SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expei0000;00:1-33
Published online in Wiley InterScience (www.intersciemgkey.com). DOI: 10.1002/spe

DOLAR: Virtualizing Heterogeneous Information Spaces to
Support their Expansion

Kostas Saidi§ Yannis Smaragdakig and Alex Delig

IDepartment of Informatics and Telecommunications, Ussitgiof Athens, 15784, Athens, Greece
2Department of Computer Science, 140 Governors Drive, Usityeof Massachusetts, Amherst, MA 01003, USA

SUMMARY

Users expect applications to successfully cope with theesipn of information as necessitated by the
continuous inclusion of novel types of content. Given thathscontent may originate from “not-seen thus
far” data collections and/or data sources, the challengisge is to achieve the return of investment on
existing services, adapting to new information withoutrayiag existing business-logic implementation. To
address this need, we introduce DOLAR, a service-neutamhdwork which virtualizes the information
space to avoid invasive, time-consuming and expensiveceargde extensions that frequently break
applications. Specifically, DOLAR automates the introthuttof new business-logic objects in terms of
the proposed virtual “content objects”. Such user-spetifigual objects align to storage artifacts and help
realize uniform “store-to-user” data-flows atop heteragmrs sources, while offering the reverse “user-to-
store” flows with identical effectiveness and ease of usadtition, the suggested virtual object composition
schemes help decouple business-logic from any conterinpstprage and/or structural details, allowing
applications to support novel types of items without modiytheir service provisions. We expect that
content-rich applications will benefit from our approachd aemonstrate how DOLAR has assisted in the
cost-effective development and gradual expansion of aystazh-quality digital library. Experimentation
shows that our approach imposes minimal overheads and D@Ehased applications scale as well as any
underlying datastore(s). Copyrigi® 0000 John Wiley & Sons, Ltd.

Received ...

1. INTRODUCTION

The amount of information produced as well as consumed imvtiréd is constantly expanding [1,
2, 3]. In order to cope with such expansion, applications mesd to scale-up to support increasing
volumes of data. In addition, applications need to graguatipand their information space—the
application’s private “universe” of data items—to includewly-encountered types of content. As
the information space expands, applications have to dehltieé following cases:

1. Support new types of data sourc€ontemporary data-intensive applications such as dligita
libraries, content management systems and archival tepiesi, may need to operate atop
multiple heterogeneous data sources and, thus, suppatttypes of datastores. For example,
database-oriented applications may need to operate atdpd&thstores.

2. Support new types of data collectionss applications expand, they may need to support
newly-introduced data collections. For example, a comiyuof users may need to use
an existing digital library application to introduce andvdl®p a new collection —e.g., by
digitizing and documenting real-world artifacts.

3. Include new items in existing servicésboth of the above cases, the key issue is to efficiently
include the new content in any services currently supporfédtly, applications need to
generate new types of business-logic objects to stage theomrtent items. Secondly, they

Copyright© 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls [Version: 2010/05/13 v3.00]

have to revise the existing service provision to deal witbhsoew objects and ultimately
include the new content in existing services.

Viewed from different perspectives, the above cases ra@m®ows multi-disciplinary data
integration, data quality and software evolution/adaptaissues [4, 5, 6, 7]. Clearly, developers
can handle these cases by code re-engineering. Howevemsgp requirements can hardly be
predicted in detail during the initial application designdadevelopment phases. Consequently,
the support of a new type of content may break the applicatioposing drastic, invasive and
expensive source code changes to all service actors. Quarslonay follow an ad-hoc approach
to revisit service actor implementations and they can w@taty succeed in including this new
content. However, yet another new requirement for suppprédditional types of content may
render this approach problematic, breaking service agtetreigain. The crucial need here is not
to predict the future, but rather to achieve the return oégtnent on existing services; indeed,
the challenge is to enable the existing service provisioogerate atop constantly expanding,
heterogeneous and diverse information spaces. Thus, & begproach is to base the application
on a flexible framework that can isolate the application doigbm the type of context and add
indirection between the business-logic and the infornmagipace. Although adding indirection is
a simple idea, designing a general and flexible frameworlkcfmtent expansion is anything but
simple. The framework needs to: a) isolate the structureatd,d.e., how the logical organization
of data (e.g., the tuples of a database, or the elements of ¥ddluments) map to the application’s
expectations; b) adapt the physical access to data (eayidernetwork or database connections to
objects in a way transparent to the application); c) abstrecobject presentation, i.e., smoothly
integrate the display of new kinds of objects in the appiiatser interface; d) abstract the object
manipulation, i.e., allow new object modification in a umifoway; and e) perform these tasks
conveniently and efficiently, in particular without impnogi significant runtime overhead over an
inflexible, hard-coded implementation of the same features

In this article, we presenDOLAR (Data Object Language And Runtime) service-neutral
virtual information space framework which meets the afaationed challenges. Employing the
separation of concerns principle [8, 9, 10], our approaahdcends software, knowledge and data
engineering boundaries to virtualize the information spa@pecifically, our DOLAR approach
provides the following key elements:

e DOLAR Virtual Objects (DVOs)We use DVOs to realize different conceptualizations ofidat
items such as “books”, “photos” and “blogs”. In contrasttode objects” composed of properties
and methods, DVOs are virtual “content objects” consistfid-ield Sets, Relation Contexts,
Stream Handlesind Composition SchemeBVO specifications are provided in terms of DVO
prototypes [11], which are instantiated to offer the bus#legic objects at runtime. The unique
characteristic of these runtime objects is that they cantaiexecutable code—e.g., they contain
no methods—hbut use composition schemes to model diffeypastinterfaces of data objects. As
we show in the article, DVOs are the primary DOLAR mechanikat helps us avoid expensive
business-logic code modifications:

e DVOs enable developers to avoid costly direct coding of ress-logic objects. DVO
specifications are easy to construct and maintain and albowhie creation of application-
specific data-definition utilities. For example, we show leawDOPsCreatorGUI tool allows
us to introduce new business-logic objects without manoding.

e DVO composition schemes allow diversely structured damé to expose uniform service-
compatible interfaces. As a result, business-logic sesvitan catch up with the addition of
new types of data items without any source code modifications

e DOLAR Virtual Information SpaceDOLAR virtual information space comprisd3vVOStores

DVOIndexesand DOPSourcesn a hierarchical logical space organized in terms of DOLAR

Domains These mechanisms help us answer the critical need to ngtamgless but also to

modify heterogeneous content in an effective and uniforny.vila the context of DOLAR

virtual space, developers connect DVOs to datastore etifAlthough the latter may originate
from heterogeneous datastores, the DVOs support unifotare'so-user” and “user-to-store”
information flows, automatically dealing with common tasksluding (a) staging the data in

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

runtime structures, (b) synchronizing the access to thegetsres and finally, (c) flushing such
structures to underlying datastores as needed. In termspoéssiveness and ease of use, the
developer can fetch or store any DVO using literally one lirfiecode, regardless of the data
conceptualization, origin and location.

e Service-neutral DVO APIDOLAR is realized as a Java class library, fostering thguge of
DOLAR in different contexts. For example, DOLAR can be usedsiandalone applications
while it may also be part of middleware in distributed apgtions. To expose the DVO runtime
structures to the application-logic services, we use ou®DAPI. The API offers application-
neutrality, as it does not perform any service-specific cogitipn or transformation to the data
staged in the DVO structures. Hence, business-logic imgteation artifacts, such as modules
and components, can synthesize DVOs to cater for any seo¥ickoice. Similar application-
independence is found in database systems, where the sessilteturned by SQL queries are
made available to applications in terms of runtime strieguhat stage involved database tuples.
A database system makes no assumptions about the actuel efsdgta by the business-logic,
offering a general-purpose system for managing relaticiagh in terms of any application.
Respectively, DOLAR offers a service-neutral frameworkichhvirtualizes information spaces
to facilitate their efficient expansion.

