
© The Author 2009. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxp026

A Digest and Pattern Matching-Based
Intrusion Detection Engine

Zhongqiang Chen
1,∗

, Yuan Zhang
2
, Zhongrong Chen

3
and Alex Delis

4

1Yahoo! Inc., Santa Clara, CA 95054, USA,
2Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA,

3ProMetrics Inc., King of Prussia, PA 19406, USA,
4Department of Informatics and Telecommunications, University of Athens, Athens, 15784, Greece

∗Corresponding author: zqchen@yahoo-inc.com

Intrusion detection/prevention systems (IDSs/IPSs) heavily rely on signature databases and pattern
matching (PM) techniques to identify network attacks. The engines of such systems often employ
traditional PM algorithms to search for telltale patterns in network flows. The observations that real-
world network traffic is largely legitimate and that telltales manifested by exploits rarely appear in
network streams lead us to the proposal of Fingerprinter. This framework integrates fingerprinting
and PM methods to rapidly distinguish well-behaved from malicious traffic. Fingerprinter produces
concise digests or fingerprints for attack signatures during its programming phase. In its querying
phase, the framework quickly identifies attack-free connections by transforming input traffic into
its fingerprint space and matching its digest against those of attack signatures. If the legitimacy of a
stream cannot be determined by fingerprints alone, our framework uses the Boyer–Moore algorithm
to ascertain whether attack signatures appear in the stream. To reduce false matches, we resort to
multiple fingerprinting techniques including Bloom–Filter and Rabin–Fingerprint. Experimentation
with a prototype and a variety of traces has helped us establish that Fingerprinter significantly

accelerates the attack detection process.

Keywords: pattern matching engine of IDSs/IPSs; multi-pattern matching algorithms; fingerprinting
and digesting techniques; intrusion detection process

Received 5 October 2008; revised 14 March 2009
Handling editor: Alison Bentley and Florence Leroy

1. INTRODUCTION

Intrusion detection/prevention systems (IDSs/IPSs) are now
ubiquitously deployed to shield intranets from attacks and
protect the confidentiality, integrity and availability of involved
computer systems [1]. IDSs/IPSs typically use pattern matching
(PM) and anomaly analysis [2,3] to accomplish their objective.
The PM techniques in IDSs/IPSs search for telltale patterns
unique to known attacks while anomaly analysis seeks to detect
network connection behavior that statistically deviates from
normal activities. Such PM methods do help with the detection
of known attacks and reduce the overall noise level of intrusions
in the Internet although they appear rather ineffective when it
comes to zero-day exploits [4]. Nevertheless, the ongoing strong
exploitation of existing vulnerabilities and exposures is so
prevalent in the globe today that the effective and well-managed
use of PM methods is considered absolutely critical [5].

Security loopholes frequently emanate from common design
and development mistakes in a multitude of applications
including Web and Email [4,6]. Moreover, the easy access
to ‘kiddy scripts’ and attack tools not only simplifies the
exploitation process for known vulnerabilities [5], but also
offers opportunities to intruders for synthesizing new strains of
attacks. We should point out that the population of security flaws
reported has consistently grown. The common vulnerabilities
and exposures (CVEs) dictionary [6] listed 1565 loopholes in
1999 while it accrued 6832 and 6259 new species in 2006 and
2007, respectively, resulting in a total of 30648 collected CVEs
in the past decade. In light of the rapid evolution of security
loopholes and the ever-increasing complexity of applications,
patching vulnerable computer systems promptly has become
a real challenge [7]. It is thus vitally important to detect and
prevent existing attacks from recurrence [3]. In this context,
PM-based intrusion detection methods are the key mechanism

The Computer Journal, 2009

 The Computer Journal Advance Access published April 15, 2009

2 Z. Chen et al.

for contemporary IDSs/IPSs to detect and prevent the majority
of intrusions in the Internet [8].

With attacks expressed as character sequences [2], PM-based
IDSs/IPSs typically treat intrusion identification as a pattern
search process. There is evidently a need to not only organize
all such telltale patterns manifested by exploits in an effective
signature or rule database within the IDS/IPS, but also to
augment its content with specially crafted signatures for the
ever-expanding attacks population. As the legitimacy of a
network stream is determined by matching it against all telltales
in the signature database, the performance of an IDS/IPS is
dominated by the string matching operations conducted in the
PM-engine (PME) [9]. There is clearly a trade-off between
voluminous signature databases and attack coverage from
one side and demanding CPU-intensive PM operations on
the other. Also, the rapidly expanding network bandwidth
and diversified applications further exacerbate the IDS/IPS
performance problem as PMEs are forced to inspect much
more massive Internet flows. For instance, it is reported that
the open-source Snort IDS/IPS spends ∼31% of its processing
time on PM when subjected to real-world traffic and its CPU
utilization reaches 80% when dealing with Web services due to
the bulky Web-specific signatures in its database [9]. Emerging
attacks also have the potential to trap PMEs into their worst-
case working conditions [9]. It is therefore absolutely essential
to ‘accelerate’ the intrusion detection process in PMEs and
subsequently improve the overall performance of IDSs/IPSs.

Evasion techniques that include modification of telltale
patterns, TCP segmentation or IP fragmentation, and message
encryption [4,10] often make up a contemporary option for
intruders. Such attacks could be mitigated should IDSs/IPSs
dissect incoming traffic into a sequence of messages according
to TCP/IP protocols before conducting their PM operations.
To this end, stateful and layer-7 inspection on the ensued
application messages has to be carried out [1,10]. The
realization of the above counter-measures requires sophisticated
PM process and expansion of signature databases. PM
algorithms routinely used by PMEs such as the Aho–
Corasick [11] and Boyer–Moore [12] are computationally
intensive when it comes to generating positive verdicts for
attack streams and negative verdicts for legitimate flows.
Although a number of heuristics have been proposed to
improve PM performance, they are often effective only with
lengthy patterns [13]. The latter is not always possible as
for instance, 90% of the patterns defined in the signatures of
Snort are <16 bytes rendering heuristics rather ineffective. The
sophistication of modern intrusions necessitates that IDSs/IPSs
work with multiple-patterns to characterize a single attack and
so a number of PM-iterations are needed to handle a single
attack signature [9]. To improve detection accuracy, IDSs/IPSs
may also specify complex relationship among multiple
patterns in a signature with respect to their occurrence order,
distances and positions [2], putting additional CPU burden on
the PME.

Intrusion detection could also be facilitated by multi-pattern
matching (MPM) algorithms that are typically derived by
modifying single-pattern PM techniques to simultaneously
search for multiple patterns with the help of rather complex data
structures [14]. To this end, the Wu–Manber algorithm organizes
telltale patterns using hash tables [9,14] but its memory footprint
for a Snort implementation is about 29.1 MB when the signature
database involves only about 1500 patterns [3].Automata-based
approaches such as the Aho–Corasick can also be extended to
conduct MPM at the expense of very large memory footprints
and high-dimensional state spaces [11,15]. In particular, the
implementation of the Aho–Corasick algorithm in Snort requires
1 KB on an average for each character appearing in the
patterns of the signature database and thus demands a time-
consuming state traversal process [3]. Clearly, such memory
consumption levels disqualify automata-based methods in light
of populous signature databases. One alternative option to
boost performance would be to implement MPM operations
in hardware such as application-specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs) [16].
Similar to their software counterparts, however, hardware
accelerated PM methods can achieve only limited success due
to a number of characteristics unique to the intrusion detection
process:

(i) PMEs subject both legitimate and malicious network
flows to the same CPU-intensive procedures heavily
penalizing attack-free traffic. In this regard, a negative
verdict for a legitimate stream requires inspection of the
entire signature database. The fact that the vast majority
of the Internet traffic is legitimate [17] points to an
unnecessary punishment for benign connections.

(ii) Heuristics developed for most MPM techniques are
efficient only for long sought-for patterns but do suffer
performance-wise when short telltales are the search
targets in incident detection [18].

(iii) Characters appearing in telltale patterns of attack
signatures are not uniformly distributed but indeed
scatter in the entire ASCII code range (that is [0, 0xFF])
implying extremely large memory footprints for
automata-based MPM algorithms.When sizeable attack
signature databases are present, such techniques are of
limited value [9].

To address the above issues, we propose the Fingerprinter
framework, which attempts to significantly accelerate the
attack detection process by exploiting unique characteristics of
Internet traffic and harnessing multiple fingerprinting methods.
We represent each IDS/IPS attack signature with a concise
fingerprint derived from the signature’s telltale patterns. Such
a digesting process essentially allows us to transform the
complex space formed by attack signatures into a condensed
space of signature fingerprints. By initially matching the digest
of an incoming stream against the fingerprints instead of the
actual attack signatures, our Fingerprinter can quickly identify

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 3

attack-free traffic. The PM algorithm Boyer–Moore is invoked
only when the traffic stream under examination shares the
same fingerprints with some attack signatures. To conduct the
fingerprint matching (FM) as well as PM operations efficiently,
the Fingerprinter is designed to work in two distinct stages:

• programming phase: signatures in the IDS/IPS database
are fingerprinted off-line and represented with short digests
using multiple summarization strategies including the
Bloom–Filter and Rabin–Fingerprint methods. Compared
with original signatures, fingerprints are much shorter, and
as a result the space defined by the signature database
is effectively compressed into its digest counterpart that
assumes lower dimensionality.

• querying phase: fingerprints from incoming traffic are
computed and matched against the digests of signatures
created during the programming phase. Traffic receives
a negative verdict and is declared as legitimate if it
fails to match any fingerprint from the signature database;
thus, no further PM processing is required. If the FM
yields a positive identification, Fingerprinter executes the
Boyer–Moore algorithm to ascertain that the connection in
question indeed contains the exact patterns in the signature
whose fingerprint resulted in the preliminary match.

The acceleration in detecting exploits stems from the
observation that malicious telltales appear only infrequently.
The majority of attack-free traffic should produce negative
verdicts in the FM operation conducted over the space of
signature fingerprints without the explicit assistance of PM
algorithms. The lightweight FM process of our Fingerprinter is
expected to offer significant performance gains compared with
what the IDSs/IPSs system offers at this time. The combination
of short-length telltale patterns and diverse attack types may
yield false matches in the course of the FM procedure as streams
and signatures could share the same digests but actually are
different. The frequency of such occurrences termed false match
rate affects the efficiency of Fingerprinter as every false match
leads to the invocation of a CPU-intensive PM algorithm. Our
Fingerprinter reduces this false match rate by integrating a
variety of fingerprinting strategies including the Bloom–Filter
and Rabin–Fingerprint methods into the digest generation.

To provide flexibility and attain high performance, we
standardize the interfaces of Fingerprinter so that new
fingerprinting methods can be activated in a plug-and-play
fashion. We have implemented the Fingerprinter along with
the proposed fingerprinting methods as a PME in Snort
and evaluated its performance by employing a trace-driven
testing methodology [19] with a variety of traffic traces. We
have experimentally established the operational acceleration
offered by Fingerprinter to the incident detection process. We
showed that our prototype consistently outperforms Snort in
conventional settings with an up to 2-fold speedup rate. The
rest of the paper is organized as follows: Section 2 outlines
related IDS/IPS PM techniques and Section 3 deals with our

design and discusses our fingerprinting methods. In Section 4,
we provide key findings of our evaluation while conclusions
and future work are found in Section 5.

2. RELATED WORK

Single-pattern matching (SPM) techniques, which seek the
occurrence of a pattern P in a text T , have been widely applied
in information retrieval, automatic document classification and
pattern recognition [11,12,20]. As SPM methods use character
comparison to be their key functional element, their complexity
is dominated by the number of comparisons involved having a
lower bound of (n − m + 1), where n is the length of T and
m the size of P [21]. Efforts reported in [12,13,22–24] have
investigated the reduction in the number of such comparisons.
For instance, the Boyer–Moore algorithm exploited the bad
character and good suffixes heuristics to eliminate unnecessary
comparisons [12]. It has been shown [23,25] that Boyer–
Moore incurs O(n + γm) comparisons with γ being the
number of P ’s occurrences in T . We should point out that
the effectiveness of heuristics in the Boyer–Moore method
heavily depends on the length of P . Evidently, a long pattern
does provide opportunities for large shifts when mismatching
occurs. Comparisons in Boyer–Moore can be further reduced
by using more sophisticated heuristics and/or higher memory
consumption [13,22,23,26]. The Aho–Corasick SPM method
follows an entirely different approach as it first constructs
a finite automaton able to recognize P and then handles T

sequentially [11]. Its computational complexity is O(n+|�|m)

where |�| is the size of the character set used by both P and T .
As � is often large in intrusion detection, Aho–Corasick-based
IDS/IPS implementation calls for a sizeable memory footprint.

Compared with Boyer–Moore, the Aho–Corasick method can
be readily extended to carry out MPM. The latter searches for
the occurrence of any pattern from a set S = {Pi, i = 0, 1, . . .}
in text T [14]. MPM Aho–Corasick tracks multiple matching
patterns with the help of respective states and transitions. In
a way similar to SPM, the MPM Aho–Corasick algorithm
also demands a large amount of memory to accommodate
the automaton structure despite the fact that initially patterns
are clustered according to their shared prefixes in an attempt
to lower memory consumption [9]. The MPM Aho–Corasick
implementation in Snort needs an average 1 KBytes per pattern
character [9], a challenging requirement to address in real
settings.

