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Abstract To address the two most critical issues in P2P
file-sharing systems: efficient information discovery and
authentic data acquisition, we propose a Gnutella-like
file-sharing protocol termed Adaptive Gnutella Proto-
col (AGP) that not only improves the querying effi-
ciency in a P2P network but also enhances the quality of
search results at the same time. The reputation scheme
in the proposed AGP evaluates the credibility of peers
based on their contributions to P2P services and sub-
sequently clusters nodes together according to their
reputation and shared content, essentially transforming
the P2P overlay network into a topology with collab-
orative and reputed nodes as its core. By detecting
malicious peers as well as free-riders and eventually
pushing them to the edge of the overlay network, our
AGP propagates search queries mainly within the core
of the topology, accelerating the information discovery
process. Furthermore, the clustering of nodes based on
authentic and similar content in our AGP also improves
the quality of search results. We have implemented
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the AGP with the PeerSim simulation engine and
conducted thorough experiments on diverse network
topologies and various mixtures of honest/dishonest
nodes to demonstrate improvements in topology trans-
formation, query efficiency, and search quality by
our AGP.
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1 Introduction

Peer-to-peer (P2P) networks are extensively used to-
day for sharing information and improving information
dissemination. There are two significant problems that
exist in P2P networks: (1) discovering information ef-
ficiently and (2) obtaining authentic information. The
problems have been studied extensively but mostly
in isolation. In this paper, we introduce a novel pro-
tocol named Adaptive Gnutella Protocol (AGP) that
addresses both problems simultaneously, resulting in
improved P2P service.

1.1 Topology & query efficiency

Peer-to-peer networks consist of nodes and connec-
tions between the nodes. As fully connected net-
works are inefficient (the number of connections grows
quadratically with the number of nodes), overlay net-
works are often used. Nodes in overlay networks are
connected through virtual links that correspond to mul-
tiple physical links in the underlying infrastructure.
In that respect, two types of overlay networks exist,
structured and unstructured. Structured P2P networks
traditionally employ a globally-consistent indexing
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scheme to ensure that, in a network of n nodes, a query
can be routed within O(log(n)) hops to a peer that of-
fers the requested content [28]. Unfortunately, the ca-
pability of such networks to efficiently support complex
queries and to form communities is limited [17]. More-
over, the cost of maintaining the overlay structure and
routing tables with document indexes is also increased
due to continuously departing and joining nodes [6].
Therefore, structured P2P networks, although able to
provide query performance guarantees, fail to provide
a robust solution for the problem of discovering infor-
mation efficiently.

On the other hand, in unstructured networks, like
Gnutella, global consistency is forgone in favour of
flexibility. The overlay topology is organized into a ran-
dom graph, improving the decentralized maintenance
of the network and eliminating the severe problems
caused by a high node churn rate. Search capabilities
in unstructured networks are supported through mech-
anisms such as breadth-first-search, depth-first-search,
and Random Walks [30], which are oblivious to the
overlay structure. As unstructured P2P networks do not
use indexes based on content descriptions for the query
propagation, they require low memory overhead for
query processing and can easily handle more complex
queries. This is done at the expense of inefficient look-
ups when searching for unpopular content [6]. Often,
the solution is to form well-connected communities
with similar content interests. In this paper, we propose
a protocol for improving query performance in unstruc-
tured P2P networks by carefully organizing the topol-
ogy so that long-lasting connections are established
between nodes with similar information interests.

1.2 Reputation & information authenticity

Although the problem of discovering information may
have an obvious solution, such as augmenting the topol-
ogy (we will see that there are many ways to do so),
the second problem of obtaining authentic information
is more difficult to solve. The situation is exacerbated
by the fact that P2P networks are open communities,
allowing anyone to join and to subsequently serve any
content. The complete decentralization in P2P net-
works means that there is no central authority for con-
tent and identity authentication. Current file-sharing
approaches for both structured and unstructured net-
works suffer from dishonest nodes that propagate low-
quality or dangerous content (e.g. malicious software
or malware). In such a situation, the final verdict on
content quality is ultimately delivered by the user at
the receiving end. Malicious content, such as viruses,
worms, trojan horses and key loggers, is more difficult

to discern, requiring end users to rely on security pro-
tection software.

However, there is another type of node that nega-
tively affects a P2P network—free-riders [14] that make
use of the network resources without contributing any
content or services in exchange. As the idea of P2P net-
works is to share information, nodes that do not share
information or services are parasitic to the network.
Therefore, it would be of value if such nodes could
be identified and appropriately dealt with. There are
two additional aspects of difficulty in maintaining a P2P
network of honest peers with authentic content. Firstly,
multiple nodes may collude in an attempt to present
themselves as authentic information providers. Gener-
ally, if such nodes outnumber the honest peers that are
interested in the same information, it is not possible
to discern their malicious intent. The second aspect is
that malicious nodes may alternate between honest and
dishonest behaviour. Specifically, a node may behave
honestly but could conduct dishonest activities after it
gains sufficient trust from other peers. In this paper
we propose a reputation based scheme which attempts
to discern such malicious peers by monitoring their
historic behaviour, as well as their current behaviour.

The necessary properties of a functioning reputation
system are discussed in detail in [21]. Fundamentally, a
reputation system assists agents in choosing a reliable
peer to transact with. The choice comes from a pool
of possible providers. A reputation system collects in-
formation about a peer’s behaviour, scores and ranks
the peer using specific metrics, takes action against
the malicious peers and rewards the honest ones. The
ultimate goal of a reputation system is not only to find
and punish the malicious peers, but also to reduce the
maintenance cost for the honest ones.

The design of a reputation system depends on the de-
fined assumptions on the user/peer behaviour and the
network environment. In our proposal, we assume that
the users require no guarantee about the reliability of
the system services. On the other hand, nodes require
privacy protection and anonymity. This is achieved by
using globally unique identifiers to represent nodes in
the network. In addition, when two nodes transact,
the source is authenticated using public/private key
encryption. Although this leaves the system vulnerable
to a man-in-the-middle attack, our scheme can easily
be expanded to use certificates signed by a pre-trusted
authority. We do not explore this extension here but
do assume the existence of pre-trusted GWebCaches
in order to boot-strap joining nodes. Furthermore, we
assume that peers can easily enter and leave the net-
work, usually without graceful disconnect, resulting in
high node churn rate.
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In our reputation system four types of dishonest
peers define the threat model: (a) free-riders that use
system services without forwarding queries or con-
tributing resources, (b) malicious peers that attempt to
cause harm either to a number of network members
or to the network as a whole, (c) peers that provide
low-quality content, and (d) peers whose behaviour dy-
namically alternates between models (a) and (b) above.
Usually the malicious nodes distribute corrupted audio
files on music-sharing networks [1] or disseminate virus
infected files [2]. A special category of peers are moles.
Moles provide misinformation, in order to promote
specific malicious peers. Mole peers are confronted
with weighted evaluations from a number of trusted
peers, and by giving more weight to the peer’s own
experience. Our protocol considers the dynamic peer
behaviour, not only for the malicious nodes but also
for the free-riders, including no-forwarders – a type
of free-riders that, in addition to not sharing content,
do not provide any query forwarding services. When
dishonest peers misbehave, they are punished with low
reputation scores and their reputations keep decreas-
ing if their misbehaviour persists, causing the topology
adaptation mechanism in our proposed AGP to even-
tually push them to the edge of the network. It is very
difficult to completely prevent peer collusion because
the nodes take random identities and are placed at
random positions in the network. However, AGP uses
neighbor recommendations, making collusion more dif-
ficult to achieve. A whitewashing attack occurs when a
peer returns to the P2P system as a newcomer with a
newly generated identifier [21]. AGP deals with white-
washing attacks by assigning low reputation scores to
newly joined nodes so that peers are encouraged to
gain reputation by providing services to the system or
rejoining the network with identical IDs. In addition,
historical behaviour of peers is also taken into account
in the reputation evaluation, causing nodes that launch
whitewashing attacks to obtain low reputation due to
their lack of history. On the other hand, a malicious
node also obtains a bad reputation score if it comes
back to the system with the same identity due to its bad
history.

Denial of service (DoS) attacks occur when mali-
cious peers consume large amounts of physical re-
sources to completely disrupt services. Our protocol
takes the following considerations in order to amelio-
rate such situations: (a) each node has a limited number
of network connections and message queue size and
(b) when a node becomes overloaded it informs its
neighbors. If a neighbor violates the notifications of
overloaded nodes, its reputation is severely penalized.
In addition, we use a simple mitigation defense strat-

egy: each node has a low and high water levels on its
resources (bandwidth, CPU and memory) that can be
dedicated to serve other peers. When the high water
level is exceeded, the peer stops to provide services
until the utilization of resources falls below the low
water level. In this manner, peers defend themselves
from coordinated attacks launched by colluding mali-
cious nodes.