To keep expansion costs in check and avoid expensive scodmfevisions, the above DOLAR
mechanisms enable applications to extend their “low-leirdbrmation space options without
modifying their “high-level” business-logic services. Ag show in the article, our DOLAR
approach has enabled the cost-effective construction aadugl expansion of th@ergamos
information spacePergamos has been in production for nearly five years and is curreihdy t
largest academic digital library in Greece hosting abou@,@00 items and exceedingl' B of
space. In particular, we present how the use of DOLAR hasekelis cope with the dual pressure
of gradually (a) usindPergamos to develop a variety of collections originating from indedent
digitization projects at the University, (b) adding exigti University collections inPergamos,
including “books”, Domino-based “theses”, technical rgpatc. Moreover, in our experimental
evaluation, we show that DOLAR-imposed operational ovadseare minimal and DOLAR-based
applications scale as well as the underlying datastore(s).

The remainder of this article is organized as follows. Sec#l motivates the design of DOLAR’s
virtual information space and Section 3 presents its eleésnedection 4 discusses the role of
our proposed virtual objects and their operation. Sect®rad 6 illustrate the DOLAR-based
implementation of Pergamos content presentation, curatim search services. The evaluation of
our approach in terms of effectiveness and efficiency isudised in Section 7. Section 8 discusses
related work and finally, Section 9 offers our conclusions frure work.

2. MOTIVATING EXAMPLE

We use thePergamos expansion requirements to motivate our discussion foruaiizing
the information space. Given thd@ergamos can be classified as a centralized, multi-tier,
web application, we elaborate on modern service architesfusing Model-View-Controller
(MVC) [12] as a vehicle for our discussion. MVC is a well-ddtshed pattern that effectively
separates data from presentation and is routinely usedliirtien, enterprise-scale applications [13,
14]. According to MVC, services act as “controllers” of timédrmation flow issued between “view”
and “model” components. The role of “model” components isffer the business-logic objects
required for staging the data at runtime. Such “model” congms may employ “data access” actors
to interact with underlying storage facilities. In turnettole of “view” components is to offer user-
oriented views of information. For example, such “view"@stmay employ HTML displays or GUI
components like list-boxes to present the data to the ugally “controller” components realize
service provision entry points, composing “model” and tiectors. Regardless of the terminology
in place, architectures use a similar set of actors to reakzvice provision and, clearly, any other
architecture can be considered in a similar manner.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

2.1. Pergamos Business Case

Pergamos plays a dual role as it publishes Univ. of Athens digital ecolions for web
visitors, and offers a platform for members of the communitydevelop and document digital
collections [15, 16]. This duality of business requirenserg addressed byergamos front
and back-end subsystenRergamos back-end subsystem offers an authoritative and effective
content documentation infrastructure. Experts in eaclecttbn’s domain are involved in defining
documentation details and specifying the particular dpsee metadata to be used for each new
collection. This yields a collection hierarchy comprisidiyerse content, such as thstorical
Archive theFolklore as well as th& heatricalcollections to name a few. In addition, Pergamos user-
interfaces and their ease-of-use are of key importance amidoexperts along with researchers,
students and library staff routinely use such interfacesldoument content items. Supporting
the hierarchical nature of our collectiorgrgamos offers collection navigation services. During
collection browsing, our front-end services supply useith WITML displays of the collection
hierarchy. The browsing of our back-end subsystem provédigstional web-based forms to our
authorized users. These forms allow for item editing, adidibf new items as well as deletion
of obsolete ones. Finally, our services support an infolonapace search capability, collectively
spreading over both front and back-end subsystems.

The need for information space extension was the domiRargamos requirement. On one
hand, new digitization projects emerged, including kheseum of Mineraloggnd theByzantine
Music Manuscriptgollections. The critical issue here was to supply groupdoohain experts and
digitization workers with effective data ingestion andation services at the get-go of their work,
even though each digitization group worked on differenteztion development projects. On the
other hand, the need to include existing heterogeneousctiolhs of the University occurred, such
as theAnthemion‘books” database and the Domino-based “theses”. Here thidskee was to
include such collections in our front- and back-end sulesystwithout “breaking” existing code. In
both cases, the challenge was to reduce the time and effpireel to make ouPergamos services
adapt to the needs of each new collection.

2.2. Virtualizing the Information Space

To make thePergamos subsystems catch up with new collection requirements imalyi fashion,
we needed to avoid expensive code re-engineering. To thistamas crucial to separate the “low-
level” information space idiosyncrasies from the “highdl service provision logic. To achieve
this separation, we had to deal with the followiiogir information management optiofis/]:
1. information discovery optionsorrespond to the indexing and/or searching dimension of an
application (i.e., how the data is being indexed/searched)
2. information access optioneflect the information accessing and storing dimensionrof a
application (i.e., how the data is being accessed/stored),
3. information conceptualization optioerrespond to conceptualizations used by the business-
logic of an application (i.e., how the data is being stagadiatime), and
4. information utilization optiongreflect the synthesis of information in the context of an
application (i.e., how the data is being composed to offereser services).
Figure 1 depicts the composition of the information spacelenap of the above four options.
Clearly, business-logic should be separated from anynmétion access/storage options; otherwise
service-provision would become coupled to the particutgastore used beneath. To this end, we
use our proposed virtual objects to separate the handlimfaimation space options (2) and (3),
offering a unified mechanism for staging heterogeneousatatmtime. For example, iPergamos,
although the data storage formats vary among collectidinspléection items are staged in terms of
uniform DVO-based runtime structures. In addition, to hibkp business-logic operate in isolation
of the structural diversity of data, we need to supply sewiwith a uniform interface to the staged
data. To this end, we use our proposed composition schersepérate the handling of information
space options (3) and (4) and hide any data-inherent diffe®from service provision components.
For example, irPergamos we use composition schemes to offer data-entry facilities &dapt to
each collection requirements. Finally, schemes also allsvio index diverse data in a uniform

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

2= 3 Information Discovery Options |

Application ‘-‘"Informaiion | |-{Information Access Options |
Logic | Space / [-Information Conceptualization Options|

—— Information Utilization Opiionsl

Figure 1. Information spaces consist of multiple inforrmatmanagement dimensions

manner, helping us to separate the handling of informatece options (1) and (3). For example,
we show howPergamos business-logic uses composition schemes to decide whatidehow to
index each different collection item.

