
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.0000;00:1–33
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

DOLAR: Virtualizing Heterogeneous Information Spaces to
Support their Expansion

Kostas Saidis1, Yannis Smaragdakis1,2 and Alex Delis1

1Department of Informatics and Telecommunications, University of Athens, 15784, Athens, Greece
2Department of Computer Science, 140 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA

SUMMARY

Users expect applications to successfully cope with the expansion of information as necessitated by the
continuous inclusion of novel types of content. Given that such content may originate from “not-seen thus
far” data collections and/or data sources, the challengingissue is to achieve the return of investment on
existing services, adapting to new information without changing existing business-logic implementation. To
address this need, we introduce DOLAR, a service-neutral framework which virtualizes the information
space to avoid invasive, time-consuming and expensive source-code extensions that frequently break
applications. Specifically, DOLAR automates the introduction of new business-logic objects in terms of
the proposed virtual “content objects”. Such user-specified virtual objects align to storage artifacts and help
realize uniform “store-to-user” data-flows atop heterogeneous sources, while offering the reverse “user-to-
store” flows with identical effectiveness and ease of use. Inaddition, the suggested virtual object composition
schemes help decouple business-logic from any content origin, storage and/or structural details, allowing
applications to support novel types of items without modifying their service provisions. We expect that
content-rich applications will benefit from our approach and demonstrate how DOLAR has assisted in the
cost-effective development and gradual expansion of a production-quality digital library. Experimentation
shows that our approach imposes minimal overheads and DOLAR-based applications scale as well as any
underlying datastore(s). Copyrightc© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

The amount of information produced as well as consumed in theworld is constantly expanding [1,
2, 3]. In order to cope with such expansion, applications mayneed to scale-up to support increasing
volumes of data. In addition, applications need to gradually expand their information space—the
application’s private “universe” of data items—to includenewly-encountered types of content. As
the information space expands, applications have to deal with the following cases:

1. Support new types of data sources: Contemporary data-intensive applications such as digital
libraries, content management systems and archival repositories, may need to operate atop
multiple heterogeneous data sources and, thus, support novel types of datastores. For example,
database-oriented applications may need to operate atop XML datastores.

2. Support new types of data collections: As applications expand, they may need to support
newly-introduced data collections. For example, a community of users may need to use
an existing digital library application to introduce and develop a new collection –e.g., by
digitizing and documenting real-world artifacts.

3. Include new items in existing services: In both of the above cases, the key issue is to efficiently
include the new content in any services currently supported. Firstly, applications need to
generate new types of business-logic objects to stage the new content items. Secondly, they

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared usingspeauth.cls [Version: 2010/05/13 v3.00]

2

have to revise the existing service provision to deal with such new objects and ultimately
include the new content in existing services.

Viewed from different perspectives, the above cases raise various multi-disciplinary data
integration, data quality and software evolution/adaptation issues [4, 5, 6, 7]. Clearly, developers
can handle these cases by code re-engineering. However, expansion requirements can hardly be
predicted in detail during the initial application design and development phases. Consequently,
the support of a new type of content may break the application, imposing drastic, invasive and
expensive source code changes to all service actors. Developers may follow an ad-hoc approach
to revisit service actor implementations and they can ultimately succeed in including this new
content. However, yet another new requirement for supporting additional types of content may
render this approach problematic, breaking service actorsyet again. The crucial need here is not
to predict the future, but rather to achieve the return of investment on existing services; indeed,
the challenge is to enable the existing service provision tooperate atop constantly expanding,
heterogeneous and diverse information spaces. Thus, a better approach is to base the application
on a flexible framework that can isolate the application logic from the type of context and add
indirection between the business-logic and the information space. Although adding indirection is
a simple idea, designing a general and flexible framework forcontent expansion is anything but
simple. The framework needs to: a) isolate the structure of data, i.e., how the logical organization
of data (e.g., the tuples of a database, or the elements of XMLdocuments) map to the application’s
expectations; b) adapt the physical access to data (e.g., provide network or database connections to
objects in a way transparent to the application); c) abstract the object presentation, i.e., smoothly
integrate the display of new kinds of objects in the application user interface; d) abstract the object
manipulation, i.e., allow new object modification in a uniform way; and e) perform these tasks
conveniently and efficiently, in particular without imposing significant runtime overhead over an
inflexible, hard-coded implementation of the same features.

In this article, we presentDOLAR (Data Object Language And Runtime), a service-neutral
virtual information space framework which meets the aforementioned challenges. Employing the
separation of concerns principle [8, 9, 10], our approach transcends software, knowledge and data
engineering boundaries to virtualize the information space. Specifically, our DOLAR approach
provides the following key elements:
• DOLAR Virtual Objects (DVOs): We use DVOs to realize different conceptualizations of data

items such as “books”, “photos” and “blogs”. In contrast to “code objects” composed of properties
and methods, DVOs are virtual “content objects” consistingof Field Sets, Relation Contexts,
Stream HandlesandComposition Schemes. DVO specifications are provided in terms of DVO
prototypes [11], which are instantiated to offer the business-logic objects at runtime. The unique
characteristic of these runtime objects is that they contain no executable code—e.g., they contain
no methods—but use composition schemes to model different types/interfaces of data objects. As
we show in the article, DVOs are the primary DOLAR mechanism that helps us avoid expensive
business-logic code modifications:

• DVOs enable developers to avoid costly direct coding of business-logic objects. DVO
specifications are easy to construct and maintain and allow for the creation of application-
specific data-definition utilities. For example, we show howourDOPsCreatorGUI tool allows
us to introduce new business-logic objects without manual coding.

• DVO composition schemes allow diversely structured data items to expose uniform service-
compatible interfaces. As a result, business-logic services can catch up with the addition of
new types of data items without any source code modifications.

• DOLAR Virtual Information Space: DOLAR virtual information space comprisesDVOStores,
DVOIndexesand DOPSourcesin a hierarchical logical space organized in terms of DOLAR
Domains. These mechanisms help us answer the critical need to not only access but also to
modify heterogeneous content in an effective and uniform way. In the context of DOLAR
virtual space, developers connect DVOs to datastore artifacts. Although the latter may originate
from heterogeneous datastores, the DVOs support uniform “store-to-user” and “user-to-store”
information flows, automatically dealing with common tasksincluding (a) staging the data in

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

3

runtime structures, (b) synchronizing the access to these structures and finally, (c) flushing such
structures to underlying datastores as needed. In terms of expressiveness and ease of use, the
developer can fetch or store any DVO using literally one lineof code, regardless of the data
conceptualization, origin and location.

• Service-neutral DVO API: DOLAR is realized as a Java class library, fostering the (re)use of
DOLAR in different contexts. For example, DOLAR can be used in standalone applications
while it may also be part of middleware in distributed applications. To expose the DVO runtime
structures to the application-logic services, we use our DVO API. The API offers application-
neutrality, as it does not perform any service-specific composition or transformation to the data
staged in the DVO structures. Hence, business-logic implementation artifacts, such as modules
and components, can synthesize DVOs to cater for any serviceof choice. Similar application-
independence is found in database systems, where the resultsets returned by SQL queries are
made available to applications in terms of runtime structures that stage involved database tuples.
A database system makes no assumptions about the actual usage of data by the business-logic,
offering a general-purpose system for managing relationaldata in terms of any application.
Respectively, DOLAR offers a service-neutral framework which virtualizes information spaces
to facilitate their efficient expansion.

To keep expansion costs in check and avoid expensive source-code revisions, the above DOLAR
mechanisms enable applications to extend their “low-level” information space options without
modifying their “high-level” business-logic services. Aswe show in the article, our DOLAR
approach has enabled the cost-effective construction and gradual expansion of thePergamos
information space.Pergamos has been in production for nearly five years and is currently the
largest academic digital library in Greece hosting about 300,000 items and exceeding1 TB of
space. In particular, we present how the use of DOLAR has helped us cope with the dual pressure
of gradually (a) usingPergamos to develop a variety of collections originating from independent
digitization projects at the University, (b) adding existing University collections inPergamos,
including “books”, Domino-based “theses”, technical reports etc. Moreover, in our experimental
evaluation, we show that DOLAR-imposed operational overheads are minimal and DOLAR-based
applications scale as well as the underlying datastore(s).

The remainder of this article is organized as follows. Section 2 motivates the design of DOLAR’s
virtual information space and Section 3 presents its elements. Section 4 discusses the role of
our proposed virtual objects and their operation. Sections5 and 6 illustrate the DOLAR-based
implementation of Pergamos content presentation, curation and search services. The evaluation of
our approach in terms of effectiveness and efficiency is discussed in Section 7. Section 8 discusses
related work and finally, Section 9 offers our conclusions and future work.

2. MOTIVATING EXAMPLE

We use thePergamos expansion requirements to motivate our discussion for virtualizing
the information space. Given thatPergamos can be classified as a centralized, multi-tier,
web application, we elaborate on modern service architectures, using Model-View-Controller
(MVC) [12] as a vehicle for our discussion. MVC is a well-established pattern that effectively
separates data from presentation and is routinely used in multi-tier, enterprise-scale applications [13,
14]. According to MVC, services act as “controllers” of the information flow issued between “view”
and “model” components. The role of “model” components is tooffer the business-logic objects
required for staging the data at runtime. Such “model” components may employ “data access” actors
to interact with underlying storage facilities. In turn, the role of “view” components is to offer user-
oriented views of information. For example, such “view” actors may employ HTML displays or GUI
components like list-boxes to present the data to the user. Finally, “controller” components realize
service provision entry points, composing “model” and “view” actors. Regardless of the terminology
in place, architectures use a similar set of actors to realize service provision and, clearly, any other
architecture can be considered in a similar manner.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

4

2.1. Pergamos Business Case

Pergamos plays a dual role as it publishes Univ. of Athens digital collections for web
visitors, and offers a platform for members of the communityto develop and document digital
collections [15, 16]. This duality of business requirements is addressed byPergamos front
and back-end subsystems.Pergamos back-end subsystem offers an authoritative and effective
content documentation infrastructure. Experts in each collection’s domain are involved in defining
documentation details and specifying the particular descriptive metadata to be used for each new
collection. This yields a collection hierarchy comprisingdiverse content, such as theHistorical
Archive, theFolkloreas well as theTheatricalcollections to name a few. In addition, Pergamos user-
interfaces and their ease-of-use are of key importance as domain experts along with researchers,
students and library staff routinely use such interfaces todocument content items. Supporting
the hierarchical nature of our collections,Pergamos offers collection navigation services. During
collection browsing, our front-end services supply users with HTML displays of the collection
hierarchy. The browsing of our back-end subsystem providesadditional web-based forms to our
authorized users. These forms allow for item editing, addition of new items as well as deletion
of obsolete ones. Finally, our services support an information space search capability, collectively
spreading over both front and back-end subsystems.

The need for information space extension was the dominantPergamos requirement. On one
hand, new digitization projects emerged, including theMuseum of Mineralogyand theByzantine
Music Manuscriptscollections. The critical issue here was to supply groups ofdomain experts and
digitization workers with effective data ingestion and curation services at the get-go of their work,
even though each digitization group worked on different collection development projects. On the
other hand, the need to include existing heterogeneous collections of the University occurred, such
as theAnthemion“books” database and the Domino-based “theses”. Here the key issue was to
include such collections in our front- and back-end subsystems without “breaking” existing code. In
both cases, the challenge was to reduce the time and effort required to make ourPergamos services
adapt to the needs of each new collection.

2.2. Virtualizing the Information Space

To make thePergamos subsystems catch up with new collection requirements in a timely fashion,
we needed to avoid expensive code re-engineering. To this end, it was crucial to separate the “low-
level” information space idiosyncrasies from the “high-level” service provision logic. To achieve
this separation, we had to deal with the followingfour information management options[17]:

1. information discovery optionscorrespond to the indexing and/or searching dimension of an
application (i.e., how the data is being indexed/searched),

2. information access optionsreflect the information accessing and storing dimension of an
application (i.e., how the data is being accessed/stored),

3. information conceptualization optionscorrespond to conceptualizations used by the business-
logic of an application (i.e., how the data is being staged atruntime), and

4. information utilization optionsreflect the synthesis of information in the context of an
application (i.e., how the data is being composed to offer end-user services).

