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Abstract A constantly growing amount of high-quality information resides
in databases and is guarded behind forms that users fill out and submit. The
Hidden Web comprises all these information sources that conventional web
crawlers are incapable of discovering. In order to excavate and make available
meaningful data from the Hidden Web, previous work has focused on devel-
oping query generation techniques that aim at downloading all the content
of a given Hidden Web site with the minimum cost. However, there are cir-
cumstances where only a specific part of such a site might be of interest. For
example, a politics portal should not have to waste bandwidth or processing
power to retrieve sports articles just because they are residing in databases
also containing documents relevant to politics. In cases like this one, we need
to make the best use of our resources in downloading only the portion of the
Hidden Web site that we are interested in. We investigate how we can build
a focused Hidden Web crawler that can autonomously extract topic-specific
pages from the Hidden Web by searching only the subset that is related to the
corresponding area. In this regard, we present an approach that progresses
iteratively and analyzes the returned results in order to extract terms that
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capture the essence of the topic we are interested in. We propose a number
of different crawling policies and we experimentally evaluate them with data
from four popular sites. Our approach is able to download most of the content
in search in all cases using a significantly smaller number of queries compared
to existing approaches.

Keywords Hidden Web · focused · crawling · topic-sensitive · query selection

1 Introduction

An ever-increasing amount of high-quality information on the Web today is
accessible through Web pages which extract information from data sources
such as databases or content management systems. The access to this infor-
mation is guarded by search interfaces that generate requests. Therefore the
information is hidden from conventional crawlers, which base their operation
upon a static link structure of the Web and are incapable of discovering dy-
namically generated sites. For this reason, these pages are collectively termed
the Hidden Web (or the Deep Web).

The amount of available information in the Hidden Web is believed to be
at least an order of magnitude larger than the currently searchable WWW [6,
12,7,18]. Moreover, it is of higher quality than that available in ordinary web
pages, as it has been carefully reviewed, edited or annotated before being
stored in a database or a content management system. Furthermore, it presents
a high degree of structure and may span a multitude of topics ranging from
sports and politics to different medical treatments of a particular disease [14,
5].

In order to facilitate the discovery of information on the Web, search en-
gines and content-aggregation systems could greatly benefit from approaches
that would allow them to collect and download the content of Hidden Web
sites. They will be able to clean, aggregate and make available data from
several sources. Having information from the Hidden Web in one place, can
be of great benefit to both users, as they can have a one-stop shop for their
information needs, and for the search engines, as they can serve their users
better.

Since the data behind a Hidden Web site are reachable by search engine
crawlers only through dynamically issued queries to its search interface, the
database community has spent much effort investigating ways of digging them
out. In most cases [21,23,2,4,13,27,28] previous work has focused on gen-
erating queries that are able to download all of (or as much as possible) a
given Hidden Web site, with the minimum amount of resources spent, e.g.,
the queries issued. For example, the technique in [21] iteratively issues queries
to Hidden Web sites and can download about 90% of some sites using about
100 queries.

Although such approaches can work well for the cases where we are inter-
ested in doing a comprehensive crawl of a Hidden Web site, there are cases
where we may be interested only in a specific portion of the information buried
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there. For example, a search engine that specializes in traveling may benefit
from picking only news articles that pertain to traveling from a general-purpose
news database. A portal regarding politics may want to identify the politics-
related articles from a blogs database and leave out the sports-related ones.
Or, a mobile application focusing on night-life in San Francisco may want
to pull only the related articles from all the postings on events in the wider
Northern California area.

In this paper, we study the problem of building a topic-sensitive Hidden
Web crawler that can automatically retrieve pages relevant to a particular
topic from a given Hidden Web site. One way to achieve this goal would be to
employ previously-developed techniques [21,23,2] to retrieve the majority of
the Hidden Web sites and then keep only the content that we are interested in.
Since this approach may lead to downloading a number of pages that we are
ultimately not interested in, it may also lead to depletion of server resources,
measured in time, money, bandwidth or even battery life in the case of a mobile
setting. To this end, the goal of our crawler is to retrieve from a Hidden Web
site as many pages related to a given topic as possible with the minimum
amount of resources, whether that is quantified as a number of queries allowed
or the available bandwidth. Our main idea is to issue queries to the Hidden Web
site that are very relevant to the topic that we are interested in, proceeding
in an iterative fashion. We discover terms for our queries from the documents
which we have already crawled, after evaluating their closeness with our topic
in search, and then use a ranking function to select the most promising ones. In
that way, we manage to generate a set of keywords that are able to download
the contents of a Hidden Web sit at a low cost.

In summary, this paper makes the following contributions:

– We formalize the problem of focused Hidden Web crawling, i.e. download-
ing the pages of a Hidden Web site that pertain only to a given topical
area of interest.

– We present an approach for performing focused Hidden Web crawling. Our
key idea is to identify candidate keywords from the crawled documents that
are relevant to the topic of interest using repetitive feedback.

– We propose a number of different evaluation policies that can be used
to decide which of the crawled documents may contain proper candidate
queries that we can issue next. As we show in our experimental section
our policies result in much better production of good keywords than the
baseline approach.

– We experimentally evaluate our approach using the different policies on
four real Hidden Web sites using two different metrics and we showcase
the merits of each of the policies. Our crawler manages to retrieve the
desired content in all tested setups using only a small part of the resources
a generic Hidden Web crawler requires.

The rest of this paper is organized as follows. Section 2 reviews related
work and provides the necessary background. Section 3 formalizes the problem
investigated here and presents the details of our approach. A comprehensive
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set of experiments using a wide dataset and different evaluation metrics is
presented in Section 4 and Section 5 concludes this paper.

