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Abstract

Conventional two-tier databases have shown performanttations in the presence of many concurrent
clients. We propose logical grouping of clients (or clustg)y as the means to improve the performance of
collaborative networked databases. In this paper, we slisauthree-tier client-server database architecture
(3t-CSD) featuring the above partitioning. The proposedtering is based on the similarity of clients’ access
patterns. Each cluster is supervised by a designated mathageoordinates data sharing among its members.
A number of clients is optimally partitioned if sites in eaicidividual cluster have the maximum common
data access probability possible. We initially show thataptimal client clustering problem is NP-complete
and then we develop two approximate solutions based oraatisin and filtering of statistics for client access
patterns. Our main goal is to compare the performance ofdheentional and three-tier client-server database
architecture with respect to the transaction turnaroumedi and object response times. After developing
system prototypes that implement both two-tier and 3t-CSRsexperimentally show that as long as good
client-clustering is possible, the 3t-CSD architecturelds sizable gains over its conventional counterpart.
We also compare and evaluate the effectiveness of the twanpeal techniques used to create client clusters.
Finally, we examine the role of several preprocessing selsemsed to reduce the volume of the input data
supplied to the clustering techniques.

Keywords: Collaborative Database Architectures, Multi-Tier Datsd® Logical Clustering, Genetic Algo-
rithms.
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1 Introduction

Efficient management of high volumes of data in contemponatyorked environments poses major challenges
and offers new opportunities for improved performancesfa® 13, 23, 24, 18]. In this regard, two-tier client-
server databases (CSD) have pushed graphical user imeréacwell as partial database processing to client
sites [26]. This trend has increased considerably as paweetworked PCs and workstations have become
commodities [3, 8, 4]. Conventional two-tier CSDs have shaeduced response times for client transactions
over their centralized counterparts. However, as serversl@ared among many users, they become points of
contention. This is known as the scalability problem anddeesn identified as a key research issue [1]. A number
of existing proposals advocate the use of short-term mermaciiing at clients in order to yield better response
times for database clients[3]. In [8], available clienta@ses are used to stage server originating data in an
inter-transaction fashion. High-speed networks have @sated opportunities for the caches of other clients to
be exploited as potential data sources [15]. Data requestafding techniques that allow client requests to be
satisfied by other clients (instead of servers) have beeodnted in distributed file systems and CSDs [2, 7].

In an effort to approach the CSD scalability problem from féedént direction, we examine the grouping of
clients, that access similar sets of server-originatingaib, into quasi-independent and cooperating clustdrs. T
main goal of such clustering is to be able to satisfy as mamy dagquests within the cluster as possible, thus,
reducing the burden on the server(s) and improving oveyatesn scalability. Therefore, it is essential that these
distinct collaborative clusters be well-formed. Speclficagood client clustering solutions should satisfy the
following properties:

1. The clients in each cluster should have as much of an gvérl¢heir data accesses as possible. This is
essential as a larger overlap implies a greater degree nhghtamong the clients in a group. Hence, fewer
objects have to be requested from outside the cluster.

2. Clients in any two separate groups should have a very siaedllly zero, overlap in their data requirements.
This is because the coordination of all inter-cluster data&esases has to be performed by the server. A large
number of such accesses can cause a considerable overhemdsenver and thus reduce its scalability, in
terms of the total number of clients that it can serve.

A designated site within each cluster —possibly a clienthiree- undertakes the role of a caching-agent between
the clients and the server and is termedittiermediate Cluster ManagglCM). ICMs are connected to database
server(s) and the interaction between clients and sejvsnierformed with their assistance. The resulting three-
tier alternative CSD architecture (3t—CSD) avoids perfamoe degradation by delegating many time-consuming
server tasks to this intermediate layer in the data accesarbhy.

We consider a cluster of clients to have been optimally farifithe participating sites in a cluster demonstrate
the maximum possible similarity in terms of object accesbethis paper, we show that optimal client clustering
based on data access patterns is NP-complete. We, theenpre® techniques to generate client clusters: a



heuristic-based greedy method and another one based orribgagalgorithm (GA) approach [10]. The greedy
method has the advantage of having a low computational sdstcansists of a single-pass [6]. The GA-based
technique commences with a large population of possibléisak and performs a “parallel” (multi-modal) search
in the solution space. The input to these clustering teclasigs a compilation of the observed data/objects
accesses by all clients. The volume of this informationiieatly proportional to database objects and participating
clients as well. Subsequently, larger numbers of objeadscients imply very voluminous input data for the GA.
Therefore, we employ two preprocessing schemes that cactigéfly reduce the data volume in discussion. In
this regard, one of our key goals is to investigate the impéitte suggested preprocessing schemes on the quality
of the produced clustering solutions. Client clusteringdsried out in an off-line fashion [7, 27]. Client access
patterns are transformed to bitmaps in order to enable fimest functioning of the proposed algorithms. We
also show that the way initial chromosome populations anegged is crucial to the quality of the formed client
clusters. We use two such techniques for initializationearfstic based greedy method and a purely random one.
From our experiments, it is shown that the latter consitanitperforms the former in creating good clustering
results. Independent of the initialization method used, exgperimental results indicate that the 3t—-CSD does
offer enhanced performance rates over the conventionatiewdCSD configuration. Two different workloads
corresponding to realistic access patterns are used wintpthe above.

This paper is organized as follows. Section 2 discussesrtmoped 3t-CSD cluster-based architecture and
compares it with the conventional two-tier one. In Sectipmv8 describe the optimal client clustering problem
and we show that itis NP-complete. Techniques to reducezbebthe used data to create client clusters and the
heuristic algorithms used are discussed in Section 4 ansigectively. Section 6 presents our experimental goals
and setting while Section 7 discusses our main experimessalts. Related work and conclusions can be found
in Section 8 and 9 respectively.

2 A Cluster-Based Database Architecture

This section outlines thieogically-Clustered (3t-CSDJatabase configuration whose novel concept isrtteme-
diate Cluster ManageflCM). In this, the primary copy of the database is hostedhgysterver and clients commu-
nicate with it via IPC abstractions. User transactions @iteated at the client-sites. The required data/objeats ar
fetched from the server and processed by client transactamagers. The latter use their main memory and disk
space as cache buffers in order to maintain local copiesjettsh The server performs only low-level database
functionalities on behalf of requesting clients. In adiliti the server provides serializable access to shared data
by maintaining a global lock table and associated strustufi@vo types of object locks are permitteshared
(read-only) andexclusive(read-write) [20]. It is possible for several clients/tsantions to obtain shared locks
(SL) simultaneously on the same data item. However, exausicks (EL) are granted to only one client at a
time. We assume that inter-transaction caching at thetslisrpermitted, i.e., cached database objects/locks can
remain in client caches across transaction boundaries8]19,
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Clients that demonstrate similar object access pattemslastered into groups. Each such group is managed
by an ICM which cooperates not only with the database senverlso the clients. In essence, ICMs provide
the necessary directory services that allow individuadrds within clusters to share data. The resulting 3t-CSD
collaborative architecture is depicted in Figure 1(a). sTikiin contrast to basic CS configuration (Figure 1(b))
where there is direct interaction between the clients aadénver.

(@ (b)

Cluster 1 Cluster 2

Figure 1: (a) Logically Clustered Database Architectuln® Glient-Server Architecture

The 3t-CSD’s server does not maintain a lock table for afindb in the system. Instead, it only maintains a
lock table for locks granted to individual clusters, andreleM maintains catalog information about objects and
locks granted to the clients that constitute its clustereWa transaction requests data objects/locks, the client fir
checks whether the requests can be satisfied from its loslalagid memory caches. If an object is not available
locally, then the client ships a request to its correspanditM. Depending on the type of requested lock (shared
or exclusive), the ICM takes different steps to obtain ite ®teps taken by the ICM for shared lock requests are
shown below.

1. When an ICM receives an object request from a client, it looks up its cluster directory to see if another client
within the same cluster has the object available in its cache.