Figure 1 depicts the composition of the information space made-up of the above four options.
Clearly, business-logic should be separated from any information access/storage options; otherwise
service-provision would become coupled to the particular datastore used beneath. To this end, we
use our proposed virtual objects to separate the handling ofinformation space options (2) and (3),
offering a unified mechanism for staging heterogeneous dataat runtime. For example, inPergamos,
although the data storage formats vary among collections, all collection items are staged in terms of
uniform DVO-based runtime structures. In addition, to helpthe business-logic operate in isolation
of the structural diversity of data, we need to supply services with a uniform interface to the staged
data. To this end, we use our proposed composition schemes toseparate the handling of information
space options (3) and (4) and hide any data-inherent differences from service provision components.
For example, inPergamos we use composition schemes to offer data-entry facilities that adapt to
each collection requirements. Finally, schemes also allowus to index diverse data in a uniform

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

5

Figure 1. Information spaces consist of multiple information management dimensions

manner, helping us to separate the handling of information space options (1) and (3). For example,
we show howPergamos business-logic uses composition schemes to decide whetherand how to
index each different collection item.

In order to facilitate the expansion of the information space, the business-logic should be
separated from the information space in terms of all four dimensions of Figure 1. Otherwise, the
expansion will cause costly and invasive changes to the business-logic code. To illustrate this,
consider the MVC service architecture operating atop ourPergamos “photo-album” items. Here,
a “data access” (or similar-in-nature) actor will be used towrap the underlying XML repository. At
the same time, the “model” actors will offer “album” and “photo” business-logic objects. In turn,
these objects will be synthesized by “view” actors to yield user-consumable views of “photo-album”
items. However, in order to realize service provision, the above (or similar) service actors tend to
become intertwined with the specific content. This couplingis due to the “tyranny of dominant
decomposition”; by and large, any architectural choice or pattern separates concerns in terms of a
single dimension at a time [10]. For instance, although MVC enables applications to separate data
from presentation, it does so in the context of a given set of data at a time. To foster information
expansion, we need to exploit the benefits of MVC (or any otherservice architecture adopted), yet
without realizing a different instance of the architectureto handle each different type of content.
For example, imagine that the abovePergamos MVC architecture is augmented to also support the
Anthemion collection of digitized “books”. The latter originate from a new source –a network SQL
database– requiring the application to extend its information access options. “Book” artifacts will
likely be indexed and searched differently, requiring an extension of the application’s information
discovery options. New kind of business-logic conceptualizations will also be necessary to stage the
“book” items at runtime. Finally, to incorporate “books” inthe service provision, the application
has to extend its information utilization options, revisiting its “controller”, “view” and similar
components. Clearly, having support for new types of items is scattered throughout all service actors,
causing individual actor implementations to become entangled. Scattering occurs when a single
requirement affects multiple components and entanglementappears when multiple requirements
are interleaved within a single component, leading to crosscutting of concerns [10, 18].

This crosscutting of concerns is an apparent obstacle as each additional need to expand the
information space imposes substantial and costly changes in all business-logic actors. To curtail
these expenses, our approachvirtualizesthe information space.

3. DOLAR’S VIRTUAL INFORMATION SPACE

The DOLAR virtual information space is organized in terms ofdomains. Our DOLARDictionary
serves as the “domain of domains” and helps combine diverse information contexts in a single
logical hierarchical space.∗ Within each DOLAR domain, we support unique realizations ofthe
four information management options discussed in the previous section. Our virtual information
space allows business-logic to dissociate the four information management options of Figure 1.
More specifically:

∗the term “domain of domains” does not refer to the upper ontology of ontology-oriented approaches. DOLAR domains
are simply used to identify distinct namespaces, defining the scope of proposed DOIndexes, DOStores or DOPSources.
To this effect, the term “domain of domains” is used to reflectthe hierarchical nature of DOLAR’s virtual space.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

6

1. the information discovery options are realized through the DOIndex mechanism which
wraps application-specific indexing/searching facilities. The DOIndex provides a way to
automatically index new types of content and also display such new content in search results.

2. information access options are managed in terms of theDOStoremechanism. This mechanism
is placed between “model” components and underlying datastores and exposes a uniform
interface, regardless of the conceptualizations and the storage/access details involved. This
enables applications to extend their information-access and information-conceptualization
options independently of each other.

3. information conceptualizations are expressed in terms of DVO Prototypes (DOPs)and are
loaded fromDOPSources. DVOs and DOPs automate the generation of business-logic objects.

4. information utilization options are managed in terms ofDVO composition schemes, offering
an effective means to compose data-inherent and application-inherent behavior. Schemes are
unique elements of our proposal and we discuss them at lengthin Section 4.

A DOLAR domain may consist of any combination of specific DOStore, DOIndex and
DOPSource elements, while a DOLAR space (also called DOLAR dictionary) may consist of one or
more domains. The setup of the DOLAR space and its constituent domains depends on the particular
application needs. For example, ourPergamos back-end and front-end services operate atop three
datastores. These are the Pergamos-internal XML repository, the relational solution that holds the
Anthemioncollection of books and, finally, the Domino document database. We also have numerous
DOP definitions for expressing business-logic conceptualizations for content items such as “books”,
“theses”, “photo albums” and “folklore-artifacts”. Moreover, we employ two different information
indexing/searching facilities: we use a Lucene full-text index for enabling user free-text search and
a relational database for offering field-oriented search.

Figure 2a shows a logical view of the virtual information space we have created inPergamos;
the DOLAR dictionary includes here three domains, namelylib.uoa.gr,history.uoa.gr and
law.uoa.gr. Due to the dominance of Internet-like identifiers, we use the lib.uoa.gr form for
naming DOLAR domains throughout this paper. It is clear, though, that DOLAR domains do not
stand for physical network hosts but represent logical information contexts, defining the scope of
DOStore, DOIndex and DOPSource elements in the context of DOLAR’s unified namespace. As
Figure 2a depicts, thehistory.uoa.gr domain providesanthemion DOStore driver which wraps
the database holding theAnthemioncollection. Thelaw.uoa.gr DOLAR domain provides the
domino DOStore driver of the Domino-based theses. The dictionary also contains alib.uoa.gr
domain, providing: (a) thepergamos DOStore, wrapping the Pergamos XML repository, (b) the
main DOPSourceissued as the central source of DOP definitions and (c) the twoDOIndex
elements, namelyfullText and dc, wrapping the aforementioned full-text index and database
respectively. That is, the first two domains contain the mechanisms needed to access two separate
datastores, while the third domain contains not just the mechanism to access a third datastore but
also information describing the data schema for all three datastores. In another context, involved
DOStore, DOIndexandDOPSourceelements could have been meshed in domains differently.

Figure 2b depicts an architectural view of the virtual information space in Pergamos, showing
the separation of the four information management options in terms of our low-levelDOStore,
DOIndex andDOPSource APIs and our high-level usageDictionary/Runtime andDVO APIs. Our
Dictionary/Runtime API of Figure 2c yields an “operational” view of DOLAR’s virtual space
elements, where a DOLAR domain acts as a registry ofDOStore, DOIndexand DOPSource
elements, and the dictionary acts as the registry of domains. Using the API, developers can query the
DOLAR dictionary to obtain the list of currently registeredelements, while they can also extend the
dictionary dynamically, by adding new domains or augmenting existing domains with newDOStore,
DOIndexandDOPSourceelements.

The virtualization of the information space is achieved by realizing all DOLAR domain,DOStore,
DOIndex, DOPSource, DOP elements as well as DVOs as first-class objects of the DOLAR
dictionary. This yields a common memory space which transcends physical/network boundaries,
hiding any data origin details and offering a unified virtualinformation space. Individual elements
of this virtual space are being addressed through DOLAR URIsof the following form:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

7

(a) (b)

(c)

Figure 2. DOLAR Virtual Information Space: (a) A logical view of Pergamos Virtual Information Space
(b) An architectural view of Pergamos Virtual Information Space (c) DOLAR Dictionary/Runtime API: the

operational view of the Virtual Information Space

dolar://domainId/storeId/itemId

dolar://domainId/dop/dopSourceId/dopId

dolar://domainId/index/indexId

Resolving such identifiers involves DOLAR performing an automated virtual space lookup,
resembling a “pointer dereference” procedure issued by a programming language at runtime.
For example,dolar://lib.uoa.gr will either resolve to a domain termedlib.uoa.gr or a
NotFound error will be thrown. In turn,dolar://lib.uoa.gr/pergamos resolves to our Pergamos
XML-based DOStore driver, whiledolar://history.uoa.gr/anthemion identifies the DOStore
driver of the Anthemiondatabase collection. We also use DOLAR URIs to identify content
items. For example,dolar://lib.uoa.gr/pergamos/album:100 refers to a “photo-album” XML
item, while dolar://history.uoa.gr/anthemion/book:12 refers to a “book” database item.
Automation is achieved through our virtual object metaphor. When developers resolve such content
item identifiers, DOLAR provides “ready-made” virtual objects that stage the data held in the
“album:100” XML item and “book:12” database item respectively.

4. DOLAR VIRTUAL OBJECTS

We use virtual objects to automate the process of expanding the information space with new
business-logic conceptualizations. We view storage artifacts as serializations of virtual objects and

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

8

so we separate the information that makes up a conceptualization from any of its serializations. A
virtual object (DV O) is defined as follows:

DV O = {DOP, DOStoreDriver, storedItem}
whereDOPdefines the logical structure of the virtual object,storedItemdesignates a storage artifact
(i.e., a set of database records, an XML document, etc.) and theDOStoredriver is the bidirectional
mechanism that helps retrieve/store the data in question. In this section, we discuss all pertinent
mechanisms that collectively produce virtual objects (DV Os) at runtime and outline their salient
operations.

4.1. Virtual Object Data Model

Virtual objects offer a logical view of the data held in storage artifacts and are composed ofField
Set, Relation Context, StreamandSchemeelements. Figure 3a reflects this layout.

Figure 3. The conceptual/logical view of a virtual object

The structure of individual virtual objects—the names as well as the types of elementsDVOs
contain— is governed by the user’s specification defined in isolation from any specific storage
details. In particular, the DVO data model consists of:
• Field Sets:they refer to field-like data such as name/value pairs, database tuples, XML-encoded

metadata or any other form of named attributes. A virtual object specification may contain
zero or moreFieldSetdefinitions, each one consisting of one or moreFields. We make no
assumptions about the storage of these fields or their conformance to any standard. For example,
thePergamos-internal repository stores Dublin Core (DC) [19] metadatain XML-encoded form,
while the Anthemion collection holds its custom “book” fields in a relational database. Thus, a
FieldSetdefinition designates a set of fields held in a storage artifact, regardless of any storage
details.

• Relationships:Relationships among content items are expressed as relation-contexts. Virtual
object specifications may contain multipleRelation Contextdefinitions, each one used to outline a
particular relationship among items. During specification, theRelationContextdefinition provides
the types of objects that can participate in a given relationship, yet, without making any
assumptions about the storage representation of such a relationship. For example, Anthemion
stores the book-to-page relationships in a database table,while in Pergamos XML repository,
object-to-object relationships are held in terms of RDF triples.

• Stream Handles:We use our stream-handles to model any underlying locally orremotely-stored
“document-based” digital content. For example, the PDF document holding the full-text of a
thesis is modeled by a stream handle in DOLAR. At specification time, aStreamHandledefinition
provides the MIME types supported by the underlying “document”.

• Composition Schemes:we use our composition schemes to offer runtime projectionsof virtual
objects. The aboveField Sets, Relation ContextsandStream Handlesdesignate the internal state
of a virtual object. Composition schemes help us expose thisinternal state to the service actors.
Figure 4 presents five examples of virtual objects. The “album” object of Figure 4a stands for a

“photo album” XML item originating from ceremonies of the Univ. of Athens. Such items comprise
descriptive metadata and the album’s digitized photographs. Metadata is represented in terms of
a dc FieldSetand its respectiveFields, while a RelationContexttermedstructure is used to
represent the containment relationship between “album” and “photo” objects. “Photo” objects hold
three versions of the digitized photograph in terms ofStream Handles: a high resolution image
(hq), a web-quality image (web) and a thumbnail image (thumb). In similar fashion, Figure 4b

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

9

Figure 4. Various content item conceptualizations expressed in terms of DOLAR’s virtual objects

depicts a “book” item consisting of “page” items. These items originate from the database holding
the Anthemioncollection which abides to the following SQL schema:book(id,title,author,

...), page(id,bookId,order,tiffUrl,tiffLength,jpegUrl,jpegLength). Figure 4c shows a
“folklore-artifact” object originating from the FolkloreCollection, used for representing digitized
3D folklore artifacts. The “theses” object of Figure 4d refers to the Domino-based theses items,
comprising the full text of the theses and its descriptive metadata. DVOs can express diverse
conceptualizations including the blog entries and their respective comments modeled by the “blog-
entry” object of Figure 4e.