2 Related Work

Research on the Hidden Web has emerged during the last decade. In [23],
Raghavan et al. introduced the problem of crawling the Hidden Web with a
generic operation model of a task-specific Hidden Web crawler and a prototype
implementation of this model, namely HiWE (Hidden Web Exposer). Their
efforts focus mostly in overcoming the challenge of automatically parsing, pro-
cessing and interacting with HTML forms. The visual layout of form elements,
such as the distance between two input elements, is one of the methods used.
Their approach requires human assistance in order to ensure the crawler issues
queries relevant to the particular task, and they only consider search interfaces
with multiple attributes forms. In [5], Bergholz et al. perform syntactic analy-
sis to HTML forms in their approach of automatically identifying Hidden Web
resources. Their crawler is domain-specific and is initialized with pre-classified
documents and relevant keywords, i.e., they do not deal with the issue of au-
tomatic form filling. DeepBot [1] is very similar to HiWE. The visual layout
is also used here, along with text similarity heuristics, so that Hidden Web
site interfaces can be associated with domains and queries can then be exe-
cuted on them. To overcome the complexities related to the client-side, such as
JavaScript code and sessions, DeepBot uses Microsoft Internet Explorer’s API.
The queries issued are not produced automatically. After associating an inter-
face with a domain, using the preconfigured domain definitions, the crawler
begins a specific data collection task utilizing its corresponding predefined in-
put terms. In [30], Zhang and Chang notice that query forms tend to reveal a
“concerted structure”. They hypothesize the existence of a hidden syntax that
query interfaces follow, and build an ambiguous grammar and a best-effort
parser to cope with it. Barbosa and Freire propose FFC [3] and ACHE [4],
two frameworks aiming to automate the process of discovering Hidden Web en-
try points from which templates can then be generated. The latter, attempts
to overcome two limitations of the former, which retrieved highly heteroge-
neous forms and required significant effort for tuning and training. Our work
assumes that the entry point of a given Hidden Web site has already been
discovered.

Google’s approach on surfacing the Hidden Web is outlined in [18]. Good
surfacing candidates are elected after probing forms and examining if the re-
sults retrieved are sufficiently distinct from each other. A comparison of their
algorithm, named ISIT, with approaches that generate URLs for each entry
in the Cartesian product of all input values of a form, or combine a smaller
set of the available inputs - since forms often tend to be large - is provided,
that shows that the proposed approach is highly effective. In order to generate
input values tf/idf scores are used. The problem of automatically producing
meaningful queries that can return large fractions of a document collection has
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been examined numerous times. Barbosa and Freire [2] suggested that terms
present in a document collection will be appropriate candidates for submis-
sion to the corresponding interface. Thus, they sample the collection to select
a set of high-frequency keywords and use those to construct queries with high
coverage. Among the issues they study is the usefulness of stop words in their
queries, which tend to be extremely effective in some of the document col-
lections examined but are ignored in others. In [21], a theoretical framework
for analyzing the process of generating queries for a document collections as
well as examining the obtained result is provided. In addition, the framework
is applied to the problem of Hidden Web crawling and the efficiency of the
approach is quantified. Three policies, namely random, generic-frequency and
adaptive are examined. The first two use a set of words from a 5.5-million-
Web-page corpus whereas the last one discovers new terms by utilizing the
result pages. The results indicate that the adaptive policy, which is the most
interesting one due to its automatic nature, leads to more effective crawling.
Wu et al. [27] suggest that the goal of query selection algorithms is to find
a Weighted Minimum Dominating Set in the corresponding attribute-value
graph. Since this is a well known NP-hard problem, they propose a greedy
link-based query selection method that traverses the database graph by fol-
lowing some ”hub” nodes. Their approach can only function in the context
of highly structured document collections, such as DBLP 1 and IMDB 2 that
are used in their experimental setup. In [17] and later on in [26], Lu et al.
incorporate sampling methods in an effort to select appropriate keywords and
retrieve the entire database. They sample a database and then select terms
that are efficient for this sampled part, using greedy methods. Their results
suggest that the selected queries are effective for the full database as well.
Our work differs from these efforts as we retrieve only portions of a Hidden
Web site that are relevant to a specific topic, instead of simply maximizing
the coverage of the underlying web database.

Ipeirotis et al. [14] propose a technique of classifying databases through
probing. They train a rule-based document classifier using a set of preclassi-
fied documents, count the number of matches the database achieves for each
query they issue, and use this number along with the classifier to categorize
the database. By following this approach, no retrieval of documents from the
database at all is needed for the categorization. In a later work [13], Ipeirotis
and Gravano create content summaries of web-accessible text databases. They
use focused probing to query the database, retrieve a sample and eventually
categorize it. They also present an approach of locating the most topically-
specific databases for a given query. Their results indicate that the proposed
techniques offer very effective content-summary construction and database se-
lection. This work is however more relevant to generic Hidden Web crawling,
since the categorization they perform is for the whole database. Yang et al. [29],
introduce the idea of using a “query document”, from which phrases regarding

1 www.informatik.uni-trier.de/~ley/db/
2 www.imdb.com/
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a certain topic can be extracted, in order to retrieve relevant content from a
database. These phrases are complemented with extra information with the
use of external resources such as Wikipedia. In order to rank candidate phrases
they employ a td/idf based scoring. Their approach targets the retrieval of a
small number of relevant documents of high quality information as opposed to
gathering the thematically close documents in their entirety.

