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Abstract —Workflow systems are receiving increased attention as they intend to facilitate the operations of enterprises by
coordinating and streamlining business activities. The need for automated support and operational models that allow workflow
applications to coordinate units of work across multiple servers—according to business defined rules and routes—is becoming
critical for the proper management of such activities. In this paper, we describe a Transaction-Oriented Workflow Environment
(TOWE) for programming workflow activities. The novelty of our approach resides in the proposed unified abstraction, class libraries,
to support workflow activities. The fundamental concept used in the TOWE system is based on the symbiosis of object-oriented
programming and interprocess communication concepts. In TOWE, the concurrency abstractions are represented by process
objects, active objects acting as processes, which involve asynchronous, location-independent, and application specific process
invocations.

Index Terms —Workflow systems, multidatabase systems, object-oriented programming, class libraries, distributed systems, nested
transactions, process objects, concurrency, scheduling and synchronization.

——————————   ✦   ——————————

1 INTRODUCTION

HE increased use of powerful workstations and high-
bandwidth networks has motivated enterprises to

move toward distributed computing environments to sup-
port information exchange and collaboration between us-
ers. There is an increasing demand for the coupling of local
applications with applications running on remote servers to
support greater workgroup and organizational productiv-
ity. Business applications requiring this kind of support
include airline and hotel reservations, health-care, banking
and finance, stock-brokerage, manufacturing, and tele-
phone directory services. The ultimate goal is to provide a
richer information creation and analysis environment for
the user by integrating the user’s desktop facilities with an
information exchange and collaboration infrastructure in-
cluding mail, messaging, groupware platforms, shared da-
tabases, workflow systems, and document servers.

Workflow applications are receiving increased attention as
they intend to automate the movement and execution of a
number of units of work, across one or more servers, accord-
ing to business defined rules and routes. A workflow typically
defines the individual business activity steps, the order and
the conditions under which the activities must be executed, the
flow of data between activities, the users responsible for the
conduct of these activities, and the tools used. Transaction
support for such cooperative applications is inherently more

complex to program than applications which rely on short and
noninteractive transactions. Network-centric systems, such as
workflows, require concurrent access to shared and mutable
data originating from disparate information sources. They,
therefore, demand nontraditional and rather complex transac-
tion mechanisms [15]. Workflow environments require so-
phisticated (nonconventional) transaction mechanisms to sup-
port the sharing of uncommitted data between concurrently
active subtransactions. These requirements are mainly due to
the collaborative and distributed nature of workflow applica-
tions and can also be found in other data-intensive applica-
tions such as office automation computer-aided design, and
computer-aided software engineering (CASE) applications.

Until recently, the traditional approach to distributed
transaction management relied on variants of the closed
nested transaction model [23] to manage remote transactions.
This model introduces limitations as it adheres strictly to
the classical serializability paradigm to control network-
wide transaction management and provide full isolation at
the global level. Several extensions to the conventional
closed nested transaction model—collectively referred to as
open nesting—have been proposed to increase transaction
concurrency and throughput, by relaxing the atomicity and
isolation properties of the traditional transaction model
[30]. Such efforts have mostly focused on flexible transac-
tions for multidatabase systems that provide mechanisms
for the specification and flow of control among different
work units. However, most of these efforts to date have
only concentrated either on conceptual transaction models,
concurrent versions of algorithms and theoretical results on
model correctness. Moreover, flexible transaction models
which have adopted a data-centered approach are rather
strict and lack proper implementations. In summary, rela-
tively little attention has been given to software development
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environments that are required to convert these efforts into
operational distributed application programs.

In contrast to flexible transaction models, workflow
management systems, due to their very nature, are not
data-centered. Their aim is to provide modeling support
and mediate communication, interaction, and coordination
among collaborating people and business activities within
and between organizations. Such activities are better sup-
ported by a process-centered approach. Our work ad-
dresses this situation by providing unified programming
and distributed system support necessary to program net-
work-centric workflow applications. These combined fa-
cilities come in the form of class library facilities that im-
plement transaction extensions of an object-oriented pro-
gramming language coupled with distributed system sup-
port. For this purpose, we developed a Transaction-
Oriented Workflow Environment (TOWE). TOWE provides
facilities for the construction and programming of long-
lived concurrent, nested, multithreaded activities. Our ap-
proach to programming long-lived activities follows the
class library based approach [6], [3] by building class libraries
from a small set of fundamental concepts that are exten-
sions and refinements of open nested transaction con-
structs. This environment enables the design of flexible
distributed applications by providing library modules that
represent abstractions of the various system aspects and
functionality of long-lived activities in a concurrent object-
oriented environment. It also supports the reuse and spe-
cialization of existing workflow specifications.

This paper is organized as follows: Section 2 provides an
overview of the related work, while Section 3 gives an
overview of the TOWE. Section 4 discusses programming
of long-running activities in TOWE. Section 5 discusses our
experience with the current implementation. The conclu-
sion and future work can be found in Section 6.

2 RELATED WORK

Traditionally, workflow systems have been used as a way
to describe office functions and procedures. Such descrip-
tions were normally based on extensions of well-known
formal models, such as Petri-nets, production rules, and
flow-charts [33]. The need for a closer interaction between
workflow and process modeling techniques in software
engineering was also identified, resulting in several work-
flow methodologies [21] and specification languages [8].
Our design is in line with these suggestions as it combines
the functionality of a modern object-oriented language with
distributed message-passing system support. This enables a
collection of independent information repositories to be
programmed and used as a coherent and flexible concur-
rent computation resource.

Script-based sublanguage approaches, such as ConTracts
[34] and Interactions [24], are also closely related to this
work. ConTracts were proposed as a mechanism for
grouping transactions into a coherent unit of work. Con-
Tracts are scripts of steps, where steps are mapped into
transactions on local databases. ConTracts provide mecha-
nisms for relaxed atomicity and isolation by controlling the
flow of long-lived activities. Interactions are open nested

flexible transactions used to define long-lived tasks that
access multiple databases. This system supports the ability
to backtrack when a transaction aborts and causes its
subtasks to fail. Other projects with common aims which
offer specialized script languages for the execution of work-
flow models driven by intertask dependencies include the
METEOR [17] and the MOBILE [31] projects. Sublanguages
offered by the previous approaches are only limited lan-
guages in that they provide only a handful of special pur-
pose primitives and control mechanisms mainly tailored
around open-nested transactions. Such linguistic facilities
are modeled primarily after block-structured programming
languages, e.g., in ConTracts and Interactions.