2. IF (the object is present at a client within the cluster) THEN the ICM requests that client to forward a copy
of the object to the requesting client as soon as possible.

3. ELSE ICM contacts the server and requests to ship a copy of it. The server can grant this request immedi-
ately as long as clusters have not locked the requested object exclusively.

The steps that are taken when a client requests an EL areganalto the ones described above. The basic

requirement is that before a lock can be granted, it is nacg$ar all conflicting locks to be released.

In general, a client returns an object (and releases thedond® only when it receives a callback request for
that object or when it needs to create free space in its cdcleither case, the client and tié’ M have to ensure
that the lock tables in théC' M and the server are updated correctly. The manner in whishigldone depends
on the type of lock that the client is about to release:

1. IF (the object has been updated at the client) THEN

1.1 The latest version of the object is shipped to the server and the object is purged from the client’s
cache.



1.2 Once the server has received the updated object, the client deletes the object and informs the ICM
that it no longer maintains the object in its cache.
1.3 The ICM updates its cluster lock table to indicate that no copies of the object are present in its cluster.

2. ELSE_IF (the client has a SL on the object) THEN

2.1 The client informs the IC' M that it is about to purge the object from its cache.
2.2 IF(no other client in the cluster has cached the object) THEN the ICM informs the server that the
object is no longer present in its cluster.

From the above description of the 3t-CSD, we can see thatsthefUCMs offers tangible advantages over the
two-tier client-server architecture in the following twitugtions: (i) when the data are cached at some client(s) in
the cluster, the object location directory maintained eyltBMs allow requests for data to be satisfied without the
intervention of the server, and (ii) the ICM’s cluster-wikbek table allows sharing of data in its cluster and also
guarantees that data accesses are serialized. Sincelioenaith the server is unnecessary in these situations,
these benefits can contribute significantly towards redutie load on the database server when the clients in
each cluster have a considerable overlap in their dataragents. In such situations, the scalability of the server
can be greatly improved compared to that of the server intigrasystems [21]. The resource requirements of the
ICMs are not very demanding either. Relatively small ancpessive machines can be utilized to provide the
object directory services and guarantee serialized datsaes.

The proposed 3t-CSD architecture based on logical clieisteting severs the clients’ direct connection to the
server, and distributes the object-service and concwreantrol effort over several intermediate servers. The
performance of this 3t-CSD configuration, however, depemdthe resulting partitioning of clients into clusters.
We demonstrate this point with the help of an example.

Figure 2 depicts the case when two cliertfs,andCs, try to access the same obj&2§;. Assume that’; is
updatingOg1, i.e., it has an exclusive on it. If, at this point, a trangactt Cy wants to access obje€ly;, then
(5 sends a request to the server for a copy of the object anddhbesite lock. The server sends a callback request
to C4 asking it to return the updated object and release the lodken is finished with its update, it releases
its lock onOy; and ships the updated version to the server. This is now serit.t Note that the server has to
co-ordinate the movement of every object between any tves gitthe system. This is precisely the factor which
limits the scalability of the two-tier client-server configition under conditions of low access locality and high
contention.

Figure 3 shows a configuration of the cluster-based clientes system when clients; andC, are in the
same cluster. Consider the same situation as in the prepamagraph. Now(’s sends its request f@dy; to the
ICM in its own cluster. Since the ICM knows th&} is currently updating the object, it forwards the request fo
Og1 to (. After the completion of its updat€;; ships the object to the ICM which forwards it€s. Hence, the
object request frond’; is satisfied within the cluster without the server’s invohent. The off-loading of such
object requests from the server can greatly reduce the lodldeodatabase-server.

To make a case for optimizing the clustering of clients, vge abnsider a situation where cliets andC, are
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Figure 3: Object Request Satisfaction in Optimal 3t-CSDeCas

in two different clusters. Whe6@'s sends the request fary; to its ICM, the ICM has to forward the request to the
server as no copy of the object is present within the clustiéer C; has completed its update, the server retrieves
the object fronC; and serveg’s’s request by sending it the required object. The entirefssiessages exchanged
is shown in Figure 4. Therefore, when the clients are clegt@ithout considering their data requirements, the
3t-CSD actually demonstrates worse performance than thditw CSD configuration.
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1. 0y Request 5: g1 Return
2: g1 Request Forwarding 6: Og; Cluster Return
3: Oy Cluster Callback 7: Og; Cluster Dispatch
4: Og; Callback 8: Og; Grant
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Figure 4: Object Request Satisfaction in Non-optimal 3BCSase

Given the potential benefits of the three-tiered collalvegadrchitecture, it is necessary that the clustering of
clients is performed in the best possible way. Client chisteis considered to be optimal if participating clients
in each cluster have the maximum possible common data &scels the next section, we define the optimal
client-clustering problem in a formal way and show that fRB-complete.



3 Optimal Client Clustering

The main goal of client-clustering is to colocate a numbetligits in a cluster so that a good portion of object
requests from a client can be satisfied by the other clientiseircluster. A good clustering of clients will avoid
all unnecessary communication with the server. If the pgegge of object requests that can be satisfied within
the client clusters is significant then the system perforaaand scalability can be improved considerably. To
increase the probability that an object request will besfiatl within a cluster, the clients in a cluster should cache
the set of objects that are accessed by all of them. In thetwas®, if a cluster is composed of clients which
access (and cache) completely disjoint sets of objectsprthieability of object request satisfaction within the
cluster is zero. The Optimal Client Clustering problem et thf maximizing this probability.

3.1 Problem Formulation

Let D = {oidy, ..., 0id, } be the set of data objects in the shared database(s)0;Lle¢ the subset of objects in
D that are accessed by a clientWhenk clients are colocated in a cluster, the set of objects aeddsg all the
clients in that cluster i€'O = O, N ... N O. The optimal client clustering problem is to find a subsetligits
that allows the maximglC'O| for a cluster of a given size.

Clients’ data access patterns can be collected by morgtaheir data requests over a period of time. To
formalize the data access pattern, we use the followingesgmtation: Let be a set oh binary bit-strings, one
for each client, where the bit-string;, represents the data access pattern for cliehtet C; =< b}, ..., b7 >,
whereb{ = 1 if client i accesses thg" database objecb,{ = 0 otherwise. Using this representation of access
patterns, the problem of finding a subset of clients with mmakicommon accesses becomes that of finding the
largest set of overlapping 1's in the two-dimensional aiayTo prove that the optimal client clustering is NP-
complete, we first state it as a decision problem.

OPTIMAL CLIENT CLUSTERING GivenC and two positive integer§ and L such tha2 < S < n and
L < z, does the saf’ contain a subset &f or more bit-strings such that the number of overlapping disiag the
strings in that subset is greater than or equdl 20

For the proof of NP-completeness of the client clusterirapfem, we show a reduction from an instance of the
CLIQUE problem. In an undirected graph, a clique is a subfigs gertices that form a fully connected subgraph.
Given a graph G, the problem of identifying a clique of a gig&re has been shown to be NP-complete [14, 16].

3.2 NP-Completeness of Optimal Client Clustering

Theorem: OPTIMAL CLIENT CLUSTERING is NP-complete.

Proof: We first show that the OPTIMAL CLIENT CLUSTERING problem belys to the class NP. Then, we
show that CLIQUE can be reduced to OPTIMAL CLIENT CLUSTERINGpolynomial time. This will prove



the theorem.

To demonstrate that OPTIMAL CLIENT CLUSTERING belongs te ttlass NP, we show that a certificate
consisting of a subset’ of C' and two integer valuesy and L can be verified in polynomial time. The verifying
algorithm first ascertains that the number of bit-stringtha given subset is greater or equalStoln the second
step, we calculate the number of overlapping ones amongitdsérings inC’ and compare this number with
This verification can be done in polynomial time. Therefave,can say that OPTIMAL CLIENT CLUSTERING
belongs to the class NP.