Chakrabarti et al. [8] study ways to selectively search for pages on a spe-
cific set of topics that represent a relatively narrow segment of the Web. A
comprehensive process for discovering topic-specific resources from the Web
is presented. A classifier and a distiller are used for the evaluation of crawled
pages based on their hypertext. The former learns to recognize relevance from
examples embedded in a topic taxonomy whereas the latter identifies topical
vantage points on the Web. However, their methodology is only applicable
on the publicly indexable web, since hyperlinks are not used at all on the
Hidden Web. Since then, many similar efforts have been proposed, but again
only for the surface web. Diligenti et al. [9] attempt to improve the efficiency
with which content related to a certain category can be found, by modeling
the links and the content of documents that are closely linked with target
pages. In [20], associations between web pages and predefined categories are
identified by using term-classification rules compiled by machine learning al-
gorithms. These approaches however, deal with topic-sensitive crawling of the
publicly indexable Web, whereas we target the Hidden Web.

3 Topic-sensitive Hidden Web crawling

At a high level, the purpose of a generic focused (or topic-sensitive) web
crawler [8] is to collect pages from the Web that pertain to a given topic.
To do so, an evaluation of the content of each downloaded page during crawl-
ing is necessary, in order to decide whether the page is relevant to a particular
topic or not. In the former case, its out-links are possibly good candidates
whereas in the latter, its descendants will most likely be a waste of resources.
Hence, a topic-sensitive crawler aims at examining as small of a subset of the
total search space as possible, by discarding pages irrelevant to the topic of
the search.

An illustration of this process for the publicly indexable Web is provided
in Figure 1. Colored boxes represent pages with content relevant to our topic
of interest, whereas white boxes represent irrelevant ones. To maximize its
efficiency and use the available resources wisely, a topic-sensitive crawler has
to follow only those paths of the figure that lead to colored boxes.

The case is very different however for the Hidden Web and its dynamically
generated sites, so the method described in [8] cannot be employed. In order
to retrieve the content of such a site, one has to issue queries to its entry point,
i.e., a search interface with one or more fields.

To access pages from a Hidden Web site we typically need to apply the
following steps:
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Fig. 1: Topic-sensitive crawling in the publicly indexable Web.

1. First, submit a query through the interface provided by the site, that char-
acterizes what we want to locate. The most common search interface is
a text search box, such as the one illustrated in Figure 2a. This is the
interface a site provides to its users and enables them to enter a search
term and perform a full text-search in its underlying index. Other sites
may choose to offer more advanced search capabilities using a structured
query interface with a subset of the content attributes, e.g., title, author
and date.

2. Then, we receive a result index page, that contains links and possibly
additional information of the pages that matched the submitted query.
The results of a query submitted in this site are illustrated in Figure 2c.
As it is shown, the results usually are sorted in order of relevance with
the term in search, and are also paginated in an effort to minimize the
bandwidth used for each request the server accepts.

3. Finally, after identifying a promising page in the results, we are able to
follow the link and visit the actual Web page.

Therefore, it is evident that crawling the Hidden Web requires the submission
of queries that will surface the dynamically generated content of each site.
Our approach aims at crawling in a topic-sensitive manner so we must first
elaborate on what constitutes a “topic”, since the definition may be different
depending on the application at hand. If we are interested in loosely collecting
Web pages concerning football for instance, then any page that contains the
words “football”, “quarterback” and “touchdown” may be relevant to the topic.
Alternatively, in cases when we are interested in discerning more accurately
between topics, e.g., external affairs vs. internal politics, a more elaborate
mechanism using a category network may be used [25].

Our work does not depend on how exactly we detect whether a particular
page belongs to a given topic. Instead, we make two assumptions regarding the
topic definition that allow for a variety of different topic detection techniques
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(a)

(b)

(c)

Fig. 2: The search interface of a Hidden Web site (a), a result page for the
query ’Barack’ (b), and a relevant page from the results (c).
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to be employed. First, we generally assume that a topic can be described by
a distribution of keywords. This is essentially the same assumption that most
text classifiers are based on, and other topic-sensitive crawlers adopt [29].
Second, we assume that not all of the keywords in the distribution are known
beforehand, as in this case the problem becomes trivial since the crawler would
simply have to iterate over all of the relevant keywords. We should note that
not knowing all of the keywords is the typical practical scenario. In our football
example above, we may know that “quarterback” or “touchdown” are good
initial keywords, but we may not necessarily know that “huddle” or “fumble”
are also good keywords for the crawler to use. In our work, we typically provide
the crawler with a small set of keywords that are relevant to begin with, and
the crawler discovers more keywords to use as it progresses through the Hidden
Web site, by choosing to feed off of pages that pertain to the topic in search
and discard those that do not.

3.1 A Topic-sensitive Hidden Web crawling approach

Due to the dynamically generated nature of the Hidden Web content, the task
of a corresponding crawler is to automatically submit queries to a site and
retrieve pages by following the links included in the results. One of the biggest
challenges in implementing such a crawler is that we need to pick the most
appropriate terms that will retrieve the pages pertaining to the desired topic
in the most effective way. If the crawler can pick terms that are very well-
suited to the topic we are interested in, it will also be able to retrieve pages
that belong to the topic at hand. If instead, the crawler issues queries with
irrelevant terms, it will only manage to waste processing nodes and bandwidth,
downloading pages that are of no interest to users. Moreover, this potentially
will degrade the quality of the search engine that employs the crawler.

Figure 3 presents a Hidden Web site as a set of pages S which constitute
the crawler’s search space. These pages might cover a vast area of topics,
most of which may possibly be irrelevant to our search. We represent pages
of different topics using different shapes and colors in Figure 3. The results of
each potential query qi can be considered as a subset of S, which contains the
pages that the site would produce as a result.

