
54 1541-1672/05/$20.00 © 2005 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

I n t e l l i g e n t T r a n s p o r t a t i o n S y s t e m s

Navigation and
Multimodal
Transportation with
EasyTransport
Maria Fragouli and Alex Delis, University of Athens

Today’s intelligent navigation and transportation systems influence the way trav-

elers access information to plan trips efficiently. By and large, such systems derive

their navigational suggestions out of precompiled data regarding direct road connections

recorded in their databases. They typically facilitate passenger navigation within

predefined geographic regions, provide location trac-
ing and direction functionalities over cellular net-
works1 or the Web (www.ecitysoftware.com/3DCities.
html, www.euroave.com/maps), and deliver accurate
but not necessarily optimal transition paths (www.
mapsonus.com).

This article proposes EasyTransport, an intelligent
navigation and multimodal transportation guidance
system that focuses on near-optimal trajectory plan-
ning and informed decision making. EasyTransport
introduces a number of novel features. At its core lies
a breadth-first-search–based algorithm that dynam-
ically produces shortest paths. Because the algorithm
runs in an iterative and spatially uniform manner, it
can scale up to encompass large geographic areas. It
uses heuristics to minimize potentially large search
spaces and thus prevent unproductive computational
steps. See the “Related Work in Intelligent Trans-
portation Systems” sidebar to learn what other
researchers have done in this area.

Design considerations
EasyTransport features a dual mode of operation

depending on the type of information the user intends
to extract. In the first mode, Navigation, the system
directs a user’s transition from a starting point to his
or her destination. It traces the shortest paths, typically
multiple if any, that connect them. In the Transporta-
tion mode, EasyTransport combines all available trans-
port options along each path generated during Navi-
gation. These options can include all means of public
transportation such as buses, trains, and even planes
and boats—supporting the notion of multimodal trans-

portation. The two modes of system operation are inter-
dependent: Navigation must precede Transportation.

The system also lets users adapt the presentation
of generated answers to more effectively address
their fast delivery and easy exploration. EasyTrans-
port manages large volumes of data related to each
geographic area as well as to the multiple transport
alternatives involved. Finally, the system seeks to
offer an interactive, high-performance navigation
and transportation guidance tool that delivers its
results over the Web and might also function with
geographic information systems.

Outline of operation
During a session, EasyTransport functions within

a selected geographic area, inherently restricting a
transition’s range. The system presents this working
area as an on-demand-loaded map—the focus of the
Java-based user interface designed to deliver Easy-
Transport’s services through a Web browser. The sys-
tem considers this working area a grid consisting of
cells. A cell represents the system’s basic process-
ing unit and defines its operational granularity. More-
over, ordinary grid cells differ from dead-cells,
which represent areas lacking transportation means.
Figure 1 demonstrates the segmentation of a geo-
graphic area into these two sets of cells comprising
the working grid.

A user indicates via the interface a transition’s input
points, referred to as S (start) and D (destination), and
the system derives the paths connecting them. Each
path from a cell consists of a sequence of neighboring
cells that can be reached after every primitive, allow-

The EasyTransport

system helps travelers

plan the most efficient

route and choose

the best modes of

transportation in

urban or large-scale

geographic areas.

Users can adapt

the generated

outcomes through an

interactive interface.

able movement has been explored in all eight
possible directions, as Figure 1 also outlines.
However, the number of possible neighbors
might be smaller due to the existence of dead-
cells, which carry no useful information and
are simply ignored. Every cell is defined by its
spatial coordinates on the grid. The movement
toward a neighboring cell happens by advanc-
ing or decrementing one or both of the cell’s
coordinates. A cell’s size depends on the den-
sity of available transportation means within
the particular transition area. Smaller cell
sizes demonstrate higher availability of trans-
port options. The consideration of all areas as
grids regardless of cell size ensures their uni-
form treatment by the system’s engine.