To prove that OPTIMAL CLIENT CLUSTERING is NP-hard, we shothat CLIQUE can be reduced to
OPTIMAL CLIENT CLUSTERING in polynomial time. Consider agpwhG = (V, E). LetG contain a CLIQUE
of J (J < |V]) vertices. The corresponding instance of OPTIMAL CLIENTWETERING has two parameters
m andl, wherem is randomly selected in the rang® J] and! is assigned the valug — m. This instance
of OPTIMAL CLIENT CLUSTERING hasm - |V| bit-strings, and the size of each bit-stringlis|V|, where
m - |V| =nandl - |V| = z. The number of bit-strings in the maximal overlap is givenbym and the size of
the overlap is given by - [.

The transformation from an arbitrary instance of CLIQUE tmaresponding instance of OPTIMAL CLIENT
CLUSTERING is performed in two phases. The first phase toansf the grapl in the instance of CLIQUE
to the corresponding graphi’ = (V’, E’) in the instance of CLIENT CLUSTERING PROBLEM. In the second
phase, the set of bit-string€’() containing the maximal overlap is generated from the gi@ph

Figure 5: A graph with 5 vertices and a clique of size 3

Let G = (V, E) contain a clique with/ vertices (Figure 5 shows a graph containing a clique of sjzd8e
corresponding grapty’ = (V’, E’) is constructed as follows: in the first phase, to constilicteach vertex;
in V is transformed into two sets of verticeRV; = {rv},...,rv"} and BV; = {bv},...,bvl}, (m < J and
I = J —m). To constructE’, we connect each vertex RV; to all the vertices inBV;. Therefore, there is now
an edge between every vertex, (1 < r < m) to every vertexv; (1 < s < [). The conversion of the vertex
v1is shown in Figure 6. Additionally, for every edge betwegemndv; in E, for every pair of verticegrv; bvj)

(1 <r <mandl < s <), we add an edge ia’. The addition of edges t&’ to replace the edge between
andws in E is illustrated in Figure 7. Converting all the edges andiwest of the graplz shown in Figure 5, we



get the corresponding grajgif shown in Figure 8. This is the end of the first phase.
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Figure 6: Vertex ConversionV; is transformed into two groups of vertices, sinfe= 3 we can choosen =
2andl =1

Figure 7: Addition of edges betwedtl; and BV5, and RV, and BV, to replace the edge betwe&handV; in
the original graph

In the second phase; - |V| bit-strings are generated from the gragh Each bit-string has- |V bits. For
vertexrv,, if there is an edge ik’ betweenrv, andbv; (1 < p,q < [V],1 <r <mandl < s <), then the
((p— 1) - m + )™ string has thé(q — 1) - I + s)** bit set tol. The matrix that is generated from the gragh

shown in Figure 8 is given below:



Figure 8: The grapld:’ after converting all the vertices i@ and adding all required edges &
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Since the resultant gragh! from the graphG = (V, E) has|V'| = (m+1)-|V|and|E'| = m-l-(|V|+2-|E)),
it is clear that the transformation is done in polynomialdinif the original graphG includes a clique of sizd
that is composed of verticédg1 = {v;,...,v;+ 51}, then the corresponding graghf has two sets of vertices
RV =RV;,URV; 411 U...URV;y 7 oURV;y ;1 andBV = BV;UBV;;1U...UBV,4;_oUBV;, ;1 such that
all vertices inRV have the edges incident to all the verticesilr. This implies that/ - m bit-strings have exactly
J -1 overlapping 1's. This can be seen in the above matrix wheov6 (from row 3 to 8) have 3 overlapping 1's.

Given a setC of n binary bit-strings, ifS bit-strings showl. overlapping 1's then thé& bit-strings can be
divided into S/m = J groups of vertices regarding each group as && (1 < ¢ < J). Similarly, theL
overlapping 1's can be divided intb/l = J groups of bits treating each group afB&; (1 < i < J). The
existence ofn - [ edges between vertices RV; and BV; induce a vertex; in the graphGG. The presence of. - [
edges between vertices RV; and BV, andm - | edges between vertices R; and BV;, implies that an edge
exists between; andv; in the graphGG. Consequently, transforming each such set of bit-strings.J vertices
induces a clique of sizé in the graphG.



4 Pre-processing of Object Data Access Patterns

In this section, we describe the expected format of inpud,ddile pre-processing techniques used to reduce its
volume, and its representation when input to the clustagngniques. Similar pre-processing methods have been
used in the study of web page access behavior [5]. For siityplige assume that a database is a collection of
uniquely identifiable objects (via OIDs). The specific stegdeen in order to prepare the data for the clustering
techniques are shown in Figure 9. The first element in FigustafAds for the input data as collected by moni-
toring clients’ behavior. Once this data is available, alistracted to a cell-based representation where each cell
corresponds to a series of OIDs. This representation isftltered so that only objects that demonstrate heavy
traffic are retained for the clustering analysis. Beforel#teer commences, the representation is converted to a
bitmap which allows for efficient identification of clientudters. The remainder of this section discusses each of
the elements depicted in Figure 9.

. Map Input Data Filter the Data Convert the Binary

Client Accesses into Fixed-Size according to a Filtered Data Input Data for
Input Data Segments Threshold into Binary Data the clustering
algorithm

Figure 9: Input Data Pre-processing

The raw input data is simply a count of the number of accessmdery each client to the objects in the
database over a specific time interval. This data can bectetiedby monitoring the normal operation of the
database system. We store this information in the form ofcadimnensional array where the rows correspond to
the clients, and the columns represent the objects in ttadodsé. Therefore, for a system consisting afients
andm objects in the database, the size of the array»sn. The array locatioifi, j| stores the number of accesses
made by Client to Object;j during the observation period. If we assume that a datalmasssts of one hundred
objects, a sample of the observed database access pattenefdient is shown in Figure 10. Here, the horizontal
axis represents the individual database objects in incrg&iD value and the vertical axis depicts the cumulative
accesses for each object over an observation period.

As the number of objects in the database becomes largerizhefsthe input rises drastically. This, in turn,
causes the processing time and memory requirements ofigm-clustering techniques to grow exponentially.
Hence, it is necessary to devise techniques to reduce teebihe input without losing key characteristics in
clients’ access patterns. An elegant method of achieviisgghio map each sequence of consecutively numbered
objects into a single representative value. Such a sumnegrgsentation can reduce the size of the input con-
siderably. For example, in a database containing 10,00€ctshjusing a 10 to 1 mapping scheme reduces the
number of individual access counts per client to 1,000. ¢ takes into consideration that related data objects are
physically placed together, such a mapping technigue &stahietain this property [17].

In our mapping schemes, we represent equal-sized sequehobject numbers by single values. Each such

10



25

=
a
T
I

=
o
T
|

Number of Accesses

o 10 20 30 40 50 60
Database Objects (OIDs)

I | I
80 90 100

Figure 10: Observed Access Pattern for a Client

sequence of object numbers is callededl. The access frequencies for the objects in a cell can befdramsd
into a single value using two measures:

1. the highest access frequency; the object that has beessattmost frequently is treated as a representative
for the entire cell, and
2. cell-cumulative; the sum of all object access frequenirighe cell.

For instance, consider the access pattern shown in Figurdsifg a cell size of five, the mapping created by the
highest frequency and the cell-cumulative frequency nrapfachniques are shown in Figure 11 (a) and (b). Since
each cell represents five objects in the database, theingsolimber of values in the cell-based access pattern
—along ther axis— is twenty. Our conjecture is that the cumulative repnéation contains a greater amount of
information as it integrates all access frequencies in étle ¢

Using the above access mapping techniques results in a fadstail in each client’s access information.
Therefore, there is a trade-off between the granularithefrhapping used, and the reduction in the size of the
input.