Composition schemes help us hide any data-inherent idiosyncrasies from service actors. For
instance, even though both “photo-album” and “folklore-artifact” items of Figure 4 contain
thumbnails, the thumbnail image for a “photo album” is derived from the album’s first digitized
photograph, while the thumbnail for a “folklore-artifact”is an image of the digitized artifact
itself. To foster information expansion, we need to disassociate service actors from such data-
inherent details. As far as service implementation is concerned, the information about how the
thumbnail originated from a “photo-album”, a “folklore-artifact” or any other type of items should
be transparent. The interpretation of the behavior of an item (i.e., how to acquire the thumbnail)
depends on the structure of the content item at hand. The composition of the item’s behavior (i.e.,
what to do with the thumbnail) depends on the details of the service provision at hand. Thus, we
introduce the following distinction:
• Data-inherent behaviordepends on the structure and specific characteristics of theitem at hand.

An example of data-inherent behavior was the above different treatment of “photo-album” and
“folklore-artifact” thumbnails.

• Application-inherent behaviordepends on the overall functionality supported by an application,
including communication mechanisms, user interfaces and other service provision features,
regardless of the type of content items. For example, an application will either support HTML
display for all its types of items or it will not support such adisplay at all.

Composition schemes designate a bridge between (a) the application-inherent behavior, which is
realized by service actors and (b) the data-inherent behavior, which is realized by DVO runtime
views. This helps us offer a uniform, scheme-based DVO interface to service actors, which hides any
data-inherent details and ultimately enables us to expand the information space without modifying
the implementation of service actors.

4.2. Defining Virtual Object Specifications

A significant cost involved in expanding an application originates from the generation of new
types of business-logic objects –the “model” actors in the MVC terminology. Virtual objects can

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

10

significantly reduce such “model” generation costs and helpdevelopers avoid error-prone manual
coding. In particular, DOLAR offers a DVO Introspection APIfor specifying the structure and
layout of virtual objects, providing an effective and lightweight data-definition mechanism which
operates in isolation of any data-storage details. For example, using this API, the specification of
the “photo-album” conceptualization of Figure 4a is definedas follows :
DOP photo = DOLAR.newPrototype("photo");
photo.setLabel("en", "Photograph");
photo.addStreamHandle("HQ", ["image/tiff"]);
...
DOP album = DOLAR.newPrototype("album");
album.setLabel("en", "Ceremony Photo Album");
album.addFieldSet("dc");
album.setLabel("dc", "en", "Descriptive Metadata");
album.addField("dc", "title", String, MULTILINGUAL+MANDATORY);
album.setLabel("dc.title", "en", "Title");
album.addField("dc", "description", String, MULTILINGUAL+MANDATORY);
...
album.addRelationContext("structure", ["photo"]);
album.seal();

As shown above,Field Set, Field, Stream, Relation ContextandComposition Schemespecifications
can be supplied with multi-lingual labels and descriptions, assisting applications to render human-
consumable representations of virtual objects in an effective manner. For instance in Pergamos,
we use such labels and descriptions to present individual DVO elements in terms of web-form
fields. DOLAR also supports multilingual values for itsField elements. For example, the “title”
field defined above can hold different values for different languages.

In brief, the DVO Introspection API provides a set of methodsfor definingField, Stream, Relation
ContextandComposition Schemeelements, supporting the “sealing” of DVO prototypes to prevent
any further structural modifications. A significant benefit of the DVO Introspection API is that
it allows for the creation of application-specific data-definition tools. InPergamos we have used
this API to createDOPs Creator, a GUI-tool for the definition of virtual object specifications
without manual coding. Figure 5a shows the creation of the “photo-album” conceptualization with
the help of this tool. DOPs Creator encodes virtual object definitions as XML files; Figure 5b
depicts the XML definition of these “album” and “photo” virtual object specifications. Such XML
representations provide the default DOLAR serialization format of virtual object specifications.

4.3. Loading DVO Prototypes in the DOLAR Space

When it comes to the operational aspects of virtual objects,DOP definitions may originate from
various sources. To this end, we use theDOPSourcemechanism to support any facility that can hold
DOP definitions. For example, an application that uses our default XML-based DOP definitions may
use its host file-system as a DOP source. InPergamos, we use this approach as DOP definitions are
locally held in the file-system of our front-end and back-endhosts. OurFileSystemDOPSource—
the main DOPSource in Pergamos DOLAR dictionary of Figure 2a—loads XML-based DOP
definitions using the file name to identify the enclosed virtual object specification. More specifically,
the “album” DOP definition of Figure 5 is placed in a file nameddop.album.xml; in the virtual
information space the “album” DOP definition is then referenced through thedolar://lib.uoa.
gr/dop/main/album URI. OurDOPSource API features three operations:

1. containsDOP(dopId): indicates whether the DOPSource contains a DOP definition identified
by the given dopId,

2. listDOPs(): offers a list of the currently held DOPs,
3. loadDOP(dopId): loads the DOP definition identified by the given dopId.

Applications can realize these operations to load their virtual object specifications from
any physical/network locations; an application may utilize DOLAR’s DOPSource and
DVOIntrospection APIs to load XML DOP definitions over the web, for example. In general,
to support information expansion, applications can augment the virtual information space with a
new DOP source, or augment existing DOP sources with new DOP definitions. In the next section,
we discuss the processing of DOP definitions that DOLAR carries out in order to instantiateDVOs.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

11

(a) The DOPs Creator GUI for issuing virtual object specifications

(b) XML definitions of “photo” and “album” virtual objects generated by the tool

Figure 5. Defining Virtual Object Specifications with the DOPs Creator Tool

4.4. Virtual Object Instantiation: Automated “Model” Actors

Virtual objects automatically realize user conceptualizations at runtime as DOPs and DVOs
share a class-to-object relationship. During instantiation, DOLAR processes DOP definitions and
produces runtime virtual objects with corresponding layout in terms ofFieldSet,Field,Stream,
RelationContext andScheme DVO API runtime structures of Figure 6.

Once virtual object specifications are in place, developersacquire virtual objects using the
runtime.getDO Dictionary/Runtime API call, supplying the DOLAR URI of thecontent item of
interest. For example, the calls:
DVO album = runtime.getDO("dolar://lib.uoa.gr/pergamos/album:100")
DVO book = runtime.getDO("dolar://history.uoa.gr/anthemion/book:12")

providealbum andbook virtual objects automatically, each one corresponding to the underlying
“photo-album” XML item and “book” database item respectively.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

12

Figure 6. The runtime view of a virtual object in terms of the DVO API

During instantiation, newly created virtual objects are connected to storage items. This is
performed through theDOStoredriver that participates in the DOLAR URI; thealbum:100 DVO
will be connected to the underlying “photo-album” using thepergamos driver, while thebook:12
DVO is linked to the underlying “book” item through theanthemion driver. Instantiation “bridges”
the logical context of virtual object specifications with the storage-specific context of aDOStore
driver to offer a runtime context provided by the newly instantiated DVO. From a developer’s
perspective, acquiring a virtual object is simply equivalent to resolving a DOLAR identifier. In a
uniform and automated fashion, applications can obtain anyvirtual objects, originating from any
heterogeneous datastores.

4.5. Two-way Linking of Virtual Objects to Any Storage Artifacts

Developers use theDVO-API to fetch any data originating from the stored content space. They also
use theDVOAPI to modify DVO data and ultimately use theruntime.saveDO Dictionary/Runtime
API call to save DVOs back to persistent storage. The role of our DOStoremechanism is to supply
virtual objects with storage-independence.

Figure 7a depicts the two-way link between a virtual object and a stored item. To realize
this link, the DVO API employs ourDOStore mechanism to function “behind the scenes”.
This mechanism essentially realizes a bidirectional connection between theFieldSet,Field,
Stream and RelationContext runtime DVO structures and any storage structures found in the
underlying datastores. Figure 7b depicts our threeDOStore API interfaces. These interfaces
offer a unified virtual object store API which allows DVOs to operate atop heterogeneous
stores in a uniform manner. Firstly, theReadableDOStore interface defines the essential data
fetching operations performed by virtual objects to load data in their FieldSet,Stream and
RelationContext structures. TheModifiableDOStore interface extendsReadableDOStore to
provide the essential data insert, update and delete operations performed by virtual objects, while
TransactionalDOStore extendsReadableDOStore to allow our virtual object environment to
perform data modification in a transactional fashion, if transactions are supported by the underlying
datastore. Thus, a DOStore driver implementation can be realized in three ways, each one reflecting
the specific data-store choice beneath:

• StoreDriverA implements ReadableDOStore: this type of driver refers to read-only data sources, such
as a web-based source or any other read-only data source available in an operational environment.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

13

(a) The two-way link of virtual objects to stored items

(b) The DOStore API

Figure 7. The DOStore Mechanism

• StoreDriverB implements ReadableDOStore,ModifiableDOStore: such a driver encapsulates a modifiable
data source that does not support transactions, such as a file-based XML store, for example.

• StoreDriverC implements ReadableDOStore,TransactionalDOStore: this driver wraps a transactional data
source, such as a relational database.

DVO API Implementation:Here, we discuss the DVO API implementation, showing how DVOs
use the above three interfaces for staging, modifying and inserting data in a fashion transparent to
the developer.
� Staging Data: Virtual objects use theReadableDOStore API to interface with their corresponding
drivers and stage underlying data. Specifically, the first time a developer issues aDVO.
getFieldSet() call to a virtual object, the object will call theReadableDOStore.loadFieldSet()
method “behind the scenes” to contact the underlying datastore and stage field-like data in the
form of Field structures. Respectively, when the developer issues aDVO.getRelationContext()

call for the first time, the given DVO will use itsDOStoredriver to load the members of the
relationship by invoking theReadableDOStore.loadRelationMembers() method. Finally, the
first time a developer issues agetStream() DVO API call, the DVO will transparently call
the ReadableDOStore.loadStreamInfo() method of itsDOStoredriver to load the underlying
stream/file information. In all cases, any subsequent callsfor an already-loaded field-set,
relationship or stream handle will not result in contactingthe underlying data source, as the DVO
keeps track of the loaded elements internally.
� Modifying Data: DevelopersmodifyDVO-entailed data by using the DVO API. In particular, the
Field’s setValue() or setValues() calls replace the runtime values held inField structures.
TheStream’s setReference(), setMIME() andsetLength() methods modify stream information,
whileaddMember() andremoveMember() methods add/removeRelationContext members. These

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

14

modifications remain buffered unless an explicitsaveis issued by the developer. Saving a DVO is
performed byruntime.saveDO call, as inruntime.saveDO(album) or runtime.saveDO(book).
From a developer’s perspective, DOLAR’sruntime.getDO call fetches heterogeneous virtual
objects as if the latter originated from a single datastore.The same effective programming metaphor
applies when developers store virtual object data, as theruntime.saveDO call can store any DVO-
based conceptualization to any heterogeneous datastores.DOLAR’s saveDO uses theDOStore
interfaces of Figure 7 to ultimately store virtual object information: if theDVO driver supports
transactions –indicated byReadableDOStore.supportsTransactions() returning a true value–
DOLAR uses theTransactionalDOStore methods to store virtual object data appropriately.
Otherwise, DOLAR uses theModifiableDOStore methods to store virtual object data.
� Inserting Data: Insertingnew items in data collections is a fundamental operation forfostering
information expansion. DOLAR virtual objects can be used toinsert new items in heterogeneous
content stores, using thegetNewDO and saveNewDO Runtime/Dictionary API calls. The former
creates a new virtual object, without connecting the objectto any storage artifact. For example, the
newAlbum=getNewDO("album") call creates a newalbum virtual object. After acquiring such a new
and “unlinked” virtual object, developers can feed its runtime structures with data using the DVO
API. Then, they use theruntime.saveNewDO API call to store such an object. The result of this call
will be the insertion of a new storage artifact in the datastore furnished as a parameter. For example,
thesaveNewDO(newAlbum,"dolar://lib.uoa.gr/pergamos") call stores the ”newAlbum” DVO
in Pergamos XML repository by inserting a new “photo-album”XML item.