Other activities on workflow specification and manage-
ment related to our work, such as the Mentor project [36],
place emphasis on deriving a form of a distributed work-
flow from a formal specification. Techniques are proposed
for transforming a centralized state chart specification into
a form that is amenable to a distributed execution of work-
flow activities. A different approach is suggested in [16].
This work concentrates on workflow specification tech-
niques based on Event-Condition-Action (ECA) rules, as
used in active database systems [35], for describing the
control flow between tasks. Dependencies between tasks
are expressed by events and emphasis is placed on pre-
specifying the task execution capabilities of individual
problem solving components. In contrast to these ap-
proaches, our work places more emphasis on providing the
run-time environment on which workflow processes are
coordinated and executed based on concurrent object-
oriented programming support for transactional work-
flows. The TOWE services can be used as a vehicle to im-
plement higher-level concepts and mechanisms, such as
those proposed by the above two projects.

On the office automation front, our work presents some
similarities with the work reported in [37] and [19]. In [37],
a distributed office information system is proposed. Two
types of cooperative office activities are identified. The first
type describes office activities that are structured while the
second type describes activities that are unstructured. The
publication concentrates on unstructured activities. It pro-
vides a conceptual framework based on a modified object-
oriented model and makes use of a distributed knowledge
base system implemented as logical workstations. Our work
differs from this work on several grounds. This approach
remains mainly at an abstract level and does not propose an
operational model. In contrast, our work focuses on struc-
tured activities and proposes an extensible class based ap-
proach that is coupled with a distributed multithreaded
communication protocol for cooperative work. More im-
portantly, in [37], there is no indication as to how coopera-
tive tasks are to be supported. This is probably due to the
unstructured type of tasks that this work is focused on. In
[19], a programming environment called OASIS is de-
scribed. It allows for the management and coordination of
micro-organizational activity processor (MOAP). In con-
trast to our work, this system focuses on the use of knowl-
edge base systems for defining and managing micro-
organizations and does not address any cooperative prob-
lem solving activities.
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On the programming language front, there is a strong
correlation between the notion of modularization in modern
programming languages and transaction nesting. There
have been some attempts to capitalize on this relationship,
most notable of which is Argus [18]. Although Argus pro-
vided linguistic support for implementing the execution of
distributed programs based on the closed-nested transac-
tion philosophy of Moss [23], it lacked the proper database
and operating system support, and permits only a single
thread of control to execute within one transaction. These
limitations have been addressed, at least partially, by the
work of Haines et al. [13] which describes a modular lan-
guage for supporting transactions based on high-order
functions. This work proposes a general purpose control
abstraction mechanism through which one can compose
flexible transactions.

Our work differs from the above activities by providing
a richer variety of semantic-oriented transaction primitives
in the form of an extendible/specializable class library
combined with object-oriented language and distributed
system support. More importantly, we provide a full lin-
guistic framework which borrows some properties, such as
futures and continuations, from the Actor Model [1]. We also
provide an open system to support long-lived transactions
in a workflow environment.

3 THE WORKFLOW PROGRAMMING ENVIRONMENT

Workflow systems can be viewed as containing two inter-
related components [8]: a specification and an execution
module. The prime concern of the specification module is to
provide modeling support in a way that enables adminis-
trators and analysts to define business-related procedures
and activities, analyze and simulate them, and assign them
to people. Usage of this module is typically completed be-
fore the flow of work tasks commences. The workflow exe-
cution module is the component which interacts with an
invoked application interface seen by programmers and end
users. Its purpose is to enable the workflow engine to acti-
vate an application to undertake a particular work unit by
providing the proper execution environment. It achieves
this by supporting the coordination and conduct of busi-
ness procedures and activities. The workflow execution
module enables the work units to control the flow from one
workstation to another as the steps of a business activity are
carried out. The work described herein concentrates only
on the workflow execution environment and does not con-
sider such issues as automated workflow modeling or as-
signment of people to work units.

In this paper, we view a workflow as a long-lived activ-
ity that coordinates the execution of multiple process-
oriented tasks (with transaction properties). These tasks
have interrelated dependencies capturing both data and
control flow requirements and constraints. A long-lived
activity in TOWE is divided into a number of work units,
nested to multiple levels, which may execute sequentially
or concurrently. Work units that can be found only on the
leaf-level of an activity tree are referred to as actions. Ac-
tions are a form of process, some of which may execute at
remote (component database) sites where they are mapped

to native transactions. The intermediate nodes in a workflow
hierarchy are normally compound actions or intermediate
activities which comprise a set of elementary actions. To
indicate the process nature of activities, actions, and com-
pound actions, we frequently use the word process to de-
scribe them.

3.1 Functional Model
An intermediate activity is a unit of action scheduling that
corresponds to the specification of a state of execution
within a top-level activity. Actions are atomic units of work
mapped to counterpart flat component database transac-
tions that support the conventional ACID (atomicity, isola-
tion, consistency, and durability) transaction properties.
Consequently, the interface of a component transaction
system provides, at least, the following operations: begin,
prepare, commit, abort, and end transaction. It is an im-
portant feature of TOWE that every action runs under the
protection of a classical transaction with ACID properties
and that several of these actions can be combined to run
inside the boundaries of the same activity.

Fig. 1 gives a top-level view of an activity initiated by a
database site in a distributed client-server environment.
Activities in this environment are seen to correspond to a
multilevel tree. The root of the tree represents the top-level
activity itself (level-0), the actions spawned by a top-level
(or intermediate) activity correspond to exported high-level
operations (by the particular site on which the action exe-
cutes) and reside at level-1. Finally, level-2 corresponds to
native transaction operations executing at these remote
sites. In this figure, we assume that the distributed work-
flow application was initiated at the left-most site (client)
and runs on a number of sever databases.