1.3 Our contributions

To address the above problems, we propose a novel
protocol termed Adaptive Gnutella Protocol (AGP)
that is integrated into Gnutella-like unstructured P2P
networks to effectively cluster honest peers together
and transform the overlay network into a topology with
collaborative and trusted nodes as its core. AGP also
provides message-forwarding services to more effec-
tively materialize queries. In our proposed protocol,
nodes are incentivized to use their network/hardware
resources in order to forward queries to their neigh-
bors. AGP creates new connections between coun-
terparts that provide similar content and restricts the
connections with the malicious nodes.

Our protocol proceeds in a step-wise manner to
attain its goals: initially, peers use a reputation scheme
to evaluate every neighbor as a service provider. The
dishonest neighbors which provide low-grade/malicious
services and do not contribute their resources will even-
tually receive low reputation score. As peers divide
their available bandwidth to serve neighbors in a way
proportional to their reputation evaluation, dishonest
neighbors receive degraded service. In addition, all
the peers connected with direct virtual links exchange
descriptions about their content. Using the above in-
formation our protocol exploits both content similarity
and reputation monitoring to rearrange the overlay
network connections and achieve enhanced topological
formation among peers. Finally, our protocol uses a
search mechanism that takes into account content sim-
ilarity and reputation in materializing better results.

Through experimentation with the AGP imple-
mentation, we establish that, over time, the network
topology improves as the peers are able to locate
counterparts with similar content and better reputation.
Furthermore, we show that even in the presence of
a large number of malicious nodes, honest peers in-
crease their connectivity with other honest nodes and
manage to avoid the dishonest ones. Our simulations
include nodes which alternate their behaviour between
honest and dishonest in attempt to gain and misuse
reputation. Our experiments show that the malicious
nodes are pushed to the edge of the overlay network as
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honest peers drop the connections with them. Finally,
compared to the Gnutella Dynamic Query Protocol
(DQP) [3], our proposed search algorithm returns im-
proved query responses using less network resources.
As a result, AGP improves the overall P2P network
operation and provides better query results while con-
suming much less network resources.

The remainder of the paper is organized as follows:
Section 2 provides the basic features of the proposed
protocol elements. Section 3 discusses the design of
AGP and Section 4 presents our methodology on test-
ing AGP and the evaluation results. Section 5 compares
AGP to related work. Finally, in Section 6 we present
the conclusions and future work.

2 AGP features & messages

The proposed AGP consists of five modules as shown
in Fig. 1. The Content Exchange and Reputation Man-
agement modules maintain peer information relating to
quality and similarity of resources, as well as peer be-
haviour, benign or malicious. This information is lever-
aged by the Topology Adaptation module in making
decisions when establishing or dropping connections.
The above information is also pertinent to query rout-
ing as deemed necessary by the Searching Mechanism
module. The Cache module maintains and synchronizes
the information acquired by the other four modules.
Each module will be discussed in further detail in
Section 3. The specific characteristics of the peers,
the messaging and the resources management are de-
scribed below.

Peer characteristics Each node provides encryption,
decryption and hashing services. This way the peer can
check the integrity of the downloaded content, and
can protect its messages using cryptographic services.

Overlay P2P Network

Exchage
Context 

Cache
Reputation
Management

Topology Adaptation

A
G

P

Content
Repository

Query Generator

User InteractionPeer 

Searching Mechanism

Fig. 1 The architecture of AGP-protocol and its modules

To achieve this, our protocol uses the MD5 hashing
algorithm [24] and RSA-cryptography [25]. Provided
that a peer maintains a public key and a private key,
messages are encrypted at the source node using the
public key of the destination node. The latter is the
only one which can decrypt messages successfully, using
its private key. Nodes feature a unique ID that helps
them maintain consistent identity. This ID is produced
by hashing the node’s private key. In this regard, every
node is identified with an ID that can be generated
locally, transferred easily, but cannot be easily stolen
or created. It is possible to use “zero-knowledge proof”
methods [10, 12] in order for a peer A to ascertain the
validity of the ID and public key generated by peer
B. Due to the complexity of the zero-knowledge proof
techniques and their orthogonality to AGP, we leave
their analysis for future work.

As depicted in Fig. 1, each node contains a Query
Generator, discussed in Section 3.4, used to launch
new queries. We consider that peers are interested in
specific content categories or file keywords and the
submitted queries are for similar content. In reality, an
application form will help a user designate her query,
parse it into specific keywords, form the query mes-
sage(s) and invoke the searching mechanism by ship-
ping messages to appropriate sets of neighbor nodes.
In addition, for certain file types (e.g., mp3 files), key-
words may be generated automatically by extracting
information from the file. In this paper, we assume
that the keywords describing the content are of good
quality and they accurately reflect the content of the
file. Shareable content, such as music and video files,
is stored in the node’s Content Repository (Fig. 1). For
each file, this repository contains an XML description,
a file-digest created through a hash-function, and the
location of the content. A table such as that shown in
Table 1 helps organize the above meta-data.

Messages Each message is stamped with the ID of the
source and destination node. All messages that nodes
exchange are tagged at their origin with a globally
unique identifier or GUID [3], a randomly generated
sequence of 16 bytes. This prevents the routing protocol
from sending the same message twice to the same
node. The transmission of each message is depicted in
Figs. 3–6 where Fig. 2 is the legend for the different

Table 1 The data structure for Content Repository

File1 File1 XML description File1 MD5 digest File1 path
File2 File2 XML description File2 MD5 digest File2 path
File3 File3 XML description File3 MD5 digest File3 path
... ... ... ...
FileN FileN XML description FileN MD5 digest FileN path
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Fig. 2 Node symbols used
in various network
formations depicted in
Figs. 3–6

Recommender Node

Content Node

Neighbor Node

Querying Node

Network Node

node types. The messages used by the AGP protocol
are the following:

• RequestContent[source = peerID, destination =
nodeID]: informs neighbor nodeID that peer
peerID requests content descriptions (see Fig. 3).

• SendContent[source=nodeID, destination=peerID,
XML-fileDesc1, XML-fileDigest1, XML-fileDesc2,
XML-fileDigest2, ..., numNeighborsnodeI D, sat]: is
the reply to the RequestContent message. This
message encapsulates all information regarding the
content of node nodeID, includes the XML descrip-
tion of its files and their corresponding MD5-digests
used to ascertain that file’s integrity. Furthermore,
this message informs the querying peer about the
number of neighbors (numNeighborsnodeI D) that
nodeID currently has, while sat declares whether
nodeID is satisfied (or not) with its current topol-
ogy (see Fig. 3).

• GiveRecomm[sourceID = peerID, destID =
nodeiID]: The peer peerID requests from node
nodeiID a set of recommender nodes (see Fig. 4).

Send ContentSend Content

Request Content Request Content

Fig. 3 AGP-protocol RequestContent and SendContent messages
are transmitted only between neighbors

TakeRecomm

GiveRecomm

Fig. 4 AGP-protocol recommendations are received from rec-
ommender nodes which need not be neighbors of the peer in
question

• TakeRecomm[sourceID=nodeiID, destID=peerID,
recommender1ID, recommender2ID, ...]: the reply
to a GiveRecomm message. The node nodeiID pro-
vides to peer peerID a set of recommender nodes
with IDs recommender1ID , recommender2ID , etc.
(see Fig. 4).

• Query[sourceID = peerID, string = queryString,
RepThreshold]: a node transmits its query string
to its neighbors (see Fig. 5). Forwarding neighbors
pass the query on to other peers with similar con-
tent and/or reputation higher than RepThreshold.

• Respond[sourceID = responderID, destID = Source-
PeerID]: if a peer contains information which

Query Query

Respond

Q
ueryR

espond

Respond

Query

Fig. 5 AGP-protocol Query messages are transmitted between
neighbors only. Nodes which provide forwarding services will
transmit the query to any other peers that might be likely to
produce hits
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Fig. 6 AGP-protocol node evaluations are requested from a
subset of the neighbor’s recommenders

matches a query, the response is sent back (see
Fig. 5). Forwarding peers transmit responses to the
node where the query originated.

• EvalNode[sourceID = peerID, destID = recom-
menderkID, evalID = nodeiID, PKpeer]: The peer
peerID requests from the recommender node
recommenderkID to provide an evaluation about
the node nodeiID (see Fig. 6). The peerID also
includes its public key (PKpeer).

• EvalNodeReply[sourceID = recommenderkID,
destID = peerID, evaluation]PKpeer : the reply to an
EvalNode message. The node recommenderkID
responds to peerID with an evaluation (see Fig. 6).
The message is encrypted with the public key of
peerID.

• Overloaded[sourceID = peerID, destID = neigh-
borNodeID]: The peer sends this message to all its
neighbor nodes, in order to inform them that it is
overloaded.

• Free[sourceID = peerID, destID = neighbor-
NodeID]: The peer sends this message to all its
neighbor nodes, in order to inform them that it is
no longer overloaded.

Resource properties Each resource has an XML de-
scription and a digest that is used by the downloader
to ascertain the integrity of the resource. For example,
an mp3 file may have the following XML description:

<mp3>

<name>Gnutella</name>

<artist>Artist</artist>
<album>AGP</album>

<genre>P2P</genre>

</mp3>

The digest is the result of hashing the resource with
the MD5 algorithm.