The SPM Boyer–Moore method and its variants have also
been redesigned to address the MPM problem [8,9,13]. To
this end, the Boyer–Moore–Horspool (BMH) algorithm organizes
patterns in a trie so that the Boyer–Moore can be applied to a set
of patterns that share common prefixes [9,27]. In contrast, the
AC–BM algorithm [8] uses suffix trees to organize patterns
according to their shared suffixes, and consequently executes
the Boyer–Moore on all patterns ‘held’ by the same suffix tree.

The Computer Journal, 2009

4 Z. Chen et al.

The Wu–Manber method [14] employs a hash-based table that
controls the movement of the patterns when mismatches occur,
and it may yield better performance than its MPM Boyer–Moore
and Aho–Corasick counterparts for diverse PM tasks [28].

The attack detection through PM by its nature is an MPM
problem as incoming traffic should be simultaneously examined
against multiple signatures, each of which may contain more
than one telltale patterns [8,9]. Although the MPM Boyer–
Moore, Aho–Corasick and Wu–Manber approaches have been
individually implemented and optimized for the open-source
Snort IDS/IPS, it appears that there is no clear winner as far as
diversified traffic types, variable population of attack signatures
and different network environments are concerned [9,28]. To
enhance performance, a number of proposals exist that either
integrate multiple MPM techniques or select different MPM
methods according to traffic types and characteristics in the
attack signature databases involved [9]. For instance, it is a
good choice to employ Boyer–Moore when the traffic type
is Web services and Aho–Corasick for other streams. This is
necessitated by the fact that the extremely large set of patterns
in HTTP-specific attacks would render the memory-intensive
Aho–Corasick an unworkable choice [8,9].

The real-time requirements for IDS/IPS operations have led
to the hardware implementation of MPM methods [29,30].
Algorithms including the MPM Boyer–Moore and Aho–
Corasick methods have been realized with dedicated processors,
ASICs or FPGAs [30–32]. In [33], a multi-pattern matching
system is proposed that de-multiplexes a traffic flow into sev-
eral streams and spreads the load over parallel matching units
that perform a string search using deterministic finite automata.
In [34,35], the integration of pre-decoded wide parallel inputs
with automata implementations offers high throughput rates.
Similar pre-decoding techniques are also employed to design
IDSs for Gigabit networks [36,37]. An IDS equipped with con-
tent addressable memory (CAM) is used to match traffic against
attack telltales in a brute force manner [38]. The hardware-
based pattern match engine in [39] uses a Bloom filter to
construct a hash-table for attack patterns. To improve space and
time efficiency, optimizations such as pattern alignments and
redundancy elimination are under intense examination [40–42].

The exclusion-based PM approach relies on the observation
that pattern P cannot appear in T if any portion of P is not found
in T [17]. This technique represents every attack signature with
a set of n-grams derived from the patterns of the exploit. By
tokenizing incoming traffic into a set of n-grams, the method
matches the n-grams of the input against those of signatures
and declares the input as non-malicious if the intersection of
the two n-gram sets is empty [17]. Should the n-gram set of
an attack signature be indeed subsumed by that of the input
traffic, the Boyer–Moore algorithm is invoked to scan the entire
input for exact telltale patterns. Unfortunately, the effectiveness
of the exclusion-based PM algorithm diminishes quickly as the
number of signatures exceeds 1000 due to the increasing false
match rate [32].

Content filtering techniques could be an alternative to PM
when exact matches in the given text are not required [20,43].
In this context, Bloom–Filter based methods can quickly
determine whether a given input T contains any pattern
from a set S [44]. However, Bloom–Filter cannot pinpoint
the exact matching location if there is one and may cause
false positives due to the fact that entries in the fingerprint
vector corresponding to a specific input may be marked
separately by different patterns in S. Bloom–Filter techniques
have been applied in hardware-based IDSs/IPSs as they can
readily organize attack telltale patterns in a way that legitimate
traffic can be quickly identified [20]. This is accomplished at
the expense of computational overheads and large memory
consumption [20,39]. As the Shingle and Rabin–Fingerprint
digesting techniques have been successfully used to detect
document similarity and establish plagiarism [45–48], they have
also been adopted in the MPM procedure of IDSs/IPSs [18]. In
contrast to prior efforts that use either filtering or fingerprinting
techniques in isolation and fabricate them in hardware to
detect attacks, our Fingerprinter is a pure software-based
framework that integrates filtering, fingerprinting and PM
methods, thus treating them as indispensable elements of the
PMEs in IDSs/IPSs. In this regard, incoming streams are first
fingerprinted and matched against those of signatures before
an exact PM algorithm actually takes place. Moreover, the
concurrent use of multiple fingerprinting methods helps reduce
false matches that occur in fingerprint comparison and assists
in significantly accelerating the attack identification process.

3. OUTLINE OF FINGERPRINTER

To avoid expending CPU-cycles for reaching negative verdicts,
Fingerprinter subjects network traffic to a fingerprinting pro-
cess before launching any other ‘expensive’exact pattern match-
ing operation. During its programming phase, Fingerprinter
creates a fingerprint repository for attack signatures designed to
help make quick decisions as far as the existence of exploits in
input streams is concerned. While in its querying phase, Finger-
printer may rapidly deduce the legitimacy of a flow if there are
no matches with digests found in its repository. If in doubt, the
framework proceeds with an exact-PM Boyer–Moore algorithm
to issue authoritative and final verdicts. In contrast to traditional
PMEs of IDSs/IPSs, Fingerprinter only imposes a light-weight
FM on benign network flows.

3.1. Fingerprinter design rationale

Fingerprints are short and compact tags that represent large and
often complex objects such as raw data and documents [48].
A fingerprinting process ‘transforms’ objects into a space
created by their fingerprints [18]. This transformation makes
it possible to shift the operations conducted on the original data
to processes taking place on concise signatures. This enhances

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 5

system performance as long as fingerprints of objects ‘collide’
with very low probability [49]. Fingerprints are usually
generated by a digesting function defined as f : � → {0, 1}k ,
where � is the set of objects whose fingerprint length is k.
To obtain a compact space of fingerprints, the parameter k is
typically small compared with the original representation of the
objects in �. This inadvertently leads to fingerprint collisions—
distinct objects with the same fingerprints—due to information
loss in the digesting process. It is therefore desired that for any
n distinct objects S = {si |si ∈ �, i = 0 . . . n − 1}, the number
of distinct fingerprint values f (si), i = 0 . . . n − 1 is equal to n

with a high probability; at the same time, for any two objects si

and sj (i �= j), it should be highly unlikely that f (si) = f (sj).
By treating streams and/or signatures of exploits as complex

objects that consist of character sequences, Fingerprinter
represents both traffic and attack signatures with their
fingerprints, so that it can predominantly operate on the
‘reduced’ space of fingerprints to detect intrusions. In this
regard, Fingerprinter tokenizes its input text—either a network
packet P or an attack signature R—into a series of shingles.
To help manage overheads, Fingerprinter considers shingles
having only fixed length of l bytes. Thus shingles, also termed l-
grams, can be generated quickly by sweeping through the input
with a sliding window of l bytes. The produced l-gram set for
an input packet P can be described as SP = ⋃|P |−l

i=0 {P [i, (i +
l −1)]}, where |P | is the length of packet P , P [i, j] is the byte-
sequence in P between positions i and j , and

⋃
is the union set.

The same tokenization process is applied to telltale patterns
of signatures that make up the IDS/IPS rule-bases. For instance,
with the help of a 4-byte sliding window, Snort signatures
depicted in column Signature of Table 1 can be tokenized to
obtain bags of shingles. Signature sid-1002 defines a single
pattern cmd.exe with keyword uricontent and its set of 4-grams
is {cmd., md.e, d.ex, .exe} as shown in column Token set.
Table 1 depicts the sets of shingles derived for other signatures
as well.

Should we apply a digesting function f on the shingle
set of an attack signature R, we can obtain the fingerprint
of R as FR = ⋃|R|−l

i=0 {f (R[i, (i + l − 1)])}. By assuming
that f is a naive XOR function defined as f (s) = (

⊕|s|−1
i=0 s[i])

with
⊕

being the exclusive-OR operation and s[i] the ASCII
code for the character at position i of the input s, we may
compute the fingerprints for the Snort signatures depicted in
Table 1. For instance, the fingerprint of the 4-gram ‘cmd.’
in the shingle set for Signature sid-1002 can be calculated
as f (cmd.) = (0x63 ⊕ 0x6D ⊕ 0x64 ⊕ 0x2E) = 0x44.
By repeating the digesting process on other three 4-grams of
Signature sid-1002, we can derive its fingerprint as the set of
{44, 42, 57, 56}. Similarly, the above digesting can be used to
fingerprint the payload of packets. For instance in the Nimda
attack traffic depicted in Table 2 consisting of 12 packets,
only three packets have TCP payloads: packets 4 and 6 from
attacker and packet 8 from victim. Packet 4 of the Nimda traffic
in question contains the string ‘cmd.exe.’ It thus features all

4-grams of Snort signature sid-1002 in its set of shingles and
subsequently subsumes the latter’s fingerprints.

With fingerprints of both a packet P and a signature R at hand,
we can quantify their similarity via a homology metric defined
on respective fingerprint sets FP and FR as follows: σ(P, R) =
|FP ∩ FR|/|FP ∪ FR|, where ∩ and ∪ are the intersection and
union of the sets involved. The range of σ(P, R) is [0. . . 1]
and σ(P, R) = 1 should P and R be identical. Similarly, we
quantify the ‘containment’ relationship between P and R as:
π(P, R) = |FP ∩FR|/|FR|; P contains R should π(P, R) = 1.
We can readily see that the fingerprints of Nimda and signature
sid-1002 indicate containment as π(P4, sid-1002) = 1. This is
however not the case for sid-1735 as its token ‘file’ does not
appear in any fingerprint sets of the Nimda packets yielding
π(Pi, sid-1735) < 1 for all i = 1 . . . 12.

By identifying attack signatures that are contained in packets
emanating from network connection C, we can compile a set
of candidate signatures, R′ = {Ri |π(Pj , Ri) = 1, Pj ∈ C}. If
R′ is empty, Fingerprinter can fast determine the legitimacy of
traffic from C. Otherwise, the exact-PM method is invoked to
render the definitive verdict. For instance, the traffic depicted in
the right column of Table 2 yields an empty R′ set indicating a
non-malicious flow. In contrast, the non-empty R′ = {sid-1002}
for the Nimda traffic of Table 2 points out a stream that may
comply with signature sid-1002; the latter is confirmed through
the subsequent execution of the Boyer–Moore algorithm.

It is worth pointing out that IDSs/IPSs designate complex
constraints that intrusions are expected to demonstrate in order
to improve their detection accuracy. For example, the Snort
signature sid-1002 not only specifies the pattern ‘cmd.exe’ as
the telltale in the Nimda attack, but also requires that the telltale
should appear in packets originated from the client side of an
established TCP connection. Along these lines, to identify the
exploit in the buffer overflow existing in IIS-servers, the Snort
signature sid-2572 specifies that the distance between patterns
‘txtusername=’ and ‘|0A|’ should be larger than 980 character
positions. It is therefore conceivable for a network session to
be declared attack-free even though it features a non-empty set
of candidate signatures and may further contain exact telltale
patterns specified in signatures.A false match occurs when there
is a non-empty set of candidate signatures for a network flow
which receives a positive verdict in the FM process but the flow
in discussion fails the examination during the PM inspection.
We term the frequency of false match occurrences as the false
match rate.

Telltale patterns do appear at arbitrary positions either within
protocol headers or the payload of packets. Besides examining
traffic for the occurrence of telltales, IDSs/IPSs attempt to verify
the correctness of locations as well as spatial relationships
among patterns involved. The FM operation of the Fingerprinter
may help accelerate the work of the PM process if it can
pinpoint the positions of input substrings that match signature
fingerprints; this information can substantially reduce the search
space for the PM algorithm. The two phases, under which

The Computer Journal, 2009

6 Z. Chen et al.

TABLE 1. Tokenizing and fingerprinting some sample signatures in the rule-base of Snort.

SID Signature Token set Fingerprint
with XOR

1002 tcp $EXTERNAL_NET any → $HTTP_SERVERS $HTTP_PORTS
(msg: “WEB-IIS cmd.exe access”; flow:to_server,established; uricontent:
“cmd.exe”; nocase;)

cmd. md.e d.ex .exe |44 42 57 56|

1735 tcp $EXTERNAL_NET $HTTP_PORTS → $HOME_NET any (msg: new_ ew_X w_XM ... |5C 6A 42 79 11 ...
“WEB-CLIENT XMLHttpRequest attempt”; flow: to_client, established; LHtt ttpR ... est|28| |04 38 22 ...|
content: “new XMLHttpRequest|28|”; content: “file|3A|//”; nocase;) ... le|3A|/ e|3A|// |... 5A 1C 5F|

978 tcp $EXTERNAL_NET any → $HTTP_SERVERS $HTTP_PORTS (msg: &CiR CiRe ... |5E 1D 2D ... |
“WEB-IISASP contents view”; flow: to_server, established; content: “%20”; &CiH CiHi ... |44 0B 24 ... |
content: “&CiRestriction=none”; nocase; content: “&CiHiliteType=Full”;
nocase;)

... =Ful Full |... 6B 62 33|

1986 tcp $HOME_NET any <> $EXTERNAL_NET 1863 (msg: “CHAT MSN MSG_ Cont ... |79 36 10 ...|
file transfer request”; flow: established; content: “MSG ”; depth:4; content: text ext/ ... |1D 46 5B ...|
“Content-Type|3A|”; distance:0; nocase; content: “text/x-msmsgsinvite”; Appl ppli ... |2D 05 16 ...|
nocase; distance:0; content: “Application-Name|3A|"; content: “File
Transfer”; distance:0; nocase;)

... nsfe sfer |... 1A 1E 02|

2572 tcp $EXTERNAL_NET any → $HTTP_SERVERS $HTTP_PORTS (msg: /log logi ogin gin. |4B 0D 0F 4E
“WEB-IIS SmarterTools SmarterMail login.aspx buffer overflow attempt”; in.a n.as .asp aspx 48 52 4C 1A|
flow:to_server, established; uricontent: “/login.aspx”; nocase; content:
“txtusername=”; isdataat:

txtu xtus tuse user |0D 0A 17 11

980, relative; content:!“|0A|”; within: 980; nocase;) sern erna rnam name 0A 18 10 07 54|

Fingerprinter operates—programming and querying—are the
outcome of the quest for efficient detection of exploit signatures.
Figures 1 and 2 show the respective architectural lay-outs for
the two stages, respectively.