All system operations take place on a per-
cell basis. Once the path-planning phase con-
cludes, the system can draw each suggested
route on the map element of its interface in
the form of edges connecting constituent suc-
cessive cells. If the system is in Transporta-
tion mode, it retrieves information regarding
available transportation means for every cell
along a selected route; these means are graph-
ically rendered on the map. From this point
on, the system must retrieve a rather substan-
tial volume of data to adequately satisfy a trav-
eler’s query. Clearly, the longer the route, the
more data there is to retrieve, process, and ren-

der. The system is set up in advance for every
region available to expand the search, more
like a “one view fits all” fashion with regard
to grids, cell sizes, and transportation alterna-
tives. All this data resides in the system’s back-
end database. Figure 2 presents an abstraction
of the overall system architecture as we’ve
described it so far.

Algorithmic issues
In our implementation, we view both the grid

and neighboring cells as elements of a highly
connective graph of vertices, occasionally fea-
turing a dense formation of cycles. Given S and
D points, we seek an algorithmic approach that
guarantees delivery of near-optimal solutions,
if such solutions exist, by expanding only those

MARCH/APRIL 2005 www.computer.org/intelligent 55

Grid

Cell

Dead-
cells

Figure 1. A geographic area represented as a grid of ordinary cells and dead-cells to
facilitate Navigation. Multimodal Transportation entails diverse transport options.

There is a significant body of supporting work on navigation
and transportation systems that enables travelers’ navigation
and mobility planning.

RETINA1 is a real-time navigation system providing instanta-
neous traffic information as well as path-searching and direction
functions to mobile clients. Its underlying path-finding mecha-
nism, based on static road connections, calculates the shortest
path connecting the traveler’s current position to a destination.

Available Web-based guides (www.ecitysoftware.com/
3DCities.html, www.euroave.com/maps) enable traveler loca-
tion tracing, facilitate passenger navigation within predefined
geographical scopes, and offer location-based services with
limited user interactivity.

Maponus (www.mapsonus.com) provides not only map and
geographic information system services but also trip-planning
facilities, suggesting accurate but not necessarily optimal tran-
sition paths.

Mybus2 is an intelligent transportation system that helps
bus riders make informed decisions about their unimodal
travel options. It predicts bus departures at specific locations
throughout a transit region and delivers that information to
Web browsers and cell phones using real-time data flowing
from an automatic vehicle location system.

Gerd Kramer proposed an architecture for an automatic
road transportation system consisting of a network of traffic

surveillance and road condition sensors as well as a centralized
information system that provides interactive services to drivers.3

Other projects that incorporate graph-theoretic algorithms to
develop navigation applications work with limited search spaces
and usually trace queried paths by extensively visiting nodes.

Michael Hallett, in his 1997 work “BFS in the Underground
of Barcelona, Spain,” applies the breadth-first search algorithm
to a limited set of transition points corresponding to the subway
stations in Barcelona, Spain, while Sartaj Sahni uses the BFS
algorithm to trace paths between any two points on a 2D
space, or grid.4

References

1. K.Y. Lam et al., “RETINA: A REal-time TraffIc NAvigation System,”
Proc. 2001 ACM SIGMOD Conf., ACM Press, 2001.

2. S.D. MacLean and D.J. Dailey, “MyBus: Helping Bus Riders Make
Informed Decisions,” IEEE Intelligent Systems, vol. 16, no. 1, 2001,
pp. 84–87.

3. G. Kramer, “Envisioning a Radar-Based Automatic Road Transpor-
tation System,” IEEE Intelligent Systems, vol. 16, no. 3, 2001, pp.
75–77.

4. S. Sahni, Wire Routing, Univ. of Florida, 2000; www.cise.ufl.edu/~sahni/
dsaaj/JavaVersions/applications/wire_routing/wire_routing.htm.

Related Work in Intelligent Transportation Systems

nodes that are necessary. The traditional brute-
force search could certainly produce the
requested answers but would also incur a pro-
hibitive cost.2 By assuming that each transi-
tion to a neighboring node “costs” a single unit
and by applying heuristics, our approach
results in estimating the minimum transition
cost to reach node D. While searching for a
path, our iterative algorithm labels eligible
nodes with cost values. Nodes that overesti-
mate the transition to the goal cost will even-
tually be pruned.