Content similarity The similarity metric in our proto-
col is very important and is used by both the topology
adaptation module (Section 3.3) and the query routing
process (Section 3.4). The reputation scheme identifies
dishonest neighbors and assigns them low reputation
scores. Eventually, the adaptation process will remove
the neighbors that have reputation lower than that
of other discovered peers. The candidate peers with
the best reputation are sorted based on their content
similarity. In this manner, a node will establish connec-
tions first with those peers that have the most similar
content, creating a cluster of “like-minded” peers. In
case that two or more candidates have the same content
similarity, the node selects one of them randomly. The
entire process is described in detail by the topology
adaptation algorithm (Section 3.3). The second usage
of the similarity metric is in query routing. As we will
see in Section 3.4, the nodes always forward queries to
peers with similar content, increasing the probability of
discovering the information sought by the user.

Content similarity is computed as follows. Suppose
that a peer P has a set of XML descriptors XMLP of its
files and a neighbor node N has its own set of XML de-
scriptors XMLN . Nodes P and N are connected to each
other and have exchanged their content descriptors. In
order for peer P to calculate its content similarity with
the node N, it parses its XMLP descriptions and creates
a set of the ζ (= 100) most popular terms (PpopSet).
Subsequently, the same process is repeated for the
(NpopSet) that was offered by node N. As depicted in
Algorithm 1, the content similarity score is calculated as
the number of identical attributes in the two sets NpopSet

and PpopSet.
Dishonest nodes may advertise false content or con-

tent that they do not have in order to allure other peers

Algorithm 1 similarity( )

1: 0

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

for each file do

for each attribute of file do

for each file do

for each attribute of file do

if (A.name == B.name) && (A.value == B.value) then

// Identical attributes with identical values

++

end if

end for

end for

end for

end for

  return

,
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to establish a connection. Although this scenario can
happen, over time, the reputation of such nodes will
decrease either automatically or when the user evalu-
ates the content. It is possible to automatically detect
when a rogue peer advertises incorrect information by
comparing the hash values for the identical information
from other peers. If the hash values are different, or
after downloading the content it is established that
the actual hash value is different from that advertised,
it is likely that the content is fraudulent. Although a
Byzantine protocol [5] may be used here to down-grade
the reputation of dishonest peers, it requires at least 2/3
of the nodes with the identical content to be honest.
This requirement may be too high for less popular
content. At present, we leave it to the user to rate the
content and consequently, the source of the content.
Ultimately, our reputation mechanism (proRep metric
in Section 3.2.3) will cause the reputation of the dishon-
est node to rapidly decrease and the connection to the
rogue peer will eventually be discarded by the topology
adaptation mechanism (Section 3.3).

3 The AGP protocol modules

Figure 1 depicts the characteristics of the AGP-
protocol and shows its functional modules which are:

• the topology adaptation module which modifies
existing direct overlay links to other peers, cre-
ates new connections and drops links with peers
that provide low-quality content or poor forward-
ing services. Essentially, the task of this module
is to gracefully adapt the overlay network topol-
ogy while using input from the rest of the AGP
modules.

• the reputation management module whose objec-
tive is to continually monitor the behaviour of
discovered nodes. This component evaluates the
nodes as content providers, by examining their
forwarding services and by taking into account
recommendations from third parties. The nodes
are assessed based on both their current and past
behaviour.

• the content exchange module uses the content
stored in the node’s content repository to advertise
it through SendContent messages. In a similar fash-
ion, and via RequestContent messages, content-
descriptions from other peers may be requested.
These two types of messages help to update and
publish the node’s content into the network. More
importantly, this module is in charge of updating

the data stored in the node’s cache with information
about the content of other peers.

• the cache module maintains all information used by
the AGP-protocol as well as meta-data provided by
other discovered nodes.

• the searching mechanism selects the proper set of
neighbors to which the query will be forwarded,
based on content and reputation criteria. We modi-
fied Gnutella’s searching algorithm, in order to for-
ward the queries to the neighbors that have similar
content and/or higher reputation.

Peers responding to a query are classified into two
categories: a) those that maintain direct overlay links to
the requesting node called neighbors and b) peers that
the node has possibly downloaded data from but do not
belong to the neighbors group, called collateral nodes.
We refer to these two categories of peers collectively as
the discovered nodes. In the remaining of this section,
we outline the structure and the operational aspects of
the above modules.

3.1 The content exchange module

Upon joining the P2P network, a node is initialized by
the following steps:

1. Request maxNumberOf Neighbors (see Table 2)
random neighbors from a well-known GWeb-
Cache [3].

2. Send RequestContent message to each neighbor to
obtain XML content descriptions.

3. Neighbors respond with a SendContent message to
the new peer informing it of their content, their
satisfaction state (i.e., “satisfied” / “not satisfied”)
and the number of their neighbors.

4. The initializing peer uses the information from the
SendContent message to bootstrap its Topology
Adaptation module and its Cache.

Steps 2–4 above are repeated for all nodes in the
neighbor group and every time the peer encounters a
new collateral node. The information obtained through
SendContent messages is stored in the cache, discussed
in Section 3.5. The content exchange module is respon-
sible for keeping the rgi Cache updated and removing
obsolete entries.

The content description of nodes is used for two
purposes. Firstly, our topology-adaptation uses the
meta-data stored in the cache to evaluate content sim-
ilarity with other nodes. The peer establishes connec-
tions with these nodes in order of content similarity. If
two or more nodes have the same content similarity,
the peer selects one of them randomly. Secondly, the
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Table 2 AGP Parameters: their ranges, default values and properties

Parameter Default value Min value Max value Static/dynamic

Capacity 196 kb/s 56 kb/s 420 kb/s Static
minAllocation 28 kb/s 28 kb/s 28 kb/s Static
SatisfactionThreshold 0.7 0 1 Static or dynamic
maxNumberOfNeighbors 7 2 15 Static
MaxResponses 1 1 User choice Dynamic
RepThreshold 0.6 0 1 Dynamic
δ (“good” rating reputation adj.) 0.2 0.2 0.2 Static
λ (“bad” rating magnification) 2.5 2.5 2.5 Static
θ (“dangerous” rating magnification) 5 5 5 Static
αr (recommendation weight) If stranger, half of Rep of the 0 1 Dynamic

Least trusted known peer,
Else Rep of the known node

ν (nbRep memory depth) 0.5 0 1 Static
μ (othersRep memory depth) 0.5 0 1 Static

proposed searching algorithm uses the content descrip-
tions to make better choices when routing queries. As
a result, the queries are only transmitted to neighbors
that are highly likely to satisfy them.

3.2 The reputation management module

The scope of this module is to provide incentives for
peers to avoid selfish and malicious behaviour, discrim-
inate the honest from dishonest nodes and punish the
latter with low reputation evaluations. A node’s reputa-
tion is set proportionally to the services that it provides
to its peers. When a node forwards an extensive num-
ber of query responses, while acting as intermediary
and providing high quality content, its reputation score
increases.

Nodes use three fundamental metrics to evaluate a
peer’s reputation:

– neighbor reputation evaluation (nbRep): it evalu-
ates neighbors for their forwarding services. Good
evaluation is given when a node forwards many
responses back to the peer for its submitted query.

– provider node reputation evaluation (proRep): it
evaluates a node as a content-provider. When a
node provides high-quality content to a requesting
peer, its proRep score increases. Conversely, nodes
that disseminate unwanted, poor quality or even
malicious content are penalized by receiving low
proRep scores.

– node reputation evaluation based on recommen-
dations from others (othersRep): it evaluates a
node using recommendations from collateral nodes
or neighbors. This way the peer can capitalize
on the experiences of its counterparts in the P2P
network.

Our reputation scheme evaluates peers based on
their current and past behaviour. For simplicity and
efficiency of our model, we avoid a real time metric.
We measure the time in epochs that have specific time
duration. The current epoch is defined as t and the
previous one as t − 1. The reputation evaluation of a
node i that is either a direct neighbor or a collateral
counterpart, at epoch t, is defined as 0 ≤ Repi(t) ≤ 1.
We set the three aforementioned metrics so that 0≤
nbRepi(t), proRepi(t), othersRepi(t) ≤1. We combine
them into a single value using three factors 0≤ c1, c2,
c3 ≤ 1 for which c1+c2+c3 = 1 is always true. As the
nature and quality of services continuously change, the
value of Repi(t) reflects such changes and is computed
as:

Repi(t) = c1 · nbRepi(t) + c2 · proRepi(t)

+ c3 · othersRepi(t) (1)

In the remainder of this section, we give a detailed
description of the above metrics calculation. Further-
more, we present the mechanism that incentivizes the
nodes to cooperate and share resources.

3.2.1 Incentives for providing query forwarding service

During an epoch, each node uses a portion of its band-
width capacity1 (C) to submit its queries. The rest of
the available capacity Clef t is proportionally shared to
serve its neighbors. Hence, the node’s capacity (Ci) that
is devoted to neighbor i is:

Ci = Clef t · nbRepi
∑numberOf Neighbors

k=1 nbRepk

(2)

where 0 ≤ Ci ≤ Clef t and 1≤ i ≤ numberOfNeighbors.