4.6. Implementation of Composition Schemes

(a) Composition schemes con-
stitute the runtime interface of
DVOs

(b) Invoking the shortView composition scheme of a “photo-
album” DVO

Figure 8. Composition Schemes

Composition schemes enable us to handle heterogeneous and diverse content items with a uniform
DOLAR-runtime interface. Figure 8a shows how schemes designate the interface between business-
logic services and DVOs. At specification time, developers define schemes to essentially designate
“subsets of a DVO”. These consist of any combination of individual FieldSet, Field, Streamand
RelationContextelements held in a virtual object specification. At runtime,DVOs use such scheme
definitions to supply applications with views of corresponding FieldSet,Field,Stream and
RelationContext runtime DVO structures. For example, should we consider the“photo-album”
DOP definition of Figure 5, the DOP includes a specification ofashortView composition scheme,
offering the album’s title, description and date along withthe thumbnail of the album’s first photo
(structure[0].thumb). At runtime, when theshortView scheme is invoked on a “photo-album”

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

15

DVO, the DVO provides itstitle,description anddate Field runtime structures, accompanied
by thethumb-namedStream of its first child/photo. Figure 8b shows a graphical representation of
theshortView scheme as executed at runtime, demonstrating the scheme-based exposure of DVO
structures.

During instantiation, DOLAR dynamically attaches schemesto corresponding DVOs. The
schemes available on a DOP provide the named operations DVOscan respond to, designating the
DOLAR-specific interface to these DVOs. Supplying diverse virtual objects with a common set
of composition schemes offers service actors a uniform set of virtual object “messages” that hide
any data origin, storage or structural details. This is critical, as we seek objects that can be defined
by their responses to “messages” and not by their internal representation [20]. Service actors can
then use such composition schemes to realize various aspects of application-inherent behavior in
a uniform manner, including content presentation, modification, indexing and storage. Fostering
DVO usage among varying service provisions, the response toscheme-based “messages” such as
theshortView of Figure 8b, strictly pertains to exposing a subset of DVO runtime structures. The
response does not provide any service-specific transformation or composition of data held in these
structures. To this effect, service actors can synthesize theFieldSet,RelationContext andStream
structures to offer any application-inherent behavior.

4.7. A Comprehensive DVO Usage Example

In this part we demonstrate a comprehensive DVO usage scenario in which a service requires
the titles of analbum and abook content items. Initially, the service instantiates the DVOs that
correspond to the two items of interest and subsequently, the service fetches the values of their
title fields, as follows:
DVO album = runtime.getDO("dolar://lib.uoa.gr/pergamos/album:100")
DVO book = runtime.getDO("dolar://history.uoa.gr/anthemion/book:12")
aTitle=album. g e t F i e l d S e t ("dc"). g e t F i e l d ("title").getValue("en")
bTitle=book. g e t F i e l d S e t ("data"). g e t F i e l d ("title").getValue("en")

Album titles originate fromdc:title metadata values held in XML, while book titles originate
from a relational database. The DVOs use their instantiation DOStore drivers to transparently
fetch the titles from the respective storage artifacts. Forexample, the first time thebook
virtual object receives agetFieldSet("data") call, it uses itsanthemion DOStore driver to
issue:anthemion.loadFieldSet("book","12","data"). Our anthemion driver implementation
contacts the underlying database and fetch an appropriate SQL query to load the virtual “data”-
termed field set:
SELECT title, author, ... FROM book WHERE id = 12

The book virtual object then stages the query return values in individual Field structures.
Respectively, thealbum.getFieldSet("dc") DVO API call leads thealbum DVO to contact its
pergamos driver to fetch the values of the given field set:pergamos.loadFieldSet("album",

"100","dc"). In turn, pergamos driver uses the web-service machinery supported by the XML
repository to acquire the XML-encoded DC metadata and parseit. Thealbum object finally stages
individual DC metadata values in respectiveField structures.

Virtual objects can also automate more complex data fetching operations. For instance, to obtain
the thumbnails of the first photo of analbum and the first page of abook, the service issues the
following calls:
DVO photo=album.g e t R e l a t i o n C o n t e x t("structure").getMember(0)
String photoThumb=photo.getStream("thumb").getReferen ce ()
DVO page=book.g e t R e l a t i o n C o n t e x t("structure").getMember(0)
String pageThumb=book.getStream("thumb").getReferen c e ()

The very first time the book DVO receives a getRelationContext("structure")

request, the DVO uses itsanthemion driver to load the specific pages:anthemion.
loadRelationMembers("book","12","structure"). Then,anthemion issues the SQL query:
SELECT page.id FROM page,book WHERE page.bookId=book.id AND bookId=12
ORDER BY page.order

loading the identifiers of the pages of the given book. Respectively, the album.

getRelationContext("structure") call directs thealbum DVO to contact its pergamos

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

16

driver, as in pergamos.loadRelationMembers("album","100","structure"), to load the
members of itsstructure relationship. The subsequentgetMember(0) call leads to the
provision of a photo virtual object; DOLAR uses the identifier of the first photo inthe
structure-termed RelationContext to instantiate the respectivephoto DVO automatically
and then returns this DVO to the caller. After obtaining thephoto DVO, the service issues the
photo.getStream("thumb") DVO API call to get the photo’sthumb-termedStream structure. The
photo DVO uses itspergamos driver to fetch thumbnail information from the underlying XML
repository:pergamos.loadStreamInfo("photo","photoid","thumb"). In similar fashion, the
page DVO uses itsanthemion driver to fetch thumbnail data via SQL:
SELECT jpegUrl,"image/jpeg",jpegLength FROM page WHERE page.id=<pageid>

Such a direct DVO API exposure as shown above, is not the primeDOLAR usage pattern. Instead,
the strength of the DVO API comes from the composition schemes. In the spirit of theshortView
“album” scheme of Figures 5 and 8, we can define a commontitleView scheme on both album
and book virtual object specifications; the album’stitleView offers the album’s title and first photo,
while and the book’stitleView offers the book’s title and first page respectively. Now, to fetch the
title and the thumbnail, the service needs only to fetch thetitleView scheme on the virtual objects,
without engaging any couplings on the structural arrangements of “album” and “book” items:
DVO dvo = r un t ime.getDO(dolarURI)
Scheme t i t l e V i e w = dvo.getScheme(" t i t l e V i e w")
String title = t i t l e V i e w.getElement("title").getValue("en")
String thumbURL = t i t l e V i e w.getElement("thumb").getReferen c e ()

DVO composition schemes project the structure of underlying content items to match the
expectations of the business-logic service. This results into service actors exclusively coupled to
such scheme-based views and not to any particular data-inherent structural arrangements. Hence,
application-inherent compositions of data can be carried out in a uniform coding fashion.

5. DOLAR-BASED SERVICE PROVISION IN PERGAMOS

In this section, we present the DOLAR-based MVC service provision in Pergamos. Figure 9 depicts
the DOLAR-based MVC architecture, showing the realizationof our content browsing service as an
example; all other Pergamos services follow a similar pattern. In particular, our front and back-end
users issue HTTP requests with the help of their web-browsers. These requests are processed by
our “controller” actors which realize service provision byinitially instantiating virtual objects –our
“model” actors– and subsequently composing virtual objectschemes in terms of ourHTMLEngine
“page template” facilities –our “view” actors. For brevityin Figure 9, we omitDOStoredrivers
which are the “data access” actors.

5.1. Setting up the DOLAR Dictionary

Building a DOLAR-based virtual information space involvesstraightforward
dictionary/domain registration steps. Highlighting the simplicity of this process, the
following snippet shows the setup of thelib.uoa.gr Pergamos domain of Figure 2a:

1D i c t i o n a r y d i c t = runtime.g e t D i c t i o n a r y ()
2Domain domain = d i c t.reg is terDomain("lib.uoa.gr")
3DOStore xml = new XMLDOStore("http://RepositoryIP/repo")
4domain.reg is terDO Store(xml, "pergamos")
5DOIndex ft = new FullTextIndex("/opt/pergamos/lucene")
6domain.regis terDOIndex (ft, "fulltext")
7DOIndex dbIndx = new DCTermsDBIndex("jdbc:mysql://DBServerIP/dc")
8domain.regis terDOIndex (dbIndx, "dc")
9DOPSource src = new FileSystemDOPSource("/opt/pergamos/dops")
10domain.regis terDOPSource(src, "main")

In the above, we assume that the definitions of individualDOPSource, DOStoreand DOIndex
elements are already in place. Lines 1 and 2 acquire the DOLARdictionary and register
lib.uoa.gr as a new domain. Lines 3 and 4 register ourXMLDOStore driver in the above
domain using thepergamos identifier. Since the underlying XML repository of Pergamosdoes

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

17

Figure 9. DOLAR-based realization of the MVC architecture in Pergamos

not support transactions, theXMLDOStore realizes theDOStoremechanism by implementing the
ReadableDOStore andModifiableDOStore interfaces of Figure 7 as follows:

XMLDOStore implements ReadableDOStore,ModifiableDOStore

The XMLDOStore driver implementation wraps Pergamos XML repository and its Web Services
residing in the provided HTTP base-URL. Lines 5 and 6 register a FullTextIndex with thelib.
uoa.gr domain, while lines 7 and 8 add ourDCTermsDBIndex in the dictionary. Consequently, the
DOLAR URIs for the twoDOIndeximplementations aredolar://lib.uoa.gr/index/fulltext
anddolar://lib.uoa.gr/index/dc respectively. We discuss theseDOIndexelements in the next
section. Finally, lines 9 and 10 register ourFileSystemDOPSource with lib.uoa.gr domain using
the namemain.

The aforementioned steps may be readily included in an application startup procedure. For
instance, these steps can be combined with any initialization actions that the application might
require, including processing of configuration settings, establishing database connections and
loading of libraries. Also, the dictionary API permits for the dynamic expansion of the virtual
information space at runtime.

5.2. Content Presentation

In the content browsing service implementation of Figure 9a, the service accepts user-supplied
requests containing the item identifier, as inbrowse?id=itemId. Based on theitemId, the browsing
“controller” instantiates the DVO that corresponds to the underlying stored item using theruntime.
getDO DOLAR API call. The controller then uses ourHTMLEngine “view” actor to render a detailed
view of the DVO using thedetailView scheme. As Figure 9b depicts, theHTMLEngine “view”
actor composes the structures provided by thedetailView scheme to transform the data contained
in these structures in terms of HTML. In similar fashion, the“controller” proceeds by iterating
over the “children” of the DVO. These are provided by thestructure-termedRelationContext.
The “controller” offers a short view of the data entailed in such “children” objects. Specifically, for
each “child”-item, the “controller” instantiates the respective DVO and then fetches itsshortView
scheme. The scheme is then composed by theHTMLEngine to display the short view of the item.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

18

Figure 10. Pergamos Content Browsing Services

Figure 10 depicts the UI of our front and back-end browsing Pergamos services. These services
offer a user-consumable hierarchical display of any Pergamos content items in a uniform manner.
The services can include any type of items in their HTML display as long as the corresponding
virtual objects contain adetailView and ashortView composition schemes.

5.3. Content Update Services

Our content update/curation services build upon DOLAR’s support of two-way data flows between
virtual objects and stored items. In addition, with the use of DVO composition schemes, we
automate the generation of ‘first-pass” and detailed curation web forms for all types ofPergamos
content. Here, we present the implementation of oureditObject content update service which
uses DOLAR’sgetDO andsaveDO calls. OurcreateObject which is used for content insertion is
realized in a similar fashion by utilizing DOLAR’sgetNewDO andsaveNewDO facilities.