Once the frequency mapping has been computed, the accéssipaire manipulated so that the more fre-
guently accessed objects or database cells can be idefifiedch client. We apply a mean-based filtering to the
compressed access frequency data. Here, the average efl altcess frequencies is calculated and values that
are lower than the average are replaced by zeros. The efféiteong the mappings shown in Figure 11 (a) and
(b) are shown in Figure 12 (a) and (b) respectively.

As the two figures clearly indicate, the access patternyetkfrom the two mapping schemes followed by
the filtering are not identical. In fact, unless the hot smisessed by a client are very sharply defined, the two
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25

20 - M

-
a
T

|

15 =1

10 -

| LT

0 5 10 15 0 5 10 15
Database Cells Database Cells

Highest Number of Accesses
Cumulative Number of Accesses
a1
=}

N
o

Figure 11: (a) 5:1 Highest Frequency Mapped Access Patfeyrh:1 Cumulative Frequency Mapped Access
Pattern

mappings, followed by filterings, will rarely identify theusie hot sets.

Once the filtering phase is complete, the access patterrisaastormed into a collection of binary bit strings.
Here, the non-zero values in the filtered access patterngpresented by ones. We can say that formally each
client’s behavior is represented by such a bit string. FEgl8 shows the bitmapped patterns for the accesses
depicted in Figure 12. For clients, letC' be the set of: binary bit-strings, where the bit-string; represents the
data access pattern for clientHence, for client, C; =< b}, ...,b7 >, wherez is the number of distinct cells in
the database(s). The bits in eachare set using the rule:

b 1, ifthe filtered access pattern for cliehbas non-zero value for th&" cell
] 0, otherwise

Using this representation of access patterns, the probidimding a subset of clients with maximal common
accesses becomes that of finding the largest set of oventaffs in the two-dimensional array. In the next
section, we describe two heuristic techniques that attéongénerate good client-clustering: a greedy technigue
and a genetic algorithm.

5 Techniquesfor Client Clustering

5.1 The Greedy Approach

The greedy approach uses the matching between the accesapaf clients as a clustering heuristic. Since this
is a greedy algorithm, it makes the decision of allocatindientto a particular cluster based only on the best
choice available at that instant. Clusters are assumedvindeaximum possible size, and once a clustéulis

no more clients can be allocated to it. The outline of the itigm is as follows:
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Figure 12: (a) Filtered Access Pattern (Mapped Accordinglithest Frequency), (b) Filtered Access Pattern
(Mapped According to Cumulative Frequency)

1. For every pair of clients, the access patterns are compared and the number of overlapping accesses is
maintained in a two-dimensional table.

2. Among the clients that are still unassigned to clusters, find (in the two-dimensional table) the pair of clients
that have the greatest data accesses overlapped. This pair forms the basis of a new cluster.

3. For all unassigned clients: find the client with the largest non-zero overlap with this newly formed cluster (in
Step 2), and add it to the cluster. Repeat Step 3 until there are no more clients that have an overlap with
the new cluster or until the cluster is full.

4. After the members of the new cluster are determined, if the size of the cluster is small enough to be merged
with one of the previously composed clusters without violating the maximum cluster size limitation then the
two clusters are merged into one cluster. If there no clients with an overlap with any other client or cluster
then go to Step 5, else go to Step 2.

5. Clients that do not have an access overlap with any existing clusters or unassigned clients are randomly
distributed to those clusters that are still not full. If all existing clusters are full, new clusters are created for
the still unassigned clients.

Forn clients,m database cells, andnaximum number of clusters created during the executiomegptogram,
the overall memory requirements can be summarizedrasx n) + n? + n + (m x p). The(m x n) factor is
required to store the original data access patterns. Maingpa table of clients’ access pattern overlaps requires
n? space, ana space is used to store current cluster assignments. Liistly, x p is used to store access overlaps
of currently composed clusters. Therefore, this algorithiguite efficient in terms of the required memory space.
Furthermore, since this algorithm is a single-pass héarédgorithm, the necessary CPU time is very small.
However, it has several disadvantages that can make theagedisolutions inadequate:

e It searches for a solution only in the local solution space, &all future solutions are in the immediate
neighborhood of the current point. This makes it susceptiblocal minima, and

e It has no backtracking ability, i.e., once a client has bessigaed to a cluster, it cannot be moved to another
cluster later.

Considering the disadvantages of the greedy algorithm, ave konsidered using a dynamic programming ap-

13



Binary Database Access Pattern Binary Database Access Pattern

Accessed
Accessed

R | Y Y Y N AR WY | N | R | | Y Y Y MR A | A |
0123456 7 8 91011121314151617 1819 0123456 7 8 91011121314151617 1819
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Figure 13: (a) Bitmapped Access Pattern (Mapped Accordinglighest Frequency), (b) Bitmapped Pattern
Filtered (Mapped According to Cumulative Frequency)

proach. However, a dynamic programming technique is coatiomially very expensive [6]. Therefore, we opted

for the use of a genetic algorithm (GA) that models the seafdhe solution space as an evolutionary process
[9, 10, 28, 11].

5.2 Genetic Algorithm

A genetic algorithm has several advantages over other @gatiion techniques, namely:

e A genetic algorithm starts with a large population of febs#blutions and performs a parallel search of the
solution space. This multi-modal approach makes the dlguorless likely to get caught in local minima,
and ensures a more comprehensive search of the solutioa. spac

e Only the pay-off (optimization function) information isersto guide the production of future generations.
This makes the implementation of a GA easier than other Beactiniques which usually require complete
information about the problem in order to generate and et@lpossible solutions.

e New solutions are generated using probabilistic transitides instead of deterministic procedures. This
allows a much more varied set of feasible solutions to be rgée@ without resorting to randomized or
exhaustive search techniques.

In the following subsections, we describe the encodingreehesed for the representation of genes and chro-
mosomes. We then describe the fitness functions used toageate chromosomes, explain how the initial

population is composed, and present the used mutation asdoser operators. Finally, we provide an example
using a small-sized clustering problem.
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5.2.1 TheEncoding Schemefor Candidate Clustering Solutions

In our GA, we represent each chromosome by a linked list oégeftach gene in a chromosome represents a
cluster of clients, and the chromosome itself represertsadimplete client clustering. This representation of each
chromosome as a linked list of bit strings is different froengral GA chromosome representations where the
entire chromosome is one single bit string. We use this éngance it makes the design of the required genetic
operators much more straightforward. Now the destructibalusters and the redistribution of clients among
clusters can be implemented without changing the origieadamntics of the genetic operators.

5.2.2 Evaluation Parametersfor a Client-Clustering Solution

Using an appropriate measure to judge the quality of a ge@tesalution is very important if the GA is to converge
upon the best achievable solutions. In designing a thezestiister architecture, there are two parametémnd
V, that we use to gauge the quality of the clustering formation

J: Clients in a group should have a very high percentage of commata accesses so that most object requests
can be satisfied within the cluster. The evaluation functids a measure of these common data accesses
of the clients in each cluster, taken over all clusters.

V. Inter-cluster data accesses need to be as few as possitmeevéry object request that necessitates lock
callbacks and releases across clusters, the logicakdiugtincurs a very high overhead. This second
parameter}/, is the percentage of inter-cluster data accesses made lolights in all the clusters.

Calculation of J: Consider a system with clients. LetO; be the set of objects accessed by CliéntFor a
possible clustering solution for this systeshis calculated as follows:

e Let the solution consists of 3 clusters, such thatster; contains clients 1 to 3 lusters contains clients
4 to b, andClusters consists of client$ + 1 to k.

e LetOverlap; be the set of objects (bits in the two-dimensional arrayl) tharlap forCluster;. Therefore,
for Clustery, Overlapy = O1 N Oz N Os. The cardinality ofOverlap; (i.e. |Overlap;|) is the number
of objects commonly accessed by client€iuster;. The proportional overlap fat'luster; is %,
whereD BSize is the total number of objects in the database.