1Another metric could be the node’s buffer space for outgoing
messages, during an epoch.
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The neighbors which provide good forwarding ser-
vices shall receive a higher reputation score. They are
incentivized to do so, as the peer allocates a bigger slice
of its bandwidth to serve each contributing node (based
on Eq. 2).

3.2.2 Computing the nbRep parameter

Upon query submission, a peer uses its cache content
and reputation information to forward the query to a
subset of the neighbors with the most similar content
(Algorithm 1) and highest reputation. When the query
responses arrive, every neighbor is evaluated based
on the number of provided responses. We note that
at this stage the peer does not mind if the responses
were sent by neighbors or by third parties (i.e., the
neighbors that just forwarded replies back to the re-
questing peer). The evaluation for each neighbor i with
ID (EvalNeighborIDi) that returned Ri responses from
the total responses (totalR) that the node received is:

EvalNeighborI Di = Ri

totalR
(3)

The nbRepi(t) evaluation of each neighbor i also
takes into consideration the previous evaluation (dur-
ing the previous epoch t-1) of the peer. In this re-
spect, neighbors have to provide uninterrupted good
forwarding service to maintain a good evaluation score.
The current nbRepi (0≤ nbRepi(t)≤1) is calculated as
a front-weighted moving average of the previous val-
ues. This gives higher priority to more recent scores,
while still taking into account historical behaviour. The
nbRepi value can be maintained iteratively using the
following equation:

nbRepi(t) = ν · nbRepi(t − 1)

+(1 − ν) · EvalNeighborI Di (4)

where ν ∈ [0, 1] controls the “memory depth” with
values closer to 0 giving more weight to more recent
measurements. By default, nbRepi(0) = 0.5.

The nbRep value helps a peer to evaluate the for-
warding behaviour of its neighbors. Neighbor nodes
that exhibit no-forwarding or free-riding behaviour will
have their nbRep score decreased. Peer i with the above
behaviour will earn smaller slices of the node’s capac-
ity Ci as per Eq. 2. When a neighbor i receives low
nbRepi evaluation, its chances of being rejected by our
topology adaptation algorithm increase. A node may
attack our protocol by forwarding many counterfeit
results for non-existing content in order to improve its
nbRep evaluation. This will increase its reputation eval-
uation and its probability of being selected as a resource
provider. To protect itself from this behaviour, a peer

uses recommendations from third parties as detailed
in Section 3.2.4. Also, if the dishonest node is selected
as a provider and the peer downloads content from
it, the dishonest node will be punished by the proRep
evaluation parameter once the content is discovered to
be fraudulent, as explained in the following section.

3.2.3 Computing the proRep parameter

Each time the peer downloads content from a col-
lateral or neighbor node i, the application asks the
user to evaluate the downloaded content. This trig-
gers the evaluation of node i as content provider (0≤
proRepi(t)≤1) and is calculated as follows. If the con-
tent quality is acceptable, the user gives a good rating
so the proRepi evaluation of the provider node is in-
creased as: proRepi(t) ← proRepi(t − 1) + δ. The user
may also rate the content as bad in case it is of poor
quality, or dangerous if it contains malware. As a re-
sult, the provider node proRepi evaluation that was
rated as bad is decreased as: proRepi(t) ← proRepi(t −
1) − λδ. If it was rated as dangerous, the evaluation
is decreased as: proRepi(t) ← proRepi(t − 1) − θδ. In
both cases, θ > λ > 1. Through extensive simulation
experiments we found that viable values for these pa-
rameters are δ = 0.2, λ = 2.5 and θ = 5. In practice, the
individual values of these parameters are not of signifi-
cant importance to our reputation calculation. What is
important is the relative magnitude of the values, which
determines the severity by which we wish to punish
misbehaving peers. If the proRepi(t) drops below zero,
its value is set to zero and, if it elevates above one, its
value is set to one.

Finally, after each download, a file integrity check is
performed using the already known MD5 file digest.
If the calculated digest does not match the previously
known digest, the downloaded resource is discarded.
There are two alternatives to further strengthening the
management of content through the MD5 digest. If the
content in question is available from multiple peers
but the MD5 values differ among peers, a majority
vote can be used to determine the authentic content.
This is a best-effort mechanism and is vulnerable to
adversaries with sufficient resources. As previously dis-
cussed, a Byzantine protocol [5] could be implemented
to concretely verify the authenticity of information.
This, however, is beyond the scope of this paper and
is left for future implementation.

3.2.4 Computing the othersRep parameter

Every time the peer has to select from a set of content-
provider nodes (these could be collateral nodes or
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direct neighbors), it requests from each one a list of
nodes that shall act as its recommenders. To this ef-
fect, the peer sends to the potential provider node i
a GiveRecomm message and the node responds with a
TakeRecomm message. In order to be selected, node i
has to furnish a set of recommenders. In general, the
number of the recommenders is a fraction of node i’s
neighbors. Our rationale is that a malicious node will be
surrounded by less honest neighbors than an honest one
(based on the operation of the topology adaptation as
detailed in Section 3.3). Hence, a malicious node cannot
easily provide a set of good recommenders.

Once the list of recommenders is received, the peer
proceeds by asking its trusted neighbors and a fraction
of the recommenders to give their evaluations of node
i. This is done with an EvalNode message, which carries
the peer’s public key. Subsequently, the peer collects
all encrypted EvalNodeReply responses containing the
evaluations. The messages are decrypted and the tam-
pered ones are discarded. The peer then computes the
average score of evaluations for the candidate provider
node i as:

avgRecScorei =
∑l

r=1 αr · recScorer

l
(5)

where recScorer is the evaluation received from node r
and r = 1,. . .,l. A dishonest node may control a number
of other nodes and use them to send high evaluations
of itself. In order to confront this type of attack, we
use the αr factor. It represents the trustworthiness of
each recommender. This allows the peer to give more
importance to evaluations from already trusted neigh-
bors, than to those that came from unknown sources.
For trusted nodes, the αr value is set to their Repi

value. For unknown nodes, it is set to Rep/2 of the
least trusted node (i.e. the one with the minimum Repi

value). Finally, the 0≤ othersRepi(t) ≤1 evaluation of
a candidate-provider node i is also epoch-dependent
and has memory depth (controlled by μ ∈ [0, 1]), like
nbRepi, and is computed as:

othersRepi(t) = μ · othersRepi(t − 1)

+(1 − μ) · avgRecScorei (6)

3.2.5 A concrete example

In order to better understand how peer reputation
affects the allocation of service provisions, consider the
following example. Let’s assume that node j provides

C j =50 kbps of its total network bandwidth in order
to provide service to other peers. Also let’s assume
that node j has only 3 neighbor nodes (n1,n2,n3) with
respective reputations nbRep1 =0.5, nbRep2 =0.7, and
nbRep3 =0.2. For the denominator in Eq. 2 we have∑3

k=1 nbRepk =1.4. Therefore,

n1 will get c1 = 50 · nbRep1/1.4 = �17.8� = 18 kbps,
n2 will get c2 = 50 · nbRep2/1.4 = �25� = 25 kbps,
n3 will get c3 = 50 · nbRep3/1.4 = �7.1� = 7 kbps.

Suppose now that n1 wants to receive better service and
to increase the 18 kbps that node j has allocated for n1

to 20 kbps. If the reputations of the other neighbors
remain the same, from Eq. 2 we have:

20 = 50 · nbRep′
1

0.7 + 0.2 + nbRep′
1

⇒ nbRep′
1 = 0.6

Therefore, to get the additional 2 kbps from node j, n1

has to increase its nbRep by 0.1. From Eq. 4 we have

nbRep′
1 = μ · nbRep1(t − 1) + (1 − μ) · R1

totalR

0.6 = μ · 0.5 + (1 − μ) · R1

totalR

R1 = (0.6 − μ · 0.5)

(1 − μ)
· totalR

With μ = 0.5 we get R1 = 0.7 · totalR. Therefore, n1

must return at least 70% of the responses that node j

will receive for its new query. In general:

Rk = (nbRep′
k − μ · nbRepk)

(1 − μ)
· totalR

3.3 The topology adaptation module

Peers with similar content and effective cooperation
are linked together by the topology adaptation module.
Its main objective is to augment the overlay network
by altering the direct connections between the peers.
In this regard, the topology adaptation establishes di-
rect connections between a requesting peer and its
discovered counterparts. For this purpose, it uses the
evaluation of the reputation management module.

While using the P2P network, the peer calculates the
reputation of both neighbor and collateral nodes. Using
Eq. 2, the peer can evaluate the services provided by
its neighbors. The first step is for the peer to compute
its satisfaction from the current formation of the over-
lay network. Every node features a specific bandwidth
capacity that constraints its maximum number of con-
nections with neighbors. Exceeding this number will
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result in node overloading which in turn leads to fail-
ing requests and degrades the service quality. To pre-
vent this, an AGP peer defines a minimum allocation
capacity (denoted as minAllocation) for each connected
node. The maximum number of linked nodes is:

maxNumberOfNeighbors ≤ Capacity
minAllocation

(7)

Another important parameter is the Satisfaction-
Threshold∈ [0, 1] which defines a limit over which a
peer is “satisfied” with its current P2P connections.
This number also contributes to how often the topol-
ogy adaptation procedure is triggered. A Satisfaction-
Threshold closer to one indicates a node keen to search
for and adapt to a better neighborhood. Conversely, a
value closer to zero indicates a peer satisfied with its
placement in the network.