Given the preset cell granularity, our algo-

rithm almost certainly yields multiple paths.
Although an A* solution3 would also trace
the shortest path, it assumes a unique answer,
and, more importantly, its admissibility prop-
erty is too restrictive because it requires
excessively long times to differentiate among
almost equivalent candidates.4 The use of
IDA* (Interactive Deepening-A* search solu-
tion) might offer multiple paths, but dupli-
cates (previously considered nodes) are per-
mitted to reexpand, possibly leading to
expensive backtracking in the search area.5

Finally, adopting a breadth-first-like search

algorithm2 (as opposed to a depth-first-like
one) to examine all the current attached
nodes fits nicely with our specific applica-
tion. This is because BF-like approaches
build their results uniformly by first visiting
all eligible nodes located within k units from
the start, then those located k + 1 units away,
and so on.

As EasyTransport’s engine examines can-
didate cells for deriving paths, two concur-
rent operations take place: it assigns esti-
mated heuristic transition cost values to the
nodes in the search space (see Figure 3), and
it traces the paths that answer to the submit-
ted transition query. Because all paths must
comply with the shortest-path criterion, we
conjecture that candidate routes are probably
located within the conceptual rectangle out-
lined by the coordinates of the S and D
nodes, as Figure 3a depicts. By focusing on
the nodes enclosed in the S-D rectangle, we
reduce the algorithm’s operation range and
enable the faster generation of sought paths.

Clearly, this assumption represents an opti-
mistic search effort that might not work well
in light of dead-cells dominating the area
within the S-D rectangle. In this case, our
algorithm gradually considers additional sets
of nodes and can ultimately perform an
exhaustive expansion of all nodes if necessary.
Figure 3b illustrates the sets of nodes we incre-
mentally consider in our approach. More
specifically, for every such set, our engine
labels nodes only if their transition cost is less
than or equal to the one already estimated en
route to D. In the worst-case scenario, our
engine is forced to work with all these sets out-
side the boundaries of the initially designated
rectangle. However, the probability of return-
ing positive results in an urban terrain after
examining the additional node sets mentioned
is rather slim, as the number of dead-cells
within such an area is significantly limited.
Each time the system considers a new set of
nodes, the entire attempt to trace shortest paths
repeats. The algorithm proceeds while pre-
serving earlier assigned cost values. If all
search possibilities are exhausted in the entire
problem space, the algorithm fails to render a
plausible outcome.

The algorithm
Figure 4 presents the algorithm outlining

the core iterative node-labeling and path-
tracing mechanisms in EasyTransport’s engine.

Structures and variables
We use a number of variables and data struc-

I n t e l l i g e n t T r a n s p o r t a t i o n S y s t e m s

56 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

1

2 4

Initial node set within S-D rectangle
1st alternative node set
2nd alternative node set

3rd alternative node set
4th alternative node set

Sx, Sy

Dx, Dy

11

1 1 1 2 3 4

1

2

3 3 3 3 3

2 3 4

1 2 3 4

2

1

2 2 3 4

Sx, Sy

Dx, Dy

(b)(a)

1 2 3 4

1 2 3 4

2 2 3

Figure 3. Sets of nodes the algorithm successively works with: (a) nodes in the S-D
rectangle; (b) additional node sets incrementally considered to expand the search.

Queries
on per-cell

basis

Data flow

Generated
transition

paths

Breadth-first-search-based
implementation

algorithm

Method
invocation

Ite
ra

tiv
e

m
et

ho
d

S, D
coordinates

Processing

Search area
overview

System-user
interactions

Web-based
system-user

interface

Final-outcome
presentation

User/
traveler

EasyTransport system

CPU

Oracle

Back-end
database

nodeLabeling_
pathTracing() {
 ... }

Translation
into system

terms

Result rendering for navigation
and multimodal
transportation

Grid of cells
and dead-cells

Road map

S

D

S

D

S

D

Figure 2. An abstraction of the EasyTransport system architecture.