In order to facilitate the expansion of the information smathe business-logic should be
separated from the information space in terms of all fouretigions of Figure 1. Otherwise, the
expansion will cause costly and invasive changes to thenbasilogic code. To illustrate this,
consider the MVC service architecture operating atopRegamos “photo-album” items. Here,

a “data access” (or similar-in-nature) actor will be usedttap the underlying XML repository. At
the same time, the “model” actors will offer “album” and “ghdbusiness-logic objects. In turn,
these objects will be synthesized by “view” actors to yiedéraconsumable views of “photo-album”
items. However, in order to realize service provision, thewve (or similar) service actors tend to
become intertwined with the specific content. This couplsglue to the “tyranny of dominant
decomposition”; by and large, any architectural choiceaitgyn separates concerns in terms of a
single dimension at a time [10]. For instance, although M\Waldes applications to separate data
from presentation, it does so in the context of a given setatd dt a time. To foster information
expansion, we need to exploit the benefits of MVC (or any osleevice architecture adopted), yet
without realizing a different instance of the architecttwehandle each different type of content.
For example, imagine that the abdergamos MVC architecture is augmented to also support the
Anthemion collection of digitized “books”. The latter onigite from a new source —a network SQL
database- requiring the application to extend its infolwnadaccess options. “Book” artifacts will
likely be indexed and searched differently, requiring ateesion of the application’s information
discovery options. New kind of business-logic concepnaions will also be necessary to stage the
“book” items at runtime. Finally, to incorporate “books” the service provision, the application
has to extend its information utilization options, revisit its “controller”, “view” and similar
components. Clearly, having support for new types of itesssattered throughout all service actors,
causing individual actor implementations to become en@hdScattering occurs when a single
requirement affects multiple components and entanglemppears when multiple requirements
are interleaved within a single component, leading to auatsisig of concerns [10, 18].

This crosscutting of concerns is an apparent obstacle ds additional need to expand the
information space imposes substantial and costly change#i business-logic actors. To curtall
these expenses, our approaatiualizesthe information space.

3. DOLAR'S VIRTUAL INFORMATION SPACE

The DOLAR virtual information space is organized in termglomains Our DOLAR Dictionary
serves as the “domain of domains” and helps combine diverfeenation contexts in a single
logical hierarchical spaceWithin each DOLAR domain, we support unique realizationghef
four information management options discussed in the ptsvsection. Our virtual information
space allows business-logic to dissociate the four infeionananagement options of Figure 1.
More specifically:

*the term “domain of domains” does not refer to the upper agybf ontology-oriented approaches. DOLAR domains
are simply used to identify distinct namespaces, definiegsttope of proposed DOIndexes, DOStores or DOPSources.
To this effect, the term “domain of domains” is used to refteethierarchical nature of DOLAR's virtual space.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

1. the information discovery options are realized through DOIndex mechanism which
wraps application-specific indexing/searching faciiti@he DOIndex provides a way to
automatically index new types of content and also displap siew content in search results.

2. information access options are managed in terms d®8toremechanism. This mechanism
is placed between “model” components and underlying datastand exposes a uniform
interface, regardless of the conceptualizations and thagt/access details involved. This
enables applications to extend their information-accesk iaformation-conceptualization
options independently of each other.

3. information conceptualizations are expressed in terfrB\MO Prototypes (DOPsand are
loaded fromDOPSourcesDVOs and DOPs automate the generation of business-loggctsb

4. information utilization options are managed in term®®0O composition schemesffering
an effective means to compose data-inherent and applicatieerent behavior. Schemes are
unique elements of our proposal and we discuss them at lem&tbction 4.

A DOLAR domain may consist of any combination of specific D@8t DOIndex and
DOPSource elements, while a DOLAR space (also called DOLi&todhary) may consist of one or
more domains. The setup of the DOLAR space and its constitloenains depends on the particular
application needs. For example, ®argamos back-end and front-end services operate atop three
datastores. These are the Pergamos-internal XML repgsita relational solution that holds the
Anthemiorcollection of books and, finally, the Domino document dasgb&\Ve also have numerous
DOP definitions for expressing business-logic conceptatibins for content items such as “books”,
“theses”, “photo albums” and “folklore-artifacts”. Moreer, we employ two different information
indexing/searching facilities: we use a Lucene full-texdex for enabling user free-text search and
a relational database for offering field-oriented search.

Figure 2a shows a logical view of the virtual information spave have created iPergamos;
the DOLAR dictionary includes here three domains, namely. uoa. gr, hi story. uoa. gr and
| aw. uoa. gr. Due to the dominance of Internet-like identifiers, we useltib. uoa. gr form for
naming DOLAR domains throughout this paper. It is clearutfia that DOLAR domains do not
stand for physical network hosts but represent logicalrinétion contexts, defining the scope of
DOStore, DOIndex and DOPSource elements in the context dfAR> unified namespace. As
Figure 2a depicts, the st ory. uoa. gr domain provideant heni on DOStore driver which wraps
the database holding th&nthemioncollection. Thel aw. uoa. gr DOLAR domain provides the
doni no DOStore driver of the Domino-based theses. The dictionsy eontains ai b. uoa. gr
domain, providing: (a) th@er ganos DOStore wrapping the Pergamos XML repository, (b) the
mai n DOPSourceissued as the central source of DOP definitions and (c) the D@dndex
elements, namelyul | Text anddc, wrapping the aforementioned full-text index and database
respectively. That is, the first two domains contain the raa@ms needed to access two separate
datastores, while the third domain contains not just thehraeism to access a third datastore but
also information describing the data schema for all threasdares. In another context, involved
DOStore, DOIndeandDOPSourceelements could have been meshed in domains differently.

Figure 2b depicts an architectural view of the virtual imfi@ation space in Pergamos, showing
the separation of the four information management optiontetims of our low-levebcst or e,

DA ndex andDoPSour ce APIs and our high-level usade ct i onary/ Runti me andbvo APIs. Our
Dictionary/Runtime API of Figure 2c yields an “operatichalew of DOLAR’s virtual space
elements, where a DOLAR domain acts as a registnD0fStore, DOIndexand DOPSource
elements, and the dictionary acts as the registry of domidisiag the API, developers can query the
DOLAR dictionary to obtain the list of currently registereléments, while they can also extend the
dictionary dynamically, by adding new domains or augmengxisting domains with ne®OStore,
DOIndexandDOPSourceslements.