¢ Given a clustering solution with clusters, the overall evaluation functidnis given by:
|Overlap;| ) 1
J = — 1
Z < DBSize + 72 (1)

In the evaluation function, the first part represents themitdl data sharing among clients in clusters. The value
for the first segment will change depending on the quality lo§tering solution. Therefore, the first part of
the function contributes to generation of good chromosothasfulfill the objective concerning the quality of
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clusters. The evaluation function also encapsulates thauof clusters generated as a measure of quality of the
clustering solution. This is an important parameter asstriets the number of clusters generated. Without this
restriction, the GA can generate solutions with an arbiyréasrge number of clusters thus increasing the cost of
implementing the ICM layer.

Calculation of V: Given a clustering solution, this function calculates aghéed average of the inter-cluster
object accesses. Consider a system witlients. LetO; be the set of objects accessed by Cliént

e Let the proposed clustering solution consist of 3 cluststgh thatCluster; contains clients 1 to 3,
Clustery contains clients 4 té, andClusters consists of client + 1 to &.

e The set of distinct object accesses mad&yster; is given by the union of the set of objects accessed by
Cy, Cy andCs, ie. (Up = O1 U O U Os3). Let the cardinality of/; be V.

e The set of objects accessed®@iuster; that are also accessed by clusters 2 and 3 is give(thyn [Uz U Us]).
Let the cardinality of the set generated by this formula\be

e The proportion of objects accessed Gyuster;, that are also accessed Byuster, and/or Clusters is
M, /N;. Calculating these values for all clusters we have the ptapoof objects also accessed by other
clusters given by, /N; for Cluster;.

e The evaluation parametér,, is calculated as the weighted average of the above valueadh cluster. The

formula, forr clusters, is:
M.
;;:1 Vz X C;

V= 2)

wherec; is the number of clients id'luster;. Thec;'s are used to weight the evaluations of individual

T
i=1Ci

clusters so that a cluster with a larger number of clientbamihtribute more to the overall average.

We combine the two evaluation functionsandV’, into a single value. So as to assign comparable magnitudes
to both of them, we introduce two integer multipliersand 3. The values forx and 3 are chosen in such a way
thatJ andV are converted into the same order of magnitude. The comleveddation is used in the GA to judge
the fitnessf, of the chromosomes in each generation. The combined diailfanction is:

a-J+B-(1-V)
2

f= 3)

The (1 — V) factor is necessary to convért from a minimizing function to a maximizing function. The sum
of two factors is divided by 2 in order to control the final valwithin the range [0,1]. Now, the final evaluation
function evaluates the chromosomes concerning threerfactiustering quality, the number of generated clusters,
and the inter-cluster data access pattern. From thesedatkee chromosomes derived approach the optimal
solution which maximizes the overlapping data accessnpatthile maintaining minimal number of clusters and

interaction among client groups.
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5.2.3 Generation of Initial Population

To generate an initial population, we use a simple heuragorithm. The initial population helps to accelerate
the search for a feasible solution. Using this as our guigirigciple, the algorithm we develop consists of the

following steps:

1.

2.

IF(there are clients still unassigned to clusters) THEN

1.1 Pick any one of these clients randomly.
1.2 Find the cluster that this client has the greatest object access overlap with.
1.3 IF(such a cluster is found) THEN add the client to that cluster.
1.4 ELSE create a new cluster and add the client to it.
Repeat Step 1 until all clients have been assigned to clusters.

5.24 TheGenetic Algorithm

The GA consists of the following steps:

1.

5.

The memory required by the genetic algorithm is much largan the greedy algorithm presented in Section

Create an initial population of 100 chromosomes using the greedy algorithm described in Section 5.2.3.
The genes in each chromosome represent clusters of clients. The greedy algorithm is based on maximal
matching of bits in the clients’ database access patterns against pre-existing clusters.

Calculate the fitness, f; (Equation 3), of each member of the population and F' which is the sum of all
fithesses. For each chromosome, its probability of selection for the next generation is calculated as p; = ff
In addition, the cumulative probability, ¢;, is calculated which is given by ¢; = Z;lej.

Using the probabilities generated in Step 2, select the tentative members of the new population. Each
member of the new population is picked by generating a random number » € [0, 1] and if » < ¢; then the
first chromosome is selected, otherwise select the i** chromosome such that ¢;_; < r < g;. One hundred
chromosomes are picked by repeating this procedure. It is quite proper for some chromosomes (the more
fit ones) to be picked more than once.

Using the chromosomes selected for the new population, we select the candidates for recombination arbi-
trarily. From this pool of candidate “parents”, we select pairs of chromosomes randomly and generate their
“children” by recombining the genes of the two parents. The two parents are then replaced by the child
chromosome in the population. Finally, genes in randomly chosen chromosomes from the new generation
are mutated.

Repeat Steps 2 to 4 for a pre-determined number of generations.

4.1. Forn clients,m database cellg, as the maximum number of clusters in a generated solutiahy ahromo-

somes in each generation, the memory requirements of tretigegorithm can be written agm x n) 4+ g x

(p x (m+n)). The first term in this expression, namély. x n), is the same as the greedy algorithm, and the
second term specifies the maximum amount of memory space/théd be required to maintain one generation
of solutions (chromosomes). What can make the second tegniarge is that for the genetic algorithm to provide
a reasonable search of the solution space, the number ahobommesyg, in each generation has to be large. In

our experiments, the value gfis of the same order as the number of cliemiks (
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5.25 TheUsed Mutation and Crossover Operators

In the mutation, the clients from randomly selected clsjeare redistributed to other clusters using the algorithm
described in Section 5.2.3. The mutation operator is usettdate a set of alternative feasible solutions by

destroying existing clusters and distributing the clieintshem to other clusters. An example of the operation

of the mutation operator is shown in Figure 14. In the first liwe show a chromosome representing a possible
clustering solution. This chromosome consists of four gezech of which represents one cluster. Gene 2 is
randomly chosen for destruction, and the clients in it adéstebuted to the other clusters using the algorithm

from Section 5.2.3. In this example, Client 4 gets assigndddne 0 but Client 9, which does not have an overlap
with any existing genes (clusters), is moved to a separate @duster).

Gene 0 Gene 1 Gene 2 Gene 3

Cor Do D> —ED— 72D

‘ Mutation

Gene 0 Gene 1 Gene 2 Gene 3
Cone DaCass e oro >0
4 added new cluster with 9

Figure 14: An Example of the Mutation Operation

For the crossover, randomly selected genes in two pareotrsomes are switched. Consider the example
shown in Figure 15. The first part of the figure shows two chreonees. The genes in the second chromosome are
shown with thick borders. In the crossover, Gene 1 from tts¢ ¢inromosome is substituted with Genes 1 and 2
from the second chromosome. If the newly inserted geneg@adsplication of client(s) in the chromosome, then
the original clusters containing the duplicates are dgstt@nd the non-duplicated clients from those clusters are
redistributed (using the algorithm in Section 5.2.3). Tikishown in part (c) of Figure 15. Client 1 is duplicated
in the first chromosome. In this case, Gene 0 is destroyedtadistituent non-duplicated clients (Client 0) are
redistributed to the other genes.

In some cases, clients can be potentially removed from anabsome during the crossover opertion (e.g.,
Client 2 from Chromosome 1). Such clients need to be reintred into the existing clusters, including the newly
created clusters (genes).

The logical clustering solutions generated by 12 genarstiof the above genetic algorithm are shown in
Figure 16. The input to this example were the database apettssns of 10 clients. These access patterns were
created randomly for a database containing 10,000 obj€éhtsinitial population of chromosomes was generated
using the greedy maximal overlap algorithm. This initiabptation is shown as Generation 0 in Figure 16. Here,
we can see that Chromosome 1 is rated as the best solutionhmach@some 3 is the worst.