In practice, we are only interested in downloading pages relevant to a spe-
cific topic, e.g., the squares in Figure 3).
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Fig. 3: Representing a Hidden Web site as a set.

Algorithm 1 A Topic-Sensitive Hidden-Web Crawler
WordCollection = di; (1)

while (available resources) do
// extract the terms and build a WordCollection
if (cnt + + mod N) == 0 then

T(WordCollection) = ExtractTerms(WorldCollection); (2)
end if
// select a term to send to the site
qi = selectTerm(WordCollection); (3)
// send query and acquire result index page
R(qi) = submitAndDownload(qi); (4)
// download and evaluate the pages of interest
update(WordCollection); (5)

end while

Algorithm 1 outlines our approach for a Topic-Sensitive Hidden Web crawler.
In order to bootstrap the algorithm, we consider an initial description of the
topic, which can either be one or more terms, or one or more documents that
are relevant to the topic. This occurs in the first step of the algorithm, where
the Word Collection is initialized with an exemplary document, di. The next
step (2) extracts terms from the Word Collection, and is issued periodically,
in order to reduce the number of required computations. The extraction is
done by calculating the tf/idf weight for every term of the collection. The role
of the Word Collection in our approach is explained in detail in Section 3.2.
Step (3) picks the best of the terms that were extracted in the previous step
and has not been used this far, while Step (4) uses this term to issue a query
and retrieves the result index page. Finally, Step (5) downloads the Hidden
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Web pages that were included in the results and had not been previously
downloaded. Moreover, it evaluates the contents of the results using one of
the policies (pi) presented in this work. The evaluation process of this step is
responsible for the maintenance of the collection of words used for keyword
extraction and thus, it depends heavily on the policy that is to be followed.
The different policies are explained in Section 3.3. Depending on our limita-
tions regarding time, storage or bandwidth, we can restrict the number of the
algorithm’s iterations. For example, we can stop its execution after submit-
ting a fixed number of queries or reaching a particular amount of retrieved
documents.

3.2 Word Collection

In this section we outline how we initialize and maintain the Word Collection
that serves as a pool of candidate queries for our algorithm.

This pool initially comprises the terms of a “query document” di which
serves as an example of the topical area we are interested. More thoroughly,
this is a document which consists of text that is close to the topic in search
and essentially, describes this topic. Thus, if for instance we wanted to crawl
for sports articles from a news site, we could provide the algorithm with a
“query document” (or snippet, or a small set of keywords) that would consist
of a few sport-related articles.

However, the Word Collection cannot remain static during the execution
of the algorithm for a variety of reasons. First, the input document given to
the algorithm, may not be enough for the extraction of all (or enough) terms
that are needed for the retrieval of a sufficient amount of Web Pages. No
matter how good that initial document may be in capturing the essence of
the topic in search, it can only manage to provide a limited number of terms.
Second, the initial Word Collection may be too specific, in a way that the
terms extracted would not be general enough to capture the whole topical
area of the document. For instance, if those sport-related articles mentioned
earlier, were taken from a WNBA fan-site, the terms extracted from the Word
Collection would retrieve results concerning women’s sports and basketball. We
are interested in matching the input document with a broad topic, in order to
retrieve all the related Web Pages. Therefore, it is necessary to broaden our
Word Collection during the execution of our algorithm. Finally, to successfully
retrieve the maximum amount of Web Pages from a Hidden Web site, it is
essential that we adapt to its terminology. For instance, we cannot retrieve
but a subset of Web sites that index multilingual content if all the words in
our Word Collection are in English.

It becomes clear that for effective Topic-Sensitive Hidden Web Crawling,
the pool of words that is used for term extraction must be enriched contin-
uously and adapt to the site in search. To address this issue, we exploit the
contents of the results as potential parts of the Word Collection. Each result
page is evaluated using one of the policies described in Section 3.3 and the
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contents of the ones relevant to the topic in search are added to the Word
Collection. In this regard, the Word Collection gets enriched with plenty of
appropriate terms that can be issued as queries. Furthermore, since the Word
Collection is updated with content directly from the site in search, it can pro-
vide the algorithm with terms that not only are relevant to a specific topic,
but have a higher significance for that particular site.

In order to select the most appropriate keywords from the terms of the
Word Collection, we use the tf/idf term weighting system, which addresses
the issue of measuring the general importance of a term in a collection and
allows us to distinguish those terms that are characteristic of our topic in
search. A rare term that occurs frequently in a document is often more useful
than a common term which appears with similar frequency in the document.
This property is utilized by tf/idf both accurately as well as effectively [24].
Suppose a term t occurs nt,p times in a web page p which has a total of Np

terms. Then the term frequency (tf ) of t in this page is tf(t, p) =
nt,p

Np
. Now,

suppose that in a total of D web pages, term t occurs in dt of them. The
inverse document frequency (idf ) of t is idf(t) = log( D

dw
). The tf/idf weight is

given by the product of these two measures: tf/idf(w, p) = tf(w, p)× idf(w).

Figure 4 illustrates how the World Collection gets enriched during the exe-
cution of our approach. The words that already exist there are sorted according
to their tf/idf score, and the best one not used so far is picked (debate) for
submission. By issuing a query with this term, we retrieve new results con-
taining words that are possibly helpful for the remaining of the process. After
evaluating the retrieved content, some words that are likely to be of assistance
are appended to the Word Collection (presidential), while some that are prob-
ably irrelevant are discarded (fox). The decision is based on one of the result
evaluation policies that are detailed in Section 3.3.