The virtualization of the information space is achieveddslizing all DOLAR domainDOStore,
DOIndex, DOPSourceDOP elements as well as DVOs as first-class objects of the APOL
dictionary. This yields a common memory space which tramdsghysical/network boundaries,
hiding any data origin details and offering a unified virtirdbrmation space. Individual elements
of this virtual space are being addressed through DOLAR WRike following form:

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expef0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

Heterogeneous Access/Storage Views

P?rg_amos Varying Utilization/Usage Views
(D'CtM\ Pergamos front-end Pergamos back-end
law.uoa.gr Application Logic) |Application Logic
DOStore Full-text < - DOP
———/ Index] x DOLAR Virtual Information Space S —
" ~\ <] o album
history.uoa.gr g “book” “theses” Ie) DOP
anthemion a bvo bvo ? “theses”
DOStore 14 _g‘ DOP
———/ Database j “album” “3Dartifact”)
) index |8 DVO DVO > | [3DArtifact”
lib.uoa.gr o DOP
DOStore Index Views Conceptual Views
DOPSource b Custom
—‘- ISQ" I‘g:rvices Iprotocol
;/-

@ (b)
Runtime — Dictionary Domain

getDictionary () :Dictionary registerDomain (id) :Domain getId() :String
getDO (doId) : DVO getDomain (id) : Domain registerDOPSource (source,id) :void
getDO (doId, loadingPolicy) : DVO isRegisteredDomain (id) :boolean isRegisteredDOPSource (id) :boolean
getDOP (dopId) : DOP registeredDomains () :iterator registeredDOPSources () :iterator
getNewDO (dopId) : DVO getDOStore (storeldd) :DOStore registerDOStore (store,storeld) :void
instanceOf (dvo,dopId) :boolean getDOIndex (indexId) : DOIndex registeredStores () :iterator
createNewDOP (dopId) : DOPInstrospector getDOPSource (srclId) : DOPSource isRegisteredDOStore (storeld) :boolean
saveDO (dvo) :void getObjectDOP (objId) :String registerDOIndex (index, indexId) :void
saveNewDO (dvo, storeId) :void isRegisteredDOIndex (indexId) :boolean
copyDO (dvo, storeld, recurse) :String getIndex (indexId) : DOIndex
moveDO (dvo, storeld, recurse) :String registeredIndexes () :iterator
canBeReleased (dvo) :boolean
releaseDO (dvo,deleteFromStore) :void
discardNewDO (dvo) :void

()

Figure 2. DOLAR Virtual Information Space: (a) A logical weof Pergamos Virtual Information Space
(b) An architectural view of Pergamos Virtual Informatiope®&e (c) DOLAR Dictionary/Runtime API: the
operational view of the Virtual Information Space

dol ar://domainld/storeld/itemd
dol ar:// domai nl d/ dop/ dopSour cel d/ dopl d

dol ar://domai nl d/ i ndex/i ndexld
Resolving such identifiers involves DOLAR performing an camated virtual space lookup,
resembling a “pointer dereference” procedure issued byogramming language at runtime.
For example,dol ar://1ib.uoa.gr will either resolve to a domain termed b. uoa. gr or a
Not Found error will be thrown. In turndol ar: //1i b. uoa. gr/ per ganos resolves to our Pergamos
XML-based DOStore driver, whiléol ar: // hi story. uoa. gr/ ant heni on identifies the DOStore
driver of the Anthemiondatabase collection. We also use DOLAR URIs to identify eant
items. For examplejol ar://1i b. uoa. gr/ per ganmos/ al bum 100 refers to a “photo-album” XML
item, while dol ar: // hi story. uoa. gr/ ant heni on/ book: 12 refers to a “book” database item.
Automation is achieved through our virtual object metaptdnen developers resolve such content
item identifiers, DOLAR provides “ready-made” virtual obje that stage the data held in the
“album:100” XML item and “book:12” database item respeelw

4. DOLAR VIRTUAL OBJECTS

We use virtual objects to automate the process of expandliegriformation space with new
business-logic conceptualizations. We view storageaaisfas serializations of virtual objects and

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

so we separate the information that makes up a conceptti@tiZzeom any of its serializations. A
virtual object OV O) is defined as follows:

DV O = {DOP, DOStoreDriver, storedItem}
whereDOP defines the logical structure of the virtual objestgredltendesignates a storage artifact
(i.e., a set of database records, an XML document, etc.)l@ld®Storedriver is the bidirectional
mechanism that helps retrieve/store the data in questiothi$ section, we discuss all pertinent
mechanisms that collectively produce virtual objedd/(Os) at runtime and outline their salient
operations.

4.1. Virtual Object Data Model

Virtual objects offer a logical view of the data held in stgeaartifacts and are composedrééld
Set, Relation Context, StreaandSchemelements. Figure 3a reflects this layout.

1

[1 L .
) |Field Set| |Field|
P | 0.
\ 4|Stream Handle
| DVO 7|
S N I e B B el SR —
- | 4' Relation Context'}—lMember (DVO)"
| 0. .
‘4|‘Behavmr SchemeJ

Figure 3. The conceptual/logical view of a virtual object

The structure of individual virtual objects—the names adl w& the types of elemenBBVOs
contain— is governed by the user’s specification defined ahai®n from any specific storage
details. In particular, the DVO data model consists of:

e Field Setsthey refer to field-like data such as name/value pairs, daghuples, XML-encoded
metadata or any other form of named attributes. A virtuakobpgpecification may contain
zero or moreFieldSetdefinitions, each one consisting of one or méields We make no
assumptions about the storage of these fields or their acoafoce to any standard. For example,
thePergamos-internal repository stores Dublin Core (DC) [19] metadatdsML-encoded form,
while the Anthemion collection holds its custom “book” figlth a relational database. Thus, a
FieldSetdefinition designates a set of fields held in a storage attifagardless of any storage
details.

¢ Relationships:Relationships among content items are expressed as retaiiexts. Virtual
object specifications may contain multifRelation Contexdlefinitions, each one used to outline a
particular relationship among items. During specificattbeRelationContextlefinition provides
the types of objects that can participate in a given relatigm yet, without making any
assumptions about the storage representation of suchtemskip. For example, Anthemion
stores the book-to-page relationships in a database tahit in Pergamos XML repository,
object-to-object relationships are held in terms of RDplés.

e Stream HandlesWe use our stream-handles to model any underlying localigmiotely-stored
“document-based” digital content. For example, the PDFuduwent holding the full-text of a
thesis is modeled by a stream handle in DOLAR. At specificaiioe, aStreamHandlelefinition
provides the MIME types supported by the underlying “docathe

e Composition Schemege use our composition schemes to offer runtime projectidgnsrtual
objects. The abovEield Sets, Relation ContexandStream Handledesignate the internal state
of a virtual object. Composition schemes help us exposerttésnal state to the service actors.