In the following, we will concentrate only on level-0 and
level-1 and will not consider the mapping of actions to na-
tive transactions. Such activities are considered in a com-
panion paper [27]. In [31], the authors discuss the use of
similar mechanisms such as Transaction Processing (TP)
monitors and Object Request Brokers (ORBs) to construct
object wrappers for workflow-unaware application pro-
grams. For reasons of simplicity and clarity, we take a dif-
ferent approach by assuming that each site is equipped
with an object-oriented wrapper that maps exported opera-
tions (TOWE aliases) to equivalent native operations (Fig. 1).
For a detailed treatment of how object-oriented wrappers
act as intermediaries between native and remote systems,
we refer the reader to [2].

3.2 Flow of Activities
Transactional workflows are used to automate business
systems that have definable, repetitive, and well under-
stood policies and procedures. For example, a mortgage
loan approval application is a well understood process that
goes through a prescribed set of procedures. The processing
of a loan goes through standard phases regarding the proc-
essing and routing of intermediate units of work. A mort-
gage loan plan is a long-duration activity which may span
from hours to several days. This application must outline
specific procedures and protocols to be carried out, pre-
serve ongoing work, coordinate inter-related pieces of
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work, respond to business events, schedule further work,
and so on. The flow of events for this situation is depicted
in Fig. 2. A mortgage loan plan is a form of a workflow be-
cause it describes the steps for dealing with a loan request.

To illustrate some of the workflow specification features of
the TOWE, we use a sample application program that models
a mortgage loan planning activity according to the graphical
notation depicted in Fig. 3. This notation models a workflow
activity as an acyclic directed graph in which leaf nodes
(ovals) represent actions; nodes represent intermediate ac-
tivities and are symbolized by either rectangles or pentagons;
and, finally, edges represent the flow of control while spe-
cialized arc symbols represent the flow of data and synchro-
nization modes between simple and compound actions. Fig. 3
employs an activity tree that represents the events described
in Fig. 2 by indicating the type of operations a unit of work
traverses and the routes that specify acceptance conditions
for moving from one operation to the next.

In Fig. 3, we assume that a mortgage loan application
seeks loan approval from a number of lending institutions

(shown as branching approval activities in Fig. 2) which
may potentially finance a customer purchasing a residential
property. The application tries to first secure a home loan
by obtaining funding from banks (in terms of preferences
specified by the customer) and then tries alternative fund-
ing sources, e.g., credit unions. This involves interaction
with funding institutions in geographically distributed lo-
cations and is shown by means of a high-level activity
called Appraisal which spawns two processes Find_Bank
and Find_Credit_Union. We assume that this activity can
execute its units of work in parallel and can succeed if both of
its children succeed, irrespective of which one finishes first.
The Find_Bank process is a serial alternative activity which
means that one bank is tried out after the other until a condi-
tion is satisfied, whereas Find_Credit_Union is a parallel
alternative activity which means that many credit-unions are
tried at the same time and we select the first one which re-
sponds positively. If the customer is successful in securing
funds, then the serial activity Approval is executed. This
process forks a series of sequential processes which open a

Fig. 1. Top level view of long-lived activity.

Fig. 2. Workflow view of a mortgage loan.
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home loan account first, organize finances, insure the property
(only if the activity Organize_Finances has succeeded), and
finally update the title. Attention is drawn to Organ-
ize_Finances which is a parallel activity. Its first process
transfers funds from remote account(s) to the home loan
account to buy a residential property. Its second process is
the conditional connector More_Funds_Needed which de-
tects situations where a customer needs more funds to
cover other expenses, such as stamp duty, solicitor fees, etc.
In this case, other options may be attempted, e.g., a per-
sonal loan or a home equity loan (a line of credit secured by
a registered mortgage over a residential property).

3.3 Scheduling and Synchronizing Processes
The flow of control and data between the work units of an
activity needs to be explicitly specified and scheduled.
Scheduling is required since the actions running on remote
databases access and change shared data items and require
synchronization to avoid corrupting these data items. If
actions fail, their effects must be retracted and other actions
in other remote databases which have “observed” their ef-
fects must also be retracted. To achieve these effects, TOWE
relies on the existence of a scheduler process.

Our design unites the constructs of class and process
types as they both support local variables, persistent data,
encapsulated behavior, message passing mechanisms, and
restrictions on how modules exchange information [22].
Our design provides scheduling library classes which run
on each component database. Instances of specialized
scheduler classes are created for every long-lived activity.
This allows the construction of concurrent functions to be
performed separately from task scheduling and leads to
increased concurrency in application programs [12].

In TOWE, the concurrency abstractions are represented
by process objects, a type of active objects acting as processes,
which involve asynchronous, location-independent, and
application specific process invocations. All scheduling and
synchronizing objects are process (active) objects. These
should be distinguished from passive objects which are the
TOWE data objects, such as Accounts, Customers, Prop-
erty(ies), various types of Loans on which the process ob-
jects operate.

We distinguish between four types of scheduler proc-
esses, implemented as scheduling classes, which are suffi-
cient to program the various types of activities in a work-
flow application.

Fig. 3. Activity tree for a home loan application with intra and interdependencies.
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1) A serial scheduler whose actions are submitted and
committed sequentially, e.g., the Approval activity in
Fig. 3. Serial schedulers establish a begin-on-commit
dependency with each other, i.e., one cannot begin
unless the previous one commits.

All actions should commit in order to make their
parent transaction commit. If any of them fails, their
parent transaction aborts including all of its tempo-
rarily committed descendants. This type of abort
mechanism is based on a single specialized compen-
sating transaction which undoes temporarily updated
data items from a cancel-log to bring them to their
original values, see Section 4.3.

