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Abstract Contemporary applications continuously modify
large volumes of multidimensional data that must be accessed
efficiently and, more importantly, must be updated in a timely
manner. Single-server storage approaches are insufficient
when managing such volumes of data, while the high fre-
quency of data modification render classical indexing meth-
ods inefficient. To address these two problems we introduce a
distributed storage manager for multidimensional data based
on a Cluster-of-Workstations. The manager addresses the
above challenges through a set of mechanisms that, through
selective on-line data reorganization, collectively maintain a
balanced load across a cluster of workstations. With the help
of both a highly efficient and speedy self-tuning mechanism,
based on a new data structure called stat-index, as well as a
query aggregation and clustering algorithm, our storage man-
ager attains short query response times even in the presence
of massive modifications and highly skewed access patterns.
Furthermore, we provide a data migration cost model used
to determine the best data redistribution strategy. Through
extensive experimentation with our prototype, we establish
that our storage manager can sustain significant update rates
with minimal overhead.
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1 Introduction

Many modern applications continuously produce large
volumes of data which require efficient mechanisms for stor-
age, effortless growth, and speedy access methods [29,35,49,
55,56,58,64]. For example, the Terra spacecraft (EOSDIS
project [58]) and Landsat 7 [64] produce 150–200 GB/day
of geophysical data. Through very high speed streams, such
data are collected in analysis centers and have to be organized
in a way that facilitates not only fast querying but also effec-
tive update handling, often entailing ever expanding storage
requirements. Indexing methods that are capable of provid-
ing such efficient data access are needed to achieve these
goals [41,42,48]. This efficiency must persist even when data
access and update patterns vary over time due to continu-
ously changing user interests, weather conditions, morphing
traffic patterns and congestion points, sensor node failures,
network topology records, or other causes specific to the
application. Such unpredictable patterns often manifest them-
selves as hot-spots in distributed storage management sys-
tems.

In this paper, we address the aforementioned issues with-
out resorting to specialized hardware. To support the high
demands due to growing multidimensional data sets, the
foundation of our proposal consist of a networked storage
manager distributed over a cluster of workstations (COW)
on a high speed LAN or switch. We achieve a cost-effective
way of catering to ever-growing data sets by employing off-
the-shelf workstations with plentiful disk space as well as
powerful CPUs and system resources. Our core mechanism
for providing efficient access to the multidimensional data is
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based on the R∗-tree [2,14] which offers numerous benefits
over similar indices [22,46,47,52]. More specifically, the
R∗-tree uses extensive optimization heuristics and forced-
reinsertions as an alternative to splitting overfilled nodes [2].
A particular feature of R∗-trees that our storage manager
leverages is the ability to prune entire subtrees and insert
them elsewhere in the index structure without disrupting the
consistency of the underlying data [2]. This facilitates our
self-administered data migration process for load redistribu-
tion without affecting the integrity of the data set. In our
storage manager, the R∗-tree structure is modified to a min-
imum in order to preserve its guarantees on utilization and
performance.

We maintain that the process of migrating data from “hot”
sites to less loaded ones must undergo careful consideration
and cost-benefit analysis, especially in light of skewed access
and update patterns. To identify such skews, a memory-
efficient structure for access and update pattern analysis is
necessary. To this end, we introduce the in-memory stat-
index which provides finer granularity statistics for index
nodes closer to the root and coarser granularity informa-
tion for nodes at deeper levels. The stat-index is dynami-
cally tunable allowing for adjustment of the trade-off between
accuracy and memory consumption. In the process of select-
ing data for migration, the stat-index’s real benefits stand
out when data access and update patterns exhibit signifi-
cant skews. In this context, our proposed storage manager
employs the information provided by the stat-index in order
to migrate a minimal subset of data, resulting in a very effi-
cient load redistribution. The entire self-tuning process is
devoid of external administrative assistance and, thus, is
highly scalable for the continuously changing access skews
due to fluctuating user demands.

A network coordinator maintains a global view of the
load distribution among the sites. The coordinator’s mini-
mal function set allows it to scale up well with thousands of
sites. This is accomplished through a distributed collabora-
tive algorithm for self-identification of “hot” sites within the
COW. Load rebalancing is considered only when a site deems
itself to be overloaded. When this occurs, the overloaded site
queries the coordinator for an under-utilized site that will
ultimately receive data. The remainder of the protocol is car-
ried out between the two sites which negotiate the nature
and volume of data to be migrated. The dynamic and self-
sufficient manner of this approach allows the COW to grace-
fully grow or shrink in accordance with the volume of data
present. This is facilitated simply by attaching or remov-
ing sites from the LAN-based storage manager. In addition
to efficient hot-spot dispersal, our proposed system consis-
tently attains short response times while handling extensive
and frequent data updates. This is aided by a query aggrega-
tion scheme which accumulates similar updates and queries
for batch processing. To accomplish this without disrupting

the integrity of the data, a locking mechanism for efficient
R∗-tree access is used, allowing queries and updates to prop-
agate through the tree simultaneously [65].

These novel features of the COW-based manager make
up our proposal and, along with a developed prototype and
its evaluation, constitute our research contribution. Our sys-
tem prototype is a full-fledged implementation written in
C++/BSD-Sockets that runs on a network of Sun SPARC-
stations and HP servers. Our main performance indicators
are throughput, the system’s load variance and the average
response time (ART) of requests (queries or updates). ART
provides a true scale for distinguishing performance differ-
ences as observed by the client [13].

We carry out extensive experiments to demonstrate the
benefits of our proposed techniques. We use a very large
synthetic multidimensional data set of 100 million data ele-
ments consuming up to 1 TByte of disk space and subject it
to intense query and update transactions arriving at rates of
10 ms and updating over 30% of data set in a time frame of
just a few minutes. The main results of our evaluation are:

1. During peak loads caused by skewed access patterns and
frequent updates, our dynamic load balancing mecha-
nism offers substantial improvements of a factor of three
as compared to other self-tuning systems [27] and two
orders of magnitude difference in performance compared
to a non-self-tuning system [51].

2. Hot spots are dispersed through the system within very
short periods of time, with minimal overheads attributed
to the maintenance of the stat-index, even for data set
sizes of hundreds of gigabytes.

3. Our COW manager exhibits robust scalability character-
istics and provides for uninhibited growth with minimal
human intervention.

To our knowledge, this is the first work to address the issue
of dynamic load balancing in a COW with data sets experi-
encing high update rates and skewed access patterns.

The remainder of this paper is structured as follows: Sect. 2
discusses related work. Section 3 describes the architecture
of our system and outlines the proposed load-sharing and
data migration techniques, while the cost-models used in the
data selection process are described in Sect. 4. Section 5
details our query aggregation optimizations and our exper-
imental analysis is presented in Sect. 6. Conclusions and
future research directions are discussed in Sect. 7.

2 Related work

Various distributed index structures for one-dimensional data
have been proposed in the past. File-based indexes using dis-
tributed extendible and linear hashing (LH*) where proposed
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in [9,32]. Extensions for support of multiple attributes in flat
files was introduced in the k-RP* [31]. An improvement over
quad-trees was introduced as the hQT* data structure, pre-
sented in [23], which adapts for 2-dimensional highly skewed
file-storage. A shared-memory environment over parallel
disks is explored in [57] where the problem of concurrent
index processing is investigated. [33] also deals with index-
ing in shared-memory under multiple processors. In [18],
the problem of scheduling query processes and background
maintenance tasks on a distributed system is examined. The
B-link tree [19] can support multiple levels of parallelism
through a shared-nothing distributed approach, locking
mechanisms, and partial data replication. A client-server
approach for storage management is provided in [37].

A large body of research also deals with load balancing.
The trade-offs between sender-initiated and receiver-initiated
adaptive load sharing are discussed in [8]. An LH* based
load-conscious approach using a distributed random tree is
proposed in [28]. This method provides for storage space uti-
lization guarantees accomplished through data partitioning
across a set of servers. Load balancing techniques for paral-
lel disks are explored in [50], where “heat”-tracking is used
to identify “hot” files which are ultimately striped and real-
located across a set of disks. The issue of on-line reorganiza-
tion for centralized B+-tree is investigated in [66], whereas
methods of merging two B+-tree that cover the same key
ranges are discussed in [54]. Preservation of QoS guarantees
even during data migration is discussed in [44]. A globally
height-balanced adaptive parallel B+-tree, termed AB+-tree,
for one dimensional data sets is introduced in [30] and its
performance is examined through simulation. A “semi-dis-
tributed” version of the R-tree is proposed in [26] where
formulae are provided to optimize leaf node sizes, called
striping units, so that small queries are quickly retrieved from
a single machine, while large queries engage as many sites
as possible. [51] extends this concept to a shared-nothing
R-tree architecture with each site indexing the local data set
through its own R-tree, while the master site contains an
R-tree of all non-leaf nodes with its leaves pointing to specific
sites. [21] seeks a similar goal through parallelism exploita-
tion by multiplexing the R-tree’s leaves and internal nodes
with cross-disk pointers in a multi-disk single-CPU system.
Proximity index criteria are introduced for assigning new
nodes to disks to optimize the probability that nodes spatially
close to one another are stored on different disks. In [40], a
method for parallel bulk loading of spatial data is presented.
Furthermore, in [39] an algorithm to execute nearest neigh-
bor queries on a parallel R-tree that is based on the method
in [26] is discussed.

Load balancing in the context of multi-dimensional data
is introduced in [34] where the R-tree is split between two
tiers: one centralized, holding the root of the tree, and one dis-
tributed, indexing portions of the data set at dedicated client

sites called processing elements (PEs). Every 10,000 que-
ries the client PEs send load information to the master which
then decides whether the system is balanced or if reorga-
nization is necessary. The original R-tree structure [14] is
relaxed to allow for as few as one element per node; in this
way, dummy nodes are used to increase the height of subtrees
pruned for migration. The system proposed in [34] is eval-
uated through a simulation study. In [16], we distribute the
multi-version R-tree (MVR-tree) which indexes the history
of spatio-temporal data across a set of sites; the most cur-
rent version is held in the main memory of the server. This
allows for fast lookups of the latest locations of objects, with
complete archives of all historical data.

