
IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society MAY • JUNE 2005 45

C
on

te
nt

 M
an

ag
em

en
t

Euthimios Panagos
Telcordia Applied Research

Alex Delis
University of Athens

Selective Replication for
Content Management
Environments
Content management applications typically depend on information stored in both

relational database tables and operating system files. Often, content providers

replicate all or parts of the available database data and associated files to increase

application availability, address resource constraints and costs, or better support

geographically dispersed and mobile users. This article presents a solution that

addresses integrated and selective database and file replication in the context of

an enterprise voice portal. The solution is transparent to existing applications

and imposes minimal storage overhead.

Web applications often depend on
content management systems for
delivering a rich user experience.

Typically, these systems store content
created using desktop applications or
captured via a combination of software
and hardware (as with audio clips) in
files. They also use database tables to
store metadata that describes attributes,
associations, classification hierarchies,
and access restrictions associated with
the content. Content providers tend to
replicate such database data and associ-
ated files to better support geographical-
ly dispersed and mobile users, increase
application availability, or cope with
resource constraints and costs. In many
cases, however, it’s only necessary to
replicate a portion of the available infor-
mation. We don’t generally need to repli-

cate highly localized content or content
that doesn’t correspond to business- or
mission-critical assets.

To date, no out-of-the-box solution
exists for selectively replicating database
table entries and their associated files.
Although various techniques such as a
combination of database snapshot repli-
cation1,2 and file-system replication are
available, such solutions aren’t integrat-
ed and, typically, depend on coupled
application, database, and file-system
designs. The problem becomes more chal-
lenging when we need to retrofit replica-
tion into existing systems without mak-
ing application changes.

Much recent work in content delivery
networks (CDN) addresses replication.3–5

Content providers usually replicate Web
pages and images among Web or appli-

cation servers to improve response times in CDN
environments. However, this work doesn’t address
integrated database and file-system replication.

This article presents a method for supporting
integrated and selective replication between data-
base tables and files in an enterprise voice portal.3

Our solution imposes minimal storage overhead
and is transparent to existing applications. In addi-
tion, it supports dynamic changes to the informa-
tion we need to replicate and the voice portal sites
that participate in the replication.

Voice Portal
A voice portal is a Web service that users can
reach by telephone for information such as stock
quotes and prerecorded audio content. It unites
the Internet and telephone network via speech and
touchtone interfaces. In this article, we offer a
high-level overview of the specific voice portal in
which we implemented our selective and inte-
grated replication solution. More detailed infor-
mation about the portal is available elsewhere.3

Information Model
The portal’s fundamental unit of content is a story,
which consists of media components (called story
items) and pertinent metadata. Story items are
multimedia files, which can exist in several formats
to support different access devices (telephone and
Web browser, for example). Stories can also refer-
ence other stories via unique story IDs.

Story metadata is textual and consists of fixed
attributes (such as title, time stamp, and length)
and name-value keyword pairs. Content adminis-
trators define the categories that can be used as
keyword names (such as company name) and
select values for them from enumerated or unre-
stricted sets. Speech-recognition applications han-
dle enumerated sets well because they translate
easily into finite vocabulary lists. Speech recog-
nizers that don’t support natural-language recog-
nition can’t handle unrestricted sets, although such
sets are compatible with Web access.

Content administrators manually group stories
into channels, which represent thematic classifi-
cation structures for grouping stories that are
related in some way. (The Executive Commentary
channel might contain interviews with company
executives, for example.) A story is always creat-
ed in the context of a specific channel, but story
authors and administrators can later associate it
with other channels, subject to access restrictions,
via a Web interface.

Content administrators organize channels into
one or more category hierarchies to facilitate the
navigation and location of stories for both Web
and telephone user interfaces. Individual users can
personalize these hierarchies through a Web inter-
face to better suit their preferences.

Providers, Users, and Access Control
The voice portal recognizes two service entities:
providers and users. Providers represent the busi-
ness rules associated with information capture and
delivery. Among other things, they are responsible
for determining the

� hierarchy of categories and channels in which
stories are created and stored,

� keyword categories and enumerations available
during story publishing and editing, and

� user privileges for accessing (parts of) the cat-
egory and channel hierarchy.

Users are associated with specific providers, and
they can access voice portal services only after
they successfully authenticate using numerical IDs
and personal identification numbers (PINs) —
speech recognition doesn’t reliably handle
alphanumeric IDs, which are also harder to handle
from numeric keypads. Channels and their stories
are subject to access control based on closed user
groups comprising users, channels, and access
rights. When users access channels, their access
rights are the union of the rights of all closed user
groups containing the same channel and user.