tures to represent the input points’coordinates,
the working grid, and the set of dead-cells.
During each iteration, the variable pathLength
represents the length of the shortest path con-
necting S with the node currently under exam-
ination. As the algorithm moves toward D, it
gradually advances pathLength, which in its final
assignment represents the length of the short-
est path(s) found. We use a queue structure to
temporarily store the coordinates of the nodes
visited at each iteration and the nodes next to
expand; the queue also ensures that the search
proceeds in a BF-like fashion. The algorithm
returns a pathNodes vector containing all vis-
ited nodes, the combination of which will pro-
duce the shortest paths.

Node-labeling mechanism
The algorithm loops as long as node D is

not reached. While at a node, all eight neigh-
boring nodes are candidates for a visit, unless
one of them is node D itself. If they fall within
the current range of operation—that is, within
framework and node set boundaries—and are
not dead, they are then examined to identify
duplicates. If a node is visited for the first
time, it’s labeled and inserted into the queue
so that it is later expanded. Moreover, the
value of pathLength is accordingly adjusted. The
execution proceeds until all nodes in the
examined node set successively in and out of
the queue are assigned with a cost value. Upon
termination, the method has computed the
end-value of the pathLength variable, which is
the shortest path to reach D.

Path-tracing mechanism
As nodes are labeled, paths are traced at the

same time. The algorithm almost certainly
results in multiple paths, given the adopted cell
granularity. As the algorithm visits and assigns
cost values to nodes, it inserts these nodes—
that is, their coordinates—along with their cor-
responding labels into the vector pathNodes. The
BFS-based mode of operation warrants that
when the method terminates, pathNodes will be
populated with node sets ordered according to
their pathLength assignments. To generate the
sought paths, we combine all nodes in each of
these sets, provided that the nodes with con-
secutive cost values are also grid neighbors.
When no more nodes are left for expansion in
queue and node D has not yet been reached, the
method reports its inability to deliver the
requested shortest-path answers.

Figure 5 depicts the outcome of the algo-
rithm’s iterative operation on a grid segment
of a transition area corresponding to approx-

imately 3.00 km2, consisting of 21 cells. Tran-
sition to neighboring cells proceeds clockwise
and only to the ones not yet visited. This
example uses a scale of 1:13,000 with regard
to the real-area representation and is only illus-
trative as to the multiple answers produced
while operating in Navigation mode.

Transportation mode
When EasyTransport operates as a trans-

portation guide to facilitate travel planning,
it retrieves, processes, and delivers data per-
tinent to the available transportation options
along a designated route consisting of a
sequence of cells. The system maintains
information for every cell regarding the
transportation means traversing the specific
geographic area. Once it has derived a path,
the system retrieves this information on a per-
cell basis and renders it as part of the inter-
face. Figure 6 shows how EasyTransport pre-
sents transportation options to the user (for
the randomly selected case of Path 7 in Fig-
ure 5), taking into consideration the transi-
tion’s direction. The representation chosen
corresponds to the perception that real pas-
sengers are accustomed to in reference to
itineraries and local naming conventions
used for transportation means.

Engine and scalability issues
To make our system scalable, we pursued

several issues that enable fast responses to
user requests regardless of the geographic
area considered.

Using key-nodes
When segments of the geographic region

that the engine works with offer few trans-
port options, our algorithm doesn’t need to
work extensively on the whole set of con-
stituent cells. Instead, we designate a num-
ber of nodes in the grid as key-nodes for nav-
igation. Key-nodes are spread throughout the
grid, preferably in a uniform fashion and
within a specific distance, and act as pivots
(or landmarks) within a specific geographic
area. Their selection is greatly affected by the
existence of dead-cells in their vicinity and
the scarcity of transportation means. Each
key-node knows about the key-nodes that are
considered its peers. Consequently, key-
nodes are all webbed in a graph as depicted
in Figure 7, where dashed lines indicate
neighboring key-nodes. They are further
associated with sequences of grid cells that
constitute the paths connecting them.