Figure 4 presents five examples of virtual objects. The ‘falbabject of Figure 4a stands for a
“photo album” XML item originating from ceremonies of the Wnof Athens. Such items comprise
descriptive metadata and the album’s digitized photoggaptetadata is represented in terms of
a dc FieldSetand its respectivé-ields while a RelationContextermedstructure is used to
represent the containment relationship between “alburd™photo” objects. “Photo” objects hold
three versions of the digitized photograph in termsStfeam Handlesa high resolution image
(hg), a web-quality image (web) and a thumbnail image (thurivb similar fashion, Figure 4b

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

(Field | [PR
.‘/ (title) (F'::::E) } Stream

™ Vo ;I:tld /'_7 A (HQ) / - Stream
Field Set || | Field Fieta| /| metas) N " L ove /[POR)
‘l DvO /| (dc) 4'\ K(nreator)’) { Dvo strgam [fE=F)
| (album) || \/— | | (3dArtifact) | WEB) | (Theses) /| (Field |
\‘ \ | Field I (tltlE)

[L s [stream \[Fieta set |/ [Field |
(@) \[Rel context Stream (c) | rhums) | (mdata) || | (date)
(structure) || | (HQ) ; /|

L I\ e

\| pvo [stream |
(Fhoto) \ ‘(WEB))

“-\ (Stream |
(THUME)'

‘-\' Field |
.("') J

FIEld

/»" (tltle)
(bvo | [Fiedset]) [Field |
(Enuk) (data) (author)
L Jp)
\ \ \| Field

()
(b) \ = , .
\‘{ Rel. Context }‘ { Stream
| (structure) | ‘.‘\ ovo |/ | HQ) |
(Page) "‘\ Stream
L (THUMB) J

A e { Field |
/ pvo SI:t f :(tltle):
| (BlogEntry) | (data) | \ { Field
‘ 12
Field |

Rel context | Dvo (Field Set { (date)
(l:omments] (Comment) (data) Fleld

Figure 4. Various content item conceptualizations exgeas terms of DOLAR's virtual objects

depicts a “book” item consisting of “page” items. These isaoniginate from the database holding

the Anthemioncollection which abides to the following SQL schenpabk(i d, titl e, aut hor,

...),page(id, bookld, order,tiffUrl,tifflLength,jpegUl,jpeglLength). Figure4c shows a

“folklore-artifact” object originating from the Folklor€ollection, used for representing digitized

3D folklore artifacts. The “theses” object of Figure 4d msféo the Domino-based theses items,

comprising the full text of the theses and its descriptiveadata. DVOs can express diverse
conceptualizations including the blog entries and theipeetive comments modeled by the “blog-
entry” object of Figure 4e.

Composition schemes help us hide any data-inherent idvagies from service actors. For
instance, even though both “photo-album” and “folkloré&fact” items of Figure 4 contain
thumbnails, the thumbnail image for a “photo album” is dedvirom the album’s first digitized
photograph, while the thumbnail for a “folklore-artifactd an image of the digitized artifact
itself. To foster information expansion, we need to disesde service actors from such data-
inherent details. As far as service implementation is corex the information about how the
thumbnail originated from a “photo-album”, a “folkloretdact” or any other type of items should
be transparent. The interpretation of the behavior of am ifiee., how to acquire the thumbnail)
depends on the structure of the content item at hand. The asitign of the item’s behavior (i.e.,
what to do with the thumbnail) depends on the details of theis® provision at hand. Thus, we
introduce the following distinction:

e Data-inherent behaviodepends on the structure and specific characteristics dtetmeat hand.
An example of data-inherent behavior was the above diftareatment of “photo-album” and
“folklore-artifact” thumbnails.

¢ Application-inherent behavialepends on the overall functionality supported by an appba,
including communication mechanisms, user interfaces ahedraservice provision features,
regardless of the type of content items. For example, anicgtigh will either support HTML
display for all its types of items or it will not support sucldisplay at all.

Composition schemes designate a bridge between (a) thieappi-inherent behavior, which is

realized by service actors and (b) the data-inherent behawhich is realized by DVO runtime

views. This helps us offer a uniform, scheme-based DVOfaterto service actors, which hides any
data-inherent details and ultimately enables us to exgaméhformation space without modifying
the implementation of service actors.

4.2. Defining Virtual Object Specifications
A significant cost involved in expanding an application orages from the generation of new
types of business-logic objects —the “model” actors in théQvterminology. Virtual objects can

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

10

significantly reduce such “model” generation costs and delelopers avoid error-prone manual
coding. In particular, DOLAR offers a DVO Introspection ARIr specifying the structure and

layout of virtual objects, providing an effective and liglgight data-definition mechanism which
operates in isolation of any data-storage details. For el@nusing this API, the specification of

the “photo-album” conceptualization of Figure 4a is defiasdollows :

DOP photo = DOLAR newPr ot ot ype(" photo");
photo. set Label ("en", "Photograph");
photo. addSt reanHandl e("HQ', ["iImage/tiff"]);

DOP album = DOLAR. newPr ot otype("album');
album set Label ("en", "Cerenony Photo Al buni);
album addFi el dSet ("dc");

album set Label ("dc", "en", "Descriptive Metadata");
album addFi el d("dc", "title", String, MJLTI LI NGUAL+MANDATORY) ;
album set Label ("dc.title", "en", "Title");

album addFi el d("dc", "description", String, MJILTI LI NGUAL+MANDATORY) ;

album addRel at i onCont ext("structure", ["photo']);

album seal ();

As shown abovekield Set, Field, Stream, Relation Contextd Composition Schensgpecifications
can be supplied with multi-lingual labels and descriptiassisting applications to render human-
consumable representations of virtual objects in an é¥fechanner. For instance in Pergamos,
we use such labels and descriptions to present individudD @{éments in terms of web-form
fields. DOLAR also supports multilingual values for Egld elements. For example, the “title”
field defined above can hold different values for differenglaages.

In brief, the DVO Introspection API provides a set of methfmiglefiningField, Stream, Relation
ContextandComposition Schermeements, supporting the “sealing” of DVO prototypes tovpre
any further structural modifications. A significant benefittioe DVO Introspection API is that
it allows for the creation of application-specific data-d#fon tools. InPergamos we have used
this API to createDOPs Creator a GUI-tool for the definition of virtual object specificati®
without manual coding. Figure 5a shows the creation of thetp-album” conceptualization with
the help of this tool. DOPs Creator encodes virtual objedindmns as XML files; Figure 5b
depicts the XML definition of these “album” and “photo” vigliobject specifications. Such XML
representations provide the default DOLAR serializatimmmfat of virtual object specifications.