Overall Site Architecture
As Figure 1 shows, a user can access a voice portal
site from the Internet using a Web browser or from
a telephone network using any landline or cellu-
lar telephone. Telephony gateways offer content
management functionality using speech recogni-
tion or touchtone and dial-out capabilities for con-
tent delivery in context broadcasts or user-speci-
fied alerts — for example, call me when a story
appears in my Executive Commentary channel.

The voice portal stores information about
providers, users, stories, keywords, and so forth in
a relational database. Media files are stored in a
file system (media store). A Java2 Enterprise Edi-
tion (J2EE)-based middleware layer (part of the
application server) offers content management
functionality, while a client-side presentation layer
uses JavaBeans to render the appropriate user
interfaces (such as HTML and VoiceXML).

46 MAY • JUNE 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Content Management

Streaming servers stream live audio and video
content over the Web and telephone. A notifica-
tion server implements custom alerts and content
broadcasts. This server is responsible for alerting
users, via a telephone call or email, when new con-
tent that matches their interests is available. In
addition, this server carries out content broadcasts
to distribution lists containing tens to thousands
of recipients.

Physical Storage Organization
The voice portal stores media files in volumes,
which correspond to file-system directories that
reside in redundant arrays of inexpensive disks
(RAIDs). All related story items are stored under
one story directory, located under a volume direc-
tory. The volume directory structure is specified by
expressions that include date information — for
example, yyyy/mm/dd denotes a hierarchy in
which year, month, and day are the first, second,
and last subdirectories, respectively. Under this
directory structure, all items for a story created on
4 April 2002 are stored under /mdir/vdir/2002/
04/04/sdir, where mdir is the mounting point of
the volume directory vdir for a specific machine,
and sdir is the story directory.

Database and
File-System Replication
Database and file-system replication is not new.
However, researchers have not adequately
addressed integrated replication between specific
database table entries and the operating system
files referenced by these table entries so far. We
faced several challenges when implementing selec-
tive and integrated replication in our voice portal.

Selective Replication
When several financial institutions started using
the voice portal services in early 2001, selective
replication of content and user accounts between
sites became a requirement. These organizations
have offices around the globe, and some content
created in one location is of interest to others.
Also, some users are frequent travelers and require
access to their profiles (including all available and
accessible profile stories) from anywhere.

In addition to client-driven requirements, an
automated telephone broadcast service, which was
made available as part of the voice portal services
in late 2002, also required selective replication.
This service supports automated telephone broad-
casts of stories to distribution lists associated with

the specific channels in which these stories were
created. Distribution lists can contain thousands of
telephone numbers from all over the world.

Because each voice portal site has a fixed
capacity in terms of the number of concurrent tele-
phone calls it can handle, multiple sites might have
to participate in story broadcasts to large numbers
of telephones. (The automated telephone broadcast
service might have to place calls to all distribution
list members concurrently — as with Wall Street
firms that use this service regularly.) To avoid poor
audio quality due to delays in fetching relevant
content from remote sites, the broadcast stories
must be replicated to all participating sites.

Replication Challenges
The initial implementation of voice portal appli-
cations did not offer any provisions for replica-
tion, such as globally unique IDs. To make our
replication scheme transparent to existing appli-
cations, we thus had to address several problems:

• Many system entities (such as channels and
volumes) are assigned numerical keys that
aren’t globally unique. To preserve uniqueness,
we must generate new primary keys for repli-
cated database entries.

• To facilitate direct access to story items, story

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 47

Selective Replication

Figure 1. Physical architecture of a voice portal site. Content is stored
in a file system, whereas metadata is stored in a relational database.
The Web and voice interfaces are offered by Web servers and
telephony gateways, respectively.

Demilitarized zone (DMZ) Telephony
gateway

Web
server

Streaming
server

Layer-4 switch

Firewall/router

Notification
server

Internet

Telephone network

Database
server

Application
server

MetadataMedia store

IDs include the IDs of the volumes that contain
their items. Therefore, we must rewrite story
IDs when replicating them to volumes with dif-
ferent IDs.

• Stories can reference each other via story IDs.
Because referenced stories might be associated
with channels that aren’t replicated, we must
manage story references at each replica site.

In addition, our solution must support content
administrators’ replication policies. Depending on
the stored content’s importance, for example,
administrators might dynamically select which
channels, stories, and user accounts to replicate to
different sites.