In this paper we introduce a number of techniques which
substantially differentiate our effort from previous ones. Our
main contribution is a COW-based storage manager which
sustains very high update rates of multidimensional data in
an adaptable and scalable manner. This is accomplished with
the aid of our proposed stat-index. Our COW-based manager
identifies “hot” sites within the cluster and with the help of
the stat-index is also able to locate “hot” data within a site.
We provide a cost-model for analyzing the potential benefits
of data reorganization versus the expected overheads and,
thus, allow for data migration to occur only under necessary
and near-optimal conditions. Furthermore, we employ a buf-
fering scheme for group execution of queries and updates so
that only individual subtrees are locked during sequences of
updates. Finally, in support of our contributions we provide
extensive experimental results from a fully functional pro-
totype system using very large synthetically generated data
sets.

Some theoretical work has looked at providing polyno-
mial time approximation algorithms for the NP-hard prob-
lem of determining the optimal migration plan from multiple
sources to multiple destination data migration. The migration
optimization techniques in [17] work under the assumption
that there is a space constraint at the individual sites. Migra-
tion is performed in multiple stages using temporary sites to
hold objects while migration is taking place. The goal of the
paper is to perform migration in as few stages as possible
where there is a correlation between the number of stages
and the number of bypass sites necessary to complete the
operation. In our work, we assume that there is always suffi-
cient disk space in each site in the cluster. Furthermore, we
perform migration in bulk, moving entire subtrees in order to
reduce to time to re-insert objects in the index, whereas [17]
operates on a per-object basis. In [24], replication is used at
the file or block level under the assumption that data must be
distributed amongst multiple attached disks. [24] is an exten-
sion to [17] in the sense that copy operations are added so
that data can be replicated amongst the disks. This may work
well for static environments, but in a highly dynamic setting
where data is constantly modified, data replication becomes
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a much more difficult problem. Both [17] and [24] do not
tackle the problem of which data is selected for migration.
One of the core arguments of our paper is that this is a cru-
cial decision which needs to be made in order to minimize
the time to perform migration. Furthermore, the destination
problem, i.e., deciding which disks/sites will receive data, is
sidestepped in these papers by assuming that the destination
disk(s) are known a priori. Using a Network Coordinator, we
introduce a heuristic approach to identifying destination sites
for data migration. Generally, using an approximation algo-
rithm to calculate a migration plan in a distributed system
requires a centralized view of the current state of the entire
system and may become hard to scale up even with a small
number of sites. The combination of utilizing one of these
algorithms to construct a migration plan with our work on
identifying the data to be migrated and the destination sites is
certainly an interesting problem that, however, goes beyond
the scope of this paper.

Preliminary results of the work presented here appear in
[27] where we introduce a distributed collaborative algorithm
for data migration based on the analysis of a variable level
indexing scheme at the network coordinator. Our algorithm in
[27] performs load sharing without the use of a stat-index and
without the query aggregation techniques introduced here.

3 Fundamental system features

In this section, we describe the overall architecture layout of
our manager, our query processing algorithm, and the inter-
actions of the individual components necessary to facilitate
our self-tuning mechanism. We also introduce our special-
ized data structure, called stat-index, and describe how it
provides for an efficient data selection process.

3.1 COW-based storage manager architecture

Our model consists of a COW which communicate over a
high-speed network and host the underlying data set. One of
the sites in the cluster also serves as a load balancing coor-
dinator. This site is aware of the workload at each worksta-
tion in the cluster and is referenced when an overloaded site
requests to perform data migration to an underloaded site.
The coordinator need not operate on a dedicated worksta-
tion as its resource consumptions are minimal, allowing it to
quite easily run on a workstation that is also involved in the
storage management. As seen in Fig. 1, each site maintains a
portion of the entire data set, indexed locally by an R∗-tree.
A query can originate at any site. The originating site broad-
casts the query to the other site and is responsible for col-
lecting the result sets once they are available. The operations
supported by the proposed storage manager are containment
and intersection queries as well as insertions and deletions.

Fig. 1 Logical architecture: each site autonomously maintains its own
R∗-tree, while a Network Coordinator keeps an up to date table of
workload levels for every site. To scale-up the system, additional work-
stations can be added seamlessly to the COW simply by attaching them
to the LAN

To facilitate self-tuning (Sect. 3.3), each site maintains local
throughput statistics used to determine whether it is over-
loaded. If a site determines that it is overloaded, an action is
triggered to rectify the situation as outlined in Sect. 3.4. When
data migration must take place, an overloaded site selects a
fragment of its local data and migrates it to a less loaded site.
The data selection process is based on access statistics main-
tained by each site as discussed in Sect. 3.5. The ultimate
responsibility of any site at the receiving end is to take over
the task of maintaining and providing fast access to migrated
data. In the following sections, we examine the reasons for
our design choices and discuss the interactions among the
sites in the cluster.

3.2 Query processing

One of the main novelties of our storage manager is a com-
pletely decentralized query processing system. Past research
efforts rely on a “distribution catalog” maintained by a dedi-
cated workstation—a coordinator which is consulted for dis-
patching queries to the pertinent sites in the cluster [26,51].
Although this approach may be beneficial in a relatively static
environment, it introduces two significant problems: first,
when a large number of objects are inserted or updated, the
index structure changes substantially, requiring the propaga-
tion of these modifications to the distribution catalog; second,
the catalog becomes a bottleneck and hinders up-scaling as
it is the central point of entry for all requests.

In [27], our experiments suggest that, under conditions
involving heavy update loads, the best performance is
achieved when a broadcasting approach is taken in order to
deliver queries to the storage sites. The fundamental pre-
mise for this choice is that the benefit of a non-centralized
indexing scheme outweighs the disadvantage of activating
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all sites on every query. In a highly dynamic environment,
where the underlying data set is frequently updated, any form
of centralized query processing will inhibit performance and,
ultimately, will restrict scalability.

In this work, we define the “update” operation as a
two-step action involving a delete request, immediately fol-
lowed by an insert request. Insertions are performed in a
decentralized fashion in order to cope with a potentially high
rate of insertion requests. An insertion request (or a group of
requests) can be submitted to any of the sites in the cluster.
Using a pre-defined hash function known a priori by all sites
in the cluster, insertions are shipped to potentially other sites
in the cluster where the data is finally inserted in the local
R∗-tree. The hash function distributes the insertion requests
uniformly across all sites in the cluster. When the number of
sites in the cluster changes, the hash function changes as well.
This is facilitated through the network coordinator which,
upon the registration of a new site in the cluster, informs all
other sites of the new hash function. Delete operations are
broadcast to all sites in the cluster, in the same manner as
queries.

The individual steps of our query processing workflow
are illustrated in Fig. 2. When a query is (1) submitted to
one of the sites in the cluster, this site (2) broadcasts the
query on the network and becomes responsible for (3) col-
lecting the results and (4) delivering the final set of results to
the user. This method eliminates the problems that plague
a centralized approach. Our Network Coordinator’s func-
tions are solely related to load balancing and are completely
orthogonal to query processing. Therefore, in the context of
query processing and data insertion/deletion, we claim that
our architecture is completely decentralized.

3.3 Self-tuning principles

We introduce a number of effective heuristics to deal with
dynamic self-tuning under heavy update rates of indexed
multi-dimensional data. Dynamic load balancing is a neces-
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4

Fig. 2 COW-based query processing: in our highly dynamic environ-
ment a completely decentralized query processing system ensures there
are no bottlenecks such as the “distribution catalog” used in [26,51]
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sary component in a COW environment which is subject to
changing access patterns. In order for dynamic load balanc-
ing to be beneficial, however, we must ensure that it satisfies
the following requirements:

1. Load is shifted between sites without disruptions in the
system’s performance.

2. The overhead of self-tuning is more than compensated
for by the resulting performance gains after completion
of balancing.

3. No human intervention is necessary during the redistri-
bution process.

In the following sections, we discuss in detail our methods
used to satisfy these requirements.

3.4 Component interaction

We define “site load” (γ ), or simply “load,” as the number
of objects retrieved per second by a site. In our experimental
results (Sect. 6) this measure is also reported as throughput,
and it indirectly corresponds to the CPU usage, disk I /O, and
memory paging operations. We believe that defining the load
in such a fashion truly reflects the working state of the system
since the rate of data delivered depends directly and indirectly
on these factors [13]. We will demonstrate the interactions of
the various components of our COW-based storage manager
with an example load distribution from one of the sites in the
cluster as depicted in Fig. 3.

Each site i continuously measures its current load γ i .
This is depicted by the Load Monitor in Fig. 4. Sites have a
fixed maximum sustainable load capacity γ i

max, which can be
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Fig. 4 Overloaded sites request permission to perform migration. If
the request is denied, Tmax is incremented and no migration occurs. If
the request is granted, data is carefully selected for migration, accord-
ing to criteria detailed in Sect. 3.5, and is shipped to the recipient site,
which in turn indexes the data through its own R∗-tree

determined off-line by running a test benchmark 1 and is
used to compute the current load percentage λi = γ i/γ i

max.
Sites use the two system-wide thresholds �upper and �lower to
determine whether they are overloaded. Site i considers itself
overloaded as long as the condition (γ i > γ i

max × �upper)

holds true for a specific period of time, or epoch [10]. These
thresholds are represented by the horizontal dashed lines in
Fig. 3, whereas the epochs are represented by the vertical
dashed lines. The notion of epoch is used in order to stabilize
the system under spurious jumps in a site’s load. Further-
more, an exponential back-off algorithm [38] is adopted by
increasing the duration of the epoch each time a migration
request is denied. This improves system performance during
extremely high loads as it reduces network congestion.

Prior to a site’s first migration request, the epoch must last
at least Tmax × τ s, where τ is the interval of load measure-
ments in seconds, and Tmax is the number of load observa-
tions taken before migration is requested. This is visualized
in Fig. 3 by the interval between points (1) and (2), where
migration is requested at point (2). If the coordinator ascer-
tains that the system is load balanced, it will reject requests
for migration and the site will increase its Tmax by δ for each
rejected request. This occurs at point (3) in Fig. 3. Tmax is reset
to its original value when a migration request is granted. In
addition, once a site is overloaded, it returns to normal state
only when (γ i < γ i

max × �lower). This event corresponds
to point (5) in Fig. 3. While Tmax × τ provides a tempo-
ral window to reduce the frequency of migration requests,
γmax ×�lower and γmax ×�upper provide a load window to
soften the entry to and exit from an overloaded state. The

1 To establish the value of γ i
max for a particular site i , we issue a unit-

square query, forcing the site to operate at its maximum sustainable load
γ i

max. By issuing such a query we guarantee the leaves will be visited
in arbitrary order, causing random disk accesses.

combined use of these windows provides for a stability in
the migration initiation phase. The adjustment of the epoch
as described above reduces the number of migration requests
during system-wide overloads when self-tuning is not pos-
sible. Simultaneously, this mechanism provides short load
balancing response times when skewed access patterns call
for system tuning. In essence, the dynamic tuning of Tmax

allows sites to “learn” about the overall state of the system
and to adjust accordingly. The parameters and measurements
used to define the behavior of our self-tuning distributed stor-
age manager are summarized in Table 1. We have performed
experiments with a wide range of parameters and have deter-
mined that the numbers provided in Table 1 are indicative for
a wide number of cases in our infrastructure. These thresholds
serve as protective measures under extreme circumstances
and small deviations in their values do not result in observable
performance changes.