Actions of a serial scheduler may have data object de-
pendency. Data object dependencies correspond to
passing an argument in the form of a referenced object
between consecutive actions, i.e., one action passes the
state of an entire data object to another action, for the
second transaction to execute. This is indicated by the
presence of a bold dashed arrow in Fig. 3 where both
actions Insure_Property and Update_Title need
the data object Home_Loan_Account.

2) A parallel scheduler which allows all of its actions to be
submitted and executed in parallel as independent
activities. These actions also commit independently. It
is expected that all actions should commit before their
parent commits. Such actions may establish two types
of dependencies:

• Value dependency, this situation corresponds to a re-
ceiver blocking and awaiting for a specific attribute
value to arrive before it starts executing. In this
situation, we are expecting to receive only a single
attribute value rather than the entire repertoire of
attribute values for a given data object. This type of
dependency should be contrasted to the data object
dependency (described above) where we expect to
receive the entire object state rather than only a
single attribute value. This blocking may occur at
some point when the receiver needs a particular
attribute value produced by a sender process. At
this point, both the sender and receiver are concur-
rently active. Refer to the case of Find_Bank and
Find_Credit_Union processes where the latter
needs a bank-name to complete its computation.

• Commit dependency when two activities may go
in parallel but one may not commit unless the
other commits first. This is indicated by the
shaded arrows in Fig. 3, where the actions Addi-
tional_Personal_Loan and Home_Equity_Loan
cannot commit unless the activity Transfer_Money
has committed first, see Fig. 3.

3) A serial-alternative scheduler is a scheduler which at-
tempts actions sequentially until one produces the de-
sired outcome, e.g., the Find_Bank process in Fig. 3.
The parent only aborts if all its descendent actions were
tried unsuccessfully or if the transaction is timed out.

4) A parallel-alternative scheduler where alternative
choices are pursued in parallel. This is the case with
the Find_Credit_Union process. As soon as any one

of the actions succeeds, the scheduler commits and
the effects of all other parallel actions are discarded.

Schedulers may also have conditional actions which get
activated if certain conditions hold at run time, see the ac-
tivity More_Funds_Needed in Fig. 3. They may also have
replicated actions, where the same action (or activity) can be
sent to different sites in terms of a parallel alternative
scheduler. Examples of application code developed around
the above scheduling processes can be found in Section 4.

3.4 Language and System Support
To develop TOWE, we targeted an appropriate program-
ming language and opted to add new capabilities to it in
the form of programmable library classes. For this purpose,
we interfaced the object-oriented language Sather [25] with
the widely available distributed interprocess communication
package PVM (Parallel Virtual Machine) version 3.0 [10],
which is responsible for distributed programming and mes-
sage passing.

Sather is a core object-oriented language derived from
Eiffel and places particular emphasis on writing efficient
and reusable code. It provides appealing object-oriented
features which make it adaptable to the programming of
distributed workflow applications. Such features include
parameterized classes, separation of specification from im-
plementation, statically-checked strong typing, high-order
routines, exception handling, pre- and post-conditions, and
class invariants [25]. PVM, on the other hand, consists of a
collection of protocols that implement reliable and se-
quenced point-to-point data transfer, message broadcast-
ing, process control, barrier synchronization, and mutual
exclusion [10].

To support the specification of distributed applications,
the TOWE provides a collection of programmable library
classes that can be extended and specialized according to
the application’s needs. The TOWE language provides an
interface component which defines the callable methods
which are based on PVM primitives. A site may specify
available remote services in the context of specific classes
and the TOWE provides the facilities which make the exe-
cution of remote calls at these sites possible. The TOWE
language supports strong typing and static type checking to
ensure type safety. It is also object preserving in that it re-
turns objects of existing types to preserve data integrity.

In addition to the general purpose programming fea-
tures described above, the class library comes equipped
with other salient features, which make it particularly suit-
able for the programming of long-lived activities. These
support:

1) Specification of chronological (temporal) dependencies
among activities, thereby allowing more flexibility for
database programmers in transaction scheduling.

2) Specification of value and data object dependencies for
all types of concurrent activities and actions including
actions activated at different points in time without
prior run-time knowledge of each other.

3) Exception handling mechanisms are provided to exe-
cute predefined handlers depending on the type of ex-
ception raised, in cases where a failure occurs during



PAPAZOGLOU ET AL.:  CLASS LIBRARY SUPPORT FOR WORKFLOW ENVIRONMENTS AND APPLICATIONS 679

execution of an action. This allows us to trap and dis-
tinguish different kinds of aborts. Exception handlers
are normally implemented by invoking compensating
actions.

4) Specification of commit dependencies between actions
so that a task waits for a signal from another, i.e.,
blocks, before it is allowed to commit. Also, automatic
cancel procedures are provided to semantically undo
the effects of unsafely-committed actions if the global
activity fails.

5) Specification of compensating actions are used to undo,
from a semantic point of view, the effects of an action
at a particular site. Rules defining compensating
transactions are attached to objects and facilities are
provided for transactions to distinguish between such
tasks and proceed accordingly.

6) Specification of contingency actions to execute in case
that a given transaction fails. Actions can be vital or
nonvital. If a vital transaction aborts, then its parent
must abort. Nonvital actions can be simulated by se-

rial-alternative and parallel alternative schedulers,
whereas serial and parallel schedulers can simulate
vital transactions.

7) Finally, the class library allows for added flexibility
by supporting ordinary messages which are dispatched
at the end of the receiver’s message queue and are
buffered; and express messages (signals) which get
processed right away no matter whether the receiver
is active or has other messages in its queue.

In TOWE, temporal dependencies are usually implemented
using both intra and interactivity dependencies. For in-
stance, a serial schedule dependency is a temporal depend-
ency between serial activities (e.g., Loan_Request). An
example of an intraactivity dependency that models a tem-
poral dependency is the value dependency (e.g., value de-
pendency between Find_Bank and Find_Credit_Union
where the synchronizing value is Bank-name within the ac-
tivity Appraisal). Contingency actions may also establish
a form of temporal dependency. For example, if an activity

Fig. 4. Library classes of the TOWE.
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such as Find_Bank cannot be completed within its timing
constraints, then we may decide to execute another activity
such as Find_Credit_Union. Hence, we establish a time
dependency between these two activities.