Figure 11a depicts oureditObject service implementation, which uses theshortEdit and
detailEdit composition schemes to generate web forms for any content items, regardless of the
user’s language, the data origin or structural details involved. The service updates the underlying
stored items, offering thePergamos content update/curation service of Figure 11b. As the figure
shows, theeditObject provides different content curation forms for different types of items
in a uniform coding manner. Using the “Save” button, users post their modified form(s) to the
editObject which stores enclosed data. In particular, theeditObject service accepts two forms of
HTTP requests:
• editObject?id=itemId&short=true|false&lang=langId: this request generates a short/de-

tailed web form for a content item in the given language.
• editObject?id=itemId&short=true|false&lang=langId&save=true&field1=val1...: this

request saves the form generated above. The service processes the form’s field/value pairs
and uses the corresponding DVO identified byitemId to store form values to the underlying
datastores.
Figure 11a shows oureditObject processing input parameters in lines 1–4. Lines 5–9 acquire

the user’s language along with the virtual object and itsshortEdit or detailEdit scheme. If the
save parameter is:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

19

1 e d i t O b j e c t(r eques t, r esponse)
2 itemId = r e q u e s t.get("id")
3 isShort = r e q u e s t.get("short")
4 save = r e q u e s t.get("save")
5 lang = r e q u e s t.get("lang")
6 dvo = runtime.getDO(itemId)
7 i f (isShort.equals("true")):
8 scheme= dvo.getScheme("shortEdit")
9 e l s e:

10 scheme= dvo.getScheme("detailEdit")
11 i f (save.equals("true")):
12 foreach(f i e l d in scheme.e lements()):
13 fieldId = f i e l d.g e t I d()
14 fieldValue = r e q u e s t.get(fieldId)
15 f i e l d. se tValue(lang, fieldValue)
16 runtime.saveDO(dvo)
17 r esponse.write("Success!")
18 end- i f
19 r esponse.write(HTMLEngine.renderForm(scheme))

a. Pergamos Content Update Service Implementation

b. Pergamos back-end Content Update/Curation Web-forms

Figure 11. Pergamos Content Update Service

• not “true”, then the request refers to generating a scheme-based web-form for the item in
question. The service proceeds by calling ourHTMLEngine “view” actor to compose the DVO’s
scheme in terms of web-form input fields in line 19. OurHTMLEngine.renderForm() facility
operates in a similar fashion toHTMLEngine.render() of Figure 9b. Should we consider that
theshortEdit scheme of our “photo-album” items containscallNumber,title,date,period
andplace Fields, Figure 11b shows the composition of theseField structures to offer a user-
consumable as well as modifiable view of “photo-album” items.

• “true”, then the request intends on saving the generated web-form. Here, the service updates the
DVO’s Field structures with the user-supplied values using the DVO’s scheme in lines 12-15. It
then stores the DVO using the DOLARruntime.saveDO(dvo) call of line 16 and re-renders the
just-updated fields of the web-form using theHTMLEngine in line 19.
DOLAR offers a uniform solution in terms of coding theeditObject service, regardless of any

data-inherent structural and storage details. The servicecan generate short and detailed web forms
for any items that provideshortEdit anddetailEdit composition schemes.

6. INDEXING & SEARCHING VIRTUAL OBJECTS

In operational environments, applications use heterogeneous indexing/searching options to offer
users different types of search functionality. In this section, we focus on the ability of DOLAR
to automatically index new types of content and also displaysuch new content in search results.
Specifically, as the information space expands, our approach automates the process of: (a) indexing
new content items in existing index facilities and (b) including new content items in existing

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

20

provisions of search results. OurDOIndexAPI views index values, possibly composite as well,
as stored projections of DVO-entailed data. The API provides the following two indexing methods:
• DOIndex.addOrUpdate(objectId,dopId,scheme):void – adds or updates an index entry,

identified byobjectId. The entry’s data originate from the given DVO composition scheme.
• DOIndex.addOrUpdate(objectId,dopId,DVO):void – adds or updates an index entry,

obtaining data from the provided DVO.
The above two methods designate the “indexing” behavior of aDOIndex; implementations may

operate atop heterogeneous indexing options such as databases, full-text search engines or RDF
triple stores. As the parameters of the methods show, aDOIndex-based record always includes the
object identifier (objectID) which is required by DOLAR to instantiate virtual objects.We also
include the DOP identifiers of DVOs (dopId) to help users limit search results in terms of specific
conceptualizations. In Pergamos, the use of such DOP identifiers allows users to search for specific
types of items, such as “photo-albums” or “books”. The first variation of theaddOrUpdate method
uses the provided composition scheme as the source of data tobe indexed, while the second offers
a full exposure of DVO data to theDOIndex implementation. This proves useful in cases where
applications need to index entire DVO data.

OurDOIndexAPI also provides the following search-wrapping operations:
• DOIndex.search(String):String[] – returns the indexed items that match the criteria involved

in the given query, expressed as a string.
• DOIndex.search(String,start,count):String[] – returns count-numbered items that

match the given string query, starting fromstart.
• DOIndex.countObjects(String):long – returns the number of indexed items that match the

given string query. Applications can combine this method with the above one to offer “pagination”
of search results.

These three search methods provide search results in terms of the matching items’ identifiers only,
regardless of the information that is indexed beneath or thequery mechanism supported. Search
services use such identifiers to instantiate respective DVOs and then utilize DVO composition
schemes to display search results to the end-user. The methods outline the “search” behavior of
a DOIndex; implementations may support their own query language or any other search syntax of
choice. For example, should aDOIndeximplementation use a relational database to index data, the
implementation in question will apparently use SQL to pose search queries.

Our goal in creatingDOIndex is to offer a thin layer or “adapter” mechanism between the
application logic and any underlying indexing/searching facilities. Applications implement the
DOIndexAPI methods to exploit DOLAR information expansion benefits. Here, we show that
the DOIndexmechanism in combination with composition schemes, enables developers to avoid
the crosscutting of content indexing/searching concerns in service provision code. This ultimately
offers extensible implementation of service provision actors in terms of indexing/searching too,
allowing applications to support newly-introduced types of items without any modifications. For
brevity, we focus our presentation on the scheme-based variation of theaddOrUpdate method and
outline its usage inPergamos, discussing the realization of our two search services.

6.1. Achieving Indexing of Content in a Uniform Manner

When users modify data, services have to follow suit in modifying application indexing facilities
accordingly. The issue here is to perform such updates without coupling service implementations to
specific content types or indexing options. InPergamos, we support two search facilities namely, a
full-text index wrapped by ourFullTextIndex implementation and a relational database wrapped
by our DCTermsDBIndex. The former operates onfullTextRecord(objectId,dopId,text),
while the latter on records of DC terms:dcRecord(objectId,dopId,title,date,creator,
contributor,description,subject,coverage). We useDCTermsDBIndex to offer a mapping
between: (a) the diverse kinds of fields employed by our content items and (b) DC-based metadata
fields. For instance, consider the case that theeditObject service of Section 5.3 needs to index
“folklore-artifact”, “album-of-photos” and “book-of-pages” items. Here, “book” and “album” items
carry text-based data, “photo” and “page” items maintain image-based digital content, and finally,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

21

Figure 12. Using DOPs Creator to Define Scheme-based Mappings

“folklore-artifact” items carry both text and image data. In this case, we need to avoid crosscutting
of indexing concerns in oureditObject service. In particular, the service has to:
• index any items in auniform manner, regardless of the items’ idiosyncrasies or the particular

details of the underlying indexing facilities.
• avoid indexing non-appropriate items. For example, the service should not populate the indexes

with non-text entries for our “page” and “photo” items, as such entries are not usable by text-
based searches.

Dealing with these two issues will alloweditObject to index new types of items without
code modifications. To address these issues, we connect aDOIndeximplementation to a specific
composition scheme. This connection is established by theDOIndex.getIndexScheme() method
that provides the name of the scheme supported by the givenDOIndeximplementation. For example,
our FullTextIndex “knows” how to index DVOs that offer afulltext-termed scheme. Such a
scheme, when present in a DVO, provides the particularField structures that must be full-text
indexed. Developers decide which types of content should beincluded in the full-text index and
issue correspondingfullText-termed schemes. Similarly, ourDCTermsDBIndex “knows” how to
index DVOs that contain adcView-termed composition scheme. When present in a DVO, thedcView

scheme offers a mapping between the fields of a virtual objectand DC fields. Figure 12 depicts the
definition of the ‘folklore-artifact”dcView scheme with the help of ourDOPs Creator.

Right after storing a DVO, oureditObject service calls ourupdateIndexes facility, updating
Pergamos indexes as follows:

1updateIndexes (dvo):
2libDomain = r un t ime.g e t D i c t i o n a r y().getDomain("lib.uoa.gr")
3foreach(index in libDomain. r e g i s t e r e d I n d e x e s()):
4schemeId = index.ge t Indexa t i o nS c h e me()
5scheme = dvo.getScheme(schemeId)
6i f (scheme != null):
7index.addOrUpdate(dvo.getURI(), dvo.getDOP().getURI(), scheme)

Line 2 acquires thelib.uoa.gr domain of the DOLAR dictionary. As discussed in Section 3,
this domain contains our twoFullTextIndex andDCTermsDBIndex DOIndexelements, supplying
services with pointers to any Pergamos-pertinent indexingfacilities. Line 3 iterates through any
DOIndex implementations registered in the domain using theDomain.registeredIndexes()

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

22

(a) Pergamos front-end and back-end search services

(b) Full-text search service implementation

Figure 13. Various aspects of Pergamos Search Services

DOLAR API call. For eachDOIndexobtained, line 4 fetches the name of the scheme supported,
using thegetIndexScheme() DOIndexAPI call. Line 5 then uses this name to fetch the respective
composition scheme from the newly stored DVO. If the DVO contains such a scheme, line 7 issues
theDOIndexAPI addOrUpdate call to index DVO data, supplying the DVO URI, its DOP identifier
along with the particular scheme acquired in line 5. The presence of a particular composition scheme
on a particular DVO indicates whether such a virtual object should be included in a given index. This
way, the indexing concerns are effectively separated and the knowledge about: (a) “what to index”
is represented by a composition scheme, (b) “where to index”is represented by aDOIndexDOLAR
URI and (c) “how to index” is represented by aDOIndeximplementation.

6.2. Searching with the DOIndex Mechanism

Figure 13a shows various aspects of our back- and front-end Pergamos search services, utilizing our
full-text and DC-based indexing facilities. Our search services allow users to limit search results
in the digital collection hierarchy as far as types of content items is concerned. These types are
distinguished through their respective DOP identifiers. Our free-text search service employs the
DOIndex.search method ofFullTextIndex to fetch free-text queries; in this,DOIndex.search
uses the underlying Lucene full-text engine’s query syntaxas in:

text:’athens’ and dopId:’album’

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

23

Respectively, our field-based search uses thesearch method of ourDCTermsDBIndex to fetch SQL
queries via the underlying DC records database, as in:
SELECT objectId FROM dcRecord WHERE dopId="3dArtifact" AND da te="1970"

Figure 13b shows our full-text search service implementation; the DC-oriented search is realized
in a similar fashion. As the figure shows, our search servicesprocess user input (lines 2,3),
constructing a corresponding query (line 4). Then, line 5 acquires the particularDOIndex from
thelib.uoa.gr domain. For example, the full-text search service will acquire theFullTextIndex,
while the field-search will obtain theDCTermsDBIndex. Line 6 then invokes theDOIndex.search
method to fetch the query via the underlying indexing facility (line 6). Finally, search services
use the DOLAR URIs returned by thesearch method to instantiate DVOs and then employ the
shortView composition scheme to render the display of search results in terms of theHTMLEngine
facility (lines 7-10). In this lineup, our search services do not engage in couplings to any particular
types of content items fostering extensibility of the application.

As we have shown, search services use aDOIndex-based search to fetch DOLAR URIs of
search results. Moreover, browsing services useRelationContext-based relationships to fetch the
DOLAR URIs of content items. Both our services synthesize DVO schemes to feed the user-display
in a uniform manner regardless of any idiosyncrasies of contributing content items.

7. EVALUATION

In this section, we evaluate the effectiveness and performance of our approach, showing:
• how DOLAR meets the challenging requirement to gradually expand the information space with

new types of content, without modifying any service provision actors. InPergamos, we show
how the use of DOLAR exploits MVC benefits, yet, without requiring to issue a different MVC
realization for each different type of content.

• that DOLAR-imposed overheads are not significant in terms ofperformance and DOLAR-based
service implementations scale as well as directly-coded implementations atop both SQL and
XML data-sources.

7.1. Effective Information Space Expansion

As mentioned in Section 1, when new items join the information space, applications need to
effectively deal with the following cases:

(1) support newly-encountered types of data sources: Since theapplication has to firstly access
the items for them to partake in the service provision, the extension of the “data access” actors
supported by the application at hand cannot be avoided. InPergamos, for example, we need
to include items that originate from remote collections such as the Domino-based theses or
database books. In order to support a novel data source, the “expanding” application may have
to revise its “data access” actors or even introduce new ones. The critical issue here is how
expensive is to perform such “data access” extensions.

(2) support novel types of collections: InPergamos, for example, new digitization projects
emerge, introducing new types of items that need to be created with the help of thePergamos
documentation services and then be inserted in existingPergamos datastore(s). Here, the
fundamental issue is how flexible is the underlying datastore(s) to support such novel
collections of content.

(3) include new items in existing services: in both of the above cases, the key issue is to enable
existing business-logic to deal with new content items without “breaking” its implementation.