Furthermore, our solution must support the
automated broadcast service’s requirements.
Namely, it must be able to select which sites will
be part of a story broadcast based on the follow-
ing criteria:

� Site capacity. Given that each site has a fixed
number of telephone lines (T1/E1 lines) avail-
able, multiple sites might have to carry out
individual broadcasts, depending on site capac-
ities and distribution list sizes.

� Telecommunications costs. Because the cost
of making a phone call depends on the call’s
origin, multiple sites might again have to
carry out a broadcast to reduce costs when

calling distribution list members located
around the globe.

Finally, our broadcast site selection and story-
replication solution must be dynamic to let service
providers create and delete distribution lists and
initiate story broadcasts at any time.

Replication Architecture
As Figure 2 illustrates, our replication architec-
ture combines asynchronous, store-and-forward
database replication1,2,6–8 with remote file access
(via the Network File System [NFS] or Server
Message Block [SMB] file-sharing protocol). Cus-
tom database triggers record, in a persistent
queue, all updates to database entries marked for
replication in a primary site. These updates are
propagated asynchronously to replica sites, which
fetch created and updated content files and store
them locally.

Our solution detects changes to database table
entries and captures these changes by using SQL
insert and update triggers and several support
tables. We install triggers on all tables that might
contain rows that require replication (such as
provider, story, and channel). Support tables store
replication configuration parameters, such as repli-
ca site information and IDs for replicated channels
and accounts.

When a trigger fires, it queries the support
tables to determine whether to capture the
update. For example, when a voice portal user
creates a story in a channel, the fired trigger
queries the table containing channel replication
information to determine whether to capture the
story creation event. If it locates an entry for the
channel, it captures the update. Otherwise, the
trigger queries the table containing provider
replication information; if it finds an entry for the
provider that owns the channel, it captures the
update. This approach supports dynamic changes
to replication configuration.

After capturing an update, the trigger inserts
information about it into an outgoing event table.
This information includes the updated entity’s type
(for example, story item), its primary key, the oper-
ation’s time stamp, and a status field indicating
whether the entity is new. Here is the logic we use
for inserting entries into the event table:

IF operation is creation THEN
INSERT INTO event_table
VALUES (type,key,timestamp,

48 MAY • JUNE 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Content Management

Figure 2. Replication architecture. Database triggers capture
updates at primary sites. These updates are pushed to replica sites
by the replication server, where a replication client records them in
the local database. A database population server installs all updates
to the replica site and coordinates with the file-replication server to
fetch appropriate content files.

Database

File
replication

server

Replication
client

Replication
server

Primary site Replica site

Primary table Support table Event table Trigger

Push

Fetch

Query

Database

Database
population

server

Media storeMedia store

‘new’);
ELSE IF event_table contains key THEN
UPDATE event_table
SET timestamp=value WHERE key=value

ELSE
INSERT INTO event_table
VALUES (type,key,timestamp,

‘old’);
ENDIF

The most important feature of the event table
insertion logic is that no duplicate entries exist for
any given entity. Hence, the database space
required for capturing replication information is
bounded and doesn’t depend on how often data-
base entries are updated.

Update Propagation
At a primary site, the replication server maintains
a replication status table through which it tracks
replication progress for entries in each replica site’s
event table. The replication server scans the event
table periodically (based on a configuration option)
and retrieves all entries with greater time stamps
than the maximum in the event table entries
selected during the previous scan. Then, it issues
one or more queries to retrieve the actual infor-
mation for each updated or created entry found
during the scan, encodes the information in XML
messages, creates entries in the replication status
table, and inserts each XML message into a mem-
ory queue. Worker threads retrieve these messages
from the queue and push them to replica sites
using secure HTTP.

At a replica site, the replication client receives
the updates, stores them in the appropriate incom-
ing event tables (there’s one for each entity type
that’s replicated), and acknowledges their receipt.
After receiving all acknowledgements, the replica-
tion server deletes the appropriate entries from the
replication status table and updates their corre-
sponding entries in the event table — it deletes
entries for which time stamps weren’t updated and
sets the status field to “old” for entries with
updated time stamps.

At a replica site, database population server
installs the updates in the local database by using
the entries in the incoming event tables and the
entries in the primary key-mapping tables (see the
next section for more details). The database popu-
lation server performs these updates in a specific
order to avoid foreign key constraint violations.
Once the updates are installed, it deletes all

processed incoming event table entries.
The file replication server is responsible for

replicating media files, which it fetches from the
primary site over HTTP.9,10 The database popula-
tion server provides information about which
media files to fetch using direct communication
over sockets. To guard against crashes, the data-
base tracks this process.