Reverting to the example in Fig. 3, the first point of interest
(1) occurs when a site considers itself to be overloaded. After
Tmax×τ s, the site sends a Request Migration message to the
network coordinator as indicated in Fig. 4. This triggers the
self-tuning mechanism and the coordinator evaluates the sys-
tem’s state of balance as shown in Fig. 5. When overloaded
sites request permission for migration from the network coor-
dinator, the coordinator has to determine whether data migra-
tion would be beneficial, and if so, which site should receive
the migrated data. The coordinator stores updates of each
site’s load percentage λi and its available disk capacity
(dcap) in the Global Load Table (GLT) as indicated in Fig. 5.
These updates are not periodic, but are piggy-backed onto
other messages, eliminating frequent polling for load statis-
tics on behalf of the coordinator and improving the scala-
bility of our architecture. Sites which are performing data
migration are noted in the GLT by recording the ID of the
corresponding destination site (the site which receives the

Table 1 System parameters and representative values used in our exper-
iments

Parameter Symbol Range of values

Maximum load capacity γmax 3,000–30,000

Current load capacity γ 30,00–30,000

Current load percentage λ γ/γmax (0–100%)

Measurement period τ 1 s

Max load measurements Tmax 3–5

Load increment δ 1–3

Upper load threshold �upper 50–85%

Lower load threshold �lower 40–75%

Load deviation � 5–25%

Active sites N 25–50

Dataset size D 100,000,000
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migrated data), in the dst column. For example, site 2 is
in the process of migrating data to site 5. The coordinator
stores timestamps (TS) of load updates in order to detect stale
information and to explicitly request updates from sites that
have not provided recent load information. This is a straight-
forward mechanism and is not discussed in detail here. With
its global, yet minimal, view of the load distributions among
the sites, the coordinator can decide whether the COW man-
ager is balanced, as detailed below.

The load balancing mechanism is designed for speed and,
thus, only considers the minimal amount of information kept
in the global load table. The network coordinator computes
the difference between the loads of the most (λmax) and least
(λmin) loaded sites in O(N ) time, where N is the number of
active sites. When the condition (λmax − λmin) < � quali-
fies, the system is balanced. The parameter � constitutes the
system’s imbalance relaxation factor and can be configured
according to the specific application needs. We provide an
empirical approach for determining � and experiment with
values (5–25%) that are deemed representative for the param-
eter in order to evaluate its effect on the storage manager’s
behavior.

When the system is balanced, the coordinator dispatches a
message to the requesting site declining the request for migra-
tion. If the system is deemed imbalanced, the least loaded
site is chosen as the destination site and the requesting site
is instructed to continue negotiations with that site. Since
concurrent requests for migration may be issued by multi-
ple sites, the coordinator marks current destination/source
pairs in the GLT, indicated by the dst and src columns in
Fig. 5. Such pairs of sites are not considered for destination
candidates until the migration process between them com-
pletes. The following section discusses how the stat-index–a
main-memory data structure used to track access skews in
the R∗-tree–can help to efficiently identify portions of the
data set for migration.

3.5 Data migration

3.5.1 Statistics-based data selection

We propose an efficient mechanism to collect access and
update statistics that allow each site in the cluster to select
a minimal amount of data for migration, while maximizing
the effect on load redistribution. This reduces the overhead of
data transfers among the sites and increases the system’s self-
tuning responsiveness. We demonstrate the advantages of the
proposed mechanism through analysis and experimentation.

In the context of skewed access patterns following Zipfian
distribution, we maintain that it is of significant importance
what data is claimed for migration. If access patterns are uni-
formly distributed in space, in order to achieve a desired load
reduction, say 50%, a site has to migrate an equivalent pro-
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Fig. 5 The coordinator qualifies data migration based on the current
load of each site, and selects for destination sites with the least load.
Sites that do not have free disk space available (dcap) are not considered
as destination sites

portion (50%) of data. However, when access patterns are
skewed, the degree of skew determines the amount of data
to be migrated. For example, a workload where 90% of the
accesses are targeted at 9% of the data, only 5% of the “hot”
data must be migrated to achieve a 50% load reduction. Fig-
ure 6 visualizes the relationship between load reduction rates
and data migration size for various types of access skew. As
shown by the graph, in order to achieve a desired load reduc-
tion, very few elements must be redistributed under higher
skews as compared to a uniform access distribution. Thus, by
exploiting access pattern information, migration overheads
can be reduced substantially.

In order to be able to identify the skews of such patterns,
we monitor and record detailed statistics on data accesses and
updates. Maintaining such information can be quite costly in
terms of space and processing time. Ideally, statistics for each
node in the R∗-tree should be collected. However, maintain-
ing this information is prohibitive since each R∗-tree access,
regardless of whether it is a read or a write, would incurs
the cost of a write when an access counter is updated. For
this reason, previous efforts have elected to maintain mini-
mal information only at the root level [34]. We show through
analysis and experimentation that this simplification is
insufficient as it does not provide us with the information
necessary to determine which data to migrate, especially in
environments with highly skewed access patterns.

Traditional histogram-based approaches are inadequate
for tracking such statistics because of shortcomings in their
update process. Methods for incremental updates of multidi-
mensional histograms were proposed in [12], but they rely on
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Fig. 6 With skewed access patterns, the amount of data that must
be migrated to achieve a desired load reduction sharply decreases as
compared to uniform access distributions. Therefore, it is important
to identify skewed access patterns when dealing with data redistribution

random samples of the underlying data. On the other hand,
STHoles [4] are built by analyzing the results of queries and
[60] builds the histograms using sketches. However, our goal
is to monitor access to all nodes at different levels of the
R∗-tree structure and, therefore, none of these approaches
apply. Hence, we propose a main-memory structure which
is a form of a hierarchical histogram and is targeted spe-
cifically for optimization of the R∗-tree migration process.
The stat-index is built on top of the R∗-tree, as depicted in
Fig. 7. The stat-index tracks the read/write counts for nodes
and groups of nodes in the R∗-tree. The structure is very
efficient and automatically adjusts the quality of statistics
depending on the amount of main memory that it is allocated.

The stat-index can be viewed as a downward-thinning
tree layered atop the R∗-tree. Each stat-index node con-
tains the read_counts and wri te_counts for node(s) in

the R∗-tree, a timestamp indicating when these counters
were reset, and a child pointer (〈t imestamp, read_count,
wri te_count, child_ptr〉). To limit the number of nodes in
the stat-index, we use a partial mapping from the R∗-tree
index nodes to a reduced space index. We consider a sin-
gle R∗-tree node to be an f -dimensional vector, where f is
the tree fanout, and map it to a φ-dimensional vector, which
is a single node of the stat-index with φ < f . We propose
the mapping function m(i) = �i × φ/ f �, which translates
groups of f/φ elements in an R∗-tree node to one element in
a stat-index node. With this node dimensionality reduction,
the growth rate of the stat-index is a constant factor lower
than that of the R∗-tree. This is not sufficient to guarantee
that the stat-index will fit in main memory. For example,
with φ = f/2 the stat-index has nodes with fanout half
of the actual R∗-tree’s, and if we assume f = 100, then
φ = 50 and for a fully utilized tree of height 5, the num-
ber of nodes in the stat-index is over 300 million. To fur-
ther control the amount of main-memory space used by the
stat-index, we provide a scheme where the subtrees of the
stat-index become “thinner” at deeper levels in the index,
as seen in Fig. 7. In this manner, the growth rate of the stat-
index can be bound to a decaying function such as e−h , where
h is a node’s distance from the root. To accomplish this,
we alter the mapping function so that it takes into account
h: m(i, h) = �i × φ(h)/ f � where the function φ(h) pro-
vides a variable fanout which depends on the node’s distance
from the root. One instance of φ(h) which results in the
stat-index’s subtrees growing at an increasingly lower rate is
φ(h) = f/2h . This provides finer granularity statistics for
nodes closer to the root at the cost of coarser statistics at
deeper levels in the index.

For a limited memory size, we can adjust the fanout func-
tion to accommodate the stat-index at the trade-off of reduced
statistics detail at lower levels in the tree. Furthermore, the
height of the stat-index is bounded as its deepest level can
contain only one element per node. For example, the stat-
index depicted in Fig. 7a cannot grow further after reaching
a height of 3. This limitation is a direct result of the function

R*−tree Nodes

stat−index nodes

(b)(a)

...
...

Fig. 7 a Complete structure of a stat-index with φ(h) = f/2h , b and an overlay of some of the R∗-tree nodes with the stat-
index. At lower levels in the trees, statistics are maintained for fewer elements per node. Each stat-index node consists of the tuple
〈timestamp, read_count, wri te_count, child_ptr〉
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φ(h) and the original tree’s fanout f . For φ(h) = f/2h , the
maximum height of the stat-index is �log2( f )�. For example,
the stat-index in Fig. 7a cannot grow deeper than log2(8) =
3 levels.

The total space requirements in terms of elements for a
stat-index of height H and variable fanout φ(h) = f × ah

(where a < 1) is

Total Elementsstat-index(H) =
H∑

k=0

f k+1a
1
2 k(k+1) (1)

See Appendix A for a derivation. In fact, the number of ele-
ments in an R∗-tree is a specific instance of Eq. 1 where
φ(h) = f and

Total ElementsR∗-tree(H) =
H∑

k=0

f k+1 (2)

We maintain that such a reduction guarantees that the stat-
index is sufficiently small to fit in main memory. To illus-
trate this, consider an R∗-tree with f = 128 and H = 4.
Under 70% utilization, the R∗-tree can index over 180 million
objects and, with typically 64 bytes per element, it consumes
roughly 1.4 TB, while its stat-index with φ(d) = f/3d and
32 bytes per element, consisting of the tuple 〈timestamp,

read_count, wri te_count, child_ptr〉, consumes about
30MB.