3.3 Result evaluation policies

In this section we provide the details of the various evaluation policies that
we employ in our work. These policies are used in order to decide if each page
contained in the results is relevant to the topic in search, and therefore will be
helpful later. The content of the pages that are considered in-topic are added
to the Word Collection, and consequently take part in the keyword selection
process.

We examine the following policies:

– Perfect: We use the categorization information directly from the site in
search. Each document of the web sites that are used in our experimental
evaluation is classified into topics, so this policy takes advantage of this
knowledge. Of course such information is not available in most cases. In
our work, we will use this policy as a benchmark to determine how well the
rest of the policies can do relative to this one that has perfect information
regarding the topic that every result document belongs to.
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Fig. 4: The process of maintaining and enriching the Word Collection.

– Do-nothing: We accept all of the returned pages as in-topic. This policy
updates the Word Collection with the contents of every page the crawler
manages to discover. Since the first few terms are extracted from the input
document, it is expected that the first queries which will be submitted
will be meaningful and so the corresponding result pages will have a high
chance of being in-topic. However, since the results are never filtered it is
expected that a lot of out-of-topic content will find its way to the Word
Collection and worsen the term selection process significantly. Thus, this
policy can also be used as a comparison point for the other policies.

– Classifier based policies: This family of policies examines the effects the
presence of classifier has to the crawling process. The classifier needs to go
through a training phase before it can be used. We feed the classifier with
samples of documents belonging to a certain topic and then are able to test
if other documents should be classified under this topic or not. Therefore,
it is clear that this method can only be used for topics that the classifier is
already trained for. Obviously, the better the classifier is trained, the less
erroneous pages will be added to the Word Collection. We examine the
effect the presence of three different type of classifiers have:
– NaiveBayes: The NaiveBayes classifier assumes that all attributes

of a data set are independent of each other. This assumption, which
in most cases is false, does not prevent the classifier from achieving
high classification accuracy, while it is also ideal for domains with a
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large number of attributes, since it simplifies the learning phase. Text
classification is such a domain and simple Bayesian classifiers have been
proven to be surprisingly successful when classifying text [10].

– SMO: Sequential Minimal Optimization (SMO) is an algorithm used
for training Support Vector Machines (SVMs), whose solution involves a
large quadratic programming (QP) optimization problem. SMO breaks
this problem into a series of smallest QP problems which are solved
analytically and manages to speed up and simplify the training of an
SVM [22].

– J48: This policy creates a C4.5 decision tree using J48, an open source
Java implementation in the weka data mining tool [11]. Decision tree
algorithms use a training set to build tree data structures that can
be used to classify new cases. Each internal node of the tree structure
contains a test based on one of the attributes of the set, the result of
which determines which branch should be followed. C4.5 provides high
classification accuracy and outperforms other main-memory algorithms
as far as speed is concerned [16].

– CosineSimilarity: We examine the cosine similarity of every result page
with the initial exemplary document and accept only a small percentage
of the closest ones. In that way, we ensure that the pool of words will be
enriched only with terms closely related to the topic defined by our input.
The cosine similarity is:

similarity(A,B) = cos(θ) =
A ∗B

||A|| ∗ ||B||

where A and B are the tf/idf vectors of the two documents that are com-
pared. This policy is clearly superior to the NaiveBayes policy in terms
of adaptability, since it requires no training. However, since this method
depends heavily on the query document, it is important to examine the
effect of the quality of the latter in its decision making.

4 Experimental Evaluation

We start our experimental evaluation by presenting the datasets used in our
experiments and the choices we made regarding the values of the crawler pa-
rameters. Then, we proceed with an extensive set of experiments on the perfor-
mance of the proposed policies, discussed in Section 3.3. We first examine the
effectiveness of the crawler using the total number of queries issued as a met-
ric. Next, we consider the total pages downloaded during the crawling process,
both relevant and irrelevant, as an evaluation criterion. Then, we investigate
the behavior of the crawler when utilizing only specific parts of results to gen-
erate new queries. In Section 4.5, we present the actual queries issued during
crawling and the precision achieved. After that, we present results for all of
our policies for a variety of topics to evaluate them without domain bias. Next,
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we test the effect the size of the “query document” has on the CosineSimilar-
ity policy and examine if any improvement can be achieved by exploiting the
NOT operator. Finally, we compare our results with that of a generic Hidden
Web crawler.

4.1 Datasets used and calibration of key crawler parameters

In order to evaluate our method we used a variety of large human-generated
datasets which are listed below:

– The Open Directory Project (dmoz ) 3, a multilingual open content direc-
tory of World Wide Web links. The listings of the site are grouped into
categories (which may include various subcategories) depending on their
topic. Dmoz indexes approximately 5 million links that cover a broad area
of topics. Each link is accompanied with the site’s title, a brief summary
and its categorization. The links are searchable through a keyword-search
interface and dmoz enforces an upper limit on the number of returned
results (10, 000 results). We considered the titles and summaries of each
indexed link of the dmoz website as documents.

– The public non-beta Stack Exchange sites 4 contents: Stack Exchange is a
group of sites covering many different fields that offer the opportunity to
ask and answer questions related to the topic each site covers. The Stack
Exchange sites contain a total of 391, 522 questions over twenty different
topics. In order to further examine the performance of our algorithms, we
enforced an upper limit of 1, 000 results per query for this dataset. We con-
sidered the titles and questions of the Stack Exchange sites as documents.