Avoiding Uniqueness Conflicts
Uniqueness conflicts are possible in the voice
portal because each voice portal site enacts the
same numerical key generation process. This
process uses a database table, named
primary_keys, which contains a row for each
table that requires primary keys. Each such row
contains the name of a table and an integer value.
When a new primary key needs to be generated
for a table, the key-generation process locates the
entry for this table in primary_keys and returns
the integer value after incrementing it by one in
the context of a transaction.

To avoid uniqueness conflicts, the database
population server generates new primary keys for
replicated entries. The mappings between primary
key values (at the primary and replica) are main-
tained in key-mapping tables that track volume,
channel, account, profile, and category IDs.
Provider IDs are unique across all sites, and login
IDs are unique for each provider. Therefore, it’s
unnecessary to map them.

Story IDs comprise three parts: the ID for the
volume in which the story items are physically
stored, the story’s creation time stamp, and a
counter. The counter, a volume property, ensures
unique IDs for stories created on the same date and
volume. Therefore, the volume ID mapping table
suffices both for mapping story IDs between pri-
mary and replica sites and rewriting story IDs at
replica sites.

Story item names correspond to the names of
the files where they are physically stored (for
example, body.wav). These names are unique for
a given story. A story item’s name and ID thus
guarantee an item’s uniqueness, and so we use
them as primary keys.

Maintaining Story References
When a story containing story references is repli-
cated, the references must either be set to null or
point to local copies of stories. We opted for the
latter whenever possible. Here, we had to handle
two cases:

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 49

Selective Replication

• The referenced story is associated with at
least one channel that’s explicitly or implic-
itly replicated.

• The referenced story is associated with chan-
nels that aren’t replicated.

A channel is explicitly replicated when an entry
for it exists in the channel-replication table. A
channel is implicitly replicated when an entry for
the provider that owns the channel exists in the
provider replication table.

In either case, we initially set references to
null and record the story association into a story-
reference table. A background thread in the
database population server scans this table peri-
odically and queries the primary site (or sites) for
all unprocessed entries to determine which case
applies to each referenced story. In the first case,
the thread marks the corresponding table entries
in this table as “local,” whereas the entries are
marked as “remote” in the second case.

A local entry implies that the referenced story
is either already replicated or will be soon. The
thread periodically checks whether the referenced
stories have been replicated. To do so, the thread
rewrites the story IDs, using the volume ID map-
ping table, and queries the story table. When this
thread locates a local copy of the referenced story,
it updates all stories referencing it and drops the
old entry from the story reference table.

A remote entry implies that the referenced
story won’t be replicated under the current repli-
cation configuration, but it might be replicated
in the future. We can either delete such entries
from the story reference table and use null ref-
erences, or keep the entries and have the back-
ground thread include them when querying the
primary sites until their states change to local,
the stories referencing them are deleted, or the
associations are broken. As a policy, we selected
the former option.

Dynamic Site Selection
When a voice portal user creates a new story
broadcast, we must use broadcast size and deliv-
ery costs to compute which sites should participate
in the story’s delivery. Broadcast size determines
the required capacity (in terms of telephone lines),
and delivery costs correspond to the charges asso-
ciated with all calls that must be made as part of
the broadcast. The goal is to minimize both the
number of participating sites and the delivery
costs. We assume, of course, that the required

broadcast capacity is less than the available capac-
ity across all sites.

We developed an approximation algorithm for
selecting the sites that will participate in the story’s
delivery. Our algorithm is biased toward keeping
delivery costs low by minimizing the telephone
charges associated with expensive deliveries by
assigning such deliveries to voice sites with low
per-minute call costs. The main logic is as follows:

1. Group broadcast recipients based on the
country codes in their telephone numbers. Let
D = {D1, D2, … DN} be the set containing the
groups of recipients whose telephone numbers
contain the same country code.

2. For each Di in D, compute the average telephone
charges associated with story deliveries to all
recipients of Di. Compute average charges as |Di|

* SL * CDi, where SL is the story length in
minutes and CDi is the average per-minute cost
of a phone call to a recipient in Di across all
voice sites. Let D� = {D �1, D �2, … D �N} be a
nonincreasing ordering of D based on the
computed average telephone charges.

3. Iterate over all entries in D�, and for each D �i,
assign its recipients to voice sites with available
capacity and the lowest per-minute costs for
calls to those recipients. A 2D matrix, C, where
cell Cij contains the per-minute cost of making
a call from voice site Si to a telephone in
country Dj, facilitates this assignment.