If the peer has less neighbors than those defined by
maxNumberOfNeighbors, its satisfaction is set to zero
in order to force the peer to rapidly make more direct
connections with collateral nodes. Otherwise, the peer’s
satisfaction is set to the average total reputation score
of its neighbors according to the following equation:

satisf action(t) =
∑

∀i∈neighbors Repi(t)

numberOfNeighbors
(8)

Algorithm 2, named Adaptation check, describes the
topology adaptation process. The node maintains a
desired satisfaction level (as defined by the Satisfac-
tionThreshold). This parameter is defined by the user
and can be changed dynamically. The first step is to
compute the current satisfaction of the peer as shown
previously and then compare it with the Satisfaction-
Threshold. There are two cases: a) the node is satisfied
with its current topology, and b) the node is dissatisfied.
In case a) the node is already satisfied and there is
nothing that we have to do. If case b) occurs, then
the node has the opportunity to do two things. First,
if it has not reached its maxNumberOfNeighbors, it
can connect with one more discovered peer with high

Algorithm 2 Adaptation check Algorithm
1: if (satisfaction SatisfactionThreshold) then
2: select CollateralNodes with
3: send RequestContent message to
4: wait until receive SendContent message from
5: if ( is not satisfied  and has not reached maxNum-

berOfNeighbors) then
6: TopologyAdaptationAlgorithm(node )
7: end if
8: end if

reputation. If the node has used all its available links,
it attempts to discover more neighbors by invoking
the Topology Adaptation Algorithm described in
Algorithm 3, where the function departNeighbor()
helps find candidate nodes to be evicted. In both cases,
the node exchanges content description messages with
a number of candidate peers that have high reputation.
These messages provide the node with the content
descriptions of the candidates, their operational state
and satisfaction level. The interesting case is when the
node has reached its maxNumberOfNeighbors. Then,
the node compares its content similarity with that of its
neighbor and the new collateral nodes. A new link is
made only if a collateral node has higher similarity with
the node. After that, the cache and the network links
are properly updated.

3.4 AGP searching mechanism

When a node initiates a query without having prior
content and reputation information for its neighbors,
it carries out random walks to reduce query overhead.
If, however, there is meta-data in the node’s cache
(see Section 3.5), our search algorithm will carry out
a search using more efficient paths. Hence, our search
uses an augmented breadth first search, which is di-
rected only to neighbors with good reputation evalua-
tion or ones that are known to contain the requested
content. The node selects peers with high reputation
evaluation due to their provision of good service(s) and,
thus, avoids nodes with no-forwarding behaviour, free-
riders and malicious nodes.

Algorithm 4 outlines how our search mechanism
uses the following user-set key parameters: 1) MaxRe-
sponses: indicates the maximum number of responses
that an initiator peer requests, 2) RepThreshold:

Algorithm 3 Topology adaptation Algorithm
1: input: collateral node
2: if (number of node’s neighbors + 1 < maxNumberOfNeigh-

bors) then
3: create new direct link with collateral
4: send SendContent message to new neighbor
5: else
6: D ← departNeighbor(neighbor’s peers)
7: if (similarly(this node, collateral node) > similarity(this

node, D) and (D is not empty) then
8: send Drop message to D
9: create new direct link with collateral

10: send SendContent message to new neighbor
11: else
12: REJECT new connection with collateral node
13: end if
14: end if
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Algorithm 4 Search Algorithm
1:  FreeSet i: i neighbor and i is not overloaded
2:  RepSet i: i FreeSet and Rep (t) reputationThreshold
3:  ContentSet i: i FreeSet and i has the requested content
4:  ContentRepSet i: i RepSet and ContentSet
5: if ( ContentRepSet ) then
6: for (each j subset of ContentRepSet) do
7: forward query to j with reduced maxResponses
8: end for
9: else if ( RepSet ) then

10: for (each j subset of RepSet ) do
11: forward query to j with maxResponses
12: end for
13: else if (ContentSet ) then
14: for (each j subset of ContentSet) do
15: forward query to j with reduced maxResponses
16: end for
17: else
18: for (each j subset of FreeSet ) do
19: forward query to j with maxResponses
20: end for
21: end if

designates the reputation threshold over which a node
considers a neighbor to be a useful provider.

The node first computes the FreeSet that contains the
non-overloaded neighbors. When a node is overloaded,
it informs its neighbors with an Overloaded message.
When it returns to a normal operational state, it sends
a Free message. This way, the operational states of the
neighbors are consistently updated. Using the FreeSet,
the node calculates the RepSet that contains the non-
overloaded neighbors having reputation values over
the RepThreshold. Furthermore, the node uses FreeSet
to calculate the ContentSet. The latter contains the non-
overloaded neighbors which maintain the requested
content. A final set, the ContentRepSet, is computed as
the intersection of the RepSet and the ContentSet.

If the ContentRepSet is not empty, the node reduces
the maximum number of results and sends the query
to a percentage of the ContentRepSet peers. Otherwise
(i.e., ContentRepSet = 0), the query is randomly sent
to a percentage of peers that belong to RepSet. In this
manner, the node selects paths containing peers with
good reputation score, even if they do not feature peers
with the requested content. In other words, the node
avoids paths with peers that do not provide forwarding
services and offer low-grade or malicious content. In
case the RepSet is also empty, the node checks the Con-
tentSet. If the ContentSet is not empty, the node reduces
the maximum number of results and sends the query
to a percentage of the ContentSet peers. As the node
which initiates the query maintains updated content
descriptions about neighbor resources, the neighbors
with the requested content are known a-priori. Should
the ContentSet be empty, in order to reduce message

overhead, the algorithm operates using a random walk.
Thus, the query is sent to a fraction of its neighbors
in order to avoid flooding the network with the same
query.

3.5 Cache module components

The cache module has a number of specialized caches
that maintain critical information for the operation of
the AGP-protocol. These caches are:

• peer-self information cache (psi Cache): it main-
tains the standard configuration elements of the
node including its unique ID, maxNumberOfNeigh-
bors, the node’s public and private keys, as well as
the Satisfaction Threshold.

• known peer general information cache (kpgi
Cache): it holds information about the discovered
nodes. The kpgi Cache stores the IDs and the fol-
lowing parameters about each discovered node:

– three key reputation parameters which are
used for reputation evaluation, namely,
nbRep, proRep and othersRep. These param-
eters indicate how the node evaluates: a) a
peer as neighbor for its provided forwarding
services (nbRep), b) a peer as content provider
using the evaluation of its upload services
(proRep), and c) a peer as provider using
recommendations from third parties for its
overall services (othersRep),

– the current operational state of the node (i.e.,
whether it is overloaded).

As the above information is heavily used by the
reputation and adaptation components, each node
maintains it in memory, using two hash-tables (as
shown in Fig. 7): the first pertains to the neighbors
and the second to the collateral nodes. Both hash-
tables use as keys the node-IDs. If the node decides
to suspend its operation for a period of time, it
may elect to store its hash-tables to a file for later
(re)use.

• resource general information cache (rgi Cache): it
maintains information about the content stored in
neighbors (as shown in Table 3). This portion of the
cache contains: XML descriptions of the neighbors’
content, their MD5 digests, and the IDs of the
nodes that this content originates from (along with
their quality assessment if downloaded). This infor-
mation is normally stored in a database table allow-
ing for quick access to specific peer information.
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Fig. 7 kpgi Cache data structures (a, b)

• providers Evaluation cache (pEval Cache):
stores recommendations regarding provider nodes
offered voluntarily by third parties and for which
the requesting peer might be interested in down-
loading from. Such recommendations are used for
the computation of the othersRep parameter.

• query Forwarded cache (qForwarded Cache):
stores the IDs of the nodes that each query was
forwarded to. In this manner, a specific query is not
forwarded to the same neighbor more than once
and the node knows when the query has been sent
to all of its neighbors. This information is stored
as hash-table entries using as key the GUID of
the query and value the neighbors IDs in the form
GUID–{ nodeID1,nodeID2,...}. The qForwarded
Cache is LRU-maintained, giving higher priority
to more recent queries.

Table 3 rgi Cache mandatory fields; optional fields include qual-
ity evaluation

Mandatory fields

Neighbor1 File11 XML description MD5 digest
Neighbor1 File21 XML description MD5 digest
Neighbor2 File12 XML description MD5 digest
... ... ... ...
NeighborN File1N XML description MD5 digest

4 Empirical results

In this section we assess the performance of the pro-
posed protocol. We evaluate not only the reputation
and adaptation scheme but also our search mechanism.
The successful operation of the AGP protocol depends
on the parameters that each node uses to determine
its connectivity with the other peers. These parameters
are listed in Table 2. We show that the protocol suc-
cessfully discovers and punishes peers with dishonest
behaviour. We also show that our search mechanism
exhibits better overhead than previous proposals based
on Gnutella.