In the programming phase, attack signatures are tokenized
and digested so that the fingerprint space can be constructed. For
an exploit signature R that defines a pattern r , the module Input
Scanner of the Fingerprinter tokenizes r and builds its shingle
set SR = ⋃|r|−l

i=0 {r[i, (i + l − 1)]}, where |r| is the length of
pattern r and l is the size of the sliding window.A shingle set of a
signature with multi-patterns is obtained by combining shingles
from all its patterns, that is, SR = ⋃|R|−1

j=0

⋃|rj |−l

i=0 {rj [i, (i + l −
1)]}, where |R| is the number of patterns in signature R. For
instance, the 4-grams from the five patterns defined by keyword
content in signature sid-1986 contribute to its shingle set, which
contains token “Cont” from the second pattern and “File”
from the last telltale. Subsequently, the Fingerprint Generator
module selects a subset of l-grams from the shingle set for
each signature R, and computes the Rabin–Fingerprint of the
selected l-grams; in addition, k hash codes are also derived for
each l-gram with the help of the Bloom–Filter techniques. The
digest of R—its Rabin fingerprint and k hash values—are stored
in the fingerprint table that is searched with the Rabin fingerprint
as its access key. Given that the attack signatures recognized
by the PME are known in advance, the programming phase is

performed off-line once and gets updated only when changes in
the signature database occur.

The Fingerprinter carries out its normal operation in real-
time during its querying phase. For every incoming packet P ,
Input Scanner generates its shingle set with a sliding window
of l bytes as shown in Fig. 2. After the creation of P ’s shingle
set SP = ⋃(|P |−l)

i=0 {P [i, (i + l − 1)]}, the Rabin-Fingerprinter

module computes P ’s digest FP = ⋃(|P |−l)

i=0 {f (P [i, (i + l −
1)])}. Signatures contained in FP are then identified by the
Fingerprint Manager that helps form the set of candidate
signatures, R′ = {Ri | π(P, Ri) = 1}. The latter is used by
Verdict Generator to decide upon the legitimacy of packet P .
Obviously, a signature R is a member of the set R′ only if its
Rabin fingerprint is contained in packet P . To further reduce
the false match rate, the Fingerprinter also compares the k hash
codes of the signature R against P before R is placed into R′. If
a signature R is included in R′, the sliding window used by Input
Scanner helps locate the input substring that shares the common
fingerprint with R. This facilitates the work of the Boyer–Moore
algorithm, which follows and commences at the current sliding
window instead of scanning the entire input stream. Moreover,
the set of candidate signatures R′ is constructed efficiently in
our Fingerprinter with the help of optimized data structures that
maintain the associations between signatures and their digests.
We derive Rabin fingerprints of l-grams for an input packet in a

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 7

TABLE 2. Traffic for a Nimda attack and packet flow for a normal Web service.

No. Dir Payload Token set

Nimda: attacker (A) – 10.80.8.183/32872; victim (V) – 10.80.8.221/80
1 A→V (SYN)
2 V→A (SYN|ACK)
3 A→V (ACK)
4 A→V GET /scripts/..%255c../winnt/system GET_, ET_/

/cmd.exe?/c+dir HTTP/1.1 T_/s, ...
5 V→A (ACK)
6 A→V |0D 0A|
7 V→A (ACK)
8 V→A HTTP/1.1 400 Bad Request|0D 0A| HTTP, TTP/

Date: Thu, 17 Jul 2003 ... TP/1, ...
9 V→A (FIN|ACK)
10 A→V (ACK)
11 A→V (FIN|ACK)
12 V→A (ACK)

Normal: client (C) – 10.80.8.183/4569; server (S) – 10.80.8.221/80
1 A→V (SYN)
2 V→A (SYN|ACK)
3 A→V (ACK)
4 A→V GET /cgi_bin/library/picturebase GET_, ET_/

/execmd.eps HTTP/1.1 T_/c, ...
5 V→A (ACK)
6 A→V |0D 0A|
7 V→A (ACK)
8 V→A HTTP/1.1 200 OK|0D 0A| HTTP, TTP/

Server: Microsoft-IIS/4.0 ... TP/1, ...
9 V→A (FIN|ACK)
10 A→V (ACK)
11 A→V (FIN|ACK)
12 V→A (ACK)

FIGURE 1. The Fingerprinter in the programming phase. FIGURE 2. The Fingerprinter in the querying phase.

The Computer Journal, 2009

8 Z. Chen et al.

rolling manner so that the fingerprints of previous shingles can
be reused in the computation of subsequent tokens. In addition,
hash codes for an input are generated on-demand by the Hash
Function Manager module and they are materialized only if the
input matches the Rabin fingerprints of certain signatures. The
stateful inspection of Snort allows Fingerprinter to generate a
verdict for a network session and declares it as attack-free if
all its constituent packets obtain negative verdicts. We provide
additional detailed description for the functions of modules
involved in Figs 1 and 2 in the remainder of this section.

3.2. Programming and querying the Fingerprinter

The tokenization process creates shingles for exploit signatures
in the programming phase and for input traffic in the querying
phase. The efficiency of tokenization is determined by the
size l of the sliding window as: first, size l determines the
uniqueness of the produced tokens with respect to attack
telltales. Apparently, tokens derived from malicious telltales
with large l are still unique with high probability to specific
and infrequent exploits. Second, the computational complexity
of fingerprint calculation on a l-gram linearly depends on l;
small-sized sliding windows are naturally favored in this regard.
Finally, parameter l also affects the Fingerprinter false match
rate as small l generates short tokens that may destroy the
information context of the original patterns and consequently
weaken the framework’s differentiation capability [18]. For
instance, if l = 4 bytes, the Snort signature sid-1002 has a
four-element set of 4-grams, {cmd., md.e, d.ex, .exe}. With the
same size of the sliding window l = 4, the tokenization process
creates a set of shingles for packet 4 of Nimda in Table 2, which
has a subset of {cmd., md.e, d.ex, .exe}; the set of 4-grams for
packet 4 of the attack-free traffic presented in the right column of
Table 2 contains elements of {exec, xecm, ecmd, cmd.}. Clearly,
packet 4 of Nimda contains all the shingles of Signature sid-
1002. By reducing l to 2, we have the token set for signature
sid-1002 to be {cm md d. .e ex xe} with the token set for packet 4
in the traffic from the second half of Table 2 including all the
2-grams of Signature sid-1002, resulting in a false match.

Based on our experiments, a window size in the range of
[4 . . . 8] bytes achieves superb performance for various network
traffic types and mixture of benign/malicious streams. Thus,
we use a sliding window of l = 4 bytes as default in the
Fingerprinter operation. The efficiency of Fingerprinter also
depends on the penalties imposed by the digest computation in
the fingerprinting process for both signatures (off-line) and input
packets (in real-time). In this regard, the fingerprint derivation
for an l-gram is definitely affected by the length l of the token
(determined by the sliding window size). The fingerprinting
process is also influenced by the digesting function f used. The
latter could be either CPU-intensive as it may entail expensive
manipulations including divisions and multiplications or
lightweight as it would involve bit-shifting functions and
XORs that are now efficiently carried out by modern OSs.

Furthermore, the false match rate caused by the FM operations
does significantly affects the performance of Fingerprinter as
it increases the frequency with which exact-PM Boyer–Moore
algorithm is triggered without yielding positive identifications.

Algorithm 1 The programming process in Fingerprinter.
1: initialize the fingerprint table F with size of m entries to be zero;
2: register k functions to establish the hash pool H ;
3: while (there is unprocessed signature s in the rule base S) do
4: find the longest pattern p in patterns of s;
5: if (signature s defines no telltale pattern) OR (pattern p is shorter than sliding

window’s size l) then
6: mark s as “non-fingerprintable”, put s into the set of R, and process next

signature;
7: end if
8: extract the first l bytes of p to obtain substring p′;
9: compute the Rabin’s fingerprint of p′ to get c; c ← (c modulo m);

10: materialize entry c of fingerprint table F with c as the key and signature s as the
value;

11: linked-list is used to organize multiple signatures when collision occurs;
12: for (each hash function h in the hash pool H) do
13: compute hash code d = h(p′); store d in the fingerprint table F [c];
14: end for
15: end while

16: the construction of Rabin hash table H is completed; H is switched to work in

“querying" mode;

The Fingerprinter reduces overheads and the false match
rate by integrating multiple efficient fingerprinting techniques,
namely:

• Efficient fingerprint computation: in tokenizing incoming
flows with an l-byte sliding window, the l-gram in the
current window shares (l − 1) characters with the just
previous l-gram. This implies that the Rabin–Fingerprint
techniques employed in our Fingerprinter accelerate the
fingerprinting process by reusing the computational results
from previous tokens in the derivation of fingerprint for the
current token.

• Determination of candidate signatures: for traffic that
shares the same Rabin fingerprints and Bloom-hash
codes with certain attack signatures, the set of candidate
signatures can be identified quickly with the help of
optimized data structures. This reduces the invocation of
the PM algorithm from matching packets against the entire
signature database to the candidate signatures only.

• Identification of matching point in traffic: any time an FM
occurs, the position of the match in the incoming traffic
can be located accurately with the help of the sliding
window. Thus, subsequent PM searches for exact patterns
may commence from specific locations instead of scanning
the entire flow.

Depending on the location of their appearance, Snort defines
telltales for exploits with keywords uricontent and content. The
former expects the specified patterns to occur in the field of
universal resource identifier (URI) in Web traffic and the latter
searches for patterns in IP payloads. Telltale patterns delineated
with the above two keywords (uricontent and content) neces-
sitate the invocation of Algorithm 1 twice as the two individual

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 9

searches work on unrelated locations. Algorithm 1 outlines the
work of the programming phase: it first extracts the longest tell-
tale pattern from each attack signature, and then computes the
Rabin fingerprint based on the l-byte prefix of the longest pat-
tern. In addition, a set of k hash codes are also generated with the
help of a hash function pool in the Bloom-filter of the Finger-
printer. The Rabin fingerprint and Bloom hash codes are stored
in a fingerprint table. In case a collision occurs on the Rabin
fingerprint, linked-list helps organize all ‘colliding’ signatures.

As mentioned before for efficiency reasons, the shingle
computation for Rabin fingerprints is done in a rolling manner.
The k hash values of shingles for exploit signatures are always
computed in Algorithm 1 and so, the overhead in question
does not affect the operation of the Fingerprinter’s subsequent
querying phase. Should we assume that Rabin fingerprints in
attack signatures are uniformly distributed, the requisite table
should have M = 2|l|+8 entries to accommodate any possible
Rabin fingerprint code. Clearly, the Fingerprinter memory-
footprint increases exponentially with l. To achieve as compact
as possible memory requirements l has to be small on the one
hand, while on the other hand a large l decreases fingerprint
collisions improving overall performance. Signatures marked
as ‘non-fingerprintable’ inAlgorithm 1 are processed separately
with the Snort conventional PME.

Algorithm 2 The querying process in Fingerprinter.
1: align the l-byte sliding window on packet P at index i = 0;

initialize the set R of candidate signatures;
2: while (sliding window completely covers the packet P) do
3: compute the Rabin’s fingerprint c of input substring in the sliding window;
4: if (fingerprint table entry keyed by c is empty) then
5: advance sliding window by one byte (i.e., i ← (i + 1)); process next substring;
6: end if
7: compute k hash codes for current substring with functions in hash pool H ;
8: for (each signature s in fingerprint table entry F [c]) do
9: if (s shares same k hash codes as current substring) and (longest pattern of s is

in P starting at current window) then
10: insert signature s into R along with position of current window;
11: end if
12: end for
13: advance sliding window by one byte (i.e., i ← (i + 1));
14: end while
15: if (candidate signature set R is empty) then
16: assign a negative verdict for P ;
17: else
18: invoke boyer-moore algorithm on R and P ; return its verdict for P ;

19: end if

Algorithm 2 delineates the operational work of Fingerprinter
in its querying phase. The algorithm uses the l-bytes sliding
window to yield a set of l-grams for the corresponding input
stream. The Rabin fingerprint for a l-gram is computed and is
used as key to access the fingerprint table established in the
programming phase. Should an empty entry be encountered,
no further PM inspection is required. Otherwise, Algorithm 2
computes the k hash codes of the l-gram by using the function
pool in the Bloom-filter. The signature residing in the entry
of the table is not a candidate if its k hash values differ from
those of the current l-gram. The same process is repeated for

every signature in the entry if the latter accommodates multiple
signatures. It is rather unlikely for a shingle from an attack-free
traffic to share both the Rabin fingerprint and k hash codes with
a malicious telltale pattern. Thus, we expect that most shingles
should hit empty slots in the fingerprint table asking for no
further action.