The worthiness of the stat-index is explored in Fig. 8
where the access patterns of an exponentially distributed
2-dimensional query workload at a single site are displayed
in gray-scale gradient, with darker areas corresponding to
more frequently accessed data. White areas correspond to
data which is migrated away from the site. Figure 8 depicts
the results of two experiments: in the first instance, data is
chosen for migration based on the stat-index, and in the
second, data is arbitrarily selected. Figure 8a displays the
access patterns of the workload at a site when no migration is

performed: this is the baseline case for comparison. In Fig. 8b
we see that the migrated data is from the region of high
activity. Thus, the workload skew at the site is reduced and
the query encompasses a wider range of data at reduced
access rates as seen in Fig. 8b. When the storage manager
has no information about the access skews of the data that
it manages, it arbitrarily selects data for migration as can be
observed in Fig. 8c. This visualization substantiates our claim
that sufficiently detailed access statistics can introduce con-
siderable improvements in the quality of the data selection
algorithm.

3.5.2 Concurrency control policy

Simultaneous queries, insertions and updates through an
R-tree are possible as described in [25], where the R-link tree
was introduced. Our choice of R∗-tree, renders those meth-
ods unusable because of one main difference: re-insertions.
Therefore, we only focus on concurrency control in the con-
text of data migration [45]. Guaranteeing strict ACID proper-
ties is beyond the scope of this paper and has been shown to be
an impediment [43] for contemporary applications that sup-
port spatio-temporal data management. However, our con-
currency control policy does guarantee the consistency of
the data migrated between sites during load balancing. The
issue at hand is important not only from a synchronization
standpoint but also because of the overheads involved during
data reorganization. Thus, we allow query processing and
data migration to occur simultaneously. To facilitate this, the
subtree chosen for migration is marked prior to commencing
data migration. Queries are allowed to enter this subtree at no
cost. When updates enter a marked subtree, they are propa-
gated to the destination site which received the migrated data
as shown in Fig. 9.

Once migration commences, two copies of the data may
exist: one at the destination site and one at the source site.

(a) Access Patterns (b) Using the Stat-Index (c) Arbitrary Data Selection

Fig. 8 Visualizing the effect of using the stat-index to migrate “hot” data: darker areas designate “hotter” regions. In white are the areas where
data is not present because it has been migrated to a different site
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Fig. 9 Concurrency control

The forwarding of updates to the destination site guaran-
tees the consistency of the migrated data since the modifi-
cations to the subtree being migrated will be carried over
at the destination site. When migration is completed, the
requesting site sends a “migration complete” message to the
coordinator. The coordinator immediately sends a “migration
cleanup” message to the requesting site. When the requesting
site receives this message, it safely deletes the migrated data
and stops forwarding messages to the destination site. At this
stage, the data migration process is complete and there is only
one up-to-date copy of the migrated data at the destination
site.

3.6 Storage manager optimizations

The process of data selection and migration may consume
large number of CPU cycles and I/O operations affecting the
normal query processing functions of the COW-based stor-
age manager. Although, the stat-index allows for quick and
efficient data selection, data migration presents a more signif-
icant operational overhead. During the migration process, the
data must be fetched from disk, packed and transmitted to the
destination host. This can be I/O, CPU and possibly network
intensive. Previous experiments revealed high spikes in the
mean query response time during data migration periods [27].
This attests to the resource monopolization by the self-tuning
mechanisms. To alleviate this additional load from a host that
is already overloaded, we propose three optimization mech-
anisms: (1) subtree locking, (2) reinsertion forwarding, and
(3) query aggregation.

3.6.1 Subtree locking

To ensure that data migration and query processing can pro-
ceed simultaneously, we lock the subtrees which have been

selected for migration so that they cannot be modified. Any
updates that get blocked by such a migration lock are for-
warded on to the destination site along with the migrated
data. This allows the data migration to proceed concurrently
with query processing while ensuring consistency in the pres-
ence of updates. Queries are allowed to enter the locked sub-
tree, as long as the subtree is not pruned due to a “migration
cleanup” message from the network coordinator, as described
in Sect. 3.5.2. Insertions are not allowed to enter a locked
subtree since it will eventually be pruned. Instead, insertions
are forwarded to the underloaded destination site, where they
are handled in a straight-forward manner by inserting them in
the local R∗-tree. Deletions that affect elements in the locked
subtree which is being migrated to the remote destination site
are forwarded to the destination site and are applied to this
subtree before it is inserted in the local R∗-tree.

3.6.2 Reinsertion forwarding

During normal workloads, each site handles re-insertions due
to local R∗-tree node splits. This increases the site’s work-
load, but the added benefit is improved R∗-tree quality. Rein-
serting all nodes in a tree can improve quality by up to 30%
[2]. If the local site is overloaded and is in the process of
performing data migration, the added cost of reinsertion can
cause further increase in load. In such a case, we piggy-back
the reinserted items on the data messages sent to the destina-
tion site. Locally, this alleviates the costs of R∗-tree restruc-
turing. The destination host is selected by the coordinator due
to its low workload, therefore, it is a good candidate for the
data to be reinserted. Furthermore, a channel of communica-
tion (TCP) already exists between the source and destination
sites, so no additional resources (sockets, memory, etc.) are
required. At the destination host, any piggy-backed reinser-
tion items are handled as regular insertion requests—each
one is inserted individually at the top of the R∗-tree.

3.6.3 Query aggregation algorithms

In a system which performs dynamic load balancing, the
overhead of selecting and migrating data can create signifi-
cant delays in the normal execution of query processing [27].
We propose efficient query aggregation algorithms that alle-
viate the problems caused by this overhead. The idea is to
cluster similar queries that may have accumulated during a
data migration phase and to execute them in bulk in order to
reduce response time as compared to executing them one at
a time. The details of our proposed query aggregation algo-
rithm are presented in Sect. 5. When sufficient number of
insertion requests are accumulated on the queue during data
migration periods, the insertions are bulk-loaded into the
local R∗-tree, significantly improving response time as com-
pared to one-at-a-time insertions. This effect is later analyzed
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in Sect. 6.4 where we report that bulk-loading can improve
throughput by up to 23%.

3.7 Scalability

Due to the data migration policies described above, our COW
manager provides a flexible environment for automatic sys-
tem up-scaling with the growth of the data set. New sites can
be introduced into the distributed system by attaching them
to the same network cluster. The coordinator immediately
detects the new site and establishes a communication link.
This situation presents an unbalanced system and leads to
data migration from the most loaded site(s) in the system to
the newly added site. Gradually, part of the data set is relo-
cated to the new site, alleviating the workload on the other
sites.

Down-scaling of the system is also accomplished in a sim-
ilar manner: the site being taken down signals the coordinator
that it needs to shift all of its data out to other sites. The net-
work coordinator directs the site to be removed to the least
loaded destination site. If the two sites can negotiate that all
data be migrated, the down-scaling concludes after the data
is shifted. Otherwise, as much data as possible is shifted and
a new request is sent to the coordinator. The process pro-
ceeds until all data is shifted and the site can be taken down
safely.

4 A cost model for data selection

In order to estimate the overhead due to our data selec-
tion and migration techniques, we develop an analytical cost
model. Each site uses this model to determine whether the
cost of performing data migration will be outweighed by the

expected benefits of load redistribution. This action is
performed by the LoadMonitor at each site as shown in Fig. 4.

4.1 Costs involved

In order to understand and evaluate the costs of data migra-
tion, we take a detailed look at the intricacies of the data selec-
tion process. We assume that the system is in an imbalanced
state, a site has requested permission for migration, the coor-
dinator has selected a destination site, and the two sites have
established a communication link. First, the source site must
determine a target load rate λtarget, which it will attempt to
attain through migration of appropriate portions of the “hot”
data. Essentially, λtarget is the equilibrium load between the
destination and source sites: λtarget = λsrc + (λsrc − λ′dst)/2,
where the actual destination site’s load λdst is normalized
using the source and destination site’s maximum load capac-
ities: λ′dst = λdst×(γ dst

max/γ
src
max). This normalization is neces-

sary in order to account for heterogeneous sites of different
capacities γmax. Figure 10 shows a specific example of a
source site which can deliver up to 10,000 elements per sec-
ond and is 93% utilized, and a destination site which supports
up to 6,000 elements per second and is 31% utilized. Had the
two sties been homogeneous, the source site would have had
a target load rate of 93− (93− 31)/2 = 62%. However, due
to the destination site’s lower capacity, the actual target load
rate of the source site is 72%.

Withλtarget computed, the source site selects R∗-tree nodes
whose load accounts for (λ − λtarget) percent of the total
R∗-tree load. The total R∗-tree load is computed from the
loads of each subtree st off the stat-index root:

Load(root) =
∑

st ε root

(α × st.reads+ β × st.writes)

(time_now− st. timestamp)
(3)

Fig. 10 Example state of
heterogeneous source and
destination sites during data
migration. The target load rate is
computed from the normalized
loads of the source and
destination sites
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where α and β are weight coefficients for adjusting the sig-
nificance of reads relative to writes since writes are usually
more costly. Load(root) represents the frequency of reads and
writes applied to the entire R∗-tree. The data selection pro-
cess traverses the stat-index, selecting a set of nodes S from
the R∗-tree, so that:
∑

nεS
Load(n) = Load(root)× (λ− λtarget) (4)

This is accomplished through Algorithm 1, with the initiali-
zation SelectData(root, Load(root)×(λ−λtarget)). The algo-
rithm performs multiple data migrations for each subtree that
is selected for migration, allowing any buffered queries to
be processed between MigrateSubtree() operations. Further-
more, using information from the stat-index, the algorithm
considers the size of the subtree selected for migration in
order to estimate the expected time to perform migration. If
this time is deemed large relative to the longest migration
that has taken place so far (if any), each child of this subtree
is migrated individually, again allowing query buffering to
take place between migrations. In this algorithm, the function

Algorithm 1 Select Data(Node : n, T arget Load : λt )

1: if Load(n) < λt then
2: if Subtree n is not large then
3: MigrateSubtree(n)

4: else
5: for each child c of n do
6: MigrateSubtree(c)
7: end for
8: end if
9: return Load(n)

10: else
11: curload ← 0
12: {S} ← Sort ByLoad(n.children,′ desc′)
13: for si ε{S} do
14: curload ← curload + Select Data(si , λt − curload)

15: if curload >= λt then
16: return curload
17: end if
18: end for
19: return curload
20: end if

Load(n) returns the corresponding load as recorded by the
access information in the stat-index. The algorithm traverses
the R∗-tree in a depth-first fashion, following first the most
loaded subtrees.