4.3. Loading DVO Prototypes in the DOLAR Space

When it comes to the operational aspects of virtual objda@P definitions may originate from
various sources. To this end, we use B@PSourcanechanism to support any facility that can hold
DOP definitions. For example, an application that uses diaudteXML-based DOP definitions may
use its host file-system as a DOP sourcé?drgamos, we use this approach as DOP definitions are
locally held in the file-system of our front-end and back-&ndts. OurFi | eSyst enDOPSour ce—
the mai n DOPSource in Pergamos DOLAR dictionary of Figure 2a—IloadéL>based DOP
definitions using the file name to identify the enclosed artibject specification. More specifically,
the “album” DOP definition of Figure 5 is placed in a file namigh. al bum xni ; in the virtual
information space the “album” DOP definition is then refexesh through theol ar: //1i b. uoa.
gr/ dop/ mai n/ al bum URI. OurboPSour ce API features three operations:

1. cont ai nsDOP(dopl d) : indicates whether the DOPSource contains a DOP defindiemtified

by the given dopld,

2. 1i st DOPs() : offers a list of the currently held DOPs,

3. 1 oadDOP(dopl d) : loads the DOP definition identified by the given dopld.
Applications can realize these operations to load theituair object specifications from
any physical/network locations; an application may uili’DOLAR’S DOPSource and
DVA ntrospection APIs to load XML DOP definitions over the web, for example. lengral,
to support information expansion, applications can audrttenvirtual information space with a
new DOP source, or augment existing DOP sources with new DEfiRitibns. In the next section,
we discuss the processing of DOP definitions that DOLAR eamut in order to instantiai2VOs.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

11

|/ DOPs Creator ===
File Help
| Expand sl Collapse al Behavior Scheme
= album Behavior Scheme's ID: | shortView
=} Field Sets
J de Behavior Scheme's Labels
. Mappings
-} Stream Handles P
5}, Relation Contexts iibs Laoel -
® struchre En [short View
= || Behavior Schemes
.
Behavior Scheme's Descriptions
Language Descriptions New
Behavior Scheme's Elements
Element ID Referenced Attribute 1D MNew
title |de.tite: =
description |de.description
date dc.date Delets
e st o elu
e
o Save Changes
(a) The DOPs Creator GUI for issuing virtual object speciiarzs
<dop id="album"> <dop id="photo">
<label lang="en"-Ceremony Photo Album</label> <label lang="en">Photograph</label>
<fields> <digitalContent>
<set id="dc"> <streamHandle id="hq">
<label Tang="en">Descriptive Metadata</label: <label Tang="en">
<field id="title" isMandatory="true"» High quality image
<label Tang="en">Title</Tabel> </Tabel>
</field> <mime type="image/tiff"/>
<field id="description” isMandatory="true"> </streamHandles
<label Tang="en">Description</label> <streamHandle id="web">
</Tield> <label Tang="en">
e web quality image
</set> </label>
</fields> <mime type="image/jpeg"/>
<relations> </streamHandle>
<context id="structure”> <streamHandle id="thumb">
<label Tang="en">Photographs</label=> <label Tang="en">
<target dop="photo"/> Thumbnail image
</context> </Tabel>
</relations> <mime type="image/jpeg"/>
<compositions </streamHandles>
<scheme id="shortview"> </digitalContent>
<label Tang="en">Short View</label> </dop>

<element id="title" ref="dc.title"/>

<element id="description” ref="dc.description”/>
<element id="date" ref="dc.date"/>

<element id="thumb" ref="structure[0].thumb"/>
</scheme>

<,}’u.:t.>mp05'it'i on>
</dop>

(b) XML definitions of “photo” and “album” virtual objects gerated by the tool

Figure 5. Defining Virtual Object Specifications with the DO®reator Tool

4.4. Virtual Object Instantiation: Automated “Model” Aat®

Virtual objects automatically realize user conceptudiares at runtime as DOPs and DVOs
share a class-to-object relationship. During instamiigtDOLAR processes DOP definitions and
produces runtime virtual objects with corresponding ldyouderms ofFi el dSet, Fi el d, St ream

Rel ati onCont ext andscherme DVO API runtime structures of Figure 6.

Once virtual object specifications are in place, develomecuire virtual objects using the
runti me. get DO Dictionary/Runtime API call, supplying the DOLAR URI of th@ntent item of
interest. For example, the calls:

DVO album = runtime. getDO("dol ar://1i b. uoa. gr/ per ganos/ album 100")

DVO book = runtime. getDO("dol ar://hi story. uoa. gr/ ant hem on/ book 12")

provide al bum andbook virtual objects automatically, each one correspondingheounderlying
“photo-album” XML item and “book” database item respeciye

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

12

FieldSet Field
getId() :String getId() :String
getLabel (lang) :String getLabel (lang) :String
getDescription(lang) :String getDescription(lang) :String
getField(fieldId) :String getDefaultValue (lang) :String
fields () :iterator isMandatory () :boolean
Stream ~ isRepeatable () :boolean
getId() :String DVO isBigText () :boolean
getLabel (lang) : String fields () :iterator
getDescription(lang) :String QEtDOPQ + DOP) getValues (lang) :String[]
isAllowedMIMEType (mime) :boolean getDomain () : Domain getValue (lang) : String
allowedMIMETypes () :iterator getstore() : DOStore setValues (lang,String[]) :void
getMIMEType () : String getId(): String setValue (lang,String) :void

getURI () : String

setMIMEType (mime) :void
getFieldSet (id) :FieldSet

getLength () :long

setLength (long) : void fieldSets(): iterator —\
getReference () : String getStrearn(:Lc}) : Stream
setReference (String) :void streams () : iterator RelationContext

getRelationContext (id) :RelationContext
relationContexts () :iterator
getScheme (id) : Scheme

schemes () : iterator

getId():String

getLabel (lang) : String
getDescription(lang) :String
isAllowedDOP (dopId) :boolean
allowedDOPs () :iterator

Scheme getMember (index) :dvold
getId() :String addMember (dvoId) :void
getLabel (lang) : String addMember (id, index) :void
getDescription(lang) :String removeMember (index) :dvold
getElement (elId) : DVOElemRef members () :iterator
elements () :iterator

Figure 6. The runtime view of a virtual object in terms of the@API

During instantiation, newly created virtual objects arenmected to storage items. This is
performed through th®OStoredriver that participates in the DOLAR URI; the bum 100 DVO
will be connected to the underlying “photo-album” using tlee ganos driver, while thebook: 12
DVO is linked to the underlying “book” item through thet heni on driver. Instantiation “bridges”
the logical context of virtual object specifications wittetbtorage-specific context of@OStore
driver to offer a runtime context provided by the newly imgtated DVO. From a developer’s
perspective, acquiring a virtual object is simply equival® resolving a DOLAR identifier. In a
uniform and automated fashion, applications can obtainvamyal objects, originating from any
heterogeneous datastores.

4.5. Two-way Linking of Virtual Objects to Any Storage Autib

Developers use thBVO-API to fetch any data originating from the stored contemicep They also
use theDVO API to modify DVO data and ultimately use thent i me. saveDO Dictionary/Runtime
API call to save DVOs back to persistent storage. The rolauoD@®D Storemechanism is to supply
virtual objects with storage-independence.