The TOWE supports the features described above and
supports typical data transfer facilities such as point-to-
point and selective broadcast. Interprocess communication
is implemented via message passing. Activities and actions
can be initiated synchronously or asynchronously and may
be conditioned upon the initiation or termination of another
action/activity.

Synchronization between actions belonging to different
families are handled by the system in a manner analogous
to that of Camelot [9]. Synchronization between processes
executing in different sites is provided by means of mutual
exclusion and synchronization primitives such as mutexes,
condition variables, blocking and nonblocking receives, and
barrier constructs.

3.5 The Class Library
The TOWE library is a collection of specialized classes im-
plementing the primitives and constructs described in Sec-
tions 3.3 and 3.4. A distributed application is developed by
creating instances of the library classes.

Fig. 4 depicts the TOWE library classes that act as ab-
stract data types providing a basic set of operations which
can be further specialized depending on the needs of the
applications. These classes are organized in five broad cate-
gories which range from the system support to the applica-
tion program level (see Fig. 4):

1) Distributed System and Communication Support Classes:
These are the classes which provide distributed sys-
tem support.

2) Transaction Primitive Classes: These classes provide
low level transaction primitives such as unsafe com-
mit, and cancel.

3) Atomic Transaction Classes: Classes at this level use the
primitive classes described in the previous level to
materialize atomic units of work such as actions
and compensatable actions.

4) Scheduling Classes: These implement the scheduling and
synchronization processes described in Section 3.3.

5) Application Program Class: This class is used to imple-
ment user developed application programs (which
could be the home loan application).

Dotted links between the individual classes represent
inheritance relationships in the top-down direction, i.e.,
from the more general to the more specific class. For in-
stance, the classes Serial, Parallel, etc. inherit the class
Scheduler. Solid links represent a containment rela-
tionship. An example of that is the relationship be-
tween the class Application_Prgm and the different
types of Scheduler s.

The low-level classes Unsafe_Commit and Cancel han-
dle the unsafe-commit and cancel primitives. This should
not be confused with component DBMS transaction primi-
tives such as commit and abort are handled by component
systems as already explained.

Atomic actions are supported by the two classes Action

and Compensating_Action. These provide all types of
functionality required for creating and communicating with
atomic transactions running on local/remote database sys-
tems. Such actions are perceived by the native database
system as another local transaction. To help ensure that
actions are atomic, no two actions of the same intermediate
activity can execute on the same database.

Schedulers are realized by four classes which inherit
from the generic class Scheduler  (see Fig. 4). This class is
the most general scheduling class which provides proper-
ties inherited by all more specialized scheduling classes.
Each of the remaining four scheduling classes is dedicated
to one of the four types of schedulers mentioned in Section 3.3.
All types of activities in the TOWE (except for flat transac-
tions corresponding to actions) are instantiations of spe-
cialized scheduler classes.

In Table 1, we illustrate some of the most representative
operations used in the classes depicted in Fig. 4. The table
includes brief descriptions of the operations which are self-
explanatory. Table 2 summarizes the PVM interface routines
on which the library classes in Fig. 4 rely in order to perform
interprocess communication and buffering activities.

4 ACTIVITY SPECIFICATION AND PROGRAMMING

The TOWE model of computation supports decentraliza-
tion by allowing loose coupling among the component da-
tabases: component databases need only have minimal
knowledge (exported services) about each other. Develop-
ing a distributed application in TOWE corresponds to a
high-level task, i.e., a long-running activity, which utilizes a
number of data resources spread over a number of inter-
networked database systems. In the following, we present
the programming of such a long running activity that im-
plements the distributed workflow shown in Fig. 3. We
assume that transaction programmers are familiar with
exported data items and services of the component data-
bases related to their applications. We will concern our-
selves only with synchronization of actions belonging to the
same activity; interactivity synchronization is handled as
explained in Section 3.3.

To improve readability, we have simplified the defini-
tion of library classes by avoiding introducing syntactic
constructs which lean heavily on Sather.

4.1 The Scheduler Class
Our view of concurrency is based on the unification of the
concepts of class and process which leads to the notion of
process object. Our model of concurrency employs inheritance
for structuring and synchronizing objects: any instance in-
heriting directly or indirectly from any of the scheduling
classes is a process object going through successive execution
stages. All other objects are passive awaiting for a call to exe-
cute their methods. Concurrency can then be viewed as the
concurrent execution of process objects and their interactions.

The synchronization classes encapsulate the state and be-
havior describing processes. The state encompasses the data
structures needed for the communication, scheduling, and
synchronization events that take place during the lifetime of a
process object. After instantiation, a process object executes
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its work routine which describes the process script, i.e., the
sequence of actions it executes over its lifespan. The work
statement materializes the behavioral part of a process ob-
ject which provides the means to create other processes,
actions, and objects at remote sites; and to request asyn-
chronous execution of their features and to communicate
with them. Fig. 5 illustrates the coding of the class Transfer,
referred to as transfer_money in Fig. 3. This is a serial sched-
uler object that spawns two actions, each with its own in-
dependent thread of control, executed in the sequence
specified in the work statement.

class TRANSFER{from_acct, to_account, sum} is SERIAL with
const name: STR:= “transfer”;
balance: REAL;

work is
action.name(“withdraw”).arg(from_acct, sum);
action.name(“deposit”).arg(to_acct, sum);

end (status); – –work
– –block any consumer transactions which execute in parallel

with this
– –one until balance has been produced
produced_values balance := set_value(“deposit”.balance);

end(status); – –transfer

Fig. 5. The Transfer process object.

The operations name() and arg() in Fig. 5 are used to sup-
ply the name and arguments of an action which may run at
a local or remote site. The TOWE language supports loca-
tion-independent process invocation: local and remote
process calls are equivalent on the syntactic level, e.g., the
actions Withdraw and Deposit. Since processes share mem-
ory, objects that appear as parameters of a communication
between two process contexts, e.g., sum, from_accn, are
passed by reference and not by copy.