If a subtree’s load is not sufficient to reach the target load
reduction (i.e., if Load(si )/Load(root(R∗)) < λ − λtarget),
the subtree is selected for migration and the algorithm ter-
minates. Otherwise, the children of that subtree are exam-
ined recursively. If the leaf-level is reached and no subtree
is selected for migration, the node in the leaf with the high-
est load is selected. Since the stat-index’s height is at most

as much as the R∗-tree’s height H , the data selection pro-
cess runs in time O(H × φ(h)). At each level the process
analyzes at most φ(h) elements to find the maximum loaded
one. In the worst case φ(h) = f , and the running time is
O(H × f ), where H = log f (Di ) and Di is the local data
set size at site i . Therefore, the asymptotic time complexity
for SelectDataCost is O(H × f ).

The stat-index employs a hash look-up method based on
the mapping function φ(h). In our experiments we use
φ(h) = f/2h . The stat-index hashes R∗-tree nodes to its
nodes using page number and node height. For nodes where
φ(h) < f the stat-index adjusts the read/write counters by
the corresponding φ(h)/ f ratio to normalize the statistics for
nodes with coarse-grained counters.

Now we can estimate the cost to select data for migra-
tion and to transmit it to a destination site in terms of time
(seconds):

MigrationCost(i)

= SelectDataCost

+NwkRate× Mi × ObjSize+ log f (Ni )× Mi

+ log f (Nd)× Mi (5)

where the first factor is the cost to select data for migration
as previously discussed. The second factor is for transmit-
ting the data over the network where NwkRate is the rate of
transmission (in bytes/s) and Mi is the amount of data (in
bytes) selected for migration from site i . ObjSize is the size
of the objects (in bytes) being potentially moved. The last
two factors are for one-at-a-time deletion from the source
site with data set cardinality Ni , and one-at-a-time insertion
at the destination site with cardinality Nd , respectively. These
two factors can be reduced to log f (Ni ) and log f (Nd) if the
operations are done in bulk [1,3,5,6,11,62,63]. The amount
of data to migrate Mi depends on the degree of access skew
at site i , the desired target load reduction level λtarget, and the
cardinality of the data set Ni managed by the source site i .
When performing bulk deletions and insertions, the cost of
migration depends on the amount of data selected for migra-
tion Mi . As we have postulated, by leveraging information
of the local access skews, Algorithm 1 allows us to reduce
Mi so as to achieve a more even load redistribution, while
reducing the cost of performing load balancing.

To validate the effectiveness of our stat-index, we look
at the opportunity for optimization in a Zipfian skew access
model.2 In Fig. 11 we plot Mi as a percentage of K for three
different λtarget. As expected, Fig. 11 shows that significant
performance improvement can be acquired when data acces-
ses are skewed. For example, at z = 0.7, the cost of migration

2 For this purpose we take Ni = K objects and assign access frequen-
cies such that item k has access frequency of f (k)= 1/kz where z is the
Zipf factor, which we vary from 0.1 to 1.0, with lower values denoting
less skew.
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Fig. 11 Zipfian access distribution model

can be reduced four times as compared to a self-tuning system
which assumes uniform access distribution. We use this ana-
lytical model to build a table of the portion of data expected
to be migrated for various skew factors and for different tar-
get load reduction rates. When data must be migrated, the
source site uses this table to estimate Mi . The skew factor is
calculated from a second-order (non-linear) regression on the
load information at the leaves of the stat-index, and the tar-
get load reduction rate is calculated as previously explained.
With Mi at hand, and all other parameters of the Migration-
Cost(i) formula known, the source site can estimate its total
cost of migration in units of seconds.

To determine whether or not it is worthwhile to perform
data migration, the source site compares the amount of time
it has spent in overloaded state versus the estimated cost of
migration. When the former exceeds the latter, we expect
data migration to alleviate the load of the site and the site
sends a migration request message to the Coordinator. Note
that this decision is made independently at each individual
site. This improves scalability and works under the assump-
tion that another site exists which is sufficiently underloaded
to allow the current site to reach its target load state. If this
assumption is wrong, the Coordinator will simply deny the
migration request.

4.2 Access statistics: cost of maintenance

There is some computational overhead involved with main-
taining variable-granularity access statistics on nodes in the
R∗-tree. However, due to our hash-based implementation of
the stat-index, it is possible to update access information
in constant time, simply by pre-computing the dimensional-
ity reduction matrix for a given mapping function. However,
R∗-tree insertions and updates are more difficult to deal with.
For brevity and without loss of generality, we only discuss
insertions. The methods for keeping the stat-index up to date

with deletions or updates are analogous. In this scenario, due
to the algorithms governing the R∗-tree, three different sce-
narios are possible.

In the simplest case, a new object is inserted and no inter-
nal nodes in the R∗-tree are modified. In this situation, the
corresponding stat-index node of each R∗-tree node visited
has its read/write counter updated. With the hash mapping,
this can be done in constant time.

The second case is when internal or leaf-level nodes split.
If the new node maps to the same stat-index node as the
original R∗-tree node, no additional work is needed and we
proceed as in the first case. If, however, the new node’s cor-
responding stat-index entry is different, we must properly
account for the shifting of the access statistics from one
stat-index node to another by decrementing the access coun-
ters of the original stat-index node. It may not always be pos-
sible to determine the exact amount by which to decrement
the old stat-index nodes. This information may be estimated
from children nodes with variable accuracy, depending on
the depth of the split node. For simplicity and speed consid-
erations, it is best to assume a uniform split and redistribute
the access information evenly between the original and the
new stat-index nodes. If the assumptions is incorrect, it will
only have a temporary effect since the correct skew statistics
will propagate through the newly formed subtrees as new
access information is collected.

The R∗-tree differs from other R-tree variants in its intro-
duction of a reinsertion strategy. The third scenario occurs
during a reinsertion, where instead of splitting a node, a sub-
set of its subtrees is chosen for reinsertion—the nodes are
deleted from the current parent node and inserted at the top
of the tree.3 Instead of computing the appropriate adjust-
ment for the corresponding stat-index node after the nodes
are deleted, we simply reset the parent node’s counter and
update its timestamp. The rest of the deleted nodes are han-
dled as in the other insertion cases. This strategy works well
in our case because reinsertions would require us to identify
as set of R∗-tree nodes based on the stat-index node which
is being affected. Since our stat-index mapping function in
essence performs dimensionality reduction, a reverse map-
ping from a stat-index node to a set of R∗-tree nodes would
lead to loss of information. Thus, counter resetting helps to
simplify the stat-index maintenance when R∗-tree data is
being deleted. After stat-index nodes are reset, they may not
contain statistically significant information for some amount
of time. During this time, the data selection algorithm relies
on the information present in the parent node. The period dur-
ing which the information in a reset stat-index node is not
used is the current value of Tmax×τ as explained in Sect. 3.4.
This allows us to take a lazy approach for stat-index updates:

3 The reasoning behind this is that reinsertions improve tree quality.
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only one R∗-tree node’s stat-index node is updated during
deletions, avoiding the updates of child stat-index nodes.

In all of the above cases, the cost of updating the stat-index
information is constant. This concurs with our goal of keep-
ing the stat-index small and efficient. The only conceivable
practical limitations are due to a small overhead of accessing
main memory.

5 Query aggregation algorithms

When a site’s resources are consumed by the processing of
data migration or very large queries, incoming queries are
staged on the queue at that site. Let’s assume that m queries
are placed in the queue {Q1, . . . , Qm}. There are a number
of ways to handle this batch of queries. The simplest is to
process each query one by one in a first-in-first-out (FIFO)
order. This is inefficient if some of the queries request the
same data, in which case the same pages may be read from
disk multiple times. Another way to process the queries is
to combine them into a single large MBR composed of their
union [7]. This allows a single search through the local tree to
be performed to answer all the queries on the queue. After the
results are fetched, they are once again filtered through the
individual queries. This method may also be inefficient if
the union of the original queries covers a large area, retriev-
ing a very large result set. In this case, if the available buffer
space is not sufficient to contain the entire result set, thrash-
ing will occur and, again, the same pages will be fetched
from disk multiple times. Since there are no guarantees on
the query workload and request may arrive from many dif-
ferent sites, it is very likely that the enqueued queries will
cover a large area. We note that there has been some work
[1] on executing multiple spatial queries in batch in order
to amortize the cost of each I/O for multiple queries. How-
ever, this execution does happen on-line and is based on the
idea of buffering groups of queries at different levels of the
R-tree and moving queries to deeper levels when the buffer
gets full [1]. Therefore, the response time of an individual
query can be arbitrary large. Furthermore, the approach is
based on a centralized R-tree and cannot be applied to our
environment.

We propose a different way to efficiently process the que-
ries from the queue. We combine the queries into a few groups
(or clusters) of bulk queries and each group search is per-
formed independently. We distinguish between three stages
of this operation: (1) query clustering, (2) cluster-searching
and (3) filtering. Our effort is focused on creating a good
clustering algorithm to accomplish the first phase. Cluster-
searching and filtering are straight-forward operations per-
formed as explained above. The query clustering problem is
the most important as it is responsible for creating “good”
query-groups which will reduce the number of I/Os as com-
pared to processing the queries individually.

Ideally, the coverage of each cluster should be carefully
determined according to the distribution of elements in the
local R∗-tree and the query distribution. The larger the area
of a cluster is, the more likely it is to contain results irrele-
vant to the queries in that cluster. However, the smaller the
cluster area is, the more clusters will be formed and, in the
worst case, there will be only one query per cluster. This
trade-off is difficult to analyze on-line since it depends on
the workload distribution, the data distribution, and main-
memory availability. The time to analyze all these factors
may outweigh the benefits. Therefore, our goal is to first
decide whether query aggregation should be performed, or
whether each query should be processed individually. For
the purpose, given m queries, we consider three factors: the
amount of query overlap Ao, the total query area Aq , and the
total number of locally indexed elements N . The exact query
overlap can be computed in O(m2) time simply by compar-
ing each query with all other queries and keeping a sum of the
overlapping areas. Below we show how we can give a good
estimate for Ao in O(mlog(m)) time. Assuming that the data
is uniformly distributed, the expected number of elements
retrieved due to the overlapping areas is Ao × N (remember
that elements are indexed in the unit square). In the pres-
ence of skewed data distributions, an approximation based
on uniformity assumption still suffices as such an approxi-
mation is relative to the total number of elements in the tree.
The expected number of elements retrieved by all the que-
ries is Aq × N . Assuming that each element retrieved from
overlapping areas is reused at least once, the worst-case gain
from performing query aggregation is:

g = 1− (Aq × N − 1
2 Ao × N )

Aq × N
= Ao

2Aq
(6)

The gain varies from 0 when there is no overlap to 1/2 when
there is complete overlap. For a cluster of two overlapping
queries, the factor is exactly 1/2 and Ao = Aq . We use g to
determine if aggregation is beneficial.