Figure 7a depicts the two-way link between a virtual objeatl @ stored item. To realize
this link, the DVO APl employs ouDOStore mechanism to function “behind the scenes”.
This mechanism essentially realizes a bidirectional cotioe between thei el dSet, Fi el d,
Stream and Rel ati onCont ext runtime DVO structures and any storage structures foundheén t
underlying datastores. Figure 7b depicts our thB¥@Store API interfaces. These interfaces
offer a unified virtual object store APl which allows DVOs t@eyate atop heterogeneous
stores in a uniform manner. Firstly, ttreadabl eDOSt or e interface defines the essential data
fetching operations performed by virtual objects to loadada their Fi el dSet, St ream and
Rel ati onCont ext structures. Thewobdi fi abl eDOSt or e interface extendReadabl eDOSt ore to
provide the essential data insert, update and delete aqpesaierformed by virtual objects, while
Transact i onal DOSt or e extendsReadabl eDOSt ore to allow our virtual object environment to
perform data modification in a transactional fashion, ifit@ctions are supported by the underlying
datastore. Thus, a DOStore driver implementation can Bezeean three ways, each one reflecting
the specific data-store choice beneath:

e StoreDriverA implements ReadableDOStotethis type of driver refers to read-only data sources, such
as a web-based source or any other read-only data sourta@de@n an operational environment.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

13

Defines the structure of virtual objects

[Field % {21 Tinoc)

/1 (titie) {en: Tiler|

Field Set || | Field }_ 2l "Zuwpagén” |

instance |of 1

/| (custom) || | (authors) *~{en:"Autnor’)
[ovo Ty o) i

‘i 'Stream‘ i Data
* Handle Store
(PDF) |

Provides the data of virtual objects

(a) The two-way link of virtual objects to stored items

ReadableDOStore
isReadOnly () :boolean
supportsTransactions () :boolean
loadFieldSet (dopId,objId, £sId) :MultilingualValuel[]
loadRelationMembers (dopId,objId, relld) :String[]
loadStreamInfo (dopId,objId,strld) :StreamInfo
objectIdentifiers () :String[]
objectIdentifiers(start, count):String[]
objectCount () : long
getDOPId (objId) :String

1
ModifiableDOStore TransactionalDOStore
addNewObject (dopId,objId) :void beginTransaction() : long
addNewObject (dopId) : String commit (transId) :void
deleteObject (objId) :void addNewObject (transId,dopId,objId) :void
saveFieldSet (dopld,objId, fsId,values[]) :void addNewObject (transId,dopId) :String
saveRelationMembers (dopld,objId,rellId,ids[]) :void deleteObject (transId,objId) :void
saveStreamInfo (dopId,objId,strid, saveFieldSet (transId,dopId,objId, fsId,values[]) :void
ref,mime,size) :void saveRelationMembers (transId,dopId,objId,
relld,ids[]) :void
saveStreamInfo (transId,dopld,objld,
strId,ref,mime,size) :void

(b) The DOStore API

Figure 7. The DOStore Mechanism

e StoreDriverB implements ReadableDOStoreModifiableDOStore Such a driver encapsulates a modifiable
data source that does not support transactions, such ashas$iel XML store, for example.

e StoreDriverC implements ReadableDOStorelransactionalDOStorethis driver wraps a transactional data
source, such as a relational database.

DVO API ImplementationHere, we discuss the DVO API implementation, showing how BVO
use the above three interfaces for staging, modifying asérfing data in a fashion transparent to
the developer.

© Staging Data: Virtual objects use theeadabl eDOSt or e API to interface with their corresponding
drivers and stage underlying data. Specifically, the firgtetia developer issues BvO.

get Fi el dSet () call to a virtual object, the object will call thReadabl eDOSt or e. | oadFi el dSet ()
method “behind the scenes” to contact the underlying datasind stage field-like data in the
form of Fi el d structures. Respectively, when the developer issus®aget Rel at i onCont ext ()

call for the first time, the given DVO will use it®OStoredriver to load the members of the
relationship by invoking theReadabl eDCSt or e. | oadRel at i onMenbers() method. Finally, the
first time a developer issues get Strean() DVO API call, the DVO will transparently call
the Readabl eDCSt or e. | oadSt r eam nf o() method of itsDOStoredriver to load the underlying
stream/file information. In all cases, any subsequent chltsan already-loaded field-set,
relationship or stream handle will not result in contactihg underlying data source, as the DVO
keeps track of the loaded elements internally.

< Modifying Data: DeveloperanodifyDVO-entailed data by using the DVO API. In particular, the
Fi el d's set Val ue() or setVal ues() calls replace the runtime values heldFiel d structures.
Thest reanis set Ref er ence() , set M ME() andset Lengt h() methods modify stream information,
while addMenber () andrenoveMenber () methods add/remorel at i onCont ext members. These

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expef0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

14

modifications remain buffered unless an explgateis issued by the developer. Saving a DVO is
performed byr unti ne. saveDO call, as inrunti me. saveDX(al bunj OF runti me. saveDQ(book) .
From a developer’s perspective, DOLAR'sinti me. get DO call fetches heterogeneous virtual
objects as if the latter originated from a single datastbine. same effective programming metaphor
applies when developers store virtual object data, asithe me. saveDO call can store any DVO-
based conceptualization to any heterogeneous datas@isAR’s saveDO uses theDOStore
interfaces of Figure 7 to ultimately store virtual objectoimation: if the DVO driver supports
transactions —indicated IBeadabl eDOSt or e. support sTransacti ons() returning a true value—
DOLAR uses theTransacti onal DOSt ore methods to store virtual object data appropriately.
Otherwise, DOLAR uses thendi fi abl eDOSt or e methods to store virtual object data.

¢ Inserting Data: Insertingnew items in data collections is a fundamental operatiorfdstering
information expansion. DOLAR virtual objects can be useth&ert new items in heterogeneous
content stores, using thget NewDO and saveNewDO Runtime/Dictionary API calls. The former
creates a new virtual object, without connecting the oljeeiny storage artifact. For example, the
newAl buneget NewDQ(" al bunt') call creates a newl bumvirtual object. After acquiring such a new
and “unlinked” virtual object, developers can feed its mnm structures with data using the DVO
API. Then, they use theunt i me. saveNewDO API call to store such an object. The result of this call
will be the insertion of a new storage artifact in the dateestornished as a parameter. For example,
the saveNewDQ(newAl bum "dol ar://1ib. uoa. gr/ per ganos") call stores the "newAlbum” DVO

in Pergamos XML repository by inserting a new “photo-albuxiViL item.