4.1 Node behaviour

The network consists mainly of honest nodes that con-
tribute their resources. The honest nodes provide fine
quality files and query forwarding service. In the net-
work, there also exists a population of dishonest nodes
that do not operate like the honest ones. We have
defined and simulated four types of dishonest node
behaviours. The first type consists of malicious nodes
that constantly upload files with malicious content such
as virus infected files. Nevertheless, these nodes always
present good forwarding services and propagate the
receiving queries from other nodes to the network. The
second type of dishonest nodes is free-riders that refuse
to share their content. The third type consists of nodes
that exhibit dynamic dishonest behaviour. These nodes
behave as honest ones for a period of time and then
for the remainder of their lifetime behave randomly
either as malicious/free-riders or as honest nodes. The
fourth type are dishonest nodes that provide low quality
content.

4.2 Content distribution

In our simulations, the shared items are files belonging
to a number of content categories. To define how to
distribute distinct files to the peers, we use the measure-
ments provided by [26], as well as those by [9], where
72% of the total nodes will have a file that belongs
to 30 or less categories, 10% of the total nodes will
have a file that belongs to at most 50 categories, and
18% of the total nodes will have a file that belongs in
one category. Each peer supports a set of categories.
The assignment of items among the network nodes
is based on the distribution in [9] over 200 content
categories. Based on the content categories that it sup-
ports, each node is associated with a number of files
in these categories. This is achieved using a uniform
random distribution. Any connected peer that is not
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overloaded can issue new queries. We model the time
that the peer is connected based on the cumulative
distribution function in [26]. However, we used epochs
instead of minutes to indicate the passage of time. This
distribution also defines our churn rate since we assume
that, once disconnected, a peer has left the network. At
a later time, the peer may re-enter a different part of the
network. In our simulation model the peers can execute
exact or keyword related queries.

4.3 Simulation execution

We have used the PeerSim environment [15] to sim-
ulate the operation of AGP and to carry out objec-
tive comparisons with the Gnutella v0.6 protocol. The
PeerSim engine is epoch-based. During an epoch, each
node can be up (connected), down (disconnected) or
overloaded. If a node is up, it can submit new queries,
wait for incoming responses, select from a pool of
possible providers that responded, evaluate other peers
and download a file. The last three steps are repeated
until a peer downloads a file or there exist no further re-
sponses from peers with high reputation. Furthermore,
the nodes can invoke their adaptation module in order
to enhance their location in the P2P network.

Our simulation parameters are listed in Tables 2
and 4. Each of our experiments lasts for 1000 epochs.
First, we evaluate the reputation and adaptation
schemes of our proposed protocol. A fundamental deci-
sion deals with the calibration of Eq. 2. Based on a wide
range of simulations, we have concluded that the best
performance can be obtained with the values c1 = 0.5,
c2 = 0.4 and c3 = 0.1. We have concluded that these
values represent a viable configuration which allows
peers to make good overall evaluations of their neigh-
bors. Additionally, this configuration gives equal role
to message forwarding (c1) and to download provision
(c2 + c3). To ascertain that nodes take advantage of the
adaptation mechanism in an equitable manner across
the network, each peer activates the adaptation module
every 20 epochs, except in the case of the search evalu-
ation where the adaptation module remains dormant.

Furthermore, we compare the AGP search algo-
rithm with the Gnutella DQP (Dynamic Query Pro-
tocol). Because only the ultra-peers2 are responsible
for searching the Gnutella network, we only consider
the ultra-peer layer overlay in our simulations. This
ultra-peer-layer forms a stable core-layer, whose nodes
are connected randomly with an average connectivity

2Ultra-peers are nodes with high bandwidth capacity and high
number of direct connections.

degree of 30 [29]. So we approximate the stable core
of Gnutella topology through a Random Graph with an
average degree of connectivity k = 30.

In general we report results derived from a Random
Graph network topology. When we evaluate the rep-
utation and adaptation schemes as well as the search
mechanism, we define the connectivity degree k = 30.

During the evaluation of the reputation and adap-
tation schemes, the nodes submit keyword related
queries. The nodes are not interested in exact file
matches, rather, they search for files with content de-
scriptors that contain a specific keyword. Therefore,
one or more distinct files can satisfy their query. On the
other hand for the evaluation of the search algorithm
we inject a specific file into a percentage (1%) of the
total node population, in order to force peers to search
for scarcely replicated items. In the latter scenario, we
evaluate only exact match queries.

4.4 Protocol evaluation

The main objective of our evaluation is to establish the
improvement of the overlay network topology through
adaptation based on both content quality and repu-
tation. This improvement leads to reduced overhead
when using the proposed search algorithm.

In this context, we pursue four specific goals: 1) we
examine whether our reputation management can ap-
propriately evaluate nodes for their behaviour. We
investigate the effectiveness of our topology adaptation
module when it comes to confronting dishonest peers.
2) We seek to ascertain that the neighborhood for hon-
est nodes can improve over time. The content similarity
metric helps measure this, as it should increase for peers
that successfully reposition themselves in better neigh-
borhoods even in the presence of a large population of
dishonest nodes. 3) We demonstrate that the overall
P2Pnetwork efficiency improves significantly. Metrics
that can help us in this direction are the decreasing ratio
of malicious vs. high-grade downloads and the number
of malicious responses. 4) We examine if our proposed
search algorithm is more efficient than Gnutella’s DQP.
The metrics we use are the message overhead, the
send/receive message ratio and the number of received
responses.

4.4.1 Evaluation of node behaviour

Figure 8a shows how the nodes that present five differ-
ent types of behaviour get separated over time with the
help of our Reputation Management module. The figure
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Table 4 Simulation settings: networks size, content distribution and peer behaviour

Network Maximum # of peers 10,000
# of honest peers 800 or 600
# of dishonest peers 200 or 400
# of initial neighbors of honest peers 3
# of initial neighbors of dishonest peers 5
Maximum # of allowed connections for reputation and 30

adaptation evaluation
Average # of allowed connections for search evaluation 30
# time to live for query messages 5

Content distribution # of possible distinct files in the network 1000
# of distinct files at peer i File distribution in [26]
Set of content categories supported by peer i Distribution in [9] over 200 content categories
# of distinct files at peer i in category j Distribution in [9] over peer i’s
% of time peer i is up and processing queries Distribution in [26] over [0%, 100%]
% of injected special files used for search evaluation 1% of total nodes

Query mechanism Evaluation of reputation and adaptation scheme Use of keyword based queries
Evaluation of search mechanism Use exact match queries

Peer storage Maximum number of messages in peer’s i queue buffer 50
Number of free slots in queue left in order to 5

considered overloaded
Honest peer behaviour % of download requests in which honest peer i returns 90%

authentic file
% of download requests in which honest peer i fails to 5%

evaluate a corrupted file i
Forwarding queries Always except if overloaded%

Malicious peer behaviour % of download requests in which malicious peer i 80%
returns inauthentic file

Forwarding queries Always except if overloaded%
Free-rider (including non- % of download requests in which free-rider peer i 0%

forwarder) peer behaviour returns file
Probability peer i to forward queries Uniform random distribution over [0%, 10%]

Dishonest peer with Probability dishonest peer i to exhibit dynamic Uniform random distribution over [0%, 50%]
dynamic behaviour behaviour

Number of turns until peer i starts to exhibit malicious 100
behaviour

% of download requests in which peer i behave 80%
dishonest and i returns inauthentic file

Probability peer i to forward queries Uniform random distribution over [0%, 50%]
Simulation # of simulation cycles in one experiment 1000

# of cycles between invocation of adaptation module 20
# of experiments over which results are averaged 5

depicts the average reputation of the honest nodes’
peers. As peers evaluate the services received by their
honest neighbors in a positive manner, the reputation
of the latter increases. Free-riders are punished for not
offering any services and their reputation scores rapidly
decrease. The reputation scores of the malicious peers
are also degraded and remain lower than the scores of
their free-riding counterparts. This happens despite the
fact that the malicious nodes provide useful forwarding
services, and is due to the heavy punishment of the
θ parameter described in Section 3.2.3. Nodes that
provide low quality content (but not dangerous one)
also receive low evaluation scores. These nodes, how-

ever, provide good forwarding services receiving higher
scores than the malicious peers. Lastly, the nodes that
exhibit dynamic dishonest behaviour are more difficult
to evaluate. Nevertheless, over time, the reputation
scheme succeeds in discovering them. This happens
even if they have built a high reputation score in the
first 100 epochs and then start their dynamic dishonest
behaviour.

Clearly, the reaction of honest nodes to dishonest
parties is not instant and takes a number of epochs
with more time needed in the case of the malicious
and dynamic dishonest peers. In general we conclude
that the non-forwarding behaviour is easily discovered
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�Fig. 8 Confrontation of malicious nodes and improvement of
neighborhood overlay network topology (a–d)

and punished. The malicious behaviour needs more
time and low quality downloads to be discovered. As
expected, the dynamic behaviour is even more difficult
to be discovered, but our reputation scheme achieves
this goal. After a number of epochs, the honest nodes
have a more comprehensive and accurate view of the
network and its provided services.