We evaluated empirically the overheads of the cluster-
ing algorithms proposed below and used the results to set
a threshold which triggers the aggregation algorithm. As a
result, if cluster-searching can save us at least 20% of disk
I/Os ( Ao

2Aq
> 0.20) as compared to individual query execu-

tion, we utilize the query aggregation algorithm.
Once we have decided to proceed with query clustering,

we must form “good” clusters in order to reduce dead space
as much as possible. Dead space is the area covered by the
MBR of the cluster, but not covered by any individual query
in that cluster. If a large amount of dead space is created by
the clustering algorithm, many irrelevant elements will be
fetched during the cluster-search process, and will have to
be eliminated during the filtering process. This causes I/O
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inefficiencies. We propose four methods for processing buf-
fered queries.

5.1 K -means clustering for disk I/O optimization (K-DISK)

Although we will further see how our stat-index can be used
for efficient query aggregation, our first approach utilizes a
generic K -means clustering algorithm [20]. This algorithm
produces K groups of queries such that for each subset of
queries in each group some objective function is satisfied.
The algorithm requires an initial set of K samples which are
used to minimize the objective function. For each query, the
objective function is evaluated for each of the K samples
and the query is assigned to the sample group which min-
imizes the objective function. A second round is repeated
with the K original samples replaced by the centroids of the
newly formed groups. This process is repeated until there is
no change in the centroids of the clusters. The efficacy and
speed of this process are highly dependent on the quality of
the objective function. As a basis for comparison, we use a
distance function based on the p-norm Minkowski metric for
n-dimensional vector space 
n :

dp(xi , x j ) =
(

n∑

k=1

|xi,k − x j,k |p
) 1

p

(7)

Note that when p= 2, dp is simply the 2-dimensional Euclid-
ean distance. In the above formula, xi and x j represent the
geometric centroids of the two queries which are being com-
pared. The Minkowski metric will produce groups of queries
that are close to one another in Euclidean space. Although,
intuitively this should result in good overall clusters, for our
purpose, we build an objective function which estimates the
number of I/Os that each cluster will result in. Minimizing
this function will produce clusters that cause the least number
of I/Os.

The total number of disk access for each query q can be
estimated as given in [61], for uniformly distributed data sets:

DA(q) = 1+
1+�log f

N
f �∑

j=1

{
N

f j

n∏

i=1

((
D j

f j

N

)1/n

+ qi

)}

(8)

where D j is the density of nodes at level j , N is the total
number of elements in the tree, f j is the R∗-tree fanout at
level j and n is the number of dimensions.

5.2 K -means clustering with stat-index (K-SI)

As our main concern is with highly skewed data-sets, we per-
form the following modifications. We add a third attribute to
each entry in the stat-index–the number of elements indexed
by that stat-index node. This is similar to [59] where the

aP-tree is specifically designed to answer range aggregate
queries. This counter can be updated in a straight-forward
manner during insertions and deletions. As previously shown,
each insertion or deletion will go through the stat-index in
order to update the appropriate read/write counters. There-
fore, the only cost associated with this modification to the
data structure is that it will have a slightly larger footprint
in main-memory due to the increased size of each node.
Armed with the stat-index element counters, we can calculate
the density of elements under each group of R∗-tree nodes

enclosed by that stat-index node s j as D× s<C>
j
N , where s<C>

j
is the elements counter. To use this additional information in
Eq. 8, we must perform the outer summation not for each
level, but for each stat-index node:

DA(q) = 1+
σ∑

j=1

⎧
⎨

⎩s<R>
j

n∏

i=1

⎛

⎝
(

D
s<C>

j

Ns<R>
j

)1/n

+ qi

⎞

⎠

⎫
⎬

⎭

(9)

where σ = ∑H
k=0 f k+1a

1
2 k(k+1) as in Eq. 1 is the number

of nodes in the stat-index with fanout φ(h) = f × ah , and
s<R>

j is the number of R∗-tree nodes contained by stat-index
node s j .

The objective function that we propose exploits the above
estimates of the number of disk access for a query DA(q)

and for the intersection of two queries DA(u, v). We select
the initial set of K clusters from the m queries on the queue
which are furthest apart, as measured from their geometric
centroids. The clustering algorithm is utilized only if at least
2K queries have aggregated on the queue. Otherwise, each
query is performed separately, without any grouping. Given
two queries u and v, the objective function we propose is:

d(u, v) = DA(u)+ DA(v)− DA(u ∩ v) (10)

The K-SI clustering algorithm will group queries which result
in clusters that require the minimum number of disk acces-
ses. The net cost for a cluster of m queries can be simplified
to:

DA(cluster) =
m−1∑

i=1

m∑

j=i+1

d(qi , q j )

=
m−1∑

i=1

m∑

j=i+1

{DA(qi )+ DA(q j )− DA(qi ∩ q j )}

(11)

Intuitively, the optimization function above attempts to max-
imize the query overlaps (intersections) in order to minimize
the overall cost.

We further improve our approach by taking into account
the underlying page caching mechanisms. Assuming that
the DBMS utilizes a LRU (least frequently used) scheme
to remove items from a main-memory buffer, we can use the
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stat-index to give bias to those overlapping queries which
pull data from “hot” areas. To accomplish this, we assign a
weight w(u, v) to each pair of intersecting queries u and v.
The weight is determined by querying the stat-index (SI) with
the MBR of the two queries’ intersection MBR(u ∩ v), sum-
ming up the read/write counts for the intersecting stat-index
leaf nodes, and finally adjusting by the global (root-level)
read/writes:

w(u, v) = 1

reads (SI)+ writes (SI)

×
n∑

s∈Query (SI, MBR(u∩v))

(reads(s)+ writes(s))

(12)

One problem with K -means clustering is that K is an input
to the algorithm. That is, we must have a priori knowledge
of the number of clusters that we wish to form. To estimate a
value of K we use the above-mentioned rationale that a good
cluster is not very large, nor very small. To obtain a rough
approximation, which is exact for the case when the queries
are uniformly distributed in space, we use K = (1− Ao

Aq
)×m.

The more overlap there is among queries, the fewer clusters
will be formed. At the extreme, if there is no overlap among
the m queries, then m clusters will be formed, meaning that
each query will be executed separately.

5.3 R∗-tree Clustering (R*-CLUST)

In addition to the K -means clustering algorithm we inves-
tigate another approach for grouping the queries that have
accumulated during the migration process. Here we use a
hierarchical clustering approach. First, we build a temporary
in-memory R∗-tree of the MBRs of the queries. During this
process, the MBRs of each query are grouped according to the
criteria of the R∗-tree insertion algorithm. These criteria aim
at reducing “dead space” and non-leaf node overlap, which
coincide with our clustering goals. Once the temporary tree
is built, each group of queries is identified by selecting the
set of internal nodes at depth d. We call each of these sets a
grouping-subtree since they represent a subtree of the original
temporary tree. Thus, the problem is reduced to discovering
at what depth to select a grouping-subtree. The closer to the
root the grouping-subtree is, the larger its area will be. The
closer to the leaves it is, the more groups will be formed. Intu-
itively, this approach will result in good grouping because
during insertion of objects the R∗-tree algorithm forms sub-
trees such that overlap of non-leaf nodes is minimized. In
order to solve the above trade-off problem, we overlap the
in-memory R∗-tree with the original R∗-tree. The grouping-
subtrees should encompass areas containing only as many
elements as we can process in-memory.

The temporary R∗-tree of the queries’ MBRs can also
be used to estimate Ao—the query overlap. After the tree is
built, we need only compare sibling leaves. On average, there
are log(m) siblings resulting in overall cost of O(mlog(m)),
where m is the number of queries in the buffer. This will give
an approximate answer since leaves in different subtrees may
also overlap.

5.4 Depth-first search (AGGR)

We compare the above three approaches to a depth-first search
through the R∗-tree where all buffered queries are compared
to each node retrieved from the R∗-tree. This method, called
AGGR, achieves the best I/O performance but can consume
many CPU cycles since each R∗-tree node that is read from
disk must be compared to all queries in the buffer. Fur-
thermore, the AGGR method might result in higher query
response times compared to our clustering methods since all
buffered queries complete at the same time, regardless of the
size and spatial location of the query.

The four methods for grouping queries accumulated dur-
ing the migration process are experimentally evaluated in the
following section. For each method, we analyze the number
of I/Os and CPU time spent in processing the aggregated
queries relative to a baseline system which process them one
at a time.

6 Experimental results

6.1 Experimental setup and methodology

To evaluate empirically the performance of the proposed
system, we developed a working prototype in C++, which
is distributed on a cluster of 50 Sun workstations intercon-
nected through a 100 Mbps Ethernet network. Each worksta-
tion runs on a 400 MHz UltraSPARC CPU with 128 MB of
main memory. Furthermore, we perform very large data set
experiments of up to 1 TB of data on a cluster of up to 40 HP
DL360 servers. We built our stat-index structure on top of
an existing C++ implementation of the R∗-tree [15]. Our pri-
mary objective was to compare the quality and speed of load-
balancing of our stat-index based self-tuning system to a
baseline system without a stat-index. In addition, we ana-
lyzed the performance gain resulting from the use of the
query aggregation which leverages off of information main-
tained by the stat-index. We take a statistical approach to
measuring the quality of load-balancing. Intuitively, a well
balanced multi-site system is one which exhibits low fluctua-
tions in the load distribution among the sites. Quantitatively,
we measure this balance by recording the standard deviation
(σ ) of the loads among all of the participating sites. A low
standard deviation means that the distribution of the loads
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across the sites is close to the mean (average) load of the
entire system. For example, assuming that the loads are nor-
mally distributed across the sites, a standard deviation of 8%
would mean that 68% of the sites’ loads are within 8% of the
mean and 95% are within 16% of the mean.

