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Abstract—In this paper we discuss a robust aggregation
framework that can detect spurious measurements and refrain
from incorporating them in the computed aggregate values.
Our framework can consider different definitions of an outlier
node, based on a specified minimum support. Our experimental
evaluation demonstrates the benefits of our approach.

I. INTRODUCTION

Recent advances in remote sensing equipment, computing

hardware and communication technology have made the cre-

ation and deployment of large scale sensor networks easier

and cheaper. Their uses in monitoring natural or artificial

conditions and processes in diverse physical environments –

such as battlefield surveillance, wildlife monitoring, health-

care, traffic monitoring, agriculture, production monitoring –

have subsequently multiplied. A lot of recent research has

focused on the problem of efficiently processing declarative

queries in such networks. The majority of these efforts focuses

on answering aggregate queries, which are of great importance

to surveillance applications [1], [2] and on enabling in-network

processing by combining individual sensor readings as they are

communicated towards a base station through an aggregation

tree. An equally important line of research addresses the issue

of data cleaning of sensor readings [3], [4]. A measurement

obtained by a node is only an approximation of the physical

quantity observed and is constrained in accuracy and precision

by the characteristics of the sensing device. Sensors are also

often exposed to severe conditions that adversely affect their

sensing devices, thus resulting in readings of low quality.

Moreover, sensor nodes often provide imprecise individual

readings after a failure, i.e., they tend to fail dirty [3]. Thus,

data processing applications using sensor networks must deal

with information that is at times unreliable and unpredictable.

The goal of our techniques is to provide a resilient query

processing platform for aggregate queries over a network

consisting of cheap, wireless sensor nodes that are prone

to dirty data. This requires identifying potentially multiple

“abnormal” readings produced by sensor nodes and removing

them from the computation of the aggregate function. In order

for our techniques to scale to large sensor networks, our

proposed algorithms should follow the in-network paradigm.

In this work, we introduce a query execution model that,

together with the aggregates, also recognizes and reports to the

user a concise set of readings that are believed to be outliers,

along with a set of characteristic values, i.e., witnesses, that

have been used to derive the requested aggregates. It is impor-

tant that the user/application is able to control the amount of

support required on the readings of a node by other nodes in

the network. Furthermore, while the computation of outliers

is carried out as a side process during query aggregation,

we need to be able to derive proper routing paths, based on

simple statistics collected during the query processing. These

statistics would be utilized in order to periodicaly reorganize

the aggregation tree and reduce bandwidth as well as energy

consumption.

II. OUTLIER-AWARE DATA AGGREGATION

Similarly to [5], we consider aggregate queries of the form:

SELECT AggrFun(s.value)

FROM Sensors s

WHERE cond

SAMPLE PERIOD e FOR t

where AggrFun() is a distributive or algebraic function such

as MAX,MIN,COUNT,SUM,AVG. It is easy to extend our

work to capture GROUP BY queries as well. The period (e)

in the above query is the epoch duration and determines

the frequency at which data is acquired from the sensors.

Parameter (t) specifies the life span of the query.

In this paper we extend the in-network computation frame-

work, and define as an outlier a node that can be witnessed by

fewer than MinSupport other nodes. The witness test can be

performed through a variety of similarity tests, as described

in Section III. Each transmitted witness and outlier value does

not necessarily reach the Root node that poses the query.

These values may be witnessed at some intermediate nodes

and removed from the transmitted data. This is the intuition

of our algorithm for periodically reorganizing the aggregation

tree. If we monitor how often the witness test between pairs

of sensor nodes succeeds, then each node can select a parent

in the aggregation tree through which it expects to find the

most witnesses and relatively nearby, in number of hops.

Consider for example a query that computes the average

temperature in the area covered by the sensornet depicted

in Figure 1 and that the desired minimum support is 2. For

simplicity we assume that the aggregate is collected at node

S1, which acts as the base station in our example. We use xi
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Fig. 1. Sample Aggregation Tree

to denote the temperature readings provided by node Si. The

aggregation tree is also depicted in the figure. A typical way

of computing the average value from the temperature readings

is for each node to compute the SUM and COUNT functions

in its subtree and propagate them to its own parent [5], [6].