Figure 8b shows that the average number of over-
lay connections between the honest and the malicious
nodes drops over time. As we already showed, the
honest nodes properly evaluate the malicious peers
reputation. When the topology adaptation takes place
and a node appears to maintain malicious neighbor
peers with reduced reputation scores, the node drops
its connections with malicious peers and tries to estab-
lish direct overlay links with honest nodes. The same
principle that applies to the free-riders is also valid for
the poor content providers as well as the dynamically
dishonest peers.

4.4.2 Neighborhood overlay network topology

Figure 8c shows how the average content similarity
among the nodes and their neighbor peers increases,
even if the nodes have reached their maximum num-
ber of direct overlay link connections. As presented,
the content similarity score increases not only initially,
when the topology adaptation tries to connect the node
with more peers in order to increase its satisfaction
level, but continues to increase as the topology adap-
tation module swaps neighbors with collateral peers
holding similar content. This last result is confirmed by
Fig. 9a which shows that the improvement of the sim-
ilarity score per new direct link continues to increase
even after the initial 150 epochs have elapsed, and most
nodes have reached their maximum number of neigh-
bors. This is due to the adaptation algorithm: before
the 150 epochs, most nodes simply accept new nodes for
direct linkage without considering their similarity score.
This happens in order to quickly reach the maximum
number of neighbors and to increase their satisfaction
level. After the initial 150 epochs, the majority of peers
have reached this connectivity limit and the adaptation
algorithm carries out a careful selection of collateral
peers, that are candidates for becoming new neighbors,
based on the content similarity. As Fig. 8d shows, the
above result holds for a varying number of malicious
and/or free-rider nodes.
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4.4.3 Enhancing overall network efficiency

Figure 9b depicts how the average ratio of ma-
licious over high-grade downloads develops over
time. This ratio articulates the quality of downloads
provided by the overall network. There is a substantial
decrease in this ratio during the early stages of the ex-
periment that reflects an enhanced network operation.

Furthermore, Fig. 9c presents the evolution of the
average number of malicious downloads over the num-
ber of malicious message responses that the node re-
ceived. The above ratio decreases and this result must
be evaluated along with the outcomes of Fig. 9b. In
combination, both indicate that the number of mali-
cious downloads is reduced over time. Indeed, the re-
sults gathered after a number of conducted experiments
and presented in Table 5 show a substantial decrease in
the number of malicious downloads. Furthermore, they
show that the ratio of fine to malicious responses in-
creases significantly. In other words, as the time passes
by the network operation improves, because the dis-
honest peers are removed and the honest ones receive
less malicious responses to their queries.

4.4.4 Efficiency of AGP searching mechanism

In order to evaluate the efficiency of the AGP search
algorithm compared to Gnutella DQP, we use the fol-
lowing metrics:

– Overhead as expressed by the overall number of
messages sent in the network.

– Send/Receive Ratio: this is the number of sent mes-
sages divided by the number of received query
response messages. A low ratio implies a highly
efficient query processing.

– QueryHits indicates the number of the received
query response messages by the request initiator
node.

– Query Response Time for the queries which were
answered in the specific epoch.

The main objective for evaluating the AGP-search
algorithm is to see if it can exhibit the same capability
in returning hits as the Gnutella DQP protocol but
with improved network resource utilization. Figure 9d
confirms that the AGP-search accomplishes better uti-
lization of network resources. In this figure, the AGP-
search needs significantly fewer messages as compared
to Gnutella. This happens because it selects paths con-

�Fig. 9 Improving neighborhood overlay network topology and
overall network efficiency (a–d)
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Table 5 Simulation statistics on fine/malicious downloads and responses

Malicious 20% of the overlay network nodes
Epochs 0–100 100–200 200–300 300–400 400–500 500–600 600–700 700–800 800–900 900–1000

Malicious downloads 96 3 1 0 0 0 0 0 1 0
Fine downloads 1424 1667 1658 1696 1660 1672 1677 1685 1672 1642
Fine/malicious responses 5.22 5.94 6.3 6.2 6.33 6.38 6.52 6.46 6.46 6.53

Malicious 40% of the overlay network nodes
Epochs 0–100 100–200 200–300 300–400 400–500 500–600 600–700 700–800 800–900 900–1000

Malicious downloads 230 12 4 1 4 9 9 0 5 1
Authentic fine downloads 1290 1658 1653 1691 1655
Fine downloads 1663 1668 1685 1668 1641
Fine/malicious responses 2.39 2.99 3.18 3.16 3.16 3.14 3.15 3.27 3.31 3.33

taining peers either storing the requested content or
having high reputation scores. Increased reputation
means that the possibility is low that this peer is dis-
honest and may provide malicious content or exhibit
free-riding behaviour. The Gnutella’s search algorithm
selects paths that may contain free-riders and therefore
stop forwarding the query. The Gnutella algorithm also
fails to discriminate the honest from the malicious con-
tent providers.

In Fig. 10b, AGP-search exhibits almost the same
behaviour as the Gnutella DQP. This occurs because
the AGP search uses all the available information about
the neighbor nodes and forwards the queries to the
nodes that possess the item in question. The Gnutella
search algorithm uses an iterative two-step process to
discover these nodes. These two different mechanisms
effectively present almost the same capability in return-
ing results. However, in terms of network utilization,
AGP demonstrates much lower send/receive ratio than
Gnutella as Fig. 10a depicts. We believe that these
results will be further improved if the AGP search
algorithm also operates in a two step process, similarly
to Gnutella DQP.

4.4.5 Topology adaptation overhead

In order to evaluate the messaging overhead due to the
Topology Adaptation Module, we perform an experi-
ment where we vary the SatisfactionThreshold. Further-
more all nodes are considered to be honest and have an
initial reputation of 0.45. We run experiments with two
satisfaction threshold values: 0.5 and 1.0; the former is
close to the average reputation of the nodes (remember
that a node’s satisfaction is the average score of its
neighbors reputation), while the latter is the maximum
value. High values of the SatisfactionThreshold result
in peers constantly seeking improvements in their
neighborhood topologies. As shown in Fig. 11, with
a SatisfactionThreshold of 1.0, the topology adapta-
tion overhead is significantly higher and consistently

increases over time compared to the case where Satis-
factionThreshold is set to 0.5. Even if our protocol is
designed to limit the extensive removals (a neighbor
with less that 3 direct connections is never dropped)
in order to avoid creating a disconnected graph, a
high satisfaction threshold limits the scalability of the
network.
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4.4.6 Handling whitewashing attacks

An effective measure against whitewashing attacks—
where malicious nodes periodically reconnect with
newly generated IDs in order to “wash” themselves
off accumulated bad behaviour—is to give newcomers
low initial reputation scores. Essentially this makes it
harder for new nodes to earn the trust of their peers,
but also makes it harder for malicious nodes to join new
neighborhoods. As shown in Fig. 12, in this experiment,
initially all peers start with the same reputation score.
At epoch 50, whitewashing nodes exit the network and
re-join under new identities. We can see that the lower
the default reputation scores are, the more difficult it is
for the whitewashing nodes to re-gain trust and their
reputation remains low throughout the experiment.
When starting with a reputation value of 0.45, peers can
more quickly regain their neighbors’ trust. In contrast,
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with values below 0.45, as whitewashing nodes re-join
the network their reputations remain low, making it
more difficult for them to join honest neighborhoods
and to spread malicious files.

4.4.7 Query response time

We performed extensive experiments in order to ex-
amine the response time of the AGP versus the
Gnutella protocol v0.6. As detailed in Section 3.4, un-
like Gnutella, AGP uses content information to route
queries. Moreover, the adaptation mechanism of AGP
creates a topology that better satisfies each node. We
report the query response time for the searches sub-
mitted by a random peer in the network. To achieve
a more realistic comparison with Gnutella, we freeze
the AGP topology adaptation for the duration of the
query executions. As shown in Fig. 13, for a particular
query, AGP returns most of the results in the first 5
epochs, while the bulk of the search results arrive in
epochs 50–60 when Gnutella DQP is used. Clearly,
AGP executes queries more efficiently and delivers a
better user experience compared to Gnutella. Further-
more, AGP’s superb query response time is achieved
with much lower messaging overhead demonstrated in
Section 4.4.4 as queries are mainly propagated among
reputed peers and results are typically retrieved from
neighbor nodes with authentic content.

5 Related work

The first significant aspect of our proposal is its repu-
tation scheme. Several years of research on reputation
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algorithms has resulted in a number of interesting and
valuable approaches. As we have shown in this paper,
our solution differs from the previous proposals in a
number of ways.

Various approaches exist that calculate a user par-
ticipation level [4] and reward peers with high partic-
ipation by giving higher priority to their requests, or
by reducing their waiting times in the transfer queues.
A more abstract approach is presented in [23], where
utility functions based on the amount and popularity
of content stored by the peer, are used to estimate
a metric for their usefulness. Such mechanisms are
generally easy to subvert by malicious users and make
no consideration about the possibility of attacks.