– The New York Times Annotated Corpus 5 which contains over 1.8 million
articles written and published by the New York Times between January
1, 1987 and June 19, 2007. These articles are manually summarized and
tagged by library scientists. The tags applied concern the topic of the
article - among other things - and use a controlled vocabulary that is
applied consistently across articles. The titles of each article along with its
synopsis was used in our experimental setup. Since each article may have
more than one tags concerning its topic, we consider an article belongs to
all of them. For this dataset we imposed a limit of 10, 000 returned results
per query.

– A collection of Geo-coded Tweets 6. We used over 28 million of the most
recent tweets of the dataset and since there was no topical taxonomy pro-
vided, we considered each tweet’s country of origin as its topic. In order to
enhance the process of discovering the country of origin and examine the

3 http://www.dmoz.org
4 http://stackexchange.com/
5 The New York Times Annotated Corpus, Linguistic Data Consortium, Philadelphia,

http://catalog.ldc.upenn.edu/LDC2008T19
6 http://istc-bigdata.org/index.php/our-research-data-sets/
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behavior of our crawler when utilizing structured information, we consid-
ered only terms included in the ’city’ field of each document as potential
submission terms. The tweet itself, its sender and its city of origin were con-
sidered as documents and we did not impose a limit on the return results
per query.

For each data collection studied here, we used an initial exemplary docu-
ment to serve as a representative of the topic in search. In the following, we
used random documents from the respective topics to serve as “query docu-
ments”. We do not report on how selecting a different initial document affects
performance as we experimentally confirmed the findings of [21], that the se-
lection of the first document does not significantly affect the returned results.
However, we do study how the size of initial query documents affects perfor-
mance in Section 4.7.

Furthermore, the presence of a text corpus is necessary, in order to perform
the tf/idf measurements and extract the best keywords for each topic. For this
purpose we used random documents from the four aforementioned datasets.

We used Apache Lucene [19] to index and query over the datasets with the
Standard Analyzer and the default stop words filter.

For our experiments, we set variable N of Algorithm 1 to 7. That is, we
update the Word Collection of Algorithm 1 every 7 queries. We experimentally
tested different values for N and we found that 7 is essentially the breaking
point after which we would observe a significant degradation in terms of the
performance of our algorithms. Additionally, during the operation of the Cosi-
neSimilarity policy, we kept the top 1% of the returned documents, after the
submission of every query, for future use in the term-extraction process. We
opted for this specific 1% in order to hold approximately the same number of
returned documents as the other competing policies.

4.2 Using number of queries as a metric

In this section, we report results for the topic Sports of dmoz and for the topic
Wordpress of Stack Exchange for which we measured the amount of individual
queries it took to download pages from.

For the topic Sports, dmoz contains a total of 90, 693 pages. As Figure 5
shows, all six policies behaved identically for the first seven queries, where
only the initial document is being used for keyword extraction. Do-nothing ’s
performance was enormously affected after those first few queries, when the
Word Collection started to utilize all the returned results for enrichment, since
as the name of the policy implies, no action was taken to filter them. As a
consequence, Do-nothing performed badly overall, as expected. Policies Perfect
and NaiveBayes behaved quite similarly, with the first one managing to retrieve
a slightly bigger percentage of Sports-related documents. This can be explained
from the fact that the two policies led to a high percentage of common queries
issued (28%). After 210 queries, the Perfect policy retrieved 86.43% of the total
relevant documents, while the NaiveBayes policy managed to collect 83.42%
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of them. The other two classifier based policies, namely smo and j48 performed
slightly worse.

The CosineSimilarity policy managed to outperform all five other policies
by retrieving 89.66% of the documents categorized under the Topic Sports
after issuing about 180 queries. 19% of the terms used for query submission
were common with the Perfect policy and 20% of them were common with the
NaiveBayes policy. This implies that CosineSimilarity did a better exploration
of the keyword space compared to the other policies and it found keywords
leading to more relevant documents earlier, compared to the Perfect policy
which took about 220 queries to achieve the same performance.

We also retrieved all the documents of the Stack Exchange sites relevant
to the Wordpress publishing platform. There was a total of 17, 793 questions
categorized under this topic. The results are illustrated in figure 6. After 564
queries, the Perfect policy retrieved 85% of the total relevant documents, the
smo 82%, the NaiveBayes 81%, and the j48 and CosineSimilarity policies
managed to collect 74% of them. The Do-nothing policy behaved well below
those numbers again. The significant amount of more queries needed for the
retrieval of documents from this dataset is explained by the much smaller
upper limit of returned documents per query we enforced in this dataset.

4.3 Using pages downloaded as a metric

In this section we report results for the topic US Election Campaign 2004 of
the NYT Corpus for which we measured the amount of total pages down-
loaded, i.e., both relevant and irrelevant, during the crawling process. This
topic contains a total of 36, 388 articles that are related to the 2004 Ameri-
can Presidential Elections. The results are presented in Figure 7 where it is
shown that retrieving 70% of the documents releated to the 2004 campaign
required the download of 277, 146, 462, 262, and 473, 195 pages for the policies
Perfect, CosineSimilarity and j48, respectively. The other two classifier-based
policies behaved a little worse with 493, 649 pages for smo and 573, 439 for
NaiveBayes. Do-Nothing collected half of the relevant documents only after
downloading 524, 857 pages totally.

4.4 Utilizing specific attributes

Here, we report results for crawling over the Geo-coded Tweets with a query
document consisted entirely of tweets from France. For this dataset, we fol-
lowed an alternative approach and utilized only specific parts of the results,
i.e., we enriched that Word Collection using the values of the attribute ’city’.
The results are presented in Figure 8. We can see that after 350 queries all five
policies that evaluate the results managed to retrieve between 74% and 77% of
the relevant pages. The reason for almost identical behavior of our policies lies
in the fact that only the part of the results concerning the city of the retrieved
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Fig. 7: Results of the six policies for topic Campaign-2004 of NYT Corpus

tweet was added to the Word Collection. This led to very similar sets of terms
that were selected for all policies, which naturally resulted to practically exact
performance.