If a token indeed lands on a non-empty entry of the
fingerprint table and has simultaneously the same k hash codes
with the signature in the entry, additional action is taken by
Algorithm 2 to further verify that the input starting at the current
window actually matches the signature’s longest pattern, and the
signature is considered as a candidate only if the verification is
positive. Evidently, the Boyer–Moore algorithm is only executed
when the above-described FM operations yield a non-empty set
of candidate signatures. Moreover, the information on matching
positions in the input stream recorded byAlgorithm 2 during the
FM process also facilitates the performance of the Boyer–Moore
as the latter’s search space is substantially reduced. Algorithm 2
involves light-weight operations for most legitimate traffic as
tokens from the latter result in an empty set of candidate
signatures with high probability.

3.3. Digest functions and fingerprint computation

The main digesting method of the Fingerprinter is the Rabin’s
fingerprinting approach that treats each l-gram of a given input
string as an l-digit number in a certain base b. In this context,
an l-gram with byte sequence of A1 = {a1, a2, . . . , al} can
be represented as an (l − 1)-degree polynomial with base
b : A1(b) = a1b

l−1 + a2b
l−2 + · · · + al , and its Rabin

fingerprint can be computed as f (A1) = A1(b) mod P(b),
where P(b) is an irreducible polynomial of k degree. Suppose
that the above l-gram is only a substring of a given long input
stream, and the next immediate l-gram has the byte sequence
of A2 = {a2, a3, . . . , al+1}, obviously, A1 and A2 share the
same (l − 1) characters. Subsequently, the computation of
the Rabin’s fingerprints for A2 can use a portion of the result
from the previous l-gram A1. This is what we have earlier
termed the rolling computation of fingerprints. In particular,
the Rabin fingerprint of the l-gram A1 can be expressed as
f (A1) = (a1b

l−1 + a2b
l−2 + · · · + al) mod P(b) = r1b

k−1 +
r2b

k−2 + · · · + rk , while the fingerprint of the l-gram A2 can be
derived as f (A2) = ((f (A1) − a1b

k−1)b + al+1) mod P(b).
As bk−1 is a constant given that base b and degree k of P

are fixed, f (A2) can be obtained from f (A1) efficiently with
only two additions and two multiplications. It is known that
among n randomly chosen strings with degree l, the probability
for a Rabin fingerprint collision of two distinct strings is less
than (nl2/2k). Hence, the collision rate can be controlled by
manipulating parameters k, l and n according to application
environments [48]. To reduce its computational complexity,
Fingerprinter sets base b to two so that multiplications in Rabin
fingerprint calculation can be replaced with left-shift operations.
We further decrease computational penalties by representing

The Computer Journal, 2009

10 Z. Chen et al.

each signature with the Rabin fingerprint derived from the l-byte
prefix of its longest telltale pattern instead of all its shingles.

The Fingerprinter also resorts to Bloom–Filter methods to
efficiently settle membership of a given input string in a set of
pre-specified patterns [20,44]. Consisting of k hash functions
and an m-bit fingerprint vector, a Bloom filter operates in two
phases. In the programming mode, the Bloom filter attempts
to remember a set of pre-specified objects by materializing
the fingerprint vector with the help of object digesting. More
specifically, a set of k hash codes is first generated for each
object through the hash function pool and then each resulting
hash value acts as an index into the fingerprint vector to set the
corresponding bit. In the querying mode, the task of the Bloom
filter is to determine if a piece of input is identical to any of the
objects that are ‘cognizant’ by the filter. To this end, the Bloom
filter inspects the bits in the fingerprint vector corresponding
to the k hash values of the input generated with the same hash
function pool. A positive verdict for the input is created if all k

bits are marked. Otherwise, a negative verdict is issued.
A Bloom filter always correctly identifies non-member

objects as any unmarked fingerprint bit excludes a non-member
under test. We have to point out that the membership of an object
may not perfectly match a known object as the k fingerprint bits
associated with the input object could be checked off separately
by different pre-specified objects leading to false positives.
By either deploying much larger hash function pools or using
orthogonal hash functions that generate codes independently
the number of false alarms can be diminished.

Although it appears that Bloom filtering methods can be
readily applied to the FM process, in general their application
in IDS/IPS intrusion identification presents a number of
challenges:

• The ever-expanding IDS/IPS signature databases make the
set of patterns to be recognized by a Bloom filter very
large creating massive main-memory requirements. Multi-
pattern attack signatures also present challenges as far as
the compact derivation of their fingerprints is concerned.

• The diversification in the length of telltales implies that the
membership of a given string in the signatures can only
be determined by inspecting all its substrings whose sizes
are in the range of [LSP, LLP], where LSP and LLP are the
length of the shortest and longest patterns of all signatures,
respectively. This evidently is computationally intensive.
Moreover, the relationships among telltale patterns such
as overlap and containment call for complex structures to
help organize and efficiently maintain signatures.

• The false positive rate may deteriorate along with
the ever-expanding signature database due to increased
collisions. Furthermore, the inability to exactly pinpoint
the corresponding telltale patterns matched by the input
traffic does hurt the overall performance of Bloom filters.

In light of the above, Bloom-based methods may be applied in
IDSs/IPSs when hardware and parallelization options are used

so that multiple Bloom filters can be deployed simultaneously
to process input [43]. We overcome these challenges in
Fingerprinter by representing each attack signature with the
l-byte prefix of its longest pattern. In this way, signatures
are organized with a single filter. Instead of programming all
telltale patterns into a single fingerprint vector, Fingerprinter
stores hash codes of each signature separately within entries
of the fingerprint table using the Rabin fingerprint as key.
As depicted in Figs 1 and 2, the relations among signatures,
telltale patterns and their hash codes are maintained with
the fingerprint table facilitating the identification of candidate
signatures encountered in network flows. By subjecting shingles
of the input to the Bloom-filter only when these shingles match
the Rabin fingerprints of certain signatures, we further reduce
computation overheads as Bloom-filters are only executed
on-demand.

Similar to Rabin’s fingerprinting method, the performance
of the Bloom filter method in the Fingerprinter is affected by
parameter l as the latter determines the differentiation capability
of the Bloom filter. Obviously, a large l improves the uniqueness
of the prefixes extracted from telltales, which are programmed
into the Bloom filter. Larger l values also generate fewer tokens
for an input stream and help accelerate the detection process.
Small l values can help substantially reduce the processing
required for hash code generation. The performance of the
Bloom filter also depends on the size of its hash function pool
and the footprint of its corresponding fingerprint vector. A large
pool of hash functions could decrease the false positive rate
but at the cost of high computational intensity. Conversely, a
sizeable fingerprint vector does reduce the hash code collisions
at the expense of high memory consumption. Finally, the choice
of hash functions does affect the performance of Fingerprinter
and thus, we use hash functions that are both flexible to process
input with arbitrary length and are adaptive to diverse types of
traffic. In this regard, the operations on hash code computation
are designed to be lightweight so that they offer a viable overall
software implementation.

When multiple hash functions are configured into the pool
of the Bloom-filter, the Fingerprinter selects functions that
generate hash codes independently with diversified operations.
This is done so that no close correlation exists in the resulting
codes helping reduce hash code collisions. Each hash function
is thoroughly tested and fine tuned to ensure that the generated
hash codes are non-linear with input. Moreover, we consider
functions that are complete; this requires that a flip in a single
input bit affect most output bits and the derivation of every
output bit depend on all input bits [50]. The hash functions
in discussion are mainly constructed from one-way functions
typically used in cryptography and digital signatures [51], some
of which are shown in Table 3. Each hash function has its
identifier listed in column Function, and column Operations
outlines key computational operations on each input byte. For
instance, the naive hash function XOR applies the operation
(c ⊕ P [i]) to the ith byte of the input P with c being the

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 11

TABLE 3. Some of the hash functions used by Fingerprinter.

No. Function Operations Explanation

Input: P [0..(n − 1)]; Output: c is the hash code generated by corresponding hash function
1 XOR c = (c ⊕ P [i]) c is hash code with initial value zero; ⊕ is the exclusive

OR
2 RS c = (c � 7 + P [i]) + (c � 3) � is left shift operator
3 PJW c = ((c � 4) + P [i]) ⊕ and & are exclusive OR and AND;

c = (c ⊕ (c 24)) if high byte of c is not empty � and are left and right shifts
4 ELF c = ((c � 4) + P [i]); c = ((c 24) ⊕ c) ⊕ is exclusive OR operator; � and are left and right

shifts
5 BKDR c = (c � 5) − c + P [i] � is left shift operator
6 JS c = (c ⊕ ((c � 5) + P [i] + (c 2))) hash code c is initialized to 131; � and are left/right

shifts
7 DJB c = ((c � 5) + c) + P [i] hash code c is initialized to 5381; � is left shifts
8 DEK c = ((c � 5) ⊕ (c 27)) ⊕ P [i] hash code c is initially zero; � and left and right shifts
9 AP c = (¬(c � 11) ⊕ P [i] ⊕ (c 5)) “¬" is negation operation; � is left shifts
10 SDBM c = P [i] + (c � 6) + (c � 16) − c c is initialize to zero; � is left shifts

accumulated hash code generated by previous input bytes and
⊕ being the exclusive-OR. The hash code for an input string
P with length of n bytes can be expressed as c = (P [0] ⊕
P [1] ⊕ · · · ⊕ P [n − 1]). It is evident that the hash function
XOR generates only a small hash code space as its hash values
are limited in the range of [0, 255]. In contrast, other functions
in Table 3 have much larger code space, which helps reduce
collision rates. For example, by applying the hash function
DJB to the Snort signatures of Table 1 to generate 16-bit hash
codes, we can obtain the fingerprint for signature sid-1002 as
{40AE, 1625, C518, A365}. The fingerprint for signature sid-
1735 contains the subset of {A300, 6058, 0B4D, 69EC, . . . }.
By and large, Table 3 shows that key operations in the hash
functions are bit shifts, exclusive-OR, and modulo, all of which
are efficiently implemented in modern computer systems.

4. EXPERIMENTAL EVALUATION

We have implemented the Fingerprinter as a PME of the open-
source IDS/IPS Snort. Figure 3 depicts the architecture of
the system, which can either intercept live network streams
or extract packets from traces stored in files. Snort can
be configured to work in two modes: in passive detection,
Snort monitors network traffic and generates alarms whenever
a malicious connection is detected; while in pro-active
prevention, Snort may further act with countermeasures such
as packet drop or session termination on identified malicious
streams. In both modes, incoming traffic is first rearranged by
the component ‘TCP/IP Protocol Dissector’ into a sequence
of packets according to TCP/IP specifications before it gets
subjected to security inspection. To improve attack detection
accuracy, the Snort also resorts to layer-7 protocol analysis
with the help of its module ‘Application Layer Analyzer’.

FIGURE 3. Key Snort components with Fingerprinter serving as
PME.

For instance, the URI in HTTP protocols is identified and
normalized by the module so that telltale patterns in URIs
can be readily located. In this context, the Nimda attack is
discovered by searching in URIs for the pattern cmd.exe as
demonstrated by Snort signature sid-1002 of Table 1. At the
same time, the module attempts to decode certain types of
data streams including simple network management protocol
(SNMP) messages encoded in abstract syntax notation one
(ASN.1). For network traffic including instant messengers,
P2P protocols and Backdoors that masquerade or encrypt their
communications, the module may be able to decrypt if the
cryptographic algorithms and keys are available so that a PM
process can be carried out in plaintext instead of ciphertext.

The Computer Journal, 2009

12 Z. Chen et al.

The stateful inspection is provided in Snort by maintaining
the correlation between the bidirectional traffic streams for each
connection and tracking the progress of data transmissions.
For instance, input is declared as a Nimda attack only if
the sought-for pattern cmd.exe appears in the packets from
the client-end of an established TCP connection. The Snort
heavily relies on PM techniques for intrusion detection and
its performance is dominated by the PM algorithm in its
PME. A number of PM algorithms including Boyer–Moore and
Aho–Corasick have thus been implemented as part of the Snort
module ‘Pattern Matching Engine (PME)’. The default PME
is the Lowmem method that is a set-wise multi-pattern Boyer–
Moore algorithm [9]. Lowmem clusters attack signatures into
different groups according to the protocol types and network
ports involved. It further organizes telltale patterns of signatures
within each group with a prefix tree, and invokes Boyer–Moore
on the input packet if the latter matches a pattern in any prefix
tree [9]. The modularized design of the Snort helps in the ease
of replacement of ‘Pattern Matching Engine (PME)’ module
should this be desired. We developed the Fingerprinter to
function as a Snort PME; this is depicted as ‘Fingerprinter’
in Fig. 3. The rationale for this design decision was to have
Fingerprinter seamlessly integrate with other Snort components
by replacing the module ‘Pattern Matching Engine (PME)’ of
the official release.