The replication server (see Figure 2) executes the
site-selection algorithm in response to a story cre-
ation’s capture in a channel associated with a
broadcast distribution list. When a content admin-
istrator or authorized user creates a broadcast dis-
tribution list, the voice portal associates this list with
a channel, which is automatically inserted into the
table containing channel-replication information.
Once we’ve identified the sites that will participate
in the broadcast, our solution replicates the story
and relevant parts of the distribution list to them.

Implementation Discussion
In the past, poorly implemented database triggers
were considered to be performance bottlenecks.
However, modern database management systems
offer efficient trigger implementations by compil-
ing trigger code and, in many cases, letting data-
base administrators pin the compiled trigger code
in memory.

Our selective replication implementation keeps

50 MAY • JUNE 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Content Management

trigger-processing overhead even lower by requir-
ing only a small number of triggers and minimiz-
ing the number of table lookups performed with-
in each. This might not be the case for applications
that follow our approach but require considerable
processing within each trigger.

The ability to identify which files need to be
replicated from database content is an important
aspect of our solution. The voice portal’s specif-
ic physical storage architecture, coupled with its
recording of the association between story items
and media files in a database table, makes explic-
it monitoring of the file system unnecessary.

In the future, we plan to study how to extend our
selective and integrated replication solution to

support a wider range of applications. In particular,
we plan to investigate how to integrate our solu-
tion with high-available and fault-tolerant J2EE
application servers that implement custom Web
applications using a combination of static and
database-driven dynamic content.

Acknowledgments
This work was completed while Euthimios Panagos was at

Voicemate.

References

1. Oracle 9i Replication, Oracle, white paper, June 2001;

www.oracle.com/technology/products/dataint/pdf/oracle9i

_replication_twp.pdf.

2. Comparing Replication Technologies, PeerDirect, white

paper, 2002; www.peerdirect.com/Products/WhitePapers/.

3. Akamai Technologies, Fast Internet Content Delivery with

FreeFlow, white paper, 1999; www.di.uoa.gr/~ad/MDE519.

docs/Akamai-How.pdf.

4. N. Bartolini, E. Casalicchio, and S. Tucci, “A Walk

through Content Delivery Networks,” Proc. IEEE/ACM

Int’l Symp. Modeling, Analysis, and Simulation of Com-

puter and Telecomm. Systems (MASCOTS), IEEE CS Press,

2003, pp. 1–25.

5. J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash

Crowds and Denial of Service Attacks: Characterizations and

Implications for CDNs and Web Site,” Proc. Int’l World Wide

Web Conf. (WWW 2002), ACM Press, 2002, pp. 293–304.

6. A. Gorelink, Y. Wang, and M. Deppe, “Sybase Replication

Server,” Proc. 1994 ACM SIGMOD Int’l Conf. Management

of Data, ACM Press, 1994, pp. 469.

7. B. Kemme, “Database Replication for Clusters of Worksta-

tions,” PhD dissertation, Swiss Federal Inst. Technology,

ETH no. 13864, 2000; www.cs.mcgill.ca/~kemme/papers/

phd-dina4.pdf.

8. D. Scott, J. Krischer, and J. Rubin, Disaster Recovery:

Weighing Data Replication Alternatives, Gartner research

note T-13-6012, June 2001.

9. O. Kiselyov, “A Network File System over HTTP: Remote

Access and Modification of Files and Files,” Proc. 1999

Usenix Ann. Tech. Conf., Usenix Assoc., 1999, pp. 75–80.

10. WebNFS: Bringing a File System to the Internet, Sun

Microsystems, white paper; wwws.sun.com/software/webn

fs/overview.html.

Euthimios (Thimios) Panagos is a senior research scientist at Tel-

cordia Applied Research. His research interests are in dis-

tributed data management, event notification, workflow

management, high-performance messaging platforms, and

real-time communications. Panagos has a PhD in comput-

er science from Boston University. He is a member of the

ACM. Contact him at thimios@research.telcordia.com.

Alex Delis is a faculty member in the Department of Informat-

ics and Telecommunications at the University of Athens.

His research interests are in distributed data management,

networked information systems, distributed computing, and

computer system evaluation. Delis has a PhD in computer

science from the University of Maryland, College Park. He

is a member of the IEEE and the ACM, and has received an

NSF Career Award and a Fulbright fellowship. Contact him

at ad@di.uoa.gr.

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 51

Selective Replication

No
t

a
m

em
be

r?
Jo

in
 o

nl
in

e
to

da
y!

s a v e

on al l conferences

sponsored by the

IEEE Computer Society

I E E E

C o m p u t e r

S o c i e t y

m e m b e r s

w w w. c o m p u t e r. o r g / j o i n

25%