The speed of load balancing (ν) is defined as the time
it takes the system to reach a steady state. Steady state is
reached when the measured load distribution obtains the
characteristics of a stationary process in stochastic terms.
This means that the standard deviation (i.e., second-order
statistics) is constant over time. In practice, a live system
with consistent workload will experience small perturbations
in the individual sites’ loads. These small fluctuations mean
that σ is variant with time and its rate of change will never
become constant. Therefore, to establish a range for accept-
able stationarity, we looked at the distribution of σ over time
in a balanced system and measured the average of σ over 100
experiments. In Fig. 12, we see that when σ becomes sta-
tionary, it varies by±0.50%. For our experiments, we set the
range to ±1.0% to allow for higher fluctuations. This value
allows us to terminate the experiments when this steady-state
is reached.

The baseline system which we use for comparisons sup-
ports self-tuning through data reorganization, but does not
maintain any information on access skews. More specifically,
the differentiating factor of the baseline system is the lack of
the stat-index which we introduce in this paper. This baseline
system resembles those previously discussed in [27,30,51].
In [27], we have shown that such a self-tuning system, with-
out a stat-index, works well for a wide range of workloads.
The baseline system lacks both the stat-index and the query
aggregation algorithms introduced here.

For the purpose of testing the system’s performance under
high deletion/insertion rates, we focus primarily on a mixture
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Fig. 12 Due to load-balancing the standard deviation of the loads of
25 sites is reduced to 12%. The fluctuation in the last segment, when
stationarity is reached, is ±0.5%

of containment queries, as well as deletion/insertion opera-
tions, with the latter two comprising up to 30% of the work-
load. We use synthetically generated data due to difficulties
in finding a sizable real-life4 data-set for these experiments.
The synthetic data set consists of 100,000,000 hyper-rect-
angles in unit space with mean sides of 0.0002 units and
extensions of 0.00002 units. Thus, the expected density of
the data set is 5 units. The generated objects are of size 40
bytes each, except for the very large data set experiment, dis-
cussed in Sect. 6.6, where we increase the object size up to
10 KBytes, creating a 1 TByte data set. We partition the data
equally in space according to the number of sites and assign
each fragment to a site. This method of partitioning allows us
to directly control the workload skew in the system by spec-
ifying the density and spatial location of the queries. This
is accomplished by generating queries spatially distributed
according to either a normal (N (µ, σ )) or an exponential
(E(α)) distribution. The area of each query is determined by
drawing its length and width from a normal distribution with
mean 0.01 units and standard deviation of 0.001 units. The
queries are submitted every 10 ms from a randomly chosen
site, which collects all the results and records the response
time for each query. The response time is measured from the
instant the query is submitted until all results are returned
from all sites involved in answering the query.

Each experiment is repeated with data dimensionality var-
ied from 2 to 4. For brevity, we report only the results for
the 4-dimensional data. In general, data of higher dimen-
sions consumes more space, which affects the system’s per-
formance as data reorganization require larger volumes of
data to be migrated between sites [36].

One of the significant improvements of our COW stor-
age manager is that it is tailored for handling very high dele-
tion/insertion rates and skewed query workloads. To ascertain
a sustained performance level under such a workload, during
each experiment run we inject into the system insertion and
deletion of data points, which account for a 10–30% change
of the entire dataset; we perform up to 30 million delete and
insert operations. Due to our query aggregation algorithms,
our distributed storage manager can sustain a significantly
higher deletion/insertion rate than an equivalent system with-
out such buffering. As a measure of load we use the number
of elements retrieved per second at each site and report that
as a percentage of the site’s maximum capacity. The max-
imum load capacity of each site is measured once for all
experiments and is dependent on the workstation’s hardware
characteristics. As explained earlier, this allows us to run the
system on a heterogeneous set of sites.

4 http://www.rtreeportal.org, http://www.cs.du.edu∼leut/MultiDim
Data.html.

123

http://www.rtreeportal.org
http://www.cs.du.edu~leut/MultiDimData.html
http://www.cs.du.edu~leut/MultiDimData.html


756 V. Kriakov et al.

6.2 Efficient load distribution and scalability

We evaluated the quality and speed of load distributions under
two different workloads with 25 and 50 workstations. In
Fig. 13a and b we see the measured load distributions for a
workload generated from an exponential distribution E(α =
0.20) for 25 and 50 workstations, respectively. The second
workload is produced from a normal distribution N (µ =
0.5, σ = 0.15); the measured values for 25 and 50 worksta-
tions can be seen in Fig. 14a and b, respectively.

We ran the experiments until the standard deviation in the
load across the sites remained within the stationarity lim-
its for a period of 1 min. The results show that in the case

of the exponential distribution, where there is more skew
in the initial load, the system takes half the time to reach a
steady state as compared to a normally distributed workload:
Fig. 13a versus 14a. Under exponential distribution, the
steady state is not necessarily a balanced state, because our
threshold values prohibit sites from requesting migration if
their load is below �lower = 65%, as per Table 1. This is the
reason why the load distribution in Fig. 13b is skewed, even
though a steady state is reached. Furthermore, if we com-
pare Fig. 13a and b, we see that with more sites available in
the system, the load-balanced state is reached faster. In this
case the network coordinator has more choice in selecting
underloaded sites for data migration. In addition, with more
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Fig. 13 The workload is generated from an exponential distribution
over 25 and 50 sites. The white bars show each site’s load before migra-
tion and the shaded bars show each site’s load after the system reaches

a steady state. To simplify the visualization, the smaller of the two bars
is always drawn “in front” of the larger one
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Fig. 15 The coupling of the stat-index with a query aggregation algorithm allow the system to sustain very high deletion/insertion rates without
significant degradation in performance. This performance overhead is further explored in Fig. 17

sites available, there is a larger probability that a sufficiently
underloaded site will be found to receive enough data to off-
set the the load of an overloaded site.

The experiments with the normally distributed load have
more interesting steady-state levels as is evident in Fig. 14a
and b. The workload is controlled so that over time the aver-
age load on the system is just above 50%. However, the ini-
tial standard deviation is set to 15%. The sites are ordered by
increasing load along the x-axis to visualize this better. Over
time, the system is able to reduce the load variance signifi-
cantly, with most sites reaching a variance within 3.8–4.8%
of the mean as shown in Fig. 14.

6.3 Load distribution under high update rates

To evaluate the system’s performance under different dele-
tion/insertion rates, we measure the standard deviation of
the load distribution through time. Our goal is to analyze
how the load of the more overloaded sites changes through
time for three different deletion/insertion rates (10, 20, 30%),
under workloads with spatial distribution of the objects that
is uniform (UNI) or Zipfian (ZIPF) with z = 0.8. As in pre-
vious experiments, the initial system state consists of a mean
load of 50% and σ = 15%.

As Fig. 15 shows, the deletion/insertion rates can have a
significant impact on the system’s ability to efficiently tune
itself: it can take up to two times longer to reach the same state
of balance when 30% of the data set is updated as compared
to when only 10% of it is updated. Our self-tuning system
provides significant improvements, and even when 30% of
the data set is modified, it is capable of reducing the load by
15% within a time-frame of 2 min. Compare this to a base-
line system which does not utilize a stat-index as depicted in
Fig. 16. The two experiments in Fig. 16 are performed with
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Fig. 16 Perfrmance of a baseline system (BASE) without stat-index
and without query aggregation where 10% of the data set was updated

only 10% of deletion/insertion applied to the system. With
higher deletion/insertion rates the baseline system (BASE),
which does not use a stat-index and query aggregation, is not
able to cope with the workload. In the baseline case, shown
by the dashed line, the data used for migration is selected
arbitrarily in incremental batches of 1,000 objects and query
processing is suspended during periods of data migration.
The behavior of this system is unstable, which is due to lack
of an appropriate data selection policy. The bottom line on
the chart reveals what happens when the stat-index is used
to select “hot” data for migration while the query aggrega-
tion algorithm is switched off. While this is a significant
improvement over the baseline system, it is still an inferior
proposition compared to the results in Fig. 15. The inter-
mittent “spikes” occur when spatial pockets of high update
concentrations cause excessive write-locks of nodes in the
R∗-tree.
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An interesting observation from Fig. 15 is that the rate
of load reduction is often higher during the initial phase of
the experiments. This occurs because the system first bal-
ances the most overloaded sites, of which there are few due
to the initial load skew. However, this effect is not as signifi-
cant under higher deletion/insertion rates. Under lower dele-
tion/insertion rates, the initial data migration in the beginning
of the experiment is performed very efficiently with little con-
tention for resources. This is reflected by the very steep drop
of the 10% line in Fig. 15a and b during the initial 100 s of the
experiment as compared to the 20 and 30% deletion/insertion
rate lines.

We have concentrated on exploring the effect of the stat-
index on load redistribution over time, but the query response
time is equally important as it gives us the user’s point of view.
Therefore, we measure the ART per query per second. The
response time is the total turn-around time from the instance
the query is submitted until all the results are returned to the
user. With the workloads designed as previously described,
the steady state response time is 1.35 s. This is depicted in
Fig. 17. We see that under normal conditions, the overhead
of using the stat-index is about 8%. We believe that this over-
head is justifiable given the benefits gained during periods of
highly skewed activity. Furthermore, this value can be con-
trolled by adjusting the granularity level at which detailed
access statistics are kept. This of course would be a trade-
off at the expense of less efficient load balancing when high
workloads occur.

The aspects of this trade-off can be further observed in
Fig. 18 where we examine how a system without a stat-index
performs load balancing compared to one that uses the stat-
index: it takes almost ten times as long to reach a balanced
state. In addition, during the initial period when a lot of data is
migrated, the overhead of the baseline system is two to three
times higher. This is expected because, without knowledge
of the access patterns, much more data has to be reorganized
to achieve an equivalent state of balance compared to a sys-
tem with a stat-index. The response time is affected mostly
during the period of data migration between sites since this is
the time when most of the CPU, I/O, and network resources
are allocated to the data migration process. The duration of
this period is a direct function of the number of elements that
need to be migrated as described in Eq. 5. The computational
time for data selection is negligible when a stat-index is not
used because data is selected arbitrarily. When the stat-index
is used, the computation time is on the order of the height
of the tree. Thus, these experiments concur with our earlier
analysis of the model.

To further understand the benefits of the stat-index, we
monitor the total number of elements that are migrated each
second. The results are displayed in Fig. 19. As expected, the
case of not using a stat-index does not improve noticeably
over time. However, with our storage manager, the system is
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able to quickly reduce the amount of data reorganization by
starting with the “hottest” data first. Figure 19 also gives us
an insight as to how scalable the system is. We see that with
50 sites, more data is migrated in the beginning when there
is a larger pool of underloaded sites to choose from. Thus, a
balanced state is reached much sooner. Based on a linear fit
of the data, the rate with 50 sites is 2.2 times greater than with
25 sites and 13 times grater than 25 sites with no stat-index.