4.5 Queries issued and topic precision

In order to investigate more closely the performance of our policies, we further
examined the actual queries issued when using each one of them. We present
a sample of queries for each policy together with the precision achieved, i.e.,
the fraction of in-topic documents,in Figure 9.

We should note is that there is a lot of overlap in the results of each term.
Although every policy manages to discover meaningful terms that return a
good number of results, a large portion of them has been already discovered
by previous queries. Additionally, the Do-nothing policy is the most successful
in finding “popular” terms. Most of the terms illustrated in Figure 9 returned
the maximum of 10, 000 results, while the average after 210 queries was 8, 650.
This is due to the fact that the Word Collection of this policy was eventually
enriched with terms from every possible topic of the Open Directory Project.
The NaiveBayes policy was second with 7, 927, the Perfect policy third with
7, 530, the smo policy fourth with 7, 488, the CosineSimilarity policy fifth with
7, 426, and the j48 policy last with 7, 401 results per query.

Using the dmoz categorization information for every downloaded docu-
ment, we also measured the precision of the different policies as shown in
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Figure 9. Overall, the Perfect policy was the most successful one since it is
allowed to use the class information. Of course, in practice such information
is not available and thus this policy serves as a benchmark in terms of classi-
fication precision.

The Do-nothing policy chooses to accept every document it downloads as
relevant to the topic in search, so its errors are equal to the total number of
links retrieved minus the links that were actually in-topic.

The rest of the policies depend on the quality of the results that are used
for the Word Collection enrichment, and thus the number of evaluation errors
they commit. However, the impact of all errors is not the same for our algo-
rithm. An in-topic document that is classified as irrelevant is not added to the
Word Collection and does not affect the term extraction process. On the other
hand, an irrelevant document that “sneaks” its way into the Word Collection,
may cause the selection of inappropriate terms for query submission. For the
NaiveBayes policy 45% of the documents added to the Word Collection, were
actually categorized under another topic in the dmoz classification taxonomy.
The same stands for 48% of the ones added with the j48 policy, and 31% of
the ones added with the smo policy.

Finally, the CosineSimilarity used mostly documents belonging to topics
different than Sports (72.9%). However, this did not affect the policy in a
negative way. The retrieved documents, despite this fact, had very high cosine
similarities with the query document, so naturally, the Word Collection was
not altered in an undesirable way. As a result, the CosineSimilarity policy
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No Term Precision

1 results 42.83%
2 statistics 43.61%
3 roster 71.36%
10 men 27.26%
15 scores 27.89%
20 players 30.62%
25 hockey 41.85%
30 tennis 7.43%
40 rugby 14.43%
60 sport 3.82%
100 competition 12.28%

(a) Perfect

Term Precision

results 42.83%
statistics 43.61%

roster 71.36%
schedules 10.31%

church 0.00%
coaching 17.89%

methodist 0.00%
beliefs 10.11%
stellt 0.00%
bietet 0.00%
nach 0.00%

(b) Do-nothing

No Term Precision

1 results 42.83%
2 statistics 43.61%
3 roster 71.36%
10 schedules 10.31%
15 standings 67.96%
20 baseball 38.29%
25 records 8.38%
30 membership 1.52%
40 county 0.39%
60 fc 5.45%
100 standing 26.66%

(c) NaiveBayes

Term Precision

results 42.83%
statistics 43.61%

roster 71.36%
basketball 46.36%

scores 43.09%
records 31.96%

field 38.15%
race 29.50%

squad 26.95%
swimming 20.31%
division 13.17%

(d) smo

No Term Precision

1 results 42.83%
2 statistics 43.61%
3 roster 71.36%
10 player 30.54%
15 coaching 21.86%
20 sports 17.59%
25 players 28.98%
30 calendar 23.13%
40 united 19.24%
60 junior 16.64%
100 standing 11.57%

(e) j48

Term Precision

results 42.83%
statistics 43.61%

roster 71.36%
tables 5.61%
player 24.36%
players 33.70%
hockey 44.08%
baseball 32.20%

race 14.56%
conference 1.73%
competitive 11.61%

(f) CosineSimilarity

Fig. 9: Terms issued when using the different policies.

outperformed the other policies in terms of recall as we showed in the previous
section.
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4.6 Comparison of policies under different topics of dmoz

In this section, we present the performance of the policies Perfect, NaiveBayes
and CosineSimilarity over five different topical areas belonging to the classi-
fication taxonomy dmoz uses. This allows us to examine the performance of
our crawler when retrieving documents belonging to both well and ill-defined
topics of the same Hidden Web site. We used the following categories: Comput-
ers (103, 336 documents), Recreation (91, 931 documents), Shopping (87, 507
documents), Society (218, 857 documents) and Sports (90, 639 documents).

Figure 10 illustrates the behavior of our approach for these five differ-
ent categories of dmoz using the Perfect policy. Topics computers and sports
proved to be the easiest to retrieve while society needed a significantly bigger
amount of queries to surpass the 80% barrier. This is due to the fact that
society is a much larger category compared to the rest. More specifically, topic
Computers returned 92.17% of the total documents after 210 queries. Topics
Sports and Recreation discovered 86.43% and 80.76%, respectively, with the
same amount of queries. Finally for the topics Shopping and Society the policy
collected 77.82% and 62.06%, respectively.