EasyTransport’s core algorithm can be
employed on top of key-nodes. Initially,

MARCH/APRIL 2005 www.computer.org/intelligent 57

Figure 4. Outline of the EasyTransport algorithm for iterative node labeling and
path tracing.

input: Coordinates of S & D nodes
output: Structure (Vector) pathNodes containing ordered sets of path-nodes
...

begin
while (D is not reached) do

for (all eight possible neighbors) do
if (current neighbor within grid and node-set boundaries

and not dead and not yet visited) then
assign it with a label equal to that of its parent plus one;
insert it into queue so that it is later expanded;
insert it into pathNodes along with its label;
adjust pathLength to reflect current transition cost;

end if
end for
if (queue is empty and D is not reached) then

return null; {no shortest path exists between S, D}
else

if (D is reached) then
break; {exit while loop}

end if
else

get a node out of queue;
set current node equal to the one just out-of-the-queue;

end if
end while
return pathNodes;
end
...

EasyTransport’s engine begins searching
from node S and tries to locate its closest key-
nodes. For instance, in Figure 7, key-node K1
is designated as the follow-up node to S. In
the same spirit, the set {K6, K7} offers the
closest key-node follow-up set from node D.
The algorithm now divides the search area
into sets of key-nodes, similar to the baseline
approach, and works with them incrementally
until one or more paths (if any), consisting of
key-nodes alone this time, are returned. For
the sample grid area in Figure 7, the algorithm
needs to consider only eight nodes (for the
path combination of the two key-node sets
{K1} —> {K6, K7}) out of the whole set of
(ordinary) nodes located within the concep-
tual S-D rectangle (18 nodes). It generates the
end-paths using predefined path informa-
tion—that is, the sequences of ordinary grid
nodes associated with the respective key-
nodes comprising the key-node paths.

Whether we can reduce the number of iter-
ative path-finding steps substantially or not
is a function of the density with which grid
nodes are designated as key ones. Essentially,
there’s a trade-off between the number of
key-nodes selected in a search area and the
total volume of information residing in them.
The fewer key-nodes selected, the greater the
volume of information we must maintain and
process for each one of them. Should the
number of key-nodes approach that of grid

I n t e l l i g e n t T r a n s p o r t a t i o n S y s t e m s

KS = {K1}: S key-node set
KD = {K6, K7}: D key-node set

Shortest paths from KS to KD:
K1 → K6: K1 → K2 → K4 → K6 /
 K1 → K3 → K5 → K6
K1 → K7: K1 → K2 → K4 → K7

S 1 K2

K1

2 K3

3 K4 5 6

3 4 5 K7

K5 4 K6 D

Figure 7. Key-nodes and their neighbors, all webbed in a transition graph.

A14 B14 A15

730 731 821
B15 A17 B17 E6 E12

A13 B13 E13 A8 B8 G8
A12 B12 G12

054
605 608 046

B5 B10 B11

E12 714 719
732 024

057 B5

B12 G10 G12

A10 A11 A12
B10 G9 G10
714

840 022 035 060
200 224 622

2 3 4
5 6 7
8 9 11

13 15

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 5 D

1 B5

A9 A10 B9

Figure 6. Display of multimodal output when the Transportation mode is on.

58 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

 Path 1: (1,1),(2,1),(3,1),(4,1),(5,1),(6,2),(7,3) Path 2: (1,1),(2,1),(3,1),(4,2),(5,1),(6,2),(7,3) Path 3: (1,1),(2,1),(3,1),(4,1),(5,2),(6,2),(7,3)

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

 Path 4: (1,1),(2,1),(3,1),(4,2),(5,2),(6,2),(7,3)

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

 Path 5: (1,1),(2,1),(3,1),(4,2),(5,3),(6,2),(7,3)

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

 Path 6: (1,1),(2,1),(3,1),(4,1),(5,3),(6,3),(7,3)

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

 Path 7: (1,1),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3)

3 4 5 6

1 5 6

2 2 4 4

 Path 8: (1,1),(2,1),(3,1),(4,2),(5,3),(6,3),(7,3)

S 1 2 3 4 5 6

1 3 4 5 6

2 2 4 4 5 D

Final
visitx

(x i, y i)

y

S
(2,1) (3,1)(1,1) (4,1) (5,1) (6,1) (7,1)

1 2Iterations: 3 4 5 6

(1,2) (4,2) (5,2) (6,2) (7,2)

(2,3)(1,3) (4,3) (5,3) (6,3) (7,3)
D

1 2

3 4

5 D

S

Figure 5. A sample path set generated to answer a user’s Navigation query for a limited area of 21 cells.