The run-time system routes a client request via a proxy
object to a target object that may reside in a remote address
space. A proxy object is an object (similar to a client stub)
that represents a server object on a client side, i.e., it runs on
the same address space as the client [32].

A typical application may involve interactions with a va-
riety of local and remote objects, but the proxy-objects make
distributed-object interactions the same as local object in-
teractions. To access a server object, the client simply per-
forms a local invocation on the server’s proxy. The proxy
performs the actual remote invocation (cross-address space
procedure call) and returns the result to the client. As proxy
objects offer the same public interface as the server object, it
is transparent to an application program whether it calls a
proxy or a server (the actual implementation) object. Issues
related to the client support infrastructure (such as proxy
and surrogate objects) which enables the dispatching and
activation of messages across machine boundaries can be
found in [7].

Each data object is private and is accessible by only one
process at a time. This guarantees that only one thread of
control has access to it. Mutually exclusive access to shared
data, i.e., the variable balance (value dependency) required for
synchronization purposes, is transparently provided by the
use of produced_values and consumed_values primitive con-

structs of the TOWE language class library. These con-
structs act like condition variables in that they block one or
more processes by forcing them to wait until another has
finished updating a shared data structure. This form of
synchronization is known as data-driven synchronization and
unifies data dependency with synchronization [3].

The correctness of the semantics of the transaction
primitives used in TOWE, and, in particular, the scheduler
classes, has been proven using the formal transaction speci-
fication framework ACTA. This formal framework sup-
ports specification of extended transaction models and rea-
sons about transaction structure and correctness [5]. The
formal semantics of the operations and correctness proofs
can be found in [11].

4.2 Programming of Process Objects
The coding of the activity Finance, referred to as Organ-
ize_Finance in Fig. 3, presents some of the important fea-
tures of the TOWE class library, see Fig. 6. Class Finance is a
parallel scheduler as it spawns in its work statement actions
that can run concurrently. These include an instance of the
class Transfer as well as the conditional activity
More_Funds_Required, see Fig. 3. This activity is conditional
because the applicant may not need a personal loan. The
user-defined class Finance may thus be defined as in Fig. 6.

class FINANCE{loan, property_value, loan_acct, applict_acct}
is PARALLEL with
const name: STR:= “finance”;
fail: BOOL:= FALSE;

work is
– – transfer loan from financial institution to applicant’s acct
action.name(“transfer”).arg(loan_acct, applict_acct, loan);
– – need to borrow additional funds ?
borrow:REAL := property_value - loan;

if borrow > 0 then – – conditional transaction
work is SERIAL-ALTERNATIVE with
  – – name of workpackage
  const work-name: STR:= “fund_alternative”;
  – – hosts on which actions run
  hosts := “city_bank: ‘ personal_loan,” “halifax:

    home_equity_loan”;
  action.name(“personal_loan”).arg(applict_acct, borrow);
  action.name(“home_equity_loan”).arg(applict_acct, borrow);
  status(“fund_alternative”) := commit_depend(“transfer”);
end(status); – – work

– – Commit dependency between actions
– – personal loan, home_equity & money transfer needs to be

resolved
if status(“transfer”) := COMMIT then

status(“fund_alternative”) := COMMIT;
else

action is
  cancel(“fund_alternative”);
  fail := TRUE;
end; – – cancel

if (fail) then compensate(“finance”);
else

action.name(“assess_applict”).arg(applict_acct, loan, borrow);
end; – –work

end;

Fig. 6. The Finance process object.
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TABLE 1
SAMPLE LIBRARY CLASSES AND REPRESENTATIVE OPERATIONS

Class Routine Name Brief Explanation
SCHEDULER set_hosts() set user-defined hosts for subtransactions.
 (generic) find_hosts() find suitable hosts for subtransactions.

spawn_sub() spawn a subtransaction at a host.
name() specify name of a subtransaction.
arg() specify an argument of a subtransaction.
is_a_sub() if the argument is a subtransaction.
decision() make decision when scheduler is done.
commit_protocol() global commit protocol.
get_group_size() find out the size of a given group.

SCHEDULER exec() execute subtransactions (one for each type).
(specific) get_next_result() receive result of the next subtransaction.
e.g. get_all_results receive result of all subtransactions (parallel).
SERIAL set_produced_args() set the arguments for the next (serial) child.

get_probe() check for a particular message and receive it.
abort_others() abort the rest (choice schedulers).

DELEGATE delegate() accept and handle delegated transactions.
service_assign() assign a service to a host.
is_host() if the argument is an actual host.
add_to_cluster() add a host to a cluster.
which_cluster() to which cluster a host belongs.
cluster_members() return a list of cluster members.
which_hosts() hosts which provide a particular service.

ACTION pass_values() pass values to the consumers.
get_values() get values from the producer.
pass_signal() pass commit signal to the dependent tasks.
get_signal() get signal from the producer.
decision() make decision when the task is done.

CANCEL main() govern top-level task of the cancel process.
extract_log() extract info about top-level from cancel-log.
form_comp_trans() form the compensating transaction.

SATHER_PVM pvm_routines Sethar/PVM interface routines.

TABLE 2
MOST IMPORTANT PVM INTERFACE ROUTINES

Category Routine Name Brief Explanation
Virtual addhosts() add one or more hosts to the virtual machine.
Machine delhosts() delete one or more hosts from the virtual machine.

config() query about present configuration.
Process mytid() enroll in PVM and get a unique task id.
Control spawn() spawn a task at a host.

exit() exit from PVM.
kill() terminate a specified PVM process.
parent() find the process that spawned the present task.

Message mkbuf() create a new message buffer.
Passing freebuf() dispose a message buffer.

initsend() initiate the active buffer and specify encoding.
pkint() pack the active buffer with integer type.
pkstr() pack the active buffer with string type.
upkint() unpack the active buffer with integer type.
upkstr() unpack the active buffer with string type.
send() non_blocking send.
sendsig() send a Unix signal to a PVM process.
mcast() non_blocking multicast.
recv() blocking receive.
nrecv() non_blocking receive.