The results for the topics in discussion using the NaiveBayes policy are
presented in Figure 11. This policy is performing slightly lower than Perfect for
each of the five topics. The ordering of the topics is, however, a little different,
since the NaiveBayes policy behaved very poorly for the topic Recreation,
which was ranked fourth below the topic Shopping. More explicitly, after 210
queries, topics Computers collected 89.81% of the documents, topic Sports
83.42%, topic Shopping 73.34%, topic Recreation 70.86% and topic Society
54.86%. This is due to the fact that Recreation is a much broader topic than the
rest and thus Perfect can benefit more by knowing the topic of the documents
beforehand. The other two classifier-based approaches, namely smo and j48,
produced slightly and significantly worse results than NaiveBayes, respectively.
Figures 12 and 13 show their performance respectively.

Figure 14 depicts the results for the CosineSimilarity policy. Topics Com-
puters and Sports were again first with 91.84% and 89.66%, respectively, after
issuing 210 queries. Topic Recreation collected 83.55% of the related docu-
ments, while topics Shopping and Society returned 79.02% and 62.97%, re-
spectively, after the same amount of queries. The CosineSimilarity policy per-
formed slightly better than the Perfect policy in 4 of the 5 topics examined,
Computers being the only exception. Additionally, it out-scored the classifier
based policies for every one of the five different topics. Topic Recreation be-
haved better than Shopping after the 87th query, as it did with the Perfect
policy after the 162nd query.

4.7 Impact of query document size

The CosineSimilarity policy depends heavily on the input document, since it
does not use it to only extract the first few queries to be issued, but to evaluate
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Fig. 10: Perfect policy on different topics of dmoz
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Fig. 12: smo policy on different topics of dmoz
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Fig. 14: CosineSimilarity policy on different topics of dmoz

the result documents retrieved as well. To this end, we examine the impact of
the size of the initial document on the behavior of this policy. The other three
policies use the initial document only for the first step of the process, so they
are not affected as much by the size of the initial document.

Figure 15 illustrates the results for CosineSimilarity under three differ-
ent sized “query documents”, while crawling for Computer related documents
from dmoz. We see that as the size limits the performance worsens. However,
even for a very small “query document” we can still get very good results.
More specifically, using an input document that consists of 1, 000 titles and
summaries of links indexed by dmoz, the CosineSimilarity policy retrieved
91.14% of the relevant documents after 190 queries. In comparison, with only
100 titles and summaries, the policy discovered 87.77% of the documents with
the same number of queries. With an input document of 50 titles and sum-
maries, it retrieved a sizeable 86.67% of them. Therefore, the CosineSimilarity
policy behaves fairly good even with relatively small “query documents”.

4.8 Impact of the NOT operator

The upper limit that dmoz enforces on the number of returned results plays
a significant role in the performance of our approach. We can only retrieve a
subset of the documents that a query matches and have to submit new queries
to retrieve the rest of them. In order to deal with this issue, we examined
the use of the NOT operator as part of our queries. For every term that has
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returned a number of documents smaller than the upper limit, we can be sure
that we have retrieved every document that contains it. Thus, by excluding
this term from all future submissions, using the NOT operator, we can avoid
downloading the same content and retrieve results that otherwise would be
unreachable due to the maximum results limitation.

It is clear however, that we cannot apply the same policy for terms that
have returned the maximum number of links, because in that way we would
exclude from our search the rest of their matching documents. Since a lot of
the terms our policies generate do actually reach that limit, it was expected
that the impact of the NOT operator would not be significant. We tested this
approach with the Perfect and CosineSimilarity policies for the topic Sports
of dmoz and noticed little improvement for the former and very limited for
the latter. The results are illustrated in Figure 16

4.9 A high-level comparison to generic Hidden Web crawling

In order to demonstrate the effectiveness of our approach, we compare our
results with that of generic Hidden Web crawler. In Section 4.6, we presented
the results our policies had over five different topics of dmoz. The CosineS-
imilarity policy, was able to download 70% of the content relevant to Sports
and Computers after 52 and 60 submitted queries respectively. The rest of
our policies behaved quite similarly. In [21], an experiment on crawling all of
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larity on topic Sports of dmoz

the dmoz site’s documents is presented. It takes about 700 queries to retrieve
a little over 70% of its contents, and after that one would have to analyze
the pages to identify which ones belong to the topic at hand. Therefore, it
is clear that by generating those queries that are likely to retrieve pages that
pertain to a certain topic, we managed to reduce the resources needed to crawl
a Hidden Web site in a focused manner.

5 Conclusion and Future Work

We examined how we can build a focused Hidden Web crawler that, given a
query document, can retrieve effectively those documents that are relevant to
a certain topic. By avoiding the download of irrelevant pages, we limit the
crawling requirements in terms of both hardware and network resources. Our
approach uses the tf/idf weighting system to extract appropriate terms. We
also proposed and evaluated a number of policies that measure the relevance of
the returned documents with the topic in search. Our experimental evaluation
indicates that our suggested algorithm has great potential for harnessing topic-
specific documents. In the context of our work, we managed to successfully
retrieve the majority of the documents related to a number of topics from four
Hidden Web sites, by issuing a significantly smaller amount of queries than
what it would be required to retrieve the site in its entirety.
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In the future, we plan to examine if diverse query formulations will further
reduce the overheads in the process. Moreover, we will continue with adjusting
our approach to handle more complex query interfaces. Finally, another po-
tential direction for future work is to build a crawler for the Hidden Web that
focuses on downloading recently updated content. In that way, the crawler will
achieve to further cut down its requirements in resources, since it will be able
to avoid downloading the same documents over and over again.
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