To deal with case (1) and (2), our approach uses theDOStoremechanism. To support a novel type of
datastore, developers have to define a newDOStoredriver, while to support a novel collection, they
may need to revise an existing driver. The main value addition of DOLAR is in dealing with case (3),
as developers use the DOPs Creator tool to issue virtual object specifications and subsequently, they
use composition schemes to supply virtual objects with service-compatible interfaces. This way,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

24

on one hand, developers avoid the manual coding of new business-logic objects. On the other, the
use of composition schemes helps them avoid the revision of services. To this effect, applications
can deal with the expansion of the information space withoutrequiring any business-logic code
modifications.

To show the effectiveness of our approach, we use the following Pergamos examples, where the
information space expands with (a) the addition of theAnthemiondatabase collection of books and
(b) the digitization of theByzantine Music Manuscripts. In what follows, we succinctly outline our
findings and/or experience when our approach deals with the aforementioned cases(1), (2) and(3).

(1) Supporting new types of datastores: To support the Anthemion database, developers have
to define a newDOStore driver by realizing theDOStore API interfaces of Figure 7. In
particular, developers realize theReadableDOStore interface so that DOLAR may gain read-
only access to a datastore. In addition, to support data modification, developers realize either
the ModifiableDOStore or the TransactionalDOStore interface, depending on whether the
underlying datastore supports transactions. Provided that the relational database underlying the
Anthemion collection of books supports transactions, the newDOStoredriver is defined as:

AnthemStore implements DOStore,TransactionalDOStore

The realization of theDOStore API interfaces is straightforward; our experience indicates
that it invariably takes a short period of time to define a newDOStore driver. For
example, to allow DOLAR to fetch the data of the Anthemion database, it practically
requires the implementation of three methods, namely, theReadableDOStore.loadFieldSet(),

ReadableDOStore.loadRelationMembers() and ReadableDOStore.loadStreamInfo(). It is
worth pointing out that the realization of the remainingReadableDOStore interface methods is
trivial. Furthermore, to enable the support of data modification, the developer has to essentially
realize five methods of theTransactionalDOStore or theModifiableDOStore interfaces, namely,
the saveFieldSet(),saveRelationMembers(),saveStreamInfo(),deleteObject() and the
two addNewObject() variants. Table I shows a high-level description of the definition of the
AnthemStore driver, reflecting the simplicity of theDOStoredriver definition process.

After defining the newDOStoredriver, developers register it with the DOLAR dictionary using
the following:
D i c t i o n a r y d i c t=runtime.g e t D i c t i o n a r y ()
Domain domain2= d i c t.reg is terDomain("history.uoa.gr")
DOStore anthem=new AnthemStore("jdbc:oracle:thin@//IP/anthem")
domain2.reg is terDO Store (anthem, "anthemion")

The extension of the virtual information space is performedvia simple registration steps, advancing
automation. In the first two lines of the above snippet, we register thehistory.uoa.gr domain in
the DOLAR dictionary. In the next two, we register ourAnthemStore driver using theanthemion
identifier; this yields the fully qualifieddolar://history.uoa.gr/anthemion URI for the new
DOStore driver which wraps theAnthemionOracle database using the JDBC library.

The addition of new “data access” actors is performed without “breaking” the application, due
to the effective separation of information contexts offered by the virtual information space. For
instance, the addition of thehistory.uoa.gr domain and its respectiveDOStoredriver does not
interfere with thelib.uoa.gr domain and vice versa.

(2) Supporting novel types of content: The introduction of a new type of content in a datastore
already registered with DOLAR predominantly depends on thefeatures and the flexibility of this
datastore. For example, to introduce a new type of items in the custom-madeAnthemion“book”
database necessitates the modification of the underlying database schema. Provided that an existing
datastore has to change to support a novel type of items, it isevident that the corresponding “data
access” actor will have to be changed too. Clearly, this is not a DOLAR limitation. For example,
in less-rigid datastores such as XML repositories, the introduction of new types of items may not
impose any modifications to underlying XML arrangements andthus, such repositories can better
cope with the introduction of new collections. InPergamos, the internal Fedora XML repository
can hold varying types of items in a unified XML datastream storage model [21]. This XML storage
model or others such as METS [22], for instance, can encode various content conceptualizations

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

25

ReadableDOStore Interface
isReadOnly(): Returnsfalse.
supportsTransactions(): Returnstrue.
objectIdentifiers(): Fetches SQL query to provide the record identifiers.
objectCount(): Fetches SQL query to provide the number of records.
loadFieldSet(): Fetches SQL query to load the fields of the given “book”.
loadRelationMembers(): Fetches SQL query to load the “pages” of the given “book”.
loadStreamInfo(): Fetches SQL query to load the information of the given “page”.

TransactionalDOStore Interface
beginTransaction(): Provides a long value for uniquely identifying a new transaction. A data

structure is created to hold the SQL statements of the new transaction.
commit(): Commits the transaction identified by the given long value byfetching

the SQL statements attached to the internal data structure.Performs a
rollback in case of error, indicating the error condition.

addNewObject(): Constructs the SQL statement(s) for inserting a new “book” or “page”
and adds them in the transaction data structure.

deleteObject(): Constructs the SQL statements(s) for deleting the given “book” or
“page” and adds them in the transaction data structure.

saveFieldSet(): Constructs the SQL statement(s) for inserting/updating the given
“book” and adds them in the transaction data structure.

saveRelationMembers(): Constructs the SQL statement(s) for inserting/updating the given
“pages” and adds them in the transaction data structure.

saveStreamInfo(): Constructs the SQL statement(s) for inserting/updating the information
of the given “page” and adds them in the transaction data structure

Table I. The definition of the AnthemStore driver

in a uniform manner, enabling applications to support noveltypes of items without changing the
underlying data storage “schema”. InPergamos, the use of a flexible XML storage model helped
us avoid revising thepergamos “data access” actor each time a new collection development project
emerged. To this effect, the development of theByzantine Music Manuscriptsor any other digitized
collection imposes no modifications to ourpergamos DOStoredriver.

In general, content stores and respective conceptualizations share a “many-to-many” relationship.
Indeed, a given datastore may hold items that abide to multiple conceptualizations, while a given
conceptualization may be stored effectively by heterogeneous datastores. To show how our approach
can effectively separate the information access from the information conceptualization dimension,
Figure 14 presents the SQL schema of our default DOLAR database. Such a database can hold
any DOLAR-based conceptualization without changes and it serves as a valuable tool for rapid
prototyping of DOLAR-based services and for testing purposes. InPergamos, we use this database
in the testing installation of the system as follows. We create a copy of the DOLAR dictionary we
have in place in the production system, including the three domains discussed in Section 3. Each
DOStoredriver of the production DOLAR space is realized as a different instance of theDOStore
driver of the default DOLAR database. For instance, thedolar://lib.uoa.gr/pergamos driver of
the production DOLAR space is realized as a driver operatingatop the default DOLAR database
in the testingPergamos installation. This configuration helps us test and verify any new services
before deploying them in the production system. It also helps us verify the addition of new types
of items, in terms of testing new virtual object specifications and their composition schemes. At
the end of the day, the virtual object specifications defined in the testingPergamos installation are
deployed to the production system and automatically operate atop the production data-sources.

Our approach dissociates business-logic conceptualizations from any storage-specific details.
When the underlying datastore has to change to cope with a novel type of items, the modifications

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

26

o b j e c t s(id , dopid, cDate, mDate)
f i e l d s (o b j e c t s i d , f i e l d s e t i d , f i e l d i d , l ang id , value)
r e l a t i o n c o n t e x t s(o b j e c t s i d , r e l c t x i d)
relat ionmembers (ob j Id , r e l c t x i d , memberObject Id)
streamhandles (o b j e c t s i d , s t r h a n d l e i d , mime, length, uri)

Figure 14. The SQL schema of the default DOLAR database

involved in bringing the respectiveDOStoredriver up to date do not interfere with any other
component of the application.

(3) Effective inclusion of new items in existing services: Once the “data access” actors are in place,
our approach simplifies the inclusion of their items in service provisions. In particular, our approach:

1. provides freedom from directly coding the business-logic objects. Using our DOPs Creator
tool, developers issue virtual object specifications and DOLAR processes such definitions to
offer business-logic objects automatically. For example,we use DOPs Creator to issue the
new “book-of-pages” and “byzantine manuscript” conceptualizations and then store them in
terms of an XML DOP definition in ourFileSystemDOPSource.

2. allows developers to make newly introduced business-logic objects compatible with existing
services with the help of composition schemes. Schemes designate the runtime interface of
virtual objects and services rely on the presence of composition schemes to realize application
logic. Consequently, to include any newly added types of items in existing service provisions,
the only requirement is to provide proper definitions for thecorresponding composition
schemes. This is performed during the construction of the virtual object specification with
the help of the DOPs Creator, offering effectiveness and automation.

In Pergamos, six composition schemes are used by services, namely, the shortView,

detailView,shortEdit,detailEdit,fulltext anddcView schemes. Each such scheme reflects
a particular composition issued byPergamos services:

• shortView anddetailView: provide the “short” and “detail” view of an item respectively. These
schemes are used by content browsing, presentation and search services.

• shortEdit anddetailEdit: provide the “first-pass” and “full-record” view for editing an item
respectively. These schemes are synthesized by content insert/update services.

• fulltext anddcView: the first provides the fields of an item to be full-text indexed, while the
latter provides the fields of an item that map to DC terms. These schemes are used by content
indexing services.

For example, right after registering the newAnthemStore driver and adding the new “book-of-
pages” DOP definition,Pergamos services deal with “book” and “page” virtual objects without
modifications in their code. The “book” virtual object specification provides definitions for all
aforementioned schemes, while the “page” specification provides onlyshortView,detailView,
shortEdit and detailEdit schemes, as “page” objects are not included in text-based indexes.
When theAnthemStore joins the information space, we reuse ourupdateIndexes facility discussed
in Section 6 to index the items that originate from the new store in our full-text and DC-based search
facilities:
String[] ids = store.objectIdentifiers()
foreach(id in ids):
String fullId = store.getURI() + "/" + id
DVO o = runtime.getDO(fullId)
updateIndices(dvo)

Line 1 uses theDOStore API to obtain the identifiers of the items entailed in a given store. Then, line
2 iterates through these identifiers to add corresponding items in ourPergamos-pertinent indexes.
In particular, it creates the DOLAR fully-qualified URI for each content item and then instantiates
the corresponding DVO. Finally, in the last line it calls ourupdateIndexes facility, indexing the
DVO in our FullTextIndex andDCTermsDBIndex of Section 6. This way,Pergamos can index
the “book” items in the full-text and DC indexes, while ignoring non-textual “page” items. The
use of composition schemes offers a uniform way to include newly added content in existing
Pergamos indexes, contributing to the automation of the expansion process. When a new datastore

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

27

joins the information space, composition schemes automatethe “discovery” of new items, allowing
Pergamos to automatically index their items. Similar effectivenessand automation is provided to
the otherPergamos services too. Specifically, the browsing service of Figure 9can automatically
browse “book” of “pages”, while the content update service of Figure 11 can automatically generate
proper web forms for the new “book” and “page” items. Finally, the search services of Figure 13
can automatically include the newly added “books” in their search results.

As services exclusively rely on composition schemes to realize application logic, they avoid
engaging any couplings to any particular content origin, storage or structural arrangements.
Consequently, new types of content can join the service provision without modifying any service
actor implementations.

7.2. Experimental Evaluation

Here, we present our experiments for measuring the performance of DOLAR in terms of the first
“logical” MVC task, which is the staging of data in business-logic “model” objects. The second
“logical” MVC task, which is the transformation/presentation of the data, is not being measured, as
it would be identical in all cases (it would refer to same synthesis of data performed on behalf of
the Pergamos “view” MVC components). It is clear that directly-coded “model” objects which
are tailored to the specific datastore offer the best performance. Thus, in our experiments, we
compare the throughput –number of items fetched per second–achieved by using virtual objects
as business-logic “model” actors against the throughput reached by directly-coded business-logic
objects. We use a variety of SQL-based and XML-based data sources and also use a common
conceptualization, where the data items consist of the standard DC fields [19]. These data items
originate fromPergamos dcRecord items, discussed in Section 6.