6.4 Throughput analysis

We measure throughput as the number of objects per
second delivered by the system in response to queries or
deletions/insertions. Any time we issue a deletion and/or
insertion, the operation affects a single object. We run experi-
ments with up to 50 machines, which represents our physical
limitations. We analyze how such a system performs under
two scenarios. In the first case, Fig. 20a, we administer only
deletions/insertions to the system. This results in little or no
need for load balancing which reveals the overhead of the
stat-index and the benefit of our query aggregation meth-
ods. Compared to the BASE system (where the stat-index
and query aggregation are turned off), Fig. 20a shows that
a system with the stat-index but without query aggregation
exhibits 8.14% lower throughput. On the other hand, our
full-featured system shows an improvement of a factor of
1.36 over the base configuration. The second scenario is
more realistic as we mix deletions/insertions and spatial que-
ries with the workload characteristics described in Sect. 6.3,
namely ZIPF(z=0.8). As data is fetched from the system, we
observe much higher throughput rates than the previous case.
This is shown by the graph in Fig. 20b. However, this scenario
also shows a significant improvement of the stat-index-only

system over the base case. This improvement in throughput, a
factor of 4.65, is attributed to the fact that the query workloads
generate hot-spots that are efficiently balanced out through
the use of the stat-index. The base system cannot cope with
these hot-spots and becomes bottle-necked by the overloaded
sites. Finally, the addition of our query aggregation methods
improves the throughput of the stat-index-only system by
23%. The experiments we have described so far show that
the small overhead of maintaining a stat-index is compen-
sated for by the performance improvements achieved from
utilizing the information provided by the stat-index.

6.5 Evaluation of query aggregation methods

Similarly to the stat-index, our proposed query aggregation
methods exhibit certain CPU overheads at the trade-off of
reduced I/O operations. Through empirical observation we
show that this overhead is minimal compared to the provided
benefits. We study the performance of the proposed query
aggregation methods under queries of two spatial distribu-
tions: uniform (UNI) and skewed (SKEW), where the skew
is Zipfian with zipf factor 0.8. We shall indicate the K -means
clustering method as K-DISK, the combined K -means with
stat-index lookups as K-SI, and the R∗-tree method as
R*-CLUST. The baseline system processes queries accumu-
lated during the migration process one-at-a-time. As
explained in Sect. 5, the AGGR method traverses the R∗-tree
in a depth-first path, retrieving each R∗-tree node that inter-
sects any of the buffered queries. We aggregate the number
of I/Os performed (Fig. 21) and the net CPU time (Fig. 22)
spent during the processing of query queues through a single
experiment and repeat the experiment with skewed data dis-
tributions. It should be noted that the CPU time for the AGGR
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Fig. 21 Disk I/O performance of query aggregation schemes compared
to a baseline scenario under uniform (UNI) and skewed (SKEW) data
distribution

method is nearly double that of any of the other approaches
while its I/O utilization is about 6% lower than K-SI. We
carry out the experiment with K-DISK, K-SI and R*-CLUST

clustering of accumulated queries in our UltraSPARC COW
configuration. Figure 21 shows the performance of our clus-
tering methods relative to AGGR and the baseline scheme.
Overall, any of the clustering methods can reduce the num-
ber of I/Os for aggregated queries by 28–44% under the UNI
query distribution and by 46–66% under the SKEW query
distribution. K-SI performs the best overall, and provides the
largest gain in difference between the UNI and SKEW distri-
butions. This is the case because skewed data lends itself to
high potential for exploit of cache locality in LFRU caching,
and the stat-index aids in characterizing precisely the access
distributions of the data. This comes at the cost of additional
CPU cycles, where K-DISK does the best. R*-CLUST on the
other hand, spends almost as much CPU time as K-SI, while
generating 8% more I/Os. Furthermore, R*-CLUST does not
perform well under skewed distributions due to the incurred
cost of reinsertions when the data falls in the same leaves.
This shows that a K -means clustering scheme in tandem with
our stat-index can provide significant gains in diminishing
the adverse effects of the migration overhead.

Although AGGR produces the lowest disk utilization, its
equal treatment of all queries can have a negative effect on
the query response time. Namely, all queries will complete at
the same time—when the last query has completed. In Fig. 23
we compare the ART (ART) produced when there are 100–
1,000 buffered queries for AGGR and K-SI. For small number
of queries in the buffer, it is advisable to use AGGR due to
its low disk utilization. However, in our infrastructure, when
there are more than 180 queries in the buffer, K-SI improves
query response time.
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6.6 Load distribution of very large data sets

The experiments performed so far assume a small object size
of 40 bytes. To evaluate the scalability of our proposed stor-
age manager for data sets of larger object sizes, we vary
the object size from 1 to 10 KBytes on clusters of 20 and
40 HP DL360 servers with 2 GBytes of main memory and
2GHz Intel processors.5 All servers are interconnected with
a 1 Gbps switch with 32 Gbps of forwarding capacity. In this
set of experiments, we hold the number of objects fixed at
100 million, effectively creating a data set that varies in size
from 100 GBytes to 1 TByte. The results for the 20 and 40
HP DL360 servers configurations are depicted in Figs. 24
and 25, respectively. The experiments were initialized with a
skewed data distribution such that the standard deviation of
the loads amongst the sites was 25%. We measured the time

5 The 40 HP servers are courtesy of Accepted Ltd, Maroussi, Greece.
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a cluster of 40 HP servers

it took the system to reach standard deviations of 15, 5 and
1%, under the same workloads detailed in the beginning of
this section. Notably, the results show that the load-balancing
time increases at a lower rate than the increase of the data set
size and object size. For example, a 10-fold increase in object
size results in a worst-case load-balancing time increase of a
factor of 5.5. This is the case because data redistribution may
occur simultaneously between multiple sites in the system.
Interestingly, the results also show that the most significant
effect of the load balancing is achieved in the first stages
of the experiments—the first 10% STDEV decrease takes
much less time than for the following 10%. This difference
is particularly distinguished in the smaller cluster of 20 sites.

For extremely large sites, with petabytes of data and (tens
of ) thousands of workstations, we expect our storage man-
ager to scale up very well, especially under the provision of
a strong network infrastructure. A good switch would allow
multiple gigabit per second connections for simultaneous

data transfer between multiple sites [53]. Furthermore, the
results in Figs. 13, 14, 24 and 25 indicate that our storage
manager can perform faster load balancing when there are
more sites available in the cluster.

Lastly, in an environment of varying object sizes, we note
that the stat-index can be adjusted to include the total object-
size in a given subtree. This information could be leveraged
by the data-selection process in order to give preference to
objects/subtrees of smaller size when performing migration.
This extension to the data-selection algorithm is, however,
left for future work, as it requires differentiated algorithmic
treatment when handling deletions in the stat-index.

7 Conclusions and future work

We presented a scalable COW-based storage management
system for update-intensive multidimensional data that per-
forms well even at deletion/insertion rates that may make
general index structures deficient. At the same time, the sys-
tem’s self-tuning abilities make it devoid of expensive admin-
istrative aid and allow it to be self-sustained even under
unpredictable changes of access and update patterns. This
is accomplished through careful but cost-efficient data redis-
tribution while maintaining short response times. These fea-
tures are a direct result of a number of novel techniques that
provide significant performance improvements over previ-
ously proposed architectures:

• dynamic data reorganization achieves load balancing
through identification of “hot” spots in the COW and
applies cost-driven data selection algorithms to migrate
portion of the “hot” data to less loaded sites in the cluster,
• this identification process is accomplished through the use

of a highly tunable, stat-index of condensed access statis-
tics providing for dynamically adaptable levels of granu-
larity,
• query aggregation mechanisms allow for batch handling

of buffered queries and efficient locking operations ensure
the consistency of the indexed data,
• distributed collaboration in the self-tuning decision pro-

cess relieves the central site’s responsibility for load bal-
ancing initiation, while reducing the system’s dependence
on hardware parameters of individual sites.

We incorporate all of the above features into a fully fledged
prototype used to substantiate our analysis and to provide
concrete experimental results on the performance improve-
ments achieved in a highly distributed setting with a data
set size reaching 1 TByte. These results show that our COW-
based system can easily grow on demand and, thus, is suitable
for applications involving very large volumes of frequently
modified data such as those encountered in environments
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with spatio-temporal requirements. Based on the analysis and
experimental results, our LAN-based storage manager dem-
onstrates robust performance benefits in highly dynamic set-
tings.

Our future work aims towards an entirely server-less
architecture in a hierarchy of clusters distributed over wide-
area networks. To deal with the network delays, the stor-
age manager will incorporate efficient synchronization algo-
rithms for data replication. In addition, we plan to provide
support for nearest-neighbor, top-k, and spatial join queries
with the fundamental premise that high update rates would
render conventional versions of these distributed algorithms
inefficient. Our future work will also focus on provisions for
massive streams of spatio-temporal data sets. Furthermore,
it may be of interest to explore the possibility of migrating
not the “hottest” data, but a set of data which is less “hot,”
but is still responsible for a significant amount of the load
at a site. A preliminary version of this work has appeared in
EDBT’04 [27].
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Appendix A

Space requirements for the stat-index

In the context of the R∗-tree, we define “elements,” as the
〈mbr, ptr〉 tuples found in each R∗-tree node. Therefore, for
a fixed fanout f , each node (either data or internal) has f
elements. The number of elements at depth d is equal to the
number of nodes at depth d times the fanout at that depth.
However, the number of nodes at depth d is exactly the num-
ber of elements one level higher:

Elements(d) = Elements(d − 1)× φ(d)

and for d = 0 we have Elements(0) = f . Thus, for
φ(d) = f × ad (where a < 1) we have

Elements(d) = f ×
d∏

k=1

φ(k)

which gives us

Elements(d) = f ×
d∏

k=1

f ak

however, using the identity

lg

(
d∏

k=1

f ak

)
=
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k=1

lg( f ak)

lg

(
d∏

k=1

f ak

)
= d × lg( f )+ lg(a)
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k

lg
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d∏
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f ak
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= lg( f d)+ lg(a)

1
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lg
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d∏
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f ak
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= lg( f da

1
2 d(d+1))

d∏

k=1

f ak = f da
1
2 d(d+1)

and, finally

Elements(d) = f
d∏

k=1

f ak = f d+1a
1
2 d(d+1)

Thus, the total number of elements in a tree of height H
is the summation over the number of elements at each depth:

TotalElements(H) =
H∑

k=0

f k+1a
1
2 k(k+1)
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