MARCH/APRIL 2005 www.computer.org/intelligent 59

nodes, the current approach’s derived bene-
fits would greatly diminish. EasyTransport’s
engine can employ both cell-based and key-
node-based approaches and specialize its
operation depending on the area instances it
is to work with. In areas offering many trans-
portation options, the engine uses the base-
line (cell-based) approach, whereas in regions
that feature nondense transport hubs, single-
route suggestions, or unimodal transportation,
the key-node approach is preferable.

Determining cell size
The system’s overall response time is a

function of the number of cells comprising the
grid. Smaller grids incur shorter execution
times because fewer cells are expanded during
the Navigation mode. On the other hand,
smaller cell sizes better distribute information
and reduce the overall data processing per unit
when operating in Transportation mode.

The most important factor affecting the
selection of cell size appears to be the mor-
phology of the search space with respect to
the transport density that can be observed
within its various segments in real-world set-
tings. Evidently, a high density of transporta-
tion means requires finer segmentation of the
search area into smaller-sized cells compared
to areas with little or no diversity of transport
options. In our prototype, the default cell size
is set to 0.15 km2, which corresponds approx-
imately to an area of seven to eight city blocks.

Back-end storage support
For EasyTransport to function effectively,

voluminous and well-designed data must be
readily available at all times. When working
with large-scale terrains, loading all the neces-
sary information in main memory would
exceed permissible storage limits. Instead, we
opt for using a database. In our Oracle im-
plementation, we relate Entity-Relationship
Model entities on a per-cell basis. So, the pair
of coordinates for a cell is the deciding factor
for retrieving requested data. In general, a cell
is associated with

• the grid it’s part of,
• a value representing the distance that a cell

spans,
• a set of available transportation means,
• a traffic density characterization with

regard to the traffic situation at specific
time intervals, and

• the approximate time required for specific
means of transportation to traverse the area
of transition.

To be able to indicate a selection as prefer-
able to other alternatives, the database also
maintains information concerning descrip-
tive and graphical itineraries, departure
schedules, and characterizations of the stored
means of transportation. When we need to
support a utility not already provided in the
current design as a consequence of a newly
posed user requirement, we can augment our
current database schema to make additional
information resources available. Moreover,
retrieving data produces no substantial over-
head for the system’s core path-finding
engine because all the processing occurs after
the requested paths are generated.

Enabling large-scale operation
Allowing key-nodes and varied cell sizes

means that our search space can have multi-
ple grids. However, once the system enters a
particular grid, it operates within its pre-
specified cell size. The final output results
from combining the separate sets of answers
generated for each such grid that is part of
the geographic area of focus.

The different granularities might also be
reflected in the result delivered to the user for
both the Navigation and Transportation modes.
The same geographic area can potentially par-
ticipate in multiple searches depending on the
type of launched query. This is the case when
requesting transportation alternatives for trav-
eling between two cities and then between any
two suburbs within these metropolitan areas.
Initially, when an area covers a rather wide
scale, the system offers only those transporta-
tion alternatives that are appropriate for such
long-haul trips. For example, if a user query
requests possible ways to travel from Rome to
London, the system would use large-sized cells
to yield paths connecting all known airports
serving the two capitals. If the user asks for
additional transportation suggestions—for

instance, how to get to the airport from a spe-
cific district in Rome or from Heathrow Air-
port to a specific London suburb, the system
must consider grids of varying size in
sequence. In other words, EasyTransport
addresses the case of restricting the system’s
operational scale to only a certain fraction of a
previously indicated wide search area, request-
ing more detailed answers for just that part of
it. By allowing this cell size diversity through-
out a working area, we can efficiently facili-
tate the system’s operation in large-scale geo-
graphic regions.