We conducted experiments on a 2.80 GHz CPU, 1 GB main
memory machine running RedHat Linux OS. The test machine
was equipped with Snort v.2.6.0.2 whose signature database
was released on 24 September 2008. The 4637 signatures in the
database are crafted to identify the majority of contemporary
attacks. We assumed the ‘out-of-the-box’ Snort configuration
and so all attack signatures were activated. Experiments were
conducted on multiple traffic traces following a trace-driven test
methodology [19]. By configuring Snort to use different PMEs
including Lowmem as well as our proposed Fingerprinter and
its variants, and feeding it with traffic traces at the maximum
throughput allowed by the test machine, we evaluated Snort’s
performance mainly in terms of processing time and memory
consumption.

To ensure that various PMEs deliver the same and correct
behavior, we compared the respective alert logs generated
to verify their consistency and ascertain the same attack
detection capability. Whenever a different experiment setting
was materialized, we restarted the test machine to minimize
the interference from previous experiments. To further reduce
noise, we conducted multiple experiments for every single
configuration and evaluated the outcome based on the best
performance attained.

4.1. The Fingerprinter and its variants

To facilitate the Fingerprinter evaluation and quantify its
contributions to the intrusion detection process, we designed
and modularized its components in a way that they can be

integrated into the framework in a plug-and-play manner. This
flexibility enables the easy creation of a variety of PMEs that
function with different fingerprinting methods. In particular,
we derive three Fingerprinter variants: Bloom–Filter PM,
Shingling PMand Rabin–Fingerprint PM. For convenience, we
name the PME depicted in both Figs 1 and 2 as the Hybrid
PM method as it activates and employs multiple fingerprinting
methods.

We obtain the Bloom–Filter PM by enabling the Finger-
printer Bloom-filter related components. Figures 4 and 5 show
the respective programming and querying phases. During its
programming phase, the Bloom–Filter PM represents each
attack signature with the l-byte prefix of its longest telltale pat-
tern and programs it into a Bloom-filter consisting of k hash
functions and a fingerprint vector with m bits. The k hash codes
obtained by applying k hash functions to the l-byte prefix of the
longest pattern for an attack signature serve as indices to the fin-
gerprint vector to mark the corresponding bits. The fingerprint
vector can be treated as a two-dimensional array accessed with
key pair (byte, bit), which is computed for a hash code c with the
help of formulas byte = (c 3) and bit = (1 � (c mod 8)),

FIGURE 4. Bloom–Filter PM: programming phase.

FIGURE 5. Bloom–Filter PM: querying phase.

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 13

where , � and mod are right-shift, left-shift and modulo oper-
ations, respectively. Once in the querying phase, the Bloom–
Filter PM tokenizes the input into a series of l-grams with an
l-byte sliding window, and computes k hash codes for each
l-gram with the same hash function pool as that used in its pro-
gramming phase. The k bits in the fingerprint vector associated
with the k hash values of the l-gram are checked to determine
whether the l-gram is recognized by the Bloom filter. If at least
one l-gram of the input traffic is recognized by the Bloom fil-
ter, the Boyer–Moore algorithm is invoked to generate the final
verdict.

As all signatures in the Bloom–Filter PM share the same
fingerprint vector, it is impossible for the filter to identify
which signature has created a match with the input stream.
This requires the invocation of the Boyer–Moore algorithm
against all possible signatures in the IDS/IPS rule base.Also, the
Bloom filter could raise false positives on the membership of an
l-gram as its corresponding k bits in the fingerprint vector could
be marked independently by patterns from different signatures.
Consequently, the Bloom–Filter PM false match rate may be
significant when either a large signature database is used or the
memory is limited. Obviously, the performance of the Bloom–
Filter PM can be tuned by manipulating the size of the hash
function pool, length of the sliding window and the footprint of
its fingerprint vector.

The acceleration on the intrusion detection process achieved
by the Bloom–Filter PM comes from its ability to rapidly
distinguish legitimate input from malicious traffic. However,
its inability to identify specific signatures whose fingerprint
is matched by the input impairs its performance. It is thus
vital as far as efficiency is concerned to maintain associations
between signatures and their fingerprints. This is the rationale
for Shingling PM whose two phases are depicted in Figs 6
and 7. In the programming mode, each attack signature is
represented by the digests of the fixed-length shingles—
sequence of characters—derived from its telltale patterns. The
digests are organized with a signature table which stores telltales
and their fingerprints in linked-list data structures as described
in Fig. 6. While in the querying phase, the input traffic is
tokenized into its l-grams and their digests are used as indices
into the input fingerprint vector to mark the corresponding bits.
The candidate signatures are detected by traversing the signature
table sequentially and matching each signature’s digest against
the input fingerprint vector.An empty set of candidate signatures
guarantees the legitimacy of the input stream; otherwise, the
Boyer–Moore algorithm is invoked. It is evident from Fig. 7 that
the Shingling PM materializes the input fingerprint vector with
all shingles of the input before the signature table is traversed,
making it impossible to locate the input substrings that result
in FMs. Therefore, whenever a digest match occurs in the
Shingling PM, the Boyer–Moore should be executed to search
the entire input stream.

The Shingling PM improves the attack detection process
by maintaining the associations between signatures and their

FIGURE 6. Shingling PM: programming phase.

FIGURE 7. Shingling PM: querying phase.

fingerprints; however, it is not able to locate input substrings
that lead to digest matches. In contrast, the Bloom–Filter PM
can quickly pinpoint the matching input substrings but provides
no mechanism to identify matched signatures. It is by now clear
that the Shingling PM and Bloom–Filter PM are complementary
in their roles and both help accelerate the intrusion detection
process.

Figures 8 and 9 depict the architectural choices for Rabin–
Fingerprint PM which actually tracks input with the sliding
window and at the same time maintains the relation between
signatures and their fingerprints. In its programming phase,
the Rabin’s fingerprint of the l-byte prefix of each signature’s
longest telltale pattern is computed and organized with a
fingerprint table shown in Fig. 8. Moreover, linked-lists are
used to accommodate colliding signatures that share the same
fingerprints. While in the querying phase, the input packet is
swept with an l-byte sliding window, and the Rabin fingerprint
of the l-gram within the sliding window acts as the access key
to the fingerprint table. Signatures within the landing entry of
the fingerprint table form the set of candidate signatures for the
current l-gram, and Boyer–Moore may be invoked if necessary.

The Computer Journal, 2009

14 Z. Chen et al.

FIGURE 8. Rabin–Fingerprint PM: programming phase.

FIGURE 9. Rabin–Fingerprint PM: querying phase.

In summary, the hash function pool in the Bloom–
Filter PM helps identify legitimate traffic quickly while the
associations between signatures and their fingerprints in the
Shingling PM facilitate the identification of matched signatures.
By maintaining the associations between fingerprints and
signatures with a fingerprint hash table and tracking input
substrings with a sliding window, the Rabin–Fingerprint PM
could further improve attack detection. While the full-fledged
Fingerprinter activates simultaneously multiple fingerprinting
techniques including Rabin–Fingerprint and Bloom–Filter to
achieve better performance than its counterparts.

4.2. Data sets used in the Fingerprinter evaluation

Characteristics of wide-area Internet traffic has been studied
for many years [52,53] and recently, the make-up and patterns
of intranet streams have also been under investigation [54,
55]. The characterization of such traffic publicly available
is predominantly based on LANs typically hosting a small
number of systems [56] and often focuses on specific
characteristics such as services and host communities that

share common interests [53,54]. In general, it is challenging to
thoroughly investigate Internet/Intranet traffic due to technical
difficulties on collecting network activities when it comes to the
coordination of multiple choke-points around the globe [55].
Considerations on privacy and intellectual property further
exacerbate the problem by making publicly accessible traffic
traces with full payloads required for IDS/IPS evaluation a
scarcity [19]. Moreover, it has been established that traffic
observed at different sites varies significantly and network
payloads also evolve over time [57]. Consequently, the very
notion of ‘typical’ traffic for Internet/Intranet network streams
is not well defined [55]. For instance, peer-to-peer file sharing is
widespread in some environments [58], but are rarely observed
in other organizations [59]. We therefore use multiple traffic
traces from various sites captured at different time periods to
assess the effectiveness and efficiency of Fingerprinter.

The first set of traffic traces, known as KDD CUP’99
data set and depicted in Table 4, was collected by the
MIT Lincoln Laboratory for IDS testing and performance
benchmarking [60]. The traffic was captured within three weeks
of 1999 and each trace was generated by merging packet flows
from simulated military networks serving as background noise
and streams containing attacks as the foreground traffic. Each
data set is assigned an identifier shown in column ID in addition
to its descriptive name in the column ‘Data set name’. The
volume for each traffic trace presented in the column Size
indicates that daily network activities vary dramatically. The
mixture of network protocols in each trace, mainly connection-
oriented TCP and connectionless UDP, also differs significantly
as demonstrated by the columns TCP and UDP. For instance,
the data set 1999 Train Week2 Wednesday comprises 89.55%
TCP and 1.28% UDP connections, respectively; in contrast,
the TCP/UDP ratio in the data set 1999 Train Week3 Friday is
95.78/0.60. A trace with a heavy TCP/UDP protocol mixture
does force IDSs/IPSs to spend much more CPU cycles and
expends more main memory on tracking network connections
and their communication progress when stateful inspections are
in place.

The total number of packets in a trace does affect the IDS/IPS
performance. For example, there are different expectations
when an IDS/IPS deals with the data set of 1999 Train Week2
Wednesday having only 888139 packets than when dealing with
the set 1999 Train Week1 Thursday, which consists of 1807060
packets. We compute the average packet size in each trace
(column Avg pkt) as the ratio of Size and Total pkts. We should
point out that the count of the column Total pkts includes packets
that may have no payload at all (for example TCPACKs). In this
respect, column Avg pkt may underestimate the average packet
size. Ten traces are collected in weeks 1 and 3 and labeled
as attack-free while all data sets in week 2 contain malicious
activities such as denial-of-service attacks, buffer overflow
exploits and port scans. By feeding all traces to Snort with its
out-of-the-box configuration and all its signatures enabled, we
observe the generation of alerts for all traces including those

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 15

TABLE 4. Statistics on traces in the KDD data set collected by MIT Lincoln Laboratory in 1999.

ID Data set name Size (bytes) TCP UDP Total pkts Avg pkt Attacks Density

1 1999 Train Week1
Monday

323832360 1247366 (91.525%) 59679 (4.379%) 1362869 237.61 40242 0.0295

2 1999 Train Week1
Tuesday

325395277 1069409 (92.403%) 15661 (1.353%) 1157328 281.16 6244 0.0054

3 1999 Train Week1
Wednesday

368776477 1465529 (90.649%) 92291 (0.915%) 1616713 228.10 73989 0.0458

4 1999 Train Week1
Thursday

517042040 1719843 (95.174%) 21313 (1.179%) 1807060 286.12 2390 0.0013

5 1999 Train Week1
Friday

284774805 1262782 (93.565%) 15750 (1.167%) 1349635 211.00 2928 0.0022

6 1999 Train Week2
Monday

329322084 1244932 (93.060%) 17029 (1.273%) 1337777 246.17 3158 0.0024

7 1999 Train Week2
Tuesday

375798588 1374855 (94.554%) 16755 (1.152%) 1454035 258.45 3601 0.0025

8 1999 Train Week2
Wednesday

145698730 795287 (89.545%) 11395 (1.283%) 888139 164.05 151 0.0002

9 1999 Train Week2
Thursday

330867682 1325282 (93.816%) 10240 (0.725%) 1412645 234.22 1829 0.0013

10 1999 Train Week2
Friday

273295370 1151616 (91.952%) 14139 (1.129%) 1252412 218.22 5232 0.0042

11 1999 Train Week3
Monday

371123625 1454465 (94.286%) 12768 (0.828%) 1542614 240.58 557 0.0004

12 1999 Train Week3
Tuesday

334280722 1283146 (93.358%) 13747 (1.000%) 1374431 243.21 2512 0.0018

13 1999 Train Week3
Wednesday

540109859 1678816 (95.341%) 9010 (0.512%) 1760859 306.73 207 0.0001

14 1999 Train Week3
Thursday

183158763 1017062 (92.742%) 10559 (0.963%) 1096660 167.02 1358 0.0012

15 1999 Train Week3
Friday

495948059 1471954 (95.784%) 9164 (0.596%) 1536736 322.73 289 0.0002

that are attack-free. It is interesting that Snort in fact generates
more alarms (column attacks) for some ‘attack-free’ traces than
for other malicious traffic streams. For example, the ‘attack-
free’ data set of 1999 Train Week1 Wednesday triggers 78989
alarms while the attack-inflicted data set of 1999 Train Week2
Wednesday generates only 151 alerts. Evidently, IDSs/IPSs
may generate false positives and thorough tests on the attack
detection accuracy of Snort have established that false alarms
are unavoidable considering the complexity of contemporary
intrusions [19]. On the other hand, it has also been shown that
the background traffic in the data set is not thoroughly validated
and therefore may not be completely attack-free [61]. Attack
densities, which is the ratio between number of attacks and
total packets, shown in the column Density are rather low with
the highest value set at 0.046 attacks per packet corroborating
the fact that the majority of traffic is legitimate.