•DOLAR operating atop SQL-based data sources: our dataset includes 100,000 DC items
stored as tuples in a MySQL database. We issue three different implementations of “DCItem”
business-logic objects and respective “data access” actors:

1. Directly coded Java/SQL: We issue a plain “DCItem” Java object, realizing a simple, directly
coded Java-based “model” actor. Such a Java object abides tothe JavaBeans specification [23]
and offers a pair of getter/setter methods for each individual DC field, such asgetTitle
andsetTitle. This JavaBean component accesses our SQL-based DC items using a simple
sqlFetch “data access” actor implementation that builds upon the MySQL JDBC machinery.

2. DOLAR operating atop SQL: We issue a “DCItem” virtual object specification entailing
the standard DC fields in a singleFieldSetdefinition. We also define a simple read-only
sqlTest DOStoredriver implementing theReadableDOStore interface of Figure 7. The
loadFieldSet() method of thesqlTest and the abovesqlFetch facility share an identical
SQL fetching code.

3. Hibernate/SQL: We also use Hibernate Object-Relational Mapping library to map the
“DCItem” JavaBean to the underlying DC-item database table. In this case, SQL fetching
is managed by Hibernate and we only provide a Hibernate mapping definition [24].

Figure 15 shows the results of our SQL-based experiments, comparing the amount of time –
in milliseconds– required to fetch various amounts of unique DC items in a range of [10,000 -
100,000] items. To capture the worst case scenario, we used random distributions of item identifiers,
employing no data caching facility. All executions were performed in the same machine, using
the same hardware and software choices. Finally, for each different amount of items, we repeated
the experiment ten times and used the average execution timeof these ten iterations to generate
Figure 15. As the figure shows, in terms of throughput, DOLAR operating atop SQL scales almost
as well as directly coded Java/SQL. In particular, directlycoded Java/SQL reached an average
throughput of 3,688 items/sec, while the use of DOLAR imposed a 20% performance overhead,
offering an average throughput of 2,944 items/sec. DOLAR outperforms Hibernate, as the latter

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

28

Figure 15. Performance Evaluation of: directly-coded Java/SQL, DOLAR operating atop SQL and
Hibernate-based Java/SQL

decreases directly coded Java/SQL performance by 36%, offering an average throughput of 2,364
items/sec.

•DOLAR operating atop XML-based data sources: we compare DOLAR virtual objects
operating atop XML-based DC items against directly coded Java/XML approaches. We store our
DC items in terms of XML, in a fashion which abides to the “simpledc” XML schema [25]. In
particular, the configurations compared are the following:

1. Directly coded Java/XML: We use the “DCItem” JavaBean mentioned in the SQL experiments
to offer a Java-based DC item “model” actor. The directly-coded JavaBean component
accesses XML-encoded DC items using a simplexmlFetch “data access” actor which builds
upon default Java XML libraries.

2. DOLAR operating atop XML: We reuse the “DCItem” virtual object specification to offera
DVO-based “model” actor. At the same time, we realize a simple xmlTest DOStoredriver
as a “data access” actor. TheloadFieldSet() method ofxmlTest and the aforementioned
xmlFetch facility share identical XML handling code.

Figure 16a provides the results of our XML-based experiments, comparing (a) the time required
to fetch various amounts of unique DC items usingxmlFetch and stage such items using “DCItem”
JavaBeans, against (b) the time required to instantiate identical amounts of “DCItem” virtual objects,
fetching theirDC FieldSet via the xmlTest DOStore. As the figure shows, the use of DOLAR
imposed no discernible performance overhead: in a range of [1,000 - 10,000] items, the directly
coded Java/XML approach offered an average throughput of 93items/sec, while DOLAR reached
an average throughput of 90 items/sec (overhead: 3,06%).

Finally, we illustrate that DOLAR can be used atop any data source, directly reflecting the
particular datastore capabilities as well as limitations.Figure 16b presents the results of using
DOLAR in an OAI-PMH context. OAI-PMH is an XML-based interoperability protocol, offering a
Web-service for metadata harvesting [26]. Here, we fetch XML DC records over the web, directly
using our “live” Pergamos OAI-PMH Web-service. This is reflected in the figure where obtained
rates do not follow a predictably consistent pattern; the figure compares the throughput of:

1. Directly coded Java/OAI-PMH: we reuse the “DCItem” JavaBean as a “model” actor, while
we realize a simpleoaiFetch “data access” actor. The latter fetches XML-based DC records

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

29

(a) DOLAR operating atop XML compared to directly
coded Java/XML

(b) DOLAR operating atop OAI-PMH compared to
directly coded Java/OAI-PMH

Figure 16. Performance Evaluation of DOLAR operating atop XML-based data sources

over the web, using our Pergamos OAI-PMH web service. XML processing is once again
performed using default Java XML libraries.

2. DOLAR operating atop OAI-PMH: we reuse the “DCItem” virtual object specification, while
we realize a simpletestOAIDOStore driver. The latter shares an identical XML/OAI-PMH
processing code with theoaiFetch facility.

As Figure 16b shows, the use of DOLAR imposes no obvious performance overhead, as both
directly-coded Java/OAI-PMH and DOLAR-based OAI-PMH implementations reach an average
throughput of 5,5 items/sec. Once again, DOLAR scales as well as the underlying store does.

8. RELATED WORK

There have been a number of approaches for extending programming language mechanisms to
accommodate separation of concerns [10]. Such efforts include aspect-oriented programming
(AOP) [18, 27], composition filters [28] and hyperslices [29, 30]. Our DOLAR approach separates
the four concerns of Figure 1 and this is the extent of the relationship to the aforementioned
approaches, as DOLAR neither alters the underlying programming language nor provides Java
extensions, as is the case in [31].

DOLAR essentially offers an infrastructure and does not provide a full-fledged independent
application. In this context, our proposal does not modify the componentization of an application as
the MVC architecture use-case demonstrates. Viewing digital libraries as its primary applications,
DOLAR can be used in conjunction with any DL-architecture such as [32, 33, 34, 35]. Our approach
is also aligned with the well-documented long-term objective to offer a unified foundation for
digital libraries; this objective has been articulated in anumber of efforts including the definition of
digital object repositories [36], the 5S formal model of digital libraries [37], the formal model for
annotating digital content [38] and the OAIS [39] and DELOS [40] reference models.

XML-based approaches can separate data from presentation,a significant requirement for
expanding information spaces. For example, XML approachesmay use RDF [41] to issue business-
logic conceptualizations and may simultaneously employ XSLT [42] to transform XML data for
presentation. Should we employ XML-based conceptualizations in Pergamos, they apparently add
value to our front-end “store-to-user” services. However,in the reverse “user-to-store” flow, where
the information originates from the user to be stored in an underlying datastore, the use of XML

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

30

adds value only if: (a) the users supply data in XML-based formats, or (b) the data is stored in
XML-based formats. In operational settings that do not comply with either of the two conditions,
the use of XML fails to add value in the realization of “user-to-store” information flow. For
example, having the Pergamos back-end subsystem process a user-supplied web-form to yield XML
representations of data adds no value in the case of “book” items, since “book” information is to
be stored in the relational database that handlesAnthemionbook items. Hence, to support such
“user-to-store” flows, applications have to employ an additional set of operations to manage storing
data in underlying non-XML stores. This different treatment of “store-to-user” and “user-to-store”
information flows fragments service provision into two separate “content presentation” and “content
update” infrastructures. Maintaining two disparate service provision implementations that have to
evolve in parallel significantly increases the costs for expanding the information space.

Ontologies are widely used to define content conceptualizations in various contexts [43, 44].
Although our approach offers application-specific conceptualizations in a spirit similar to that
followed by ontologies, DOLAR: (a) provides a GUI tool for defining conceptualizations in terms
of virtual object specifications, (b) generates runtime artifacts that conform to such specifications
automatically and (c) enables these artifacts to support two-way data flows atop heterogeneous
datastores in a uniform manner. The main difference here is that ontologies use inference as the
primary compositional mechanism, while in DOLAR we use DVO instantiation. DVOs allow
semantically-diverse and heterogeneous storage artifacts to act as “native objects” of the virtual
information space, hiding any underlying physical/storage models. This feature also distinguishes
DOLAR from object-oriented databases [45, 46] and various XML object packaging approaches,
such as METS [22], MPEG-21 DID [47] and Digital Content Components [48].

Object-Relational Mapping approaches and tools automate the generation of business-logic
objects and support bidirectional data flows between such objects and underlying stores [49,
50]. However, such approaches are apparently exclusive to relational databases, while DOLAR
can operate atop any heterogeneous datastores that providea DOStore driver. Depending on
the operational environment, a particularDOStoredriver may serve a similar purpose with a
mediator [51] or a wrapper [52].

DVO composition schemes offer views/projections of content items and generate such views
relying exclusively on runtime objects and not on storage artifacts. We use these schemes as an
abstraction tool for separating information utilization options from information access, discovery
and conceptualization options, defining the virtual objects’ runtime messages/interfaces. To enable
application-neutrality and storage-independence, schemes neither get stored in any underlying
datastore nor contain any executable code. These characteristics distinguish our scheme-based
conception of views from various database or XML view mechanisms that simplify the integration
of heterogeneous data [53, 54, 55, 56, 4, 57, 58]. In addition, our scheme-based distinction
of application-pertinent and DVO-pertinent compositionsdraws a significant difference between
our composition schemes and disseminator-based approaches [59, 60, 21]. In the latter, storage
artifacts are directly associated with repository-pertinent executable code and consequently, there is
explicit coupling. The principle of “smart objects and dumbarchives” realized through buckets [61]
designates a similarity between buckets and DVOs. However,DOLAR storage-independence and
scheme-based views are not available in buckets.

Finally, we should also point out that we do not propose the use of DOLAR URIs as global
identifiers. In general, supplying content items with global identifiers is considered a best practice,
advancing interoperability, especially in domains such ase-publishing. Approaches to offer such
identifiers include DOIs [62], Handles [63] and PURLs [64]. Our DOLAR URIs offer a DOLAR-
specific means to identify content items, acting as “memory-pointers” in the virtual information
space. The use of any particular global identification mechanism is an application-dependent
decision that falls outside the scope of DOLAR. In Pergamos,for example, we supply our content
items with global HTTP identifiers of the form ofhttp://pergamos.lib.uoa.gr/dl/object/
uoadl:NUM URIs and do not publish any internally employed DOLAR URIs.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

31

9. CONCLUSIONS AND FUTURE WORK

In protected application environments, information expansion is performed in a controllable fashion,
carried out in terms of rigid development procedures. To thecontrary, in modern cooperative and
public environments such as the Web, information expands more rapidly, constantly “demanding”
from applications to catch up with novel types of information. In this article, we presented our
DOLAR approach to support information expansion by proposing a virtual information space
environment. This environment is based on key automation and abstraction features offered by
virtual objects to curtail the costs of introducing new types of items in an existing application. In
brief, DOLAR supports uniform two-way data-flows atop any heterogeneous datastores, supporting
both accessing and modifying heterogeneous data in an effective way. DOLAR also masks-out the
structural diversity of content items using composition schemes, allowing business-logic to operate
in isolation of the structural diversity of underlying content. Ultimately, DOLAR achieves separating
the information discovery, access, conceptualization andutilization dimensions that compose an
information space. This separation enables the independent extension of individual information
management options, catering for the inexpensive extension of the information space as a whole.
Curtailing the costs of information expansion is valuable for any information-rich application
and the operation of DOLAR as the core-mechanism inPergamos digital library has over time
demonstrated its versatility in expanding the informationspace effectively. As we have shown in
this article, thePergamos business-logic implementation can cope with the addition of new types
of content without modifications. In addition, our experiments demonstrated that DOLAR does
not impose significant operational overheads even when usedatop a variety of heterogeneous data
sources.

We plan to extend our DOLAR framework by pursuing work in a number of areas. More
specifically, we plan to:
• experiment with our DVO Introspection API. In terms of data definition, this API allowed us to

develop an effective GUI tool for issuing virtual object specifications. This tool proved extremely
valuable in letting us augmentPergamos with new digital collections in a timely manner.
Our plan is to transform virtual object Introspection API into a full-fledged, data-definition
DSL [65, 66, 67]. Such a DSL could be embedded in applicationsto offer a self-contained
data-definition facility. This will allow more versatile usages of DOLAR, should we consider the
provision of GUI tools tailored to non-technical users suchas catalogers and curators. In addition,
we plan to implement the embeddable DSL using “just-in-time” compilation of DVO prototypes
into Java classes on-the-fly. This will allow for the creation of statically type-safe virtual objects
and also offer additional increase in DOLAR performance.

• realize virtual object inheritance. This will empower applications to create new virtual object
specifications by building upon existing ones. Supporting inheritance will make virtual objects
offer a full object-oriented solution [68].