In [27], the network relies on a centralized server
to assign unforgeable identities, but reputation adjust-
ment is handled among peers. This requires that both
parties in a transaction sign a transaction certificate
that is then presented when reporting on the outcome
of the transaction. This method cannot prevent adver-
saries from submitting fraudulent reports about peers
they have not interacted with in order to lower their
reputation. As we have demonstrated, our evaluation
scheme uses weights, making it less sensitive to this type
of attacks because the node’s own experience has the
largest weight.

In [16], the Eigen-Trust algorithm is proposed, which
produces global reputation ratings for users based on
their history of uploads. These ratings can then be
used by other peers to decide where to download
files from. The global reputation values are computed
from the local reputation values assigned to a peer by
other peers, weighted by the global reputation of the
assigning peers. This approach was found to reduce the
number of malicious files on the network. This proposal
is decentralized but is vulnerable to whitewashing and
to colluding peers. The authors suggest that each agent
separately weighs a globally computed rating with the
personal opinions of trusted peers, when available. Our
proposal uses a similar metric based on the weighted
opinions of the trusted peers. Furthermore, our metrics
are not only based on the history of uploads but also
on the forwarding services provided by the peers. In
a network with a high churn rate, we believe that
methods that create global reputation ratings are not
useful as they produce unnecessary overhead.

A partially centralized mechanism using reputation
computation agents and data encryption is presented
in [13]. The reputation values are calculated, encrypted,
and stored locally using a reputation computation
agent. Two different schemes for calculating reputa-
tion values are proposed: a credit/debit scheme, and
a credit only scheme. The similarity with our protocol

is that both give incentives to peers for cooperation.
Also, both protocols take into consideration the peer’s
hardware and network abilities. On the other hand, this
protocol is designed to give incentives for cooperation
and does not include provisions for fighting peers with
malicious behaviour.

A feedback-based reputation mechanism is pre-
sented in [31], where a scalar trust value for a peer
is computed based on three factors: (1) the amount
of satisfaction received by other peers in the system,
(2) the total number of interactions, and (3) a balanc-
ing factor to offset the impact of malicious peers that
misreport other peers’ service evaluations. The reputa-
tion information is distributed in the network so that
each peer maintains a portion of the total trust data.
Though this reputation storage scheme differs from
other reputation systems, it still requires cooperation
from the peers for storing the reputations. Malicious
behaviour is countered by having multiple peers re-
sponsible for storing the same database. Voting can be
used if these databases differ. Trust is computed on the
fly by querying multiple databases over the network.
The distributed storage of information is a robust way
of improving the quality of reported peer reputation.
Similarly to this method, we query the community for
reputation scores on a particular peer. In addition, we
include a number of other factors, such as the local
node’s past experience, in producing a weighted score
for a particular peer’s reputation.

To a large extent P2P networks mimic the interac-
tions of social groups of people. This idea is extended
in [18], where a P2P algorithm for resource discovery is
used by representing peers as people and connections
as relationships. Such organization significantly reduces
the overheads of obtaining information from neighbors.
Similarly to [18], our proposed protocol attempts to
create new connections based on query results and past
experiences.

The feedback-based schemes discussed so far do not
provide any special mechanism to detect and punish
peers which disseminate rogue (altered or infected)
files. The first to do so was [22], where the concept
of suspicious transactions is used to detect and pun-
ish malicious peers. The goal is to maximize the user
satisfaction and decrease the sharing of corrupted files.
The algorithm detects malicious peers that send rogue
files and attempts to isolate them from the system. The
metric used is trust based on the accuracy and the
quality of the file received. This protocol is designed
for partially centralized systems with ultra-peers. Our
reputation proposal differs because it is designed for
purely unstructured networks. In [22], certain services
provided by ultra-peers are differentiated and treated
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separately. Our proposal expands this idea for the sin-
gle peer, and not only for forwarding the responding
results but also for providing incentives for query prop-
agation. Furthermore, our proposal attempts to balance
the need for limited overhead as provided by a small
number [20] of peers, and the chance to collect useful
information about a specific peer, using further re-
sources [8]. At first, the information integrity is verified
using hash functions that compare the message digest
with the downloaded content and discard the latter if
it is modified. Secondly, the content quality is verified
by the user. In this manner, our protocol evaluates not
only the provided content quantity but also its quality.

The second significant aspect of our protocol is its
adaptation mechanism. To a certain extent, the area of
self-organizing P2P networks has been researched pre-
viously. Noteworthy protocols and mechanisms include
APT [7], GES [32] and GIA [6].

The APT protocol forms overlays based on the con-
cept of the interaction topology which is essentially a
graph whose edges are defined by downloads. A link is
created between nodes i and j if node i has downloaded
content from node j more than k times. APT seeks to
transform the overlay network topology closer to the
interaction topology. The APT operation is based on
two premises: firstly, peers use their past interaction his-
tory to determine which nodes are likely to provide fu-
ture downloads and secondly, the peers directly connect
to these nodes. APT essentially produces “small-world”
networks of “like-minded” users. Such networks are
sparsely connected and display a high cluster coeffi-
cient [19]. APT deals with malicious peers based on
interaction topologies in which a peer P evaluates a
node R exclusively as a resource provider. P does not
take into account neighbor nodes that may not provide
direct downloads, but they may be able to provide
good (forwarding) services. In this context, our solution
rewards peers that may not have the requested content
but act as intermediate nodes, forwarding the queries
and providing paths to nodes that store the requested
content, resulting in improved query performance.

The main objective of GIA is to improve the net-
work scalability by ensuring that high-capacity nodes
are those mainly used for query transferring and at
the same time the low-bandwidth nodes remain within
short reach. GIA-nodes independently try to create
connections with nodes that have high bandwidth
and increase their connectivity degree offering im-
proved query responses while maintaining robustness
to node failures [6]. GES employs a distributed content-
based approach that organizes nodes into semantic
groups. Here, every peer is represented by a vector
of attributes that characterizes the node’s documents.

Furthermore, peers periodically issue random walk
queries to discover new nodes and perform semantic-
addition/replacement of neighbor nodes. The objective
of this re-organization is to enhance query outcomes by
creating node clusters with “similar” interests.

GIA and GES strive to improve scalability, to create
more efficient network organizations, semantic groups
and to return increased query results without taking
into consideration malicious and/or low-grade peers
that appear to proliferate into networks. Our protocol’s
key objective is not only to pursue peers’ individual
performance indicators but also to improve system-
wide peer connectivity while isolating and ultimately
downgrading the role of malicious peers.

6 Conclusions

In this paper, we have introduced methods for im-
proving the network efficiency of the P2P Gnutella-like
file-sharing protocols. Our proposal relies on reputa-
tion and topology adaptation schemes to improve the
overall efficiency of the overlay network topology. The
peers discard neighbors that exhibit malicious or selfish
behaviour and create connections with nodes that pro-
vide good forwarding service, have similar content and
provide high-grade resources. We show that, over time,
the content similarity degree of the peers increases,
the number of the malicious responses drops and so
does the message overhead. Furthermore, we use a
search algorithm that exploits not only the available
neighbor content information, but also the reputation
evaluations in order to select paths with nodes that
provide good forwarding services. We show that our
protocol is far more efficient than the Gnutella DQP
algorithm as it returns the same number of results with
much lower message overhead.

Our protocol, termed Adaptive Gnutella Protocol
(AGP), differs from existing techniques as it also takes
into consideration the forwarding service provided by
the peers. In addition, AGP is designed to operate on
a network with high number of malicious and selfish
nodes through the use of a reputation scheme which
evaluates the peers’ past behaviour, provides incentives
for node cooperation, and uses recommendations from
distant nodes in order to enhance the peer’s view of the
network. Results derived through extensive simulations
demonstrate the effectiveness of the proposed protocol.
We have shown that AGP can isolate malicious nodes
as well as free-riders and pushes them to the edge of
the network, even in the presence of “sophisticated”
adversaries that alternate their behaviour between hon-
est and dishonest. Furthermore, our protocol helps a
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peer to rapidly improve the composition of its direct as
well as its collateral nodes attaining faster and better
query responses. In addition to these improvements
over Gnutella v0.6, AGP attains very short query re-
sponse times, delivering the bulk of the results orders
of magnitude faster than Gnutella.

One of the goals through the proliferation of P2P
systems has always been the preservation of the “free-
dom” and the anonymity of the users. Although AGP
imposes certain restrictions based on monitoring and
behavioural analysis, it does so without revealing the
users’ identities. Furthermore, all of the monitoring
performed in AGP is based on information that peers
collect simply from their interaction with other peers.
In this sense, AGP adds behavioural analysis based
on existing information, consequently improving the
overall user experience. We believe that a network
with complete “freedom” and poor user experience due
to malicious nodes would simply collapse as dishonest
nodes and free-riders would flourish, while honest peers
would desist from joining the network. This would be
akin to an anarchy in a real-world social network.

In the future, we plan to examine the issue of net-
work heterogeneity in terms of both physical links
and network interfaces, address how this heterogeneity
might affect our protocol, and explore the evaluation
of peer reputation on a per-category basis. In the spirit
of [11], we foresee improvements in our protocol if
current network loads are considered when topology
adaptation is performed.
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