After 12 generations of recombinations and mutations, weseg that the chromosomes are converging to-
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Chromosome 1

Gene 0 Gene 1 Gene 2 Gene 3

=D

Gene 0 Gene 1 Gene 2 Gene 3 Gene 4

‘ Gene Switchover

(A) Chromosome 2

Chromosome 1

Gene 0 Gene 1 Gene 2 Gene 3 Gene 4

(8) Chromosome 2

Gene 0 Gene 1 Gene 2 Gene 3

‘ Chromosome Correction

Chromosome 1

i Gene 0 i Gene 1 Gene 2 Gene 3 Gene 4

© Chromosome 2

Gene 0 Gene 1 Gene 2 Gene 3 Gene 4

Figure 15: An Example of the Crossover Operation

wards a single optimal solution (according to the combinedsare). Two of the four chromosomes are the same
with a combined evaluation value of 0.5314. After a few magadagations, all the chromosomes will suggest the
same clustering solution. Since the GA is not an unimodahopation algorithm, it can be seen that the final
population also contains several unacceptable clustenhgions. In fact, this is an advantage of a GA. Since the
search is multi-modal, a GA is less likely to get stuck in lamatima.

6 Study Objectives and Experimental Testbeds

So far, we have outlined techniques to formulate clienttehgsn an off-line fashion by exploiting observed object
access patterns. In this section, we discuss an experihexataation of the proposed logical client-clustering
solutions and their effect on the 3t-CSD’s performancedattirs. We also carry out a sensitivity analysis of the
different object mapping schemes used and investigateotbeof genetic evaluation metrics in the derivation of
viable client-clusters. More specifically, the main godlsar experimental evaluation are:

1. To investigate whether there is substantial gains inguairtluster-based 3t-CSD configuration over the
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Generation 0 (Initial population)
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combined: 0.4691

J: 0.0629
V: 0.0000
combined: 0.5314

J: 0.0629
V:0.0000
combined: 0.5314

Figure 16: A Sample Run of the Genetic Algorithm with 10 Cigen

traditional two-tier CSD. Our main hypothesis is that goagtering can effectively minimize interactions
not only with the server but also with elements in other gsoup

2. To examine the effect that the two techniques used t@lizié the GA's first generation of solutions had on
the quality of the generated clustering solutions.

3. To understand the effect of the different mapping scheamesgranularities on the clustering results and,
therefore, the efficiency of the 3t-CSD.

4. To study how three different genetic evaluation metrftacathe performance of the 3t-CSD for a varying
number of clients.

We have developed full operational prototypes for the 3B@S well as the baseline conventional CSD system.
They both run in a network of six Sun ULTRA-1s workstationsming Solaris 2.7 and connected via a 100-Mbps
FastEthernet LAN. For our experiments, we assume a congpatiironment consisting of one database server
and a varying number of clients.

We have created a page-mapped I/O software layer to manges dhtabases at both client, server and ICM
sites. This layer allows for basic paged reads/writes afféting. We assume that exactly one object is stored per
page without loss of generality. In our experiments, wegleste an individual workstation as the server site while
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we distribute a varying number of client databases equally the remaining machines. Communication between
the clients, formed ICMs and the server was done using TCRtRets. The servers in both systems have been
designed as connection-oriented programs, i.e., oncergctan is established with an ICM or a client then that
connection is maintained for the duration of the experim@aihie ICMs are also connection-oriented, concurrent
programs which maintain their socket connections with tlients and server throughout the execution of the
experiments. This design decision was taken as the overheated in the continuous creation and destruction
of connections turned out to be cost-inefficient.

We have developed the ICM sites as multi-threaded prograhesenone thread corresponds to every client
in the cluster. ICMs use their main memory to maintain theeocbgirectory and lock table for their respective
clusters. Clients can also accommodate multiple concuresyuests using multi-threading on their own and use
our memory-mapped I/O library to store in both its short amlgl term memory data objects. All packages
have been implemented in C using the Solaris thread and tslilzleries. Synchronization between the various
threads within each process, when accessing global vasigisldone using the Solaris mutual exclusion (mutex)
functions. The values used for system parameters are lisfEable 1.

| Parameter | Experimental Valug
Database Size 10,000 objects
Server Main Memory Size 2,500 objects
ICM Main Memory Size 500 objects
ICM Disk Capacity 500 objects
Client Disk Cache Size 200 objects
Client Memory Cache Size 100 objects
Maximum Number of Objects
Accessed by a Transaction 10

Table 1: Experimental Parameters

In the two-tier CSD, the server processes all requests taralgiects and locks from the clients. It maintains
an up-to-date lock table and resolves all concurrency sssimeorder to do this efficiently, we have designed the
server as a multi-threaded process that assigns one tloeagh client in the system. This thread is responsible
for handling all future interaction with that client. The hmuihreaded implementation of the server allows it to
satisfy client object requests concurrently.

Transaction arrivals at each client are generated as adhqisscess with an fixed inter-arrival mean of three
seconds. The processing time for each transaction is gedeniaing an Exponential distribution which also has
a mean of 0.5 seconds. The transaction load on the systemies \®y increasing or decreasing the number of
clients. Each transaction can request up to ten databasetgibjvhen these requested objects becomes available
the transaction can be executed. The exact number of olbgeptested by each transaction is generated randomly.
Transactions are executed as separate thread procesghe. réfjuired data is available at the client then it is
locked by the transaction. If the object is to be updated therarked as dirty so that it is written back when the
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transaction commits. Now, the transaction spends its pbestprocessing time calculating products of random
numbers in a loop. Once this loop terminates, the transactieases its lock on the data and commits.

In our database access patterns, the hot area of the dataloasehalf of the total database segmented as fifty
disjoint hot spots [25]. The size of each hot spot is equabtoof the database size. Each client can access up to
five of these hot spots, and 90% of the client transactiongablbequests are made to those hot spots. The other
10% of a client’'s object accesses are made to the non hot egioinr (which is also 50% of the database). We
create two different workloads by changing the way in whioh lhot spots accessed by each client are selected.
In the first workload, each client selects its hot spots ramgqout of the available fifty). We call this workload
W3. In the second workload, calldd'4, each client picks a random set of hot spots from a pre-defiege of
such areas. The first 10% of the clients select their hot dmtseen the range zero to four, the next 10% clients
chose theirs between the range five to nine, and so on. Thiedsda access patterns are based on the HOTCOLD
scenario presented in [3].

7 Experimentswith Prototypes
7.1 BasdineResults

In our experiments, we measure the average object respamss dnd the mean transaction turnaround times as
the key performance indicators of the two-tier CSD and 3b@8nfigurations. As mentioned, we have experi-
mented with two different methods of initializing the firgreration of chromosomes of the genetic algorithm.
In the following, we denote the clustering solution genedaty the GA when using the randomized initialization
as 3t-CSD-R. The clustering generated by the GA when thdadtiedbased initialization is performed is termed
as 3t-CSD-H. For the first set of experiment&§ workload), the average object response times and tranpacti
turnaround times for the basic CSD, 3t-CSD-R, and the 3t-E&de shown in Figure 17(a) and (b) respectively.

Although, the performance of the two-tier CSD is compardbléhe 3t-CSD configurations for 20 clients, it
is apparent that the scalability of the two-tier CSD is selelimited. As the number of clients in the system
is increased, the response times for clients’ object rdgursreases very rapidly. The transaction turnaround
times go up correspondingly. In the 3t-CSD architecturbs, use of ICMs to off-load server tasks results in
significantly lower object response and transaction tunmad times. This is because a considerable percentage
of clients’ requests can be satisfied within the cluster.dDa®ncy control and access serialization for the objects
resident in a cluster are performed by the ICMs. The serveniig required to co-ordinate inter-cluster object
requests, i.e., when an object requested by a client haslbelad in a conflicting mode by a client in another
cluster. This is precisely the situation that the genetjodthm tries to avoid — by clustering clients that access
the same data together.