In the Figure, nodes S6, S7 and S8 can observe an open

fire and, therefore, their readings are expected to be a lot

higher (and fluctuate more) than, for example, those of node

S2. When node S3 receives the values of its children nodes,

the readings of node S6 appear to be suspicious, since no

other node in that subtree is aware of the fire. If we decide to

reject the reading of S6 (for instance using majority voting),

the monitoring application will lose a crucial observation.

Techniques based on smoothing [3], [7] will also obscure the

outcome, especially if a lot more nodes are rooted at node S3.

In our framework, we tentatively put the reading of node

S6 in the list of outliers O3 communicated by node S3 to its

parent node in the tree S2. Now let us concentrate on node S2.

This node will receive from the left subtree a pair of aggregate

values (x3+x4+x5, 3) from node S3, an outlier list containing

only the value x6, and a witness list containing one of the

values x3, x4 or x5 (depending on which node was selected

as the witness). The right-subtree contains nodes S7 and S8.

Their readings are similar, but these nodes reach only a support

of 1, which is less than the desired minimum support of 2.

Thus, S7 includes the readings of S7 and S8 in the outlier

list transmitted to node S2. At this point, at node S2, the

nodes S6, S7 and S8 can reach the required support in order

to be included in the partial aggregate. Moreover, one of these

nodes, will be selected to become a witness in S2. Finally, we

note that the sensor nodes S9 and S10 represent the case of

two node that fail dirty. These nodes start reporting abnormal

high readings that cannot be justified by any of its neighbors

or the values that are provided in the witness list. If the query

had specified a minimum support of 1, these two nodes could

at some epochs witness each other and, thus, end up including

their readings in the reported aggregate. However, this cannot

occur in our example with the minimum support value of 2.

We also can see from Figure 1 that an alternative organiza-

tion of the aggregation tree where both S6 and S8 had selected

S7 as their parent node could lead to bandwidth savings at

nodes S3 and S7. In particular, node S3 will not have to

transmit an outlier to node S2. Moreover, we note that in

node S7 these three sensors could gain enough support to be

included in the computed aggregate and have all three of them

replaced by a single witness.

III. SIMILARITY TESTING BETWEEN NODES

Our algorithm frequently tests whether the recent measure-

ments of two sensor nodes are similar. If this is the case, then

each sensor can witness the measurements of the other sensor.

We will reference this similarity test in this paper as a witness

test. In our work we have explored the following alternatives:

• Correlation Coefficient: If we consider the readings xk,

xl of sensor nodes Sk, Sl respectively as random variables,

the correlation coefficient rk,l is defined as:

rk,l =
cov(xk, xl)

σxk
σxl

=
E(xkxl) − E(xk)E(xl)

√

E(x2
k) − E2(xk)

√

E(x2
l ) − E2(xl)

where cov(), σ and E() stand for the covariance, standard

deviation and expected value respectively. The correlation

coefficient takes values in the interval [-1,1]. Given a threshold

θ provided by the application and communicated to the nodes

during the query initialization, the witness test succeeds when

rk,l ≥ θ.

• Extended Jaccard Coefficient: If we consider the readings

xk, xl of sensor nodes Sk, Sl respectively as vectors and

denote their dot product as xk · xl, the extended Jaccard

coefficient jk,l is defined as:

jk,l =
xk · xl

‖xk‖2 + ‖xl‖2 − xk · xl

Again, given a threshold θ provided by the application and

communicated to the nodes during the query initialization, the

witness test succeeds when jk,l ≥ θ.