• continue our work withDOStoredrivers and introduce a decorator mechanism [13] to allow
applications to share/reuse their information access options in diverse operating environments.

• examine data migration capabilities offered by virtual objects. The need of migrating content
items to new storage areas is tightly connected to information expansion and occurs in practice
frequently. We plan to enrich DOLAR to attain automated migration among heterogeneous stores.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their comments that helped us improve the presentation
of our work. We also wish to thank G. Pyrounakis, V. Karakoidas and E. Lourdi for their contributions in
Pergamos and A. Damianou, V. Nikakis and K. Drakoulakis for their contributions in DOLAR testing and
implementation. Finally, we thank A. Avramidis for readingearly drafts of this article.
Yannis Smaragdakis was supported by the National Science Foundation under grants CCF-0917774 and
CCF-0934631.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

32

REFERENCES

1. Lesk M. How much information is there in the world? 1997. Technical Report, 1997, Retrieved fromhttp:
//www.lesk.com/mlesk/ksg97/ksg.html on Jan 2010.

2. Lyman P, Varian HR. How much information, 2000 and 2003 2000. Retrieved from http:
//www.sims.berkeley.edu/how-much-info and http://www.sims.berkeley.edu/
how-much-info-2003 on Jan. 2010.

3. Bohn R, Short J. How much information? 2009 report on american consumers 2009. Global Information Industry
Center, University of California, San Diego, December 9 2009, Retrieved fromhttp://hmi.ucsd.edu/pdf/
HMI_2009_ConsumerReport_Dec9_2009.pdf on Jan. 2010.

4. Lenzerini M. Data integration: a theoretical perspective.PODS ’02: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, ACM: New York, NY, USA, 2002; 233–246.

5. Chen K, Chen H, Conway N, Dolan H, Hellerstein JM, Parikh TS. Improving data quality with dynamic forms.
ICTD’09: Proceedings of the 3rd international conference on Information and communication technologies and
development, IEEE Press: Piscataway, NJ, USA, 2009; 487–487.

6. Lukovic I, Mogin P, Pavicevic J, Ristic S. An approach to developing complex database schemas using form types.
Softw., Pract. Exper.2007;37(15):1621–1656.

7. Parsons D, Rashid A, Telea A, Speck A. An architectural pattern for designing component-based application
frameworks.Softw. Pract. Exper.2006;36(2):157–190, doi:http://dx.doi.org/10.1002/spe.v36:2.

8. Parnas D. On the criteria to be used in decomposing systemsinto modules.Communications of the ACM1972;
15(12):1053–1058.

9. Dijkstra EW. Ewd 447: On the role of scientific thought.Selected Writings on Computing: A Personal Perspective
1982; :60–66.

10. Tarr P, Ossher H, Harrison W, Sutton S. N degrees of separation: Multi-dimensional separation of concerns.Proc.
of the 21st Int. Conf. on Software Engineering (ICSE), 1999; 107–119.

11. Saidis K, Delis A. Type-consistent Digital Objects.D-Lib Magazine May/June 2007; 13(5/6).
[doi:10.1045/may2007-saidis].

12. Krasner G, Pope S. A Description of the Model-View-Controller User Interface Paradigm in the Smalltalk-80
system.Journal of Object Oriented Programming1988;1(3):26–49.

13. Gamma E, RHelm, RJohnson, JVlissides.Design Patterns Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1997.

14. Fowler M.Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.
15. Saidis K, Pyrounakis G, Nikolaidou M, Delis A. Digital object prototypes: An effective realization of digital object

types.Proceedings of the 10th European Conference on Digital Libraries, Alicante, Spain, 2006.
16. UofA. Pergamos Digital Library, University of Athens.http://pergamos.lib.uoa.gr/.
17. Saidis K, Delis A. Integrating multi-dimensional information spaces.2nd Workshop on Very Large Digital

Libraries, In conjunction with the 13th European Conference on Digital Libraries, DELOS Association, 2009.
18. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J. Aspect oriented programming.

Proceedings of the 11th European Conference on Object-Oriented Programming (ECOOP), 1997; 220–242.
19. DCMI. DCMI Metadata Terms, Dublin Core Metadata Initiative. http://www.dublincore.org/

documents/dcmi-terms/.
20. Lieberman H. The continuing quest for abstraction.Proceedings of the 20th European Conference on Object

Oriented Programming (ECOOP), 2006; 192–197. Doi: 10.1007/1178547712.
21. Lagoze C, Payette S, Shin E, Wilper C. Fedora: an architecture for complex objects and their relationships.

International Journal on Digital Libraries2006;6(2):124–138.
22. McDonough JP. METS: standardized encoding for digital library objects.International Journal on Digital Libraries

2006;6(2):148–158. Doi:10.1007/s00799-005-0132-1.
23. Hamilton, G (Editor). Javabeans specification 1.01. Retrieved from http://java.sun.com/javase/

technologies/desktop/javabeans/docs/spec.html on Jan 2010.
24. Red Hat Middleware LLC. Hibernate. Available athttp://www.hibernate.org.
25. DCMI. Simple DC XML schema, version 2002-12-12, Dublin Core Metadata Initiative.http://dublincore.

org/schemas/xmls/simpledc20021212.xsd.
26. Lagoze C, de Sompel HV. The open archives initiative: Building a low-barrier interoperability framework.JDCL

’01: Proceedings of the 1st Joint Conference on Digital Libraries, 2001.
27. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W. Getting started with aspectj.Communications

of the ACM2001;44(10):59–65.
28. Bergmans L, Aksit M. Composing crosscutting concerns using composition filters.Communications of the ACM

2001;44(10):51–57.
29. Ossher H, Tarr P. Hyper/J: multi-dimensional separation of concerns for java.Proceedings of the International

Conference on Software Engineering (ICSE), 2000; 734–737.
30. Ossher H, Tarr P. Using multidimensional separation of concerns to (re) shape evolving software.Communications

of the ACM2001;44(10):43–50.
31. Sehring HW, Schmidt JW. Beyond Databases: An Asset Language for Conceptual Content Management.Advances

in Databases and Information Systems (ADBIS), 8th East European Conference, Springer, 2004; 99–112.
32. Arms WY, Blanchi C, Overly EA. An architecture for information in digital libraries.D-Lib MagazineFebruary

1997;3(2).
33. Suleman H, Fox EA. Designing Protocols in Support of Digital Library Componentization.ECDL ’02: Proceedings

of the 6th European Conference on Digital Libraries, London, UK, 2002; 568–582.
34. Kumar A, Saigal R, Chavez R, Schwertner N. Architecting an extensible digital repository.JCDL ’04: Proceedings

of the 4th Joint Conference on Digital Libraries, 2004; 2–10.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

33

35. Bainbridge D, Don KJ, Buchanan GR, Witten IH, Jones S, Jones M, Barr MI. Dynamic digital library construction
and configuration.ECDL ’04: Proceedings of the 8th European Conference on Digital Libraries, 2004; 1–13.

36. Kahn R, Wilensky R. A Framework for Distributed Digital Object Services.International Journal on Digital
Libraries 2006;6(2):115–123. Also available athttp://www.cnri.reston.va.us/k-w.html.

37. Gonçalves M, Fox E, Watson L, Kipp N. Streams, Structures, Spaces, Scenarios, Societies (5s): A Formal Model
for Digital Libraries.ACM Transactions on Information Systems (TOIS)2004;22(2):270–312.

38. Agosti M, Ferro N. A formal model of annotations of digital content.ACM Trans. Inf. Syst.November 2007;26(1).
39. CCSDS. Reference Model for an Open Archival InformationSystem (OAIS), Consultative Committee for

Space Data Systems 2002. Blue Book, Issue 1,http://public.ccsds.org/publications/archive/
650x0b1.pdf.

40. Candela L, Castelli D, Pagano P, Thanos C, Ioannidis Y, Koutrika G, Ross S, Schek HJ, Schuldt H. Setting
the Foundations of Digital Libraries: The DELOS Manifesto.D-Lib Magazine March/April 2007; 13(3/4).
[doi:10.1045/march2007-castelli].

41. Manola F, Miller E, McBride B. Resource Description Framework (RDF) Primer. W3C Recommendation 10
February 2004,http://www.w3.org/TR/rdf-primer/.

42. Clark J. XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16 Nov. 2009. Retrieved from
http://www.w3.org/TR/xslt on Jan 2010.

43. Chandrasekaran B, Josephson JR, Benjamins VR. What are ontologies, and why do we need them?IEEE Intelligent
Systems1999;14(1):20–26.

44. Shadbolt N, Berners-Lee T, Hall W. The semantic web revisited. IEEE Intelligent Systems2006;21(3):96–101.
45. Won K.Introduction to Object-oriented Databases. MIT Press, 1990. ISBN: 0-262-11124-1.
46. Otis A. A reference model for object data management.Computer Standards & Interfaces1991;13(1-3):19–32.
47. Bekaert J, Kooning ED, Walle RVD. Packaging models for the storage and distribution of complex digital objects

in archival information systems: A review of MPEG-21 DID principles.Multimedia Systems2005;10(4):286–301.
48. Santanchè A, Medeiros CB. A component model and infrastructure for a fluid web.IEEE Trans. Knowl. Data Eng.

2007;19(2):324–341.
49. Agarwal S. Architecting object applications for high performance with relational databases.In OOPSLA Workshop

on Object Database Behavior, Benchmarks, and Performance, 1995.
50. Novera JO, Orenstein J, Inc NS. Supporting retrievals and updates in an object/relational mapping system.IEEE

Data Engineering Bulletin1999;22:22–1.
51. Garcia-Molina H, Papakonstantinou Y, Quass D, Rajaraman A, Sagiv Y, Ullman J, Vassalos V, Widom J. The

tsimmis approach to mediation: Data models and languages.J. Intell. Inf. Syst.1997;8(2):117–132.
52. Roth MT, Schwarz PM. Don’t scrap it, wrap it! a wrapper architecture for legacy data sources.VLDB ’97:

Proceedings of the 23rd International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 1997; 266–275.

53. Gupta A, Jagadish HV, Mumick IS. Data integration using self-maintainable views.Advances in Database
Technology - EDBT ’96, 1996; 140–144.

54. Hull R, Zhou G. A framework for supporting data integration using the materialized and virtual approaches.
SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international conference on Management of data, ACM,
1996; 481–492.

55. Ullman J. Information integration using logical views.Theoretical Computer Science2000;239(2):189–210.
56. Halevy AY. Answering queries using views: A survey.The VLDB Journal2001;10(4):270–294.
57. Vodislav D, Cluet S, Corona G, Sebei I. Views for Simplifying Access to Heterogeneous XML Data.On the Move

to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, andODBASE. Proceedings, Part I, Springer, 2006;
72–90.

58. Shao F, Guo L, Botev C, Bhaskar A, Chettiar M, Yang F, Shanmugasundaram J. Efficient keyword search over
virtual xml views.VLDB ’07: Proceedings of the 33rd international conferenceon Very large data bases, VLDB
Endowment, 2007; 1057–1068.

59. Blanchi C, Petrone J. Distributed Interoperable Metadata Registry.D-Lib MagazineDecember 2001;7(12).
60. de Sompel HV, Bekaert J, Liu X, Balakireva L, Schwander T.aDORe: A Modular, Standards-Based Digital Object

Repository.The Computer Journal2005;48(5):514–535.
61. Nelson ML, Maly K, Zubair M, Shen SNT. SODA: Smart Objects, Dumb Archives.ECDL ’99: Proceedings of the

3rd European Conference on Digital Libraries, 1999; 453–464.
62. IDF. The DOI Handbook, The International DOI Foundation. Edition 4.4.1, October 2006, [doi:10.1000/182].
63. CNRI. The Handle System, Corporation of National Research Initiatives.http://www.handle.net/.
64. OCLC. Persistent Uniform Resource Locator (PURL), Online Computer Library Center.http://www.purl.

org/.
65. Hudak P. Building domain-specific embedded languages.ACM Computing Surveys1996;28(4es).
66. Wile DS. Supporting the DSL Spectrum.Journal of Computing and Information Technology2001;CIT 9(4):263–

287.
67. Mernik M, Heering J, Sloane A. When and how to develop domain-specific languages.ACM Computing Surveys

2005;37(4):316–344.
68. Cardelli L, Wegner P. On understanding types, data abstraction, and polymorphism.ACM Computing Surveys1985;

17(4):471–522.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper.(0000)
Prepared usingspeauth.cls DOI: 10.1002/spe