Unexpectedly, we observed that the 3t-CSD-R configuratemahstrates lower object response times than
the 3t-CSD-H clustering configuration. This result is sisipg because the heuristic-based initialization routine
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Figure 17: Base Line: Experimental Set 1 — Workld&a

uses the access overlap as its metric for deciding whichetlts insert a client into. This is also the evaluation
metric used by the genetic algorithm to decide which candidlustering solutions are better than others. On the
other hand, the randomized initialization procedure @adients into arbitrarily selected clusters.

Itis our conjecture that the initialization performed bg tiandomized procedure will, in general, be better than
that performed by the heuristic initialization routine. ig s because the randomized routine is able to generate
a highly varied set of clustering configurations. This aditjeneration is used by the genetic algorithm to create
succeeding populations of chromosomes (clustering soisitj thus resulting in an extremely diverse coverage of
the complete search space. In contrast, the greedy hetbégied initialization results in a large number of very
similar solutions. Due to this the GA has very little scope denerating diversity in its solution search space.
Consequently, a very small number of unique solutions cagelnerated even after repeated applications of the
mutation and recombination operators.

The results for Experiment Set B{4 workload) are shown in Figure 18. The logically clusteredfigurations
are able to demonstrate a much better level of performararettie two-tier CSD. The results follow the trends
observed in the previous experiment to a great degree. Qieeable change is the smaller difference between
the average object response times in the 3t-CSD configngatihis is due to the fact that th&4 workload is
designed so as to make optimal client clusters easier ttifigedere, the hot spots for individual groups of clients
are selected from within a particular set of hot spots. Couently, the quality of the clustering configurations
generated by the GA is almost identical irrespective of thigalization technique used.
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7.2  Sengitivity Analysis

In the first set of these experiments, we evaluate the effeetrging mapping granularities on the results of the two
clustering techniques. Our objective in doing this was tiolgthe trade-off between the available detail in clients’
access patterns and the corresponding performance ofu$terihg algorithms (and the 3t-CSD architecture). In
the second set of experiments, we varied the evaluatiorianested by the genetic algorithm to gauge the quality
of client clusters. We did this in order to analyze the effgfabur contrasting metrics on the clustering solutions.
We also investigate the effect of using &3 andW 4 workloads to generate client data access patterns.

Experiment Set 1. We started by using the input at its original detail, i.e.aat:1 mapping. After this we
increased the mapping granularity up to 40:1 in steps of 208e fumber of clients in the system were 100,
and the update selectivity of the transactions was 5%. Wesaneahe performance of the 3t-CSD configuration
using the average response time for object requests asimargmetric. This is because the delays encountered
in obtaining requisite data have been observed to be thedagrfaffecting the transaction throughput. The
genetic algorithm was run for a total of 50 generations. Tine taken by the genetic and the single-pass greedy
algorithm to form the client clusters are shown in Table 2.likénthe GA, the time required for the greedy
algorithm is directly proportional to the size of the input.

The average response times of clients’ object requestiddi’3 workload are shown in Figure 19(a). As the
graph indicates, the object response times for the gerigticitam are very much lower than those for the greedy
algorithm when the observed object access frequency dateis as is. Consequently, the clustering generated
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Mapping Time (seconds)
Genetic Algorithm| Greedy Algorithm

11 7841 180
20:1 999 9
40:1 524 5

Table 2: Time taken by the clustering techniques

by the GA is able to demonstrate shorter transaction tuomaréimes (Figure 19(b)). This is because the genetic
algorithm is able to start with the clusters generated bygthedy algorithm and further improve them. Since the
mapping is 1:1, there is no difference between the heigbédand cell-cumulative mapping schemes. However,
once the mapping granularity is increased, the differemterden the object response times for the two schemes
becomes apparent.

At a 20:1 mapping, a vastly reduced level of detail abountsieaccess behavior is available to the clustering
techniques. However, this actually proves to be benefiaiatl now the clustering techniques are no longer
confused by the very low level details about clients’ dateeases. Hot spots in each clients’ accesses can be
identified and matched much more easily. This results inmedthclustering solutions.

As the results show, changing the mapping to 40:1 leads tdeaiolation in the object response times and
transaction turnaround times for the clusterings geneérageboth clustering techniques. At this mapping gran-
ularity, the data access patterns become very fuzzy andérisdifficult to identify clients’ hot spots distinctly.
This is particularly true for the genetic algorithm whosaleation metrics are highly sensitive to the available
detail in clients’ data accesses. Therefore, the deg@datithe performance of the genetic algorithm is therefore
considerably worse than that of the greedy algorithm.

For theWW4 database access workload, the average object responseatienshown in Figure 20(a). As the
figure indicates, up to a mapping of 20:1 the results follownalar trend as in thé? 3 access scenario. Fora 1:1
mapping, the genetic algorithm is able to generate a bdtisteting of clients than the greedy algorithm. At a
20:1 mapping granularity, the performance of the two chists are very similar. However, at a 40:1 mapping,
the 3t-CSD configuration suggested by the greedy algoritttually performs better than the one suggested by
the genetic algorithm. It is our conjecture that this is du¢he hot spots for groups of clients being generated
from within a specific range. The lack of detail in clientstalaccess patterns now causes contiguous hot areas
to merge. This helps the greedy algorithm as it uses only #te @ccess overlap to group clients. The average
transaction turnaround times for thié4 scenario conform to the same trends as seen in the objecnssgmes
(Figure 20(b)).

Experiment Set 2: In this set of experiments, we evaluate the performanceedBtfCSD architectures generated
by the genetic algorithm with three different evaluatiortmes. As seen in Experiment Set 1, the trends observed
in the transaction turnaround times closely follow thos¢hef average object response times. Hence, we depict
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only the latter for this set of experiments. First, we usely ¢time .J evaluation metric to guide the (Equation 1)
genetic algorithm, then we used thiemetric (Equation 2), and finally we used a combination oféh®g metrics
(Equation 3). In computing the combined metric, the valueddsra was 3 for 20 clients, and 35 for greater than
20 clients. The value of was 1. These values were chosen so as to make the contribatiohand V' be of

the same order of magnitude. In the access data pre-proggdsase, we used a 10:1 mapping, i.e., ten database
objects were mapped to each cell. The cell-cumulative igolenwvas used to represent each cell.

The object response times in the 3t-CSD system configusattopated using the three different evaluation
metrics are shown in Figure 21(a). The workload used helE3s As the graph depicts, the average response
times measured in the 3t-CSD for the three different evaloanetrics are very close. Using thé evaluation
metrics alone in the genetic algorithm (to judge the quadityclustering solutions) results in a slightly better
performance than the other two. This is because in a ran@ohtipt spot scenario liké/3, it is difficult to
optimally identify data access overlapped clusters. Imgittiations, demarcating clusters such that inter-aluste
data accesses are minimized is easier, and therefore teoffisrtbetter clustering solutions and, therefore, shorte
response times for object requests.
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In contrast to the results obtained with tHé3 workload, those for thé’4 workload show that the average
object response time for 3t-CSD is lowest for the combinedsuee (Figure 21(b)). The reason why thenetric
and the combined evaluation function lead to better clusgegolutions is that, in th&/’ 4 workload, hot spots for
groups of clients are chosen from distinct ranges. Thegethe clients already demonstrate a great deal of object
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access overlap, and using maximal access overlap as a foosbn produces a better client clustering. Using
just theV evaluation metrics results in the worst performance detnates by the 3t-CSD architecture.

8 Conclusions

In client-server databases (CSDs), where a number of meglidfients) share data hosted by a common “server”,
it has been observed that this server becomes a performatitanbck when the number of clients becomes large
(40 or more, in our experiments). In order to resolve thidadlity problem, we propose that the clients in such
systems be grouped into clusters based on the similarityeiin tlata access patterns. The resulting configuration
is a three-tier architecture (3t-CSD). Each such clustenasaged by an Intermediate Cluster Manager (ICM)
that co-ordinates collaborative data sharing among dignthe cluster. When clients that access the same data
are grouped together, the data sharing within the clustebeaoptimized. The latter can reduce the number of
required interactions with the database server.