• Regression-Based Approximation: If we consider the

readings xk, xl of sensor nodes Sk, Sl respectively as random

variables, we may apply approximation techniques to identify

the error of approximating xl given xk. For example, the work

in [8], [9] proposed using a linear regression model for this

approximation. Using such a technique, we may determine

that the witness test will succeed if the reconstruction max-

imum/absolute relative error for xl is below an application-

defined threshold (i.e., 2%).

Since the similarity tests cannot be performed simply based

on the last received measurement of the sensor nodes, but

also require the knowledge of measurements from the recent

past, our algorithm maintains in a small cache the latest

measurements received by descendant sensor nodes.

IV. REORGANIZATION OF THE AGGREGATION TREE

A poor initial construction of the aggregatuion tree could

lead to many nodes finding similar measurements (i.e., sup-

port) by other sensors only at the Root node, or at nodes

near the Root. This would essentially result in a computation

with bandwidth requirements close to those of a SELECT *
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Fig. 3. Computed MAX Temperature, Intel data
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Fig. 4. Computed MAX Temperature, Intel data
with noise, Extended Jaccard Coefficient

query. One the other hand, it would seem plausible to route

the witnesses and outliers towards the direction where they

are expected to be “matched” (witnessed) more quickly by the

most outliers or witnesses, received through other parts of the

aggregation tree. In our framework we periodically reorganize

the aggregation tree by utilizing statistics of the form “how

many times a node Si has witnessed another node Sj” in the

previous epochs.

V. EXPERIMENTS

We developed a simulator for testing the algorithms pro-

posed in this paper under various conditions. In all experiments

the locations of the sensor nodes were dispersed at random

locations over a rectangular area. For the first experiment,

we generated a large sensor network of 400 sensor nodes and

defined 5 classes of data to control the behavior of the sensors.

The readings of nodes that belong to the same class make

random walks with different steps, and at the same direction.

Each node initially belongs to the default class 0. We then

generated 4 events at random locations and assigned all nodes

within distance 30 from the centers of the events to belong

to the same class (classes 1 to 4). In Figure 2 we show the

resulting bandwidth consumption for a minimum support of

1,2 and 3. The aggregation tree reorganization is performed

every 100 epochs and its overhead is included in the graphs

(we account for this cost only in our method). In the Figures

we can see that the aggregation tree gradually improves, as

more statistics are collected. Compared to our techniques, the

SELECT * case, were evaluation of outliers is performed at

the base station, results in up to 7.4 times more transmitted

bits and energy consumption.

We also obtained temperature measurements from 48 motes

in the Intel Labs data set [10]. In that data set, one of the sensor

nodes fails dirty at some point, increasing its temperature

until it reaches 122 degrees. In this experiment, we increase

the complexity of the data set by: (1) Specifying for each

sensor a 6% probability that it will fail-dirty at some point;

(2) Each node with probability 0.5% at each epoch obtains a

spurious measurement, which we model as a random reading

between 0 and 100 degrees. In Figures 3 we show the resulting

reported aggregate for this very challenging data set. As we

can see, the aggregate computed by pure in-network aggre-

gation quickly becomes meaningless. Our technique with a

minimum support of 1 and a witness threshold of 0.7 provides

significant improvements, but is still characterized by too many

spikes. However, the robust aggregate obtained by a minimum

support of 3 (depicted with the blue line) is significantly more

accurate and manages to eliminate the spurious readings and

the readings of nodes that fail-dirty in all but a few cases. We

also examined an alternative technique were we perform the

witness test by using the extended Jaccard coefficient [11].

Because the extended Jaccard coefficient is sensitive to the

relative difference in the magnitude of the values, in Figure 4

we notice that it performs significantly better, as the readings

of nodes that fail-dirty and have reached a large value cannot

witness those of functional nodes.

VI. CONCLUSIONS

In this paper we presented a robust aggregation framework

that can tolerate outlier readings that often arise in sensor

network applications. We discussed different definitions of

an outlier node, based on a specified minimum support, and

considered techniques that alter the aggregation tree in order

to minimize the bandwidth and energy drain during the query

evaluation.
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