The system implements this scalability
feature by distinguishing grids with differ-
ent-sized cells and triggering certain actions
when switching among them. This essentially
comes down to initializing the algorithm’s
variables with values corresponding to the
newly adopted grid while preserving the out-
comes of previously considered grids. The
combination of all the grids’path answers will
eventually produce the final outcome.

Another important issue is automatic grid
selection. We implemented this mechanism
by defining in advance the specific grids and
respective cell sizes that correspond to all
possible users’ transition area selections;
taken together, these specifications reflect
the focus scale of the algorithm’s operation.
The automatic grid selection also helps ren-
der the results so that they are displayed
effectively on the user screen.

System utilities and
user interface

To increase the interface’s usability and
thus its acceptance by users, we built it so
that it can display multiple pieces of infor-
mation. After logging on, the user selects one
of the two operation modes. The system can
easily switch back and forth between Navi-
gation and Transportation by enabling or dis-
allowing the display of the available trans-
portation means along a selected transition
route.

Several other services enhance the sys-
tem’s overall functionality and intelligence.
When the Navigation mode is on, the fol-
lowing features are enabled:

• The system can contribute one or more
intermediate points for a transition,
restricting the set of answers to the subset
of paths that pass through the whole
sequence of input points. Intermediate
points are considered in the order they are
indicated, and the engine operates in pair-

By allowing cell size diversity

throughout a working area,

we can efficiently facilitate the

system’s operation in large-scale

geographic regions.

wise fashion regarding the entire sequence
of input points.

• For each suggested route, the system com-
putes and displays a distance approxima-
tion. This is only with regard to the real-
world settings of the corresponding areas,
because the system relies on the assump-

tion of a uniform distance between two
cells and normally allows no variations as
to the length of paths.

• The system characterizes routes as hot
(rendered in red onscreen) with regard to
typically observed and recorded traffic
conditions at certain times of the day or

year. Other equivalent alternatives with
comparably less road traffic can then
supersede these routes.

When the Transportation mode is on, the
enabled features include the ability to

• estimate the time needed to traverse the
transition area based on the traffic density
recorded by the system and the availability
and traveling features of the various means
of transportation for a selected route;

• present additional transportation informa-
tion such as transportation authorities, itin-
eraries, departure schedules, useful tele-
phone numbers, landmarks, and nearby
resources; and

• suggest the “best” route for a transition,
because it either requires the fewest trans-
fers or uses transportation means that are
always preferable, such as a metro rail
system.

Regardless of the system’s operation
mode, users may request that EasyTransport
make its answers available in batch fashion.
Thus, users can view the generated routes
one at a time or in groups—for instance, in
tens—easily navigating through the routes
and searching for the most favorable one.

Figure 8 depicts a screen shot of the system
after a user has selected the Transportation
mode, the single-view display mode, and the
option to indicate no intermediate (Middle)
points for the transition. This follows the users’
Navigation query and the system’s genera-
tion of alternative path sets, shown in Figure
5. The system identifies each suggested route
uniquely by referring to the locations it entails
along with overall distance and required-time
estimations. When the user selects one of the
routes (Path 7 in Figure 5), the system renders
the available transportation for each section
(conceptual cell) comprising it. Such sections
are transparent to users but distinct in the sys-
tem for its operation.

The user can further retrieve information
regarding all available transportation means
for the selected route, as presented by the
screenshot in Figure 9a, while Figure 9b
depicts an information display pertinent to
the schedule and anticipated stops of a spe-
cific bus selection.

Requested shortest-route answers in con-
junction with transportation alternatives
allow EasyTransport to propose the best
choices feasible for a trip. It’s finally up to
users to plot their preferred mobility scenario

I n t e l l i g e n t T r a n s p o r t a t i o n S y s t e m s

60 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 9. Additional information regarding (a) multimodal transportation for a selected
route and (b) a specific means of transportation (bus stops and itinerary).