The second set of traces we use in our experimentation
has been captured by Lawrence Berkeley National Laboratory

(LBNL) in 2005 [59] and is depicted in Table 5. The
collected data set spans more than 100 hours and records
network activity from 8000 internal to LBNL and 47000
external hosts [55]. Compared with the TCP-dominated
KDD set, the LBNL traces demonstrate diversified protocol
mixture. For instance, the ratio of TCP/UDP in the trace
lbl-internal.20050106-1626.port002.dump.anon is 97.99/1.59,
while in lbl-internal.20050107-0858.port029.dump.anon, the
ratio reverses to 3.95/95.10. Most LBNL traces are much
larger than the KDD traces; for example, the largest trace lbl-
internal.20050106-1323.port025.dump.anon has nearly four
times the volume of the largest KDD set. Packets in the LBNL
demonstrate a much higher average packet size; for instance,
traffic in lbl-internal.20050107-1225.port022.dump.anon has
an average packet length of 920 bytes in comparison with
only 323 bytes in the KDD set. The column Hosts shows
the number of unique IP addresses appearing in respective
traces; the host distribution is non-uniform across different

The Computer Journal, 2009

16 Z. Chen et al.

TABLE 5. Statistics on traces in the data set of LBNL enterprise traffic captured in 2005.

Avg
ID Data set name Size (bytes) TCP (%) UDP (%) Total pkts pkt Hosts

1 lbl-internal.20050106-1323.port025.dump.anon 2074090057 2090240 (70.409) 859760 (28.961) 2968708 682 2555
2 lbl-internal.20050106-1423.port026.dump.anon 974274825 1363285 (75.922) 416939 (23.220) 1795635 526 2977
3 lbl-internal.20050106-1626.port002.dump.anon 847491207 2272550 (97.990) 36846 (1.589) 2319177 349 903
4 lbl-internal.20050106-1827.port006.dump.anon 1182342280 2246342 (94.940) 113887 (4.813) 2366053 483 1780
5 lbl-internal.20050107-0255.port023.dump.anon 1274953496 992269 (71.648) 385841 (27.860) 1384913 904 253
6 lbl-internal.20050107-0356.port024.dump.anon 132155826 407601 (81.600) 84956 (17.008) 499511 248 783
7 lbl-internal.20050107-0858.port029.dump.anon 1022085285 125076 (3.948) 3012951 (95.097) 3168280 306 2183
8 lbl-internal.20050107-1225.port022.dump.anon 1106793460 1143243 (96.754) 34793 (2.945) 1181593 920 1243
9 lbl-internal.20050107-1323.port026.dump.anon 1151521843 2111751 (90.226) 212653 (9.086) 2340519 475 3081
10 lbl-internal.20050107-1625.port029.dump.anon 763165383 532123 (16.382) 2677774 (82.438) 3248237 218 1786

LBNL subnets. The LBNL set is essentially attack-free and the
small number of alerts Snort raises are attributed to the artifacts
of the traffic collection process, which occasionally drops
packets.

4.3. The KDD set under Fingerprinter and variants

While experimenting with the KDD traces of Table 4, we set out
to evaluate the performance delivered for the following PMEs:

• Lowmem method: the baseline obtained by using the
official Snort with its default Lowmem PM method and
its out-of-the-box configuration.

• Bloom–Filter PM method: its default configuration has
a fingerprint vector of 4 KB, and its hash function pool
consists of four functions, JS, PJW, SDBM and DJB
selected from Table 3.

• Shingling PM method: this technique by default employs
JS as its digesting function and the footprint of its input
fingerprint vector is 4 KB.

• Rabin–Fingerprint PM method: the Rabin’s fingerprint
function acts as the digesting function of the method and
the fingerprint table contains 4 K entries by default.

• Hybrid PM method: the Rabin’s fingerprint function is the
primary digesting function used and hash function JS is
built into the Bloom filter. Similar to the Rabin–Fingerprint
PM, the fingerprint table of the Hybrid PM has 4 K entries
in its default configuration.

In all of the above, we use a sliding window with size
l = 4 bytes.

We evaluate the performance of each PME at hand by the
following procedure termed top speed feeding: (a) each trace
of the data set is fed with the tcpreplay utility [62] into the PME
n times in a row (n = 10) as fast as the test machine can go, and
the processing time is recorded; (b) the above step is repeated
m times (m = 10), and the best processing time achieved within
the m iterations is obtained and (c) the average running time on
each trace of the data set is computed as its best processing time

divided by n. We present the best processing times by PMEs
in Fig. 10. Here, the x-axis depicts the trace identifier (that is
column ‘ID’ of Table 4) and the y-axis shows the processing
time in seconds.

Figure 10 clearly shows that the PME processing time is not
proportional to the size of the trace. For example, the Lowmem
spends about 21.64 and 16.64 seconds, respectively, on the 1999
Train Week1 Thursday and 1999 Train Week3 Wednesday traces
even though the former is much smaller. For all data sets, the
Hybrid PM outperforms its counterparts by significant margin,
rendering it the best accelerator for intrusion detection. Using
the processing time of Lowmem as the baseline, we compute
the speedup rates of the Fingerprinter and its variants with the
results depicted in Fig. 11. The Fingerprinter and its variants
achieve better performance than Lowmem for the majority of
traces with the best rate of 1.75 attained by the Hybrid PM
on the 1999 Train Week1 Monday set. The Rabin–Fingerprint
PM nearly always eclipses both the Bloom–Filter PM and the

FIGURE 10. Processing times by various PMEs on KDD set.

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 17

Shingling PM, while the Shingling PM fares better than the
Bloom–Filter PM method. Occasionally the Bloom–Filter PM
is even slower than Lowmem indicating that it is only suitable
for certain types of traffic.

The processing time of Fig. 10 is obtained by feeding PMEs
the traces in the KDD set with the highest sustainable speed
of the test machine, therefore it measures the best performance
attained by PMEs. In this regard, the ratio between the size
of the trace and its processing time depicted in Fig. 10 can
be used to approximate the supported network bandwidth by a
PME as outlined in Fig. 12. It can be observed that the highest
bandwidth is 394.77 Mbps achieved by the Hybrid method
on the trace 1999 Train Week3 Wednesday, while the lowest
bandwidth 162.97 Mbps is delivered by Lowmem on the trace
1999 Train Week1 Monday. The average bandwidth on traces
of the KDD set accomplished by Lowmem is 219.85 Mbps. In
contrast, it is 317.34, 298.31 and 269.51 Mbps, for the Hybrid,
Rabin–Fingerprint and Shingle, respectively. Obviously, the
Hybrid PM could support about 50% more traffic than Lowmem
under the same hardware/software setting.

To evaluate the memory consumption of Fingerprinter and its
variants, we measure the total amount of resident non-swapped
physical memory occupied by all PMEs under study through
the following maximum resident memory procedure: (a) feed
each trace to the PME n times in a row (n = 10); (b) during
the execution of the PME, we measure its memory footprint
by sampling once per t seconds (t = 2 s—default value) with
the help of the profiler top; and (c) once the PME terminates,
we compute the maximum memory footprint among all the
measurements obtained. Figure 13 depicts the outcomes of
the above procedure. One key observation is that the resident
memory varies only slightly among different traces; similarly,
for the same trace, the memory consumption by various PMEs
differs only marginally. For instance, the average memory
footprint is 40.07 MB for Lowmem, and it is 41.37, 41.64,

FIGURE 11. Speedup rates of various PMEs on KDD set.

FIGURE 12. Bandwidth supported by PMEs on KDD traces.

FIGURE 13. Memory footprints required by PMEs on KDD traces.

41.66 and 40.48 MB for Hybrid, Rabin–Fingerprint, Shingle,
and Bloom–Filter, respectively.

4.4. The LBNL set under Fingerprinter and variants

The LBNL set is released with anonymized IP addresses in
the traces and without packet payloads to avoid information
leakage and possible privacy infringement [59]. Unfortunately,
traces with complete packet contents are absolutely necessary
for meaningful IDS/IPS evaluation. We thus generate packet
payloads for this set of traces using the following three
methods:

• randomization: payloads are randomly generated.
• replacement: payloads are filled with contents captured

from the internal network of Fortinet [63] using the testbed
discussed in [19]. The captured traffic is cleansed by
removing all sessions that are reported as attacks by Snort.

The Computer Journal, 2009

18 Z. Chen et al.

• contamination: the traces obtained by the replacement
method are further ‘polluted’ with attack traffic by
randomly selecting a portion of connections and
substituting the respective data flows with attacks
randomly selected from the exploit database provided by
Fortinet and containing more than 80000 intrusions such
as Slammer, Nimda and Sasser. The configurable attack
density is set to 0.01% by default.

We term the above three generated data sets as random, real
and attack payload, respectively.

For the random LBNL payload, we evaluate the performance
of each PME at hand by following the procedure top speed
feeding described in Section 4.3. Figure 14 shows the out-
come of the experiment with the random LBNL payloads.
The Hybrid consistently outperforms the Rabin–Fingerprint
approach and in this respect we ascertain that it delivers con-
sistent performance on both KDD and LBNL sets. In con-
trast to its relatively poor performance with the KDD set, the
Shingling PM improves its processing times on several traces
including lbl-internal.20050107-0255.port023.dump.anon and
lbl-internal.20050107-1225.port022.dump.anon. Our investi-
gation reveals that the distribution of marked bits in the input
fingerprint vector of the Shingling PM for such LBNL traces are
much more uniform, reducing the false match rate. It is worth
noting that the Bloom–Filter PM has a performance inferior
to that of the baseline Lowmem approach on numerous LBNL
traces mainly due to the large average packet sizes that increase
its false match rate.

Figures 15 and 16 show the processing times of various
PMEs with the real and attack payload. Obviously, the behavior
of PMEs on traces with real payloads is quite different from
that with randomized content. For instance, Lowmem spends
about 41 s on randomly filled trace lbl-internal.20050106-
1323.port025.dump.anon but consumes more than 60 s if the

FIGURE 14. Processing times of various PMEs on LBNL set of
Table 5 with random payload.

trace is packed with real-world content. The comparison
between Figs 15 and 16 clearly indicates that PMEs demonstrate
similar processing times on traces with real and attack
payloads, implying that PMEs are only marginally affected by
the relatively light attack density. The average running time
by the Lowmem, Bloom–Filter, Shingle, Rabin–Fingerprint,
and Hybrid on traces of the data set random payload can
be computed as 26.59, 30.93, 23.29, 23.55 and 21.87 s,
respectively; in contrast, it is 34.78, 39.36, 25.39, 24.52 and
22.50 s for the attack payload set. Clearly, traces with real-
world payloads consume much longer processing times than
traces with synthetic content due to the fact that randomized
payloads are less likely to share common patterns with attack
signatures.

The speedup rates attained by various PMEs with respect
to the baseline Lowmem method on the LBNL set using

FIGURE 15. Processing times of various PMEs on LBNL set of
Table 5 with real payload.

FIGURE 16. Processing times by various PMEs on LBNL set of
Table 5 with attack payload.

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 19

attack payload are furnished in Fig. 17. The best speedup
rate of 2.00 is delivered by the Hybrid PM on the trace
lbl-internal.20050107-1225.port022.dump.anon coming much
higher than the corresponding 1.75 best rate achieved on the
KDD set. The average speedup rates for the LBNL set with
attack payload are 1.55, 1.41, 1.40 and 0.88 for Hybrid,
Rabin–Fingerprint, Shingleand Bloom–Filter, respectively.
Apparently, the Bloom–Filter engine does not help the intrusion
detection process much. The standard deviation values on the
speedup rates indicate that the Rabin–Fingerprint PM behaves
more consistently compared with the Shingling PM (that is
standard deviation 0.10 vs 0.31). Despite the fact that the KDD
and LBNL sets have been captured in different time periods and
network environments, they both help establish the efficiency
of the Fingerprinter.

As pointed out previously, the processing time of Fig. 16
is measured by replaying traces in the LBNL set with attack
payload at the highest speed supported by the test machine.
Thus, it can be considered as the best performance achieved
by PMEs. To this end, we estimate the sustained network
bandwidth on a trace by a PME to be the ratio between the
size of the trace and its processing time depicted in Figure 16.
The results are shown in Figure 18. The significant fluctuation of
bandwidth among various traces does indicate the dependency
of bandwidth delivered by PMEs on various types and protocol
mixtures of traffic. The average bandwidth on traces of the
LBNL set with attack payload delivered by the Lowmem
method is 296.34 Mbps. In comparison, it is 462.90, 421.34
and 423.10 Mbps, for the Hybrid, Rabin–Fingerprint and
Shingle, respectively. Obviously, the Hybrid PM is able to
yield about 50% more bandwidth than Lowmem under the same
hardware/software setting.

The memory consumption of Fingerprinter and its variants
can be measured with the help of the maximum resident

FIGURE 17. Speedup rates by various PMEs on LBNL set of Table 5
with attack payload.

FIGURE 18. Bandwidth supported by various PMEs on LBNL data
set of Table 5 with attack payload.

memory procedure outlined in Section 4.3. Figure 19 depicts
the outcomes of the above procedure. Similar to its KDD
counterpart, traces in the LBNL data set have comparable
memory footprint; meanwhile, for the same trace, the memory
consumption by various PMEs differs only slightly. For
example, the average memory footprint is 38.42 MB for
Lowmem, while it is 40.67, 40.50, 40.66 and 38.10 MB
for Hybrid, Rabin–Fingerprint, Shingle and Bloom–Filter,
respectively.

4.5. Performance of the Bloom–Filter PM method

The key parameters in the Bloom–Filter PM are the size
of its hash function pool and the footprint of its fingerprint
vector. To evaluate the impact on the speedup rate by the
size of the hash function pool in the Bloom–Filter PM, we

FIGURE 19. Memory footprints required by various PMEs on LBNL
data set of Table 5 with attack payload.