In this paper, we prove that the optimal client clusteringrisNP-complete problem. We then propose two
techniques for logically clustering database clients ddjyg on their data access behavior. In the first, we use a
greedy strategy that assigns each client to the best cdediliester at that point. The second proposed method is
a genetic algorithm that simulates a “survival of the fittesblution in order to derive viable client-clusters. The
initial population for the genetic algorithm can be genedah many different ways. Here, we use two techniques
to achieve this, namely: (i) a purely randomized method theates the initial clustering by simply assigning
each client to an arbitrarily selected cluster, and (ii) arlstic-based approach that assigns each client to the
cluster that matches its own access pattern most closetieveloping our genetic algorithm, we have devised a
new encoding scheme to represent feasible clusteringiautuand a pre-processing technique that reduces the
volume of the observed object access patterns.

We have developed two fully distributed prototypes of the amd three-tier architectures. The 3t-CSD is able
to avoid the performance bottleneck at the server. Thisnedy off-loading the concurrency control and object
request satisfaction for entire client clusters from thweseto the respective ICMs.

Our main experimental conclusions are:

e For HOTCOLD type of database workloads, the proposed ltgickustered 3t-CSD architecture yields
significant performance improvements over its more conweat two-tier CSDs.

e The genetic algorithm composes well-formed clusters wiensize of the mapping cells is small. As
this size increases, the loss of detail in the clients’ dat@ss patterns causes the quality of the clustering
generated by the GA to deteriorate.

¢ Since the greedy algorithm allocates client to cluster dasdely on their data access overlap, it is less
likely to get confused when the level of detail in the cliéraiscesses is reduced. Therefore, the greedy
algorithm demonstrates an improvement in its performarntoervthe mapping granularity is large.
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e The evaluation functions used to guide the evolution paeshe GA do affect the performance of the
3t-CSD architecture. When the hot spots accessed by cheatseandomly distributed over the database,
the evaluation functiof’, which is a measure of inter-cluster data accesses yieldter performance. On
the other hand, when clients access hot spots from distigabms of the database the combined evaluation
function andJ are able to provide a better clustering solution, and heloweer average object response
times.

e Our experiments show that with the proper abstraction, iemaps) GA-based algorithms can be used to
provide plausible solutions to a computationally intréatégoroblem even in light of massive input sizes.

Acknowledgments. we would like to thank Maor Avidor and the reviewers for thisioughtful comments. A
preliminary report on this work appeared in [22].

References

[1] S. Banerjee and P. Chrysanthis. Data Sharing and Recav&igabit-Networked Databases. Rroceed-
ings of the Fourth International Conference on Computer @amications and Network&as Vegas, NV,
September 1995.

[2] M. Blaze and R. Alonso. Dynamic Hierarchical Caching iarge-Scale Distributed File Systems.Rroc.
12th International Conference On Distributed Computingt&sms Yokohama, Japan, June 1992.

[3] M. Carey, M. Franklin, M. Livny, and E. Shekita. Data Caup Tradeoffs in Client-Server DBMS Archi-
tectures. IPACM SIGMOD Conferengévay 1991.

[4] 1.S. Chu and M.S. Winslett. Choices in Database Worl@taBerver Architecture. IProceedings of the
17th Annual International Computer Software and Applisas ConferencePhoenix, AZ, November 1993.

[5] R.Cooley, B. Mobasher, and J. Srivastava. Data Preparfdr Mining World Wide Web Browsing Patterns.
Knowledge and Information Systemi$l), February 1999.

[6] T. Cormen, C. Leiserson, and R. Rivebttroduction to AlgorithmsThe MIT Press, Cambridge, MA, 1990.

[7] M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. PattersA Quantitative Analysis of Cache Policies
for Scalable Network File Systems. Proceedings of the Sigmetrics Conference on Measuremeht an
Modeling of Computer Systeniday 1994.

[8] A. Delis and N. Roussopoulos. Performance Comparisomhwée Modern DBMS ArchitectureslEEE
Transactions on Software Engineerjrif(2):120-138, February 1993.

29



[9] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machinarbeng. Addison-Wesley, Mas-
sachusetts, USA, 19809.

[10] D. Goldberg. Genetic and Evolutionary Algorithms CoofeAge. Communications of the ACM7(3),
March 1994.

[11] J. Grefenstette. Optimisation of Control Parameter&denetic AlgorithmsIEEE Transactions on Systems,
Man and Cyberneticsl6(1):122-128, January/February 1986.

[12] G. Harhalakis, C.-P. Lin, L. Mark, and P. Muro-Medrarimplementation of Rule-Based Information Sys-
tems for Integrated ManufacturintEEE Transactions on Knowledge and Data Engineer(@):892—908,
December 1994.

[13] A. Hurson, S. Pakzad, and J. Cheng. Object-Orientedlizese Management Systems: Evolution and Per-
formance IssuedEEE Computer26(2), February 1993.

[14] R. Karp. Reducibility Among Combinatorial Problems R. E. Miller and J. W. Thatcher, editor§om-
plexity of Computer Computationgages 85-103. Plenum Press, 1972.

[15] A. Leff, P.S. Yu, and J.L. Wolf. Policies for Efficient Meory Utilization in a Remote Caching Architecture.
In the First International Conference on Parallel and Distiiied Information SystemMiami Beach, FL,
December 1991.

[16] M. Garey and D. Johnsor€omputers and Intractability: A Guide to the Theory of NPr@@detenesswW.H.
Freeman and Company, 1979.

[17] W.J. Mclver and R. King. Self-adaptive, On-line Rec¢krghg of Complex Object Data. IRroceedings of
the 1994 ACM SIGMOD International Conference on ManagerotEbiata, Minneapolis, MN, May 1994.

[18] M. Merz, F. Griffel, T. Tu, S. Muller-Wilken, H. Weinreh, M. Boger, and W. Lamersdorf. Supporting
Electronic Commerce Transactions with Contracting Sesi@(4):249-274, December 1998.

[19] C. Mohan and I. Narang. ARIES CSA: a Method for Databased®ery in Client-Server Architectures.
SIGMOD Record (ACM Special Interest Group on Managemenatd)P23(2):55-66, June 1994.

[20] E. Panagos, A. Biliris, H. Jagadish, and R. Rastogiet@Based Logging for High Performance Distributed
Architectures. InProceedings of the Twelfth Internation Conference on Datgifeering pages 344-351,
New Orleans, LA, USA, February 1996.

[21] J.H. Park and A. Delis. The Effect of Clustering in Cli€daching Architectures. IRroceedings of the 7th
IEEE Symposium on High Performance Distributed Computigcago, IL, July 1998.

30



[22] J.H. Park, V. Kanitkar, A. Delis, and R. Uma. On the Usezanetic Algorithms in Database Client Clus-
tering. InProceedings of the 1999 IEEE International Conference oolsTavith Artificial Intelligence
Chicago, IL, November 1999.

[23] R. Polamraju and W.D. Potter. Databases for Engingefipplications. InNNEEE SOUTHEASTCONoI-
ume 2, 1991.

[24] N. Roussopoulos, L. Mark, T. Sellis, and C. Faloutsos. Akchitecture for High Performance Engineering
Information SystemslEEE Transactions on Software Engineeridg (1), January 1991.

[25] K. Salem, D. Barbara, and R. Lipton. Probabilistic Diagis of Hot Spots. IfProceedings of the IEEE
International Conference on Data Engineerjmages 30-39, Tempe, AZ, 1992.

[26] A. Sinha. Client—Server Computing:ommunications of ACM85(7), July 1992.
[27] A.S. TanenbaumDistributed Operating SystemPrentice Hall — Computer Science, New York, NY, 1995.

[28] N. Yoshida and R. Araki. Efficient Implementation of Dibuted Genetic Algorithms on Network of
Workstations. IrProceedimgs of the Second International Symposium onCaafiputing pages 336—340,
September 1997.

31