Figure 8. EasyTransport’s frame-based interface, featuring delivery of a multimodal
answer to a transition query.

(a)

(b)

once they examine all system-generated
route suggestions along with the available
means of transportation.

Unlike most contemporary transporta-
tion systems, EasyTransport’s core

objective is to give travelers multiple trans-
portation options along a route. Having inves-
tigated EasyTransport’s operation within the
boundaries of an urban area and considering
all available public transportation, the answers
we generated met our expectations in terms of
response time, accuracy, and multiplicity of
the system’s outlined trajectories and trans-
portation alternatives. In the future, we plan
to deploy the system over multiple geographic
areas exhibiting various degrees of trans-
portation availability. We will incorporate real-
time transportation features regarding time
factors and traffic situations, and we’ll develop
interfaces for mobile-computing units or
phones attached to the system.

Acknowledgments
We are grateful to the reviewers for their

detailed comments. Alex Delis was partially sup-

ported by the US National Science Foundation
grant IRI-9733642. A preliminary version of this
work appeared elsewhere.6

References

1. K.Y. Lam et al., “RETINA:A REal-time Traf-
fIc Navigation System,” Proc. 2001 ACM
SIGMOD Conf., ACM Press, 2001, p. 615.

2. T.H. Cormen et al., Introduction to Algo-
rithms, 2nd ed., McGraw-Hill, 2001.

3. P. Hart, N. Nilsson, and B. Raphael, “A For-
mal Basis for the Heuristic Determination of
Minimum Cost Paths,” IEEE Trans. Systems
Science and Cybernetics (SSC-4), vol. 4, no.
2, 1968, pp. 100–107.

4. R. Dechter and J. Pearl, “Generalized Best-
First Search Strategies and the Optimality of
A*,” J. ACM, vol. 32, no. 3, 1985, pp.
505–536.

5. R.E. Korf, M. Reid, and S. Edelkamp, “Time
Complexity of Iterative-Deepening-A*,” Arti-
ficial Intelligence, vol. 129, 2001, pp.
199–218.

6. M. Fragouli and A. Delis, “EasyTransport:An
Effective Navigation and Transportation
Guide for Wide Geographic Areas,” Proc.
14th IEEE Int’l Conf. Tools with Artificial
Intelligence (ICTAI 2002), IEEE CS Press,
2002, pp. 107–113.

T h e A u t h o r s
Maria Fragouli is an
IT professional. Her
research interests in-
clude Web-accessible
information systems,
Internet applications,
and algorithms for in-
telligent Web naviga-
tion. She received her

MS in computer science from the University of
Athens. Contact her at the Dept. of Informatics
and Telecommunications, Univ. of Athens, GR
15771, Athens, Greece; mfrag@di.uoa.gr.

Alex Delis is an asso-
ciate professor with the
faculty of Informatics
at the University of
Athens. His research
interests are in distrib-
uted computing, net-
worked databases, and
intelligent systems. He

received his PhD in computer science from the
University of Maryland, College Park, and is a
member of the IEEE Computer Society and
ACM. Contact him at the Dept. of Informatics
and Telecommunications, Univ. of Athens, GR
15771, Athens, Greece; ad@di.uoa.gr.

Stay on top of the exploding fields of computational biology and
bioinformatics with the latest peer-reviewed research.

This new journal will emphasize the algorithmic, mathematical,
statistical and computational methods that are central in
bioinformatics and computational biology including…

• Computer programs in bioinformatics
• Biological databases
• Proteomics
• Functional genomics
• Computational problems in genetics

Learn more about this new
publication and become a
subscriber today.

www.computer.org/tcbb

IEEE/ACM TRANSACTIONS ON
COMPUTATIONAL BIOLOGY AND
BIOINFORMATICS

Publishing quarterly
Member rate:

$35 print issues
$28 online access
$46 print and online

Institutional rate: $375

Figure courtesy of Matthias Höchsmann, Björn Voss, and Robert Giegerich.