The Computer Journal, 2009

20 Z. Chen et al.

design a sequence of experiments by configuring the Snort to
employ the Bloom–Filter PM as its PME, while the fingerprint
vector of the Bloom–Filter PM is 2 KB and the trace to be
processed is 1999 Train Week1 Monday. In each different
experiment setting, we construct a new set of hash functions
with size k ∈ [2, 8] and its elements are extracted from
the set H = {JS, PJW, SDBM, DJB, DEK, RS, BKDR, AP},
constructed from Table 3, in the presented order. For instance,
when k = 2, the hash function pool is {JS, PJW}, and it is {JS,
PJW, SDBM} when k = 3. We repeat the experiment with the
same configuration n = 10 times and record the best processing
time we can obtain.

By using the running time of the Lowmem method as the
baseline, we compute the speedup rates of the above described
experiment settings and present the results in Fig. 20; here,
the x-axis depicts the size of the hash function pool while the
y-axis represents the speedup rate. In Fig. 20, we also depict
the false match rates generated by the Bloom–Filter PM under
different settings; in this respect, the y-axis represents the ratio
between the number of false matches created by the experiment
setting in question and that by the Bloom–Filter PM with
hash function pool of {JS, PJW}. The non-linear relationship
between the speedup rate and the size of the hash function pool
can be easily observed from Fig. 20, and the highest speedup
rate is achieved when three hash functions are used. It is also
noticeable that the speedup rate deteriorates monotonically as
the size of the hash function pool increases beyond 3, indicating
that the computational intensity in the hash code calculations
become significant when k > 3. In contrast, the false match
ratio decreases steadily when the size of the hash function pool
increases, implying that extra hash functions in the pool can
improve the Bloom filter’s differentiation capability.

We also conduct a series of experiments to investigate the
relationship between the speedup rate and the size of the

-

FIGURE 20. Speedup, number of hash functions and false match rate
in Bloom–Filter PM.

FIGURE 21. Speedup, memory footprint and false match rate in
Bloom–Filter PM.

fingerprint vector in the Bloom–Filter PM method. We control
the memory footprint m of the fingerprint vector so that the
ratio (m/n) varies in the range of [0.5, 3] (in bytes); here, n is
the number of signatures in the Snort. In all settings, we fix the
hash function pool to be {JS, PJW, SDBM, DJB} and the 1999
Train Week1 Monday trace is used, so that the performance of
the Bloom–Filter PM is only affected by (m/n). The speedup
rates attained by the above described experiments are presented
in Fig. 21 along with the false match rates. It is interesting
to observe that increases in the footprints of the fingerprint
vector do not necessarily improve the speedup rate, implying
that memory-related aspects such as the locality of memory
access, page faults/swaps and memory management, all affect
the speedup rate. The false match rate gradually decreases as
more memory is allocated to the fingerprint vector, providing
a much larger hash code space and, consequently, reducing the
fingerprint collision rate.

4.6. Evaluation of the Rabin–Fingerprint PM method

The performance of the Rabin–Fingerprint PM method is
heavily affected by the size of its fingerprint table as the latter
determines the fingerprint collision probability. The relationship
between the number of entries M in the fingerprint table and the
size of the sliding window l can be expressed as M = 2(l+8).
Consequently, we expect that the speedup rate attained by
Rabin–Fingerprint PM can be improved by increasing the size
of the sliding window l. To investigate the relationship between
speedup rate and memory consumption, we configure the Snort
to use Rabin–Fingerprint PM method as its PME and work
with the traces of Table 4. By varying the size of the sliding
window l in the range of [3, 6] bytes to control the footprint of
the fingerprint table, we define a family of experiments termed
Rabin-l; for example, Rabin-3 refers to the Rabin–Fingerprint
PM with a 3-byte sliding window. Figure 22 presents the

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 21

speedup rates obtained by the above experiments. Clearly, rates
on the same trace can be steadily improved by increasing the
size of the sliding window. We also note that the Rabin-4 curve
comes much closer to that of Rabin-5 instead of Rabin-3 for
most data sets, indicating that a more generous improvement
can be attained by changing the window from 3 to 4 than from
4 to 5. Similarly, the relatively narrow gap between the curves
Rabin-5 and Rabin-6 points out that only insignificant gains are
feasible by increasing l beyond 5 bytes.

The formula (M = 2(l+8)) clearly indicates that the
memory consumption by the Rabin–Fingerprint PM increases
exponentially with the sliding window size. However, the
improvement on the speedup rate is approximately linear to
the sliding window size as Fig. 23 demonstrates. For instance,
when we change the sliding window sizes in the range of [3,
6] bytes and employ the Rabin–Fingerprint PM to process the
trace 1999 Train Week3 Friday, the speedup rates obtained are
1.43, 1.64, 1.81 and 1.94, respectively, which clearly form a
straight line in Fig. 23. Similar observations can also be drawn
from other traces. In contrast, the fingerprint table contains 1, 2,
4 and 8 K entries when the sliding window sizes range between 3
and 6 bytes. Obviously, a trade-off exists between the speedup
rate and memory consumption in the Rabin–Fingerprint PM
method: the intrusion detection process could be improved with
a large fingerprint table that reduces fingerprint collision rate at
the cost of exponentially increasing memory footprint.

4.7. Impact of Hybrid PM on intrusion detection

The full-fledged Fingerprinter that employs the Hybrid PM
method integrates multiple fingerprinting techniques to improve
the performance of the PME in IDSs/IPSs. The Hybrid PM
actually performs three tasks on each shingle of the input in
its FM process: (1) the Rabin’s fingerprint of the input shingle
acts as the access key to the fingerprint table. The shingle is
declared benign and no further inspection is required unless it

FIGURE 22. Relationship between speedup and sliding window size
in Rabin–Fingerprint PM.

FIGURE 23. Relationships between speedup, memory footprint and
sliding window size in Rabin–Fingerprint PM.

hits a non-empty entry of the fingerprint table; (2) in case that a
non-empty entry in the fingerprint table is landed, k hash codes
are generated for the input shingle and compared with those
of the signature in the hitting entry. The shingle is declared
attack-free as long as a mismatch occurs in the comparison
and (3) the input stream starting at the current sliding window
is further matched against the longest pattern of the signature
to ensure that the latter is indeed contained by the input. It is
expected that input shingles from legitimate traffic rarely pass
the above-described inspections, helping improve the system
performance.

By defining the screening rate of a fingerprinting method as
the ratio between the number of negative verdicts it generates
for shingles over the total shingles it processes, we can evaluate
the differentiation capabilities of the fingerprinting method in
question. With the definition of the screening rate at hand, we
can evaluate the contributions on the system performance by
the above-described three tasks conducted by the Hybrid PM
method. We first configure the Hybrid PM method to use a hash
function pool with a single element DJB to process the data
sets in Table 4. We then repeat the experiments by replacing
the hash function pool of the Hybrid PM method with the two-
element set {DJB, SDBM}. For comparison, we also conduct an
experiment with the Rabin–Fingerprint PM method as Snort’s
PME. The resulting speedup rates are presented in Fig. 24.

It is clear from Fig. 24 that Hybrid PM with one or
two hash functions outperforms the Rabin–Fingerprint PM
method, demonstrating the advantage of multiple fingerprinting
strategies. The fact that the Hybrid PM with a single hash
function actually attains better performance than the Hybrid
PM with two hash functions indicates that the computation
intensity resulted from two hash functions is significant and
that it occasionally may deteriorate the overall performance.
The contributions by the two hash functions can also be
evaluated based on their screening rates presented in Fig. 25.
The screening rate achieved by the first hash function is typically

The Computer Journal, 2009

22 Z. Chen et al.

FIGURE 24. Relation between speedup and hash function pool in
Hybrid PM.

FIGURE 25. Screening capabilities of hash functions and string
comparison in Hybrid PM.

around 0.85, rendering its strong capability to differentiate
legitimate from malicious traffic. Similarly, the exact PM
operation by the third task described above also attains a high
screening rate, implying that most input shingles leading to FMs
are in fact false matches. On the contrary, the screening rate
of the second hash function is extremely low, signifying that
shingles passing the examination of the first hash function are
in fact prefixes of telltale patterns in signatures.

5. CONCLUSIONS AND FUTURE WORK

To protect intranets and computer systems from being
compromised, IDSs/IPSs employ PM techniques to identify
intrusions often with the help of an attack signature
database. By matching the incoming streams against each
signature with exact PM algorithms–such as Boyer–Moore and
Aho–Corasick-an IDS/IPS generates a positive verdict if a match
occurs and a negative verdict otherwise. Clearly, a positive

verdict can be delivered by scanning on average half of the
signatures while a negative one necessitates the involvement
of the entire signature database. The latter is obviously more
computationally intensive and consequently legitimate traffic
gets heavily penalized.

In this paper, we propose the Fingerprinter whose aim is to
accelerate the attack identification process of IDSs/IPSs based
on the observations that the vast majority of the Internet traffic
is legitimate and telltale patterns in signatures are often only
unique to attacks. The Fingerprinter integrates fingerprinting
and PM techniques to generate negative verdicts very quickly
for attack-free streams. At first, the framework develops a
concise and compact fingerprint for each attack signature. Then,
it transforms the incoming traffic into the fingerprint space and
matches its digest against those derived from the signatures.
Traffic is exploit-free if no FM exists. Otherwise, Fingerprinter
resorts to the Boyer–Moore method to ascertain that the input
indeed satisfies conditions specified in the signatures with
matching fingerprints. We combine multiple fingerprinting
approaches such as Bloom–Filter and Rabin–Fingerprint in
order to reduce false matches that occur when the input shares
the same fingerprints with signatures but fails to match the exact
patterns specified by the signatures.

We have implemented the Fingerprinter as a PME in the
open-source IDS/IPS Snort and experimentally evaluated with
a number of traces. The modularized design of Fingerprinter
enables component activation in a plug-and-play manner. In this
way, a variety of PMEs with diversified fingerprinting methods
can be readily derived and their contributions to the overall
system performance can be quantified. Our experiments clearly
demonstrate that the Bloom–Filter method alone can rapidly
identify legitimate traffic only for certain types of network
streams. We also establish that the Shingling PM typically
outperforms the baseline–Lowmem in the official Snort–by
quickly pinpointing candidate signatures with the help of the
specifically maintained associations between attack signatures
and their fingerprints. The intrusion detection process can
be further accelerated through the Rabin–Fingerprint method
as the computation of fingerprints can be performed in a
rolling manner. Compared with the performance delivered
by the Lowmem method in Snort, our purely software-
based Fingerprinter attains an up to 2-fold speedup for IDS
benchmark traffic in the KDD data set as well as LBNL traces
with the help of integrated fingerprinting and PM techniques.

In the future, we aim at pursuing a number of different
directions: first, we intend to automate the synchronization
between our framework and the releases of the Snort code
and signature database, so that Fingerprinter remains updated
with developments in the field. Second, we plan to develop
more advanced fingerprinting methods that may use pools of
updatable Bloom filters and coordinate their actions through a
multi-threading paradigm so that attack signatures can be added
or deleted dynamically. It is also part of our ongoing work to
examine the viability of applying the summarization methods

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 23

developed for multimedia and digital documents to IDSs/IPSs.
Finally, we wish to implement the Fingerprinter in hardware
such as FPGA or ASIC and empower it with regular expression
functionalities to accommodate complex signatures.

ACKNOWLEDGEMENT

We are grateful for the comments of the anonymous reviewers
that helped us significantly improve the presentation of our
work. We are also indebted to Peter Wei and Gary Duan
for providing valuable comments on key aspects of the
Fingerprinter as well as Fushen Chen and Ping Wu for their
help while we evaluated the Fingerprinter.

FUNDING

This work was partially supported by a European Social Funds
and National Resources Pythagoras Grant and the University of
Athens Research Foundation.

REFERENCES

[1] Bos, H. and Huang, K. (2006) Towards software-based signature
detection for intrusion prevention on the network card. Lect. Notes
Comput. Sci., Seattle, WA, USA, 3858, 102–123.

[2] Roesch, M. (1999) Snort–Lightweight Intrusion Detection for
Networks. Proc. 13th USENIX Conf. Systems Administration–
LISA’99, Seattle, Washington, pp. 229–238. USENIX Associa-
tion, Berkeley, CA, USA.

[3] Tuck, N., Sherwood, T., Calder, B. and Varghese, G. (2004)
Deterministic Memory-Efficient String Matching Algorithms
for Intrusion Detection. Proc. IEEE Infocom and Twenty-
Third Annual Joint Conf. IEEE Computer and Communications
Societies, Hong Kong, March, pp. 2628–2639. IEEE.

[4] Handley, M., Paxson, V. and Kreibich, C. (2001) Network
Intrusion Detection: Evasion, Traffic Normalization, and End-
to-End Protocol Semantics. Proc. USENIX Security Symp.,
Washington, DC, USA, January, pp. 115–134.

[5] Browne, H.K., Arbaugh, W.A., McHugh, J. and Fithen, W.L.
(2001) A trend analysis of exploitations. Proc. 2001 IEEE Symp.
Security and Privacy, pp. 214–231.

[6] MITRE Organization (2008). Common vulnerabilities and
exposures. http://cve.mitre.org/. (Last accessed April 6, 2009).