Dynamic joingroup() join a group (define if non-existent).
Groups lvgroup() leave a group.

gsize() query about group size.
bcast() broadcast to all group members.

Synchro- barrier() increment counter and wait for others to call.
nization bufinfo() find information about specified buffer.

probe() check if a msg from a task with a tag has arrived.
pstat() find status of a specified PVM process.
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Class Finance introduces a serial alternative (see
Fund_Alternative in Fig. 3) scheduler nested within a paral-
lel scheduler (see Finance in Fig. 6). The serial alternative
scheduler semantics specifies that either of the two activi-
ties is to succeed (in the specified sequence) for this sched-
uler to succeed. Notice that one may specify the sites on
which the activities Personal_Loan and Home_Equity_Loan
may run. The variable hosts is set to the hosts where the
transaction ran. There is also a commit dependency be-
tween the activity Fund_Alternative and Transfer. In other
words, the status of the activity Fund_Alternative is forced to
take the status of Transfer, i.e., they both either succeed or
fail. Failure means that activity Finance must also fail.

Schedulers of any type generally have multiple children.
In some cases, it is useful to have a single child tried at a
number of sites, i.e., we may have identical actions executed
concurrently at several sites. This case effectively results
into multiple identical actions running on different hosts to
accelerate concurrency. For example, consider the activity
Find_Credit_Union in Fig. 7. This scheduler reflects the
situation where an applicant is interested in obtaining sup-
port from any credit union, tries several, and accepts the
first offer that is received. The parallel alternative scheduler
requires only one transaction to succeed in order to commit
successfully.

class FIND_CREDIT_UNION {to_acct, amount} is
PARALLEL_ALTERNATIVE with

const name: STR:= “find_credit_union”;
work is

hosts := some.domain – –customized
action.name(“support_home_loan”).arg...

end; – –work
end;

Fig. 7. The Find_Credit_Union process object.

In the TOWE language, actions may get two types of ar-
guments. The first type of argument is the one that is pro-
vided directly by the programmer as already shown in the
previous examples. The other type of argument is the one
provided indirectly by other actions of the same parent. For
example, an action may open an account and then pass the
entire account object to another action to operate upon. The
TOWE class library provides a simple mechanism for this
case. The “work” routine of the client object exports the
objects in question packaged in a string. Consider the client
objects Insure_Property and Update_Title specified in the
object list of the object Open_Home_Loan_Account, see Fig. 8.
Each set of arguments must be attached to the name of the
client action by a “:”. As soon as these arguments are re-
ceived by the client objects they unblock. Multiple sets are
separated by a semicolon. For instance, consider the process
Open_Home_Loan_Account in Fig. 8. This is a more explicit
way for processes to communicate. Notice that the object
passed from the server object Open_Home_Loan_Account to
the client objects Insure_Property and Update_Title is of type
Account which is not an active but rather a conventional
data object.

4.3 Visibility of Intermediate Results
As actions normally communicate via shared objects and
data structures. Once an activity commits, its effects be-
come automatically visible to other activities. To avoid cor-
rupting shared data structures and violating internal con-
sistency, we have introduced the notion of unsafe commit for
such cases.

Each intermediate activity in the TOWE may commit
atomically once its internal actions have executed success-
fully. This has the effect of making an action’s results visi-
ble to other concurrently executing activities. This means
that if an activity aborts, only the action interrupted by a
failure can be rolled back unilaterally. Atomicity may be
achieved by semantically undoing other actions that exe-
cuted before by issuing compensation transactions. A better
alternative around this problem is the use of unsafe com-
mits. Committing an action unsafely, in the TOWE, com-
prises two basic parts:

1) Logging sufficient information for the possible cancel
process.

2) Committing the action and releasing the locks it
holds.

The second part is the same as the commit operation which
is implemented by any of the component database sys-
tems in the distributed client/server network. The class
Unsafe_Commit and Cancel are concerned with managing
the cancel-log. A single compensating transaction is
formed, executed, and committed for all actions of a failed
intermediate activity. This is a specialized multilevel com-
pensating transaction which is constructed automatically
by the system and relies heavily on information stored on
the cancel-log. This approach achieves superior results
when compared with simple compensation transactions
which are normally user created, operate on a single level,
and have to be explicitly supplied with the original values
of the updated data items.

The cancel-log contains sufficient information to specify
where to backtrack if data items are corrupted. It contains
the names, action identifiers, and types of actions, informa-
tion about their hosts on which they execute as well as in-
formation about the internal composition of activities, i.e.,
their descendants. The two main operations of the class
Cancel, extract_log(), and form_comp_trans() extract informa-
tion from the cancel-log and form a tree of compensating
transactions belonging to any action to undo its entire ef-
fects. This could be, for example, the case if the parallel
scheduler process Organize_Finance fails.

class OPEN_HOME_LOAN_ACCOUNT{applict_info} is ACTION
with

const name: STR := “open_home_loan_account”;
home_loan_account: ACCOUNT;
work is
...
res := “home_loan_account’:insure_property; home_loan_account:

update_records”;
end;

end;

Fig. 8. The Open_Home_Loan_Account process object.
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Abort recovery follows a simple approach along the
lines of Argus [18]. A data item has associated with it a
stack of versions. When an action updates a data item, it
copies the current version of this data item from the top of
the stack, and pushes the new onto the stack. Only subse-
quent updates are done on the top stack item. When an ac-
tion commits, its version (if any) at the top of the stack re-
places its parent’s version. When an action aborts, its ver-
sion (if any) at the top of the stack gets discarded. All
changes to local/remote databases are then undone by
running compensating transactions in a similar way as pre-
viously explained.

5 IMPLEMENTATION AND EXPERIENCE

The TOWE system has been implemented on a distributed
Unix platform. The collection of the host machines included
various types of Sun machines (Sun-IPX, Sun-LX, and Sun5)
running Solaris 2.4. They are connected in a local area net-
work using NFS. A large part of the code was written in
Sather—it consisted of approximately 5,000 lines of code.
The current prototype makes use of two off-the-shelf data-
base management systems: the Oracle database system and
the object-oriented research prototype OBST.

