5), 513–523.

Scheidl, G., 1999, July. Virus Naming Convention 1999 (VNC99). Technical Report.
http://members.chello.at/erikajo/vnc99b2.txt.

Schoelkopf, B., Smola, A.J., 2002. Learning with Kernels. The MIT Press, Cambridge,
MA.

Shieh, S.-P., Gligor, V.D., 1997. On a pattern-oriented model for intrusion detection.

IEEE Transactions on Knowledge and Data Engineering 9 (4), 661–667.

Sidiroglou, S., Keromytis, A.D., 2005. Countering network worms through automatic
patch generation. Security & Privacy 3 (November–December (6)), 41–49.

Skoudis, E., Zeltser, L., 2003, November. Malware: Fighting Malicious Code. Prentce
Hall PTR, ISBN 0131014056.

http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-26.html
http://invisiblethings.org/papers/malware-taxonomy.pdf
http://members.chello.at/erikajo/vnc99b2.txt

1 ms an

S

T

T

T

V

V

W

W

W

W

W

Y

Z
t
t
I
s

University of Technology. He holds a PhD in Computer Science from the University
672 Z. Chen et al. / The Journal of Syste

ymantec, 2009. Virus Encyclopedia of Symantec, http://www.symantec.com/
business/security response.

homas, K., Nicol, D.M., 2010. The Koobface Botnet and the rise of social malware.
In: 2010 5th International Conference on Malicious and Unwanted Software
(Malware), Nacy, Lorraine, October, pp. 63–70.

rend Micro, 2011. Virus Encyclopedia of Trend Micro, http://threatinfo.
trendmicro.com/vinfo/virusencyclo.

yree, S., Weinberger, K.Q., Agrawal, K., 2011. Parallel boosted regression trees for
web search ranking. In: International World Wide Web Conference 2011, Hyder-
abad, India, March/April. ACM, pp. 387–396.

apnik, V.N., 1999. The Nature of Statistical Learning Theory: Information Science
and Statistics. Springer, New York.

enter, H.S., Eloff, J.H.P., Li, Y.L., 2008. Standardizing vulnerability categories. Com-
puters and Security 27 (May–June (3)), 71–83.

agner, C., Wagener, G., State, R., Engel, T., 2009. Malware analysis with graph ker-
nels and support vector machines. In: 2009 4th International Conference on
Malicious and Unwanted Software (Malware), Montreal, QC, October, pp. 63–68.

alenstein, A., Hefner, D.J., Wichers, J., 2010. Header information in malware fami-
lies and impact on automated classifiers. In: 2010 5th International Conference
on Malicious and Unwanted Software (Malware), Nacy, Lorraine, October, pp.
15–22.

eaver, N., Paxson, V., Staniford, S., Cunningham, R., 2003. A taxonomy of com-
puter worms. In: Proceedings of The First ACM Workshop on Rapid Malcode
(WORM’03), Washington, DC, USA, October. ACM, pp. 11–18.

illems, C., Holz, T., Freiling, F., 2007. CWSandbox: towards automated dynamic
binary analysis. Security and Privacy 5 (March–April (2)), 32–39.

illiamson, M.M., 2002. Throttling viruses: restricting propagation to defeat mobile
malicious code. In: Proceedings of the 18th Annual Computer Security Applica-
tions Conference (ACSAC), Las Vegas, NV, December, pp. 1–8.

e, J., Chow, J.H., Chen, J., Zheng, Z.H.,2009. Stochastic gradient boosted distributed
decision trees. In: Proceeding of the 18th ACM Conference on Information and
Knowledge Managment. ACM, pp. 2061–2064.
hongqiang Chen received his PhD in Computer Science from the Polytechnic Insti-
ute of NYU, in Broklyn, NY in 2003. Since then, he has worked as member of the
echnical staff at Fortinet, Inc. and currently is a senior software engineer at Yahoo!
nc. in Sunnyvale, CA. His research interests are in information retrieval, system
ecurity, and data analysis.
d Software 85 (2012) 1650–1672

Mema Roussopoulos is an Assistant Professor of Computer Science at the Depart-
ment of Informatics and Telecommunications at the University of Athens in Athens,
Greece. She completed her PhD in Computer Science and was a Postdoctoral Fellow
in the Computer Science Department at Stanford University. She was an Assistant
Professor of Computer Science on the Gordon McKay Endowment at Harvard Uni-
versity. She then was a faculty member at the Department of Computer Science at
the University of Crete and an Associated Researcher at the Institute of Computer
Science at FORTH. Her interests are the areas of distributed systems, networking,
mobile computing, and digital preservation. She is a recipient of the CAREER award
from the National Science Foundation, a Starting Grant Award from the European
Research Council, and the Best Paper Award at ACM SOSP 2003.

Zhanyan Liang received her BS in Actuarial Science from Guangxi University of
Finance and Economics in China in 2011 and she currently works in the fields of
finance and insurance. Her research interests are in applying mathematical and
statistical methods to data mining and system emulation.

Yuan Zhang is currently a PhD candidate in Financial Mathematics at Florida State
University (FSU) in Tallahassee, FL. His research interests are in data mining, system
modeling and machine learning. He holds an MS in Mathematics from FSU and a BS
in Finance with minor in Mathematics from Shanghai Jiaotong University, in China.
He is the member of American Mathematical Society.

Zhongrong Chen is currently a Senior Analyst of Shire US Inc. in Pennsylvania, USA.
He has been working in the fields of data mining and system modeling in the past
decade. He holds a Master degree in Industrial Engineering from the University of
Missouri, Columbia, MO and a Master degree in Finance from the Webster University
in St. Louis, MO. He is a member of the Global Association of Risk Professionals.

Alex Delis is currently a Professor of Computer Science at the University of Athens in
Athens, Greece. His research interests are in distributed systems, data management
and software systems. He has been an Associate and Assistant Professor at Poly-
technic Institute of NYU as well as a Senior Lecturer and a Lecturer at Queensland
of Maryland in College Park and has been the recipient of an NSF-CAREER Award,
an outstanding paper in the IEEE Int. Conf. on Distributed Computing Systems and
the Maurice V. Wilkes Medal of the British Computer Society. He has also been a
Fulbright Fellow.

http://threatinfo.trendmicro.com/vinfo/virusencyclo
http://threatinfo.trendmicro.com/vinfo/virusencyclo

	Malware characteristics and threats on the internet ecosystem
	1 Introduction
	2 Related work
	3 The proposed Malware Evaluator framework
	3.1 The malware life-cycle
	3.2 Design rationale for Malware Evaluator
	3.3 Creating malware feature vectors
	3.4 Automating malware classification
	3.5 Developing training data and learning models
	3.6 Key taxonomic features

	4 The inception of the malware life-cycle
	4.1 Affected computing platforms
	4.2 Multilingual systems targeted by malware
	4.3 File types used to encapsulate malware

	5 Penetration and activation
	5.1 Propagation mechanisms
	5.2 In the wild
	5.3 Damage potential
	5.4 Destructiveness

	6 Discovery and eradication
	6.1 File compression
	6.2 Removal difficulty
	6.3 Categorization performance of combined models

	7 Malware risks and trends
	7.1 Enhanced malware evasive capabilities
	7.2 Use of compact malware footprints
	7.3 Diversified attack avenues and multiple payloads
	7.4 Evaluating risks imposed by malware
	7.5 Malware evaluator in action

	8 Conclusions and future work
	Acknowledgements
	References