[7] Arora, A., Krishnan, R., Nandkumar, A., Telang, R. and
Yang, Y. (2004) Impact of Vulnerability Disclosure and Patch
Availability—An Empirical Analysis. Proc. Workshop on the
Economics of Information Security (WEIS), Minneapolis, MN,
pp. 1–20.

[8] Coit, C.J., Staniford, S. and McAlerney, J. (2001) Towards Faster
Pattern Matching for Intrusion Detection, or Exceeding the Speed
of Snort. Proc. 2nd DARPA Information Survivability Conf.
Exposition (DISCEX II),Anaheim, CA, USA, June, pp. 367–373.

[9] Fisk, M. and Varghese, G. (2002) An Analysis of Fast String
Matching Applied to Content-Based Forwarding and Intrusion

Detection. Technical Report, CS2001-0670 (updated version).
University of California, San Diego.

[10] Tan, L. and Sherwood, T. (2005) A High Throughput
String Matching Architecture for Intrusion Detection and
Prevention. Proc. 32nd Annual Int. Symp. Computer Architecture,
Washington, DC, USA, June, pp. 112–122. IEEE Computer
Society.

[11] Aho, A. and Corasick, M. (1975) Fast pattern matching: an aid to
bibliographic search. Commun. ACM, 18, 333–340.

[12] Boyer, R. and Moore, J. (1977) A fast string searching algorithm.
Communi. ACM, 20, 762–772.

[13] Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. University of
California Press.

[14] Wu, S. and Manber, U. (1994) A Fast Algorithm for Multi-Pattern
Searching. Technical Report TR-94-17, University of Arizona.

[15] Walter, B.C. (1979) A String Matching Algorithm Fast on
Average. Proc. 6th Int. Colloquium On Automata, Languages,
and Programming, London, UK, pp. 118–132. Springer.

[16] Song, H., Sproull, T., Attig, M. and Lockwood, J. (2005) Snort
Offloader: A Reconfigurable Hardware NIDS Filter. Proc. 15th
Int. Conf. Field Programmable Logic and Applications (FPL),
Tampere, Finland, August, pp. 493–498.

[17] Anagnostakis, K.G., Markatos, E.P., Antonatos, S., and
Polychronakis, M. (2003) E2xB: A Domain-Specific String
Matching Algorithm for Intrusion Detection. Proc. 18th IFIP
Int. Information Security Conf. (SEC2003), May, pp. 217–228.
Kluwer.

[18] Ramaswamy, R., Kencl, L. and Iannaccone, G. (2006) Approx-
imate Fingerprinting to Accelerate Pattern Matching. Proc. 6th
ACM SIGCOMM on Internet Measurement Conf. (IMC’06), Rio
de Janeiro, Brazil, October, pp. 301–306. ACM Press.

[19] Chen, Z., Delis, A. and Wei, P. (2008) A pragmatic methodology
for testing intrusion prevention systems. Comput. J., online, 1–30.

[20] Attig, M., Dharmapurikar, S. and Lockwood, J. (2004) Imple-
mentation Results of Bloom Filters for String Matching.
Proc. 12th Annual IEEE Symp. Field Programmable Custom
Computing Machines (FCCM), Napa, CA, April, pp. 322–323.
IEEE.

[21] Rivest, R.L. (1977) On the worst-case behavior of string-
searching algorithms. SIAM J. Comput., 6, 669–674.

[22] Apostolico, A. and Giancarlo, R. (1986) The Boyer–Moore–
Galil string searching strategies revisited. SIAM J. Comput., 15,
98–105.

[23] Stephen, D.L. (1994) String searching algorithms. Lect. Notes
Series Comput., 3.

[24] Crochemore, M., Hancart, C. and Lecroq, T. (2003) A unifying
look at the Apostolico–Giancarlo string matching algorithm.
J. Discrete Algorithms, 1, 37–52.

[25] Knuth, D., Morris, J. and Pratt, V. (1977) Fast pattern matching
in strings. SIAM J. Comput., 6, 323–350.

[26] Galil, Z. (1979) On improving the worst case running time of
the Boyer–Moore string searching algorithm. Commun. ACM,
22, 505–508.

[27] Horspool, R. (1980) Practical fast searching in strings. Softw.—
Pract. Exp., 10, 501–506.

The Computer Journal, 2009

24 Z. Chen et al.

[28] Kruegel, C., Valeur, F., Vigna, G. and Kemmerer, R. (2002)
Stateful Intrusion Detection for High-Speed Networks. Proc.
2002 IEEE Symp. Security and Privacy, Washington, DC, USA,
May, pp. 285–294. IEEE Computer Society.

[29] Hutchings, B., Franklin, R. and Caraver, D. (2002) Assisting
Network Intrusion Detection with Reconfigurable Hardware.
Proc. 10th Annual IEEE Symp. Field Programmable Custom
Computing Machines (FCCM), Napa, CA, April, pp. 111–120.
IEEE.

[30] Schuehler, D.V., Moscola, J. and Lockwood, J.W. (2003)
Architecture for a Hardware Based TCP/IP Content Scanning
System. Proc. 11th Symp. High Performance Interconnects,
Stanford, CA, August, pp. 89–94.

[31] Sugawara, Y., Inaba, M. and Hiraki, K. (2004) Over 10 Gbps
String Matching Mechanism for Multi-Stream Packet Scanning
Systems. Proc. 14th Int. Conf. Field Programmable Logic and
Application (FPL), Antwerp, Belgium, August, pp. 484–493.
Springer.

[32] Liu, R., Huang, N., Chen, C. and Kao, C. (2004) A fast
string-matching algorithm for network processor-based intrusion
detection system. ACM Trans. Embedded Comput. Syst., 3,
614–633.

[33] Moscola, J., Lockwood, J., Loui, R.P. and Pachos, M. (2003)
Implementation of a Content-Scanning Module for an Internet
Firewall. Proc. 11th IEEE Symp. Field-Programmable Custom
Computing Machines (FCCM’03), Napa, CA, April, pp. 31–38.
IEEE.

[34] Clark, C. and Schimmel, D. (2003) Efficient Reconfigurable
Logic Circuits for Matching Complex Network Intrusion
Detection Patterns. Proc. Eleventh ACM/SIGDA Int. Conf.
Field Programmable Logic and Applications (FPL’03), Lisbon,
Portugal, September. ACM.

[35] Clark, C. and Schimmel, D. (2004) Scalable Parallel Pattern
Matching on High Speed Networks. Proc. Twelfth Annual
IEEE Symp. Field Programmable Custom Computing Machines
(FCCM’04), Napa, CA, April. IEEE.

[36] Cho, Y. and Mangione-Smith, W. (2004) Deep Packet Filter with
Dedicated Logic and Read Only Memories. Proc. IEEE Symp.
Field Programmable Custom Computing Machines, Napa, CA,
April. IEEE.

[37] Baker, Z.K. and Prasanna, V.K. (2004) A Methodology
for Synthesis of Efficient Intrusion Detection Systems on
FPGAs. Proc. IEEE Symp. Field Programmable Custom
Computing Machines (FCCM), Napa, CA, April, pp. 135–144.
IEEE.

[38] Gokhale, M., Dubois, D., Dubois, A., Boorman, M., Poole, S.
and Hogsett, V. (2003) Granidt: towards gigabit rate network
intrusion detection. Proc. Eleventh Annual ACM/SIGDA Int.
Conf. Field Programmable Logic and Applications (FPL’03),
Lisbon, Portugal, September. ACM.

[39] Dharmapurikar, S., Krishnamurthy, P., Sproull, T. and Lockwood,
J. (2003) Implementation of a Deep Packet Inspection Circuit
using Parallel Bloom Filters in Reconfigurable Hardware.
Proc. Eleventh Annual IEEE Symp. on High Performance
Interconnects (Hoti’03), Stanford, CA, August, pp. 44–51.
IEEE.

[40] Cho, Y. and Mangione-Smith, W. (2005) Fast Reconfiguring
Deep Packet Filter for 1+ Gigabit Network. Proc. IEEE Symp.

Field-Programmable Custom Computing Machines (FCCM),
Napa, CA, April.

[41] Baker, Z.K. and Prasanna, V.K. (2004) Time and Area Effi-
cient Pattern Matching on FPGAs. Proc. ACM/SIGDA 12th
Int. Symp. Field Programmable Gate Arrays, pp. 223–232.
ACM.

[42] Baker, Z.K. and Prasanna, V.K. (2005) High-Throughput
Linked-Pattern Matching for Intrusion Detection Systems.
Proc. ANCS’05, Princeton, NJ, USA, October, pp. 193–202.
ACM.

[43] Song, H., Dharmapurikar, S., Turner, J. and Lockwood, J. W.
(2005) Fast hash table lookup using extended bloom filters: an
aid to network processing. ACM SIGCOMM Comput. Commun.
Rev., 35, 181–192.

[44] Bloom, B.H. (1970) Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13, 422–426.

[45] Manber, U. (1994) Finding Similar Files in a Large File System.
Proc. 1994 USENIX Winter Technical Conf., San Fransisco, CA,
USA, pp. 1–10.

[46] Heintze, N. (1996) Scalable Document Fingerprinting. Proc.
Second USENIX Workshop on Electronic Commerce, Oakland,
CA, November, pp. 191–200.

[47] Fetterly, D., Manasse, M. and Najork, M. (2003) On the Evo-
lution of clusters of Near-Duplicate Web Pages. Proc. 1st Latin
American Web Cong., Santiago, Chile, November, pp. 37–45.
IEEE Computer Society.

[48] Rabin, M. (1981) Fingerprinting by Random Polynomials.
Technical Report TR-15-81. Department of Computer Science,
Harvard University.

[49] Pankanti, S., Prabhakar, S. and Jain, A. (2002) On the Individ-
uality of Fingerprints. IEEE Trans. Pattern Anal. Mach. Intell.,
24, 1010–1025.

[50] Feistel, H. (1973) Cryptography and computer privacy. Scientific
American, 228, 15–23.

[51] Damgaard, I.B. (1989) A Design Principle for Hash Functions
advances in Cryptology. Proc. CRYPTO89, Lecture Notes in
Computer Science, 435, pp. 416–442.

[52] Caceres, R., Danzig, P., Jamin, S. and Mitzel, D. (1991)
Characteristics of Wide-Area TCP/IP Conversations. Proc.
Conf. Communications Architecture and Protocols, Zurich,
Switzerland, pp. 101–112. ACM.

[53] Aiello, W., Kalmanek, C., McDaniel, P., Sen, S., Spatscheck,
O. and van der Merwe, K. (2005) Analysis of Communities Of
Interest in Data Networks. Proc. Passive and Active Measurement
Workshop, Boston, MA, March, pp. 1–14.

[54] Tan, G., Poletto, M., Guttag, J. and Kaashoek, F. (2003) Role
Classification of Hosts within Enterprise Networks Based on
Connection Patterns. Proc. USENIX Annual Technical Conf.,
San Antonio, TX, June, pp. 306–316.

[55] Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V. and Tier-
ney, B. (2005) A First Look at Modern Enterprise Traffic. Proc.
ACM Internet Measurement Conf. (IMC), October, pp. 15–28.
ACM.

[56] Fowler, H.J. and Leland, W.E. (1991) Local area network
traffic characteristics, with implications for broadband network
congestion management. IEEE J. Selected Areas Commun.,
SAC, 1139–1149.

The Computer Journal, 2009

A Fingerprint and Pattern Matching Engine for IDS/IPS 25

[57] Paxson, V. (1994) Growth trends in wide-area TCP connections.
IEEE Netw., 8, 8–17.

[58] Sen, S. and Wang, J. (2002) Analyzing Peer-to-Peer Traffic
Across Large Networks. Proc. Internet Measurement Workshop,
Nov., pp. 137–150.

[59] Lawrence Berkeley National Laboratory (2005). LBNL Enter-
prise trace repository. http://www.icir.org/enterprise-tracing.
(Last accessed April 6, 2009).

[60] MIT Lincoln Laboratory (2002). DARPA intrusion detection
evaluation data sets. http://www.ll.mit.edu/IST/ideval/data/data_
index.html. (Last accessed April 6, 2009).

[61] Mchugh, J. (2000) Testing intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion detection
system evaluations as performed by Lincoln laboratory.
ACM Trans. Information and System Security, 3, 262–
294.

[62] Sourceforge (2009). Tcpreplay: a suite of tools to edit and
replay captured network traffic. http://sourceforge.net/projects/
tcpreplay. (Last accessed April 6, 2009).

[63] Fortinet Inc. (2009). FortiGate: an anti-virus and intrusion
prevention system. http://www.fortinet.com. (Last accessed April
6, 2009).

The Computer Journal, 2009

http://www.ll.mit.edu/IST/ideval/data/data_index.html
http://www.ll.mit.edu/IST/ideval/data/data_index.html

	1 Introduction
	2 Related Work
	3 Outline of Fingerprinter
	3.1 Fingerprinter design rationale
	3.2 Programming and querying the Fingerprinter
	3.3 Digest functions and fingerprint computation

	4 Experimental Evaluation
	4.1 The Fingerprinter and its variants
	4.2 Data sets used in the Fingerprinter evaluation
	4.3 The KDD set under Fingerprinter and variants
	4.4 The LBNL set under Fingerprinter and variants
	4.5 Performance of the Bloom--Filter PM method
	4.6 Evaluation of the Rabin--Fingerprint PM method
	4.7 Impact of Hybrid PM on intrusion detection

	5 Conclusions and Future Work