Interaction of the TOWE with Oracle is facilitated through
a programmatic interface. In particular, Oracle’s API has a
significant advantage as it allows ad-hoc SQL queries in a
host language. For instance, the Pro*C tool [26] can convert a
program written in C with SQL statements into a C program
that can access and manipulate data maintained by the
DBMS. Due to the fact that Sather source programs are com-
piled into portable C code, they can be easily linked to the
TOWE script language. In addition, native transactions can
be linked with the PVM library for communication and syn-
chronization purposes and they can be called in the user-
defined classes. At run-time, the format of the transactions is
actually not different from the objects format written in
Sather because Sather programs are compiled into C.

The other database product we used in our implementa-
tion is the object-oriented database OBST. It is a public do-

main object-oriented persistent storage system imple-
mented as an enhancement to existing programming lan-
guages [4]. The OBST data model provides mechanisms for
defining types in terms of modules called schemas. The
basic system configuration includes a schema compiler, a
library of predefined classes, a graphical object browser,
and a structuring tool. OBST also offers a mechanism to
incrementally load methods. This feature enables programs
to deal with objects whose type is defined dynamically (at
runtime). OBST supports the execution of atomic transac-
tions written in C++. The OBST system also supports the
linking of transactions with the PVM class library. Transac-
tions are separately compiled and subsequently linked with
objects stored through the TOWE. The dynamic group
mechanism for synchronization was possible because both
languages, Sather and C++, interface almost seamlessly
with the PVM system calls.

Our experiments have consisted of running applications
to test the core features of the TOWE system. The TOWE
scripts provided the means of interaction with the system.
The PVM library offered transparent communication
among the different participating sites. A high level de-
scription of the current TOWE implementation is shown in
Fig. 9. The running example used in this paper, the Banking
Loan Workflow Application, was implemented and success-
fully tested. The required data repositories were simulated
using the aforementioned database systems. In the context
of our experiments, six such database servers were de-
ployed. Half of them simulated regular banking corpora-
tions and the remaining were used to represent the partici-
pating credit unions. Applications of customers seeking
loans were submitted from client workstations. TOWE ap-
plication scripts then delegated the various tasks to the da-
tabase servers for processing. PVM calls enable applications
to execute on the necessary network nodes. Once interme-
diate results were collected, the TOWE system directed the
remaining tasks to be executed as in the application script.

In our application, all financial institutions maintained
profiles for various categories of customers. They made
decisions on applications and grant loans based on various

Fig. 9. The TOWE system architecture.
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loan applicant profiles. The response times obtained for the
workflow representing the Banking Loan Application consis-
tently ranged from 30.851 seconds to 63.861 seconds de-
pending on the number of the databases involved and the
network traffic. Times were accrued by the clients executing
the workflow scripts.

6 CONCLUDING REMARKS AND FUTURE WORK

In this paper, we presented a Transaction Programming
Environment (TOWE) based on class libraries which are
realized on a unification of concepts from object-oriented
programming with distributed computing and open-nested
transaction facilities. We illustrated the use of TOWE by
means of a distributed workflow application modeling a
home loan planning activity.

We prototyped the TOWE on a concurrent object-
oriented framework that combines advanced object-
oriented facilities with user interface primitives for the in-
vocation of processes, broadcasting, synchronization via
barriers, mutual exclusion, and exception handling. The
TOWE allows for more flexible concurrency control mecha-
nisms by offering programming constructs such as various
types of scheduling dependencies among processes, block-
ing/non-blocking synchronization primitives, safe and un-
safe commitment primitives, compensation, and contin-
gency transactions.

Our experiences with TOWE have revealed the short
comings of using a static type of inheritance in connection
with synchronization. More flexible mechanisms are needed
for dynamic inheritance (for overriding the behavior of par-
ent classes at run-time) and for providing flexible combina-
tions of inherited functionality in a single module. Tech-
niques used in reflective programming languages and sys-
tems [1], [20] may in fact provide a more appealing solution.

Our future work will concentrate on extending the func-
tionality of the current TOWE implementation. There are
three important areas that we target:

1) support for a variety of database systems
2) support for modeling organizational aspects which do

not require transactional properties, and
3) user interface support.

Our experiments have so far consisted of running bank-
ing applications to test the salient features of TOWE on two
heterogeneous database systems: (the object-oriented data-
base system) OBST and ORACLE. In the future, we plan to
construct other types of applications involving few other
commercial and research database systems.

In the second case, an important requirement is the abil-
ity to define and influence the execution of workflow proc-
esses according to the characteristics and policies of an or-
ganization. Hence, we are currently extending the concept
of roles that we have developed in [29] and [28] for work-
flow systems so that when applications are developed, it is
possible to specify responsibility for the execution of activi-
ties. This can be accomplished in terms of roles where all
persons that undertake this role are eligible to execute a
certain activity. For example, within an organization, peo-
ple may have several roles such as manager, programmer,

designer, business analyst, etc., and a role can be assigned
to many persons. The role mechanism provides a great deal
of flexibility when executing processes within a workflow
environment.

On the user interface front, activities concentrate on de-
veloping a process definition tool along the lines proposed by
the Reference Model of the Workflow Management Coalition
(WfMC), an international forum striving to standardize
workflow management products [14]. This interface will
ultimately map workflow process specifications relying on
a common interchange format to workflow execution serv-
ices. Such workflow process specifications may include
process start and termination conditions; identification of
inter and intraprocess activities (including identification of
data types and access paths); definition of flow rules; and
information about resource allocation.

Our efforts will also include experimentation with
WWW technology as a general user interface paradigm for
workflow applications developed in TOWE. This requires
appropriate mappings of the TOWE processes to a set of
cooperating CGI (Common Gateway Interface) scripts.
With the help of such scripts, one can process workflow
information received through HTML forms. CGI scripts
could easily interact with TOWE applications and existing
Oracle or OBST databases.
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