4.6. Implementation of Composition Schemes

Field
(title)

“Business . DOLAR A i e
Logic FieldSet ‘ (description)
dc) \ e
; DVO M9 L [Fiew |
Service schemes album . |1 (date)
[\ | Fietd
()
; DVO o :
Service schemes book) Stream
00 /atbum ¥ » Handle
/S (THUMB)
. DVO e Stream
Service schemes s | — l1stphotoi— Handle
| | Retation | | WEB)
e . - “ Context . I.
a) Composition schemes co (structure) | | HS‘;:;’:
stitute the runtime interface « | HO)
DVOs
“{2nd photo |
(b) Invoking the shortView composition scheme of a “photo-

album” DVO

Figure 8. Composition Schemes

Composition schemes enable us to handle heterogeneouwarskdontent items with a uniform
DOLAR-runtime interface. Figure 8a shows how schemes desigghe interface between business-
logic services and DVOs. At specification time, develop&fing schemes to essentially designate
“subsets of a DVO”. These consist of any combination of irdlial FieldSet, Field, Strearand
RelationContexélements held in a virtual object specification. At runtid¥0Os use such scheme
definitions to supply applications with views of correspimgdFi el dSet, Fi el d, Stream and
Rel ati onCont ext runtime DVO structures. For example, should we consider‘pheto-album”
DOP definition of Figure 5, the DOP includes a specification etfor t Vi ew composition scheme,
offering the album'’s title, description and date along wifie thumbnail of the album’s first photo
(structure[0].thunb). At runtime, when thehort Vi ew scheme is invoked on a “photo-album”

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

15

DVO, the DVO providesiitsi tl e, descri pti on anddat e Fi el d runtime structures, accompanied
by thet hunb-namedst r eam of its first child/photo. Figure 8b shows a graphical repnéson of
theshort Vi ew scheme as executed at runtime, demonstrating the schesed-baposure of DVO
structures.

During instantiation, DOLAR dynamically attaches schent@scorresponding DVOs. The
schemes available on a DOP provide the named operations D&®esespond to, designating the
DOLAR-specific interface to these DVOs. Supplying diverggual objects with a common set
of composition schemes offers service actors a uniform fSeirtoial object “messages” that hide
any data origin, storage or structural details. This idaaif as we seek objects that can be defined
by their responses to “messages” and not by their interqaesentation [20]. Service actors can
then use such composition schemes to realize various aspleapplication-inherent behavior in
a uniform manner, including content presentation, modifica indexing and storage. Fostering
DVO usage among varying service provisions, the responsetteme-based “messages” such as
theshort Vi ew of Figure 8b, strictly pertains to exposing a subset of DV@tire structures. The
response does not provide any service-specific transfamat composition of data held in these
structures. To this effect, service actors can synthelses &l dSet , Rel at i onCont ext andst r eam
structures to offer any application-inherent behavior.

4.7. A Comprehensive DVO Usage Example

In this part we demonstrate a comprehensive DVO usage soeinawhich a service requires
the titles of anal bum and abook content items. Initially, the service instantiates the BViBat
correspond to the two items of interest and subsequentyséhnvice fetches the values of their
title fields, as follows:

DVO album = runtime. getDO("dol ar://1i b. uoa. gr/ per ganos/ album 100")
DVO book = runtime. getDO("dol ar://hi story. uoa. gr/ ant hem on/ book 12")
aTitl e=album getFieldSet("dc"). getField("title"). getValue("en")

bTi tl e=book getFieldSet("data"). getField("title"). getValue("en")

Album titles originate fromdc: titl e metadata values held in XML, while book titles originate
from a relational database. The DVOs use their instantia®Store drivers to transparently
fetch the titles from the respective storage artifacts. Ewample, the first time théook
virtual object receives @et Fi el dSet ("data") call, it uses itsant hemi on DOStore driver to
issue:ant heni on. | oadFi el dSet ("book", " 12", "dat a") . Ourant heni on driver implementation
contacts the underlying database and fetch an appropr@tegiery to load the virtual “data’-
termed field set:
SELECT title, author, ... FROM book WHERE id = 12
The book virtual object then stages the query return values in inldial Fi el d structures.
Respectively, thel bum get Fi el dSet ("dc") DVO API call leads theal bum DVO to contact its
per ganos driver to fetch the values of the given field sgtr ganos. | oadFi el dSet (" al bunt',
"100", "dc"). In turn, per ganos driver uses the web-service machinery supported by the XML
repository to acquire the XML-encoded DC metadata and parshe al bumobject finally stages
individual DC metadata values in respectivel d structures.

Virtual objects can also automate more complex data fegchperations. For instance, to obtain
the thumbnails of the first photo of ambumand the first page of Book, the service issues the
following calls:

DVO photo=album getRelationContext("structure"). getMember(0)
String photoThunb=photo. get Stream("t hunb"). getReference()
DVO page=book getRelationContext("structure"). getMember(0)
String pageThunb=book get Strean("thunb"). getReference()

The very first time the book DVO receives a getRel ationContext("structure")
request, the DVO uses itanthenion driver to load the specific pagesint henion.
| oadRel at i onMenber s("book", "12", "structure"). Then,ant hem on issues the SQL query:

SELECT page i d FROM page, book WHERE page bookl d=book i d AND bookl d=12
ORDER BY page order

loading the identifiers of the pages of the given book. Respdy the al bum
get Rel ati onCont ext ("structure") call directs theal bum DVO to contact itsperganos

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expef0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

16

driver, as in perganos. | oadRel ati onMenbers("al bunt', 100", "structure"), to load the
members of itsstructure relationship. The subsequeret Menber (0) call leads to the
provision of aphoto virtual object; DOLAR uses the identifier of the first photo the
structure-termed Rel ati onContext to instantiate the respectivghoto DVO automatically
and then returns this DVO to the caller. After obtaining ivet o DVO, the service issues the
phot o. get Strean("t hunb") DVO API call to get the photo’shunb-termedst r eamstructure. The
phot o DVO uses itsper ganos driver to fetch thumbnail information from the underlyingviX
repository:per ganos. | oadSt reani nf o(" phot 0", "phot oi d", "t hunb"). In similar fashion, the
page DVO uses itsant heni on driver to fetch thumbnail data via SQL.:
SELECT j pegUrl, "i nmage/ j peg",j pegLength FROM page WHERE page i d=<pagei d>

Such a direct DVO API exposure as shown above, is not the @Ii@IAR usage pattern. Instead,
the strength of the DVO API comes from the composition sclermethe spirit of theshort Vi ew
“album” scheme of Figures 5 and 8, we can define a commaeneVvi ew scheme on both album
and book virtual object specifications; the album’s! evi ew offers the album’s title and first photo,
while and the book’si t | evi ew offers the book’s title and first page respectively. Now,dtzch the
title and the thumbnail, the service needs only to fetch theeVi ew scheme on the virtual objects,
without engaging any couplings on the structural arrangesnef “album” and “book” items:

DVO dvo = runtime. getDO(dol ar URIl)

Schene titleView = dvo. getScheme(" titleView")

String title = titleView. getElement("title"). getValue("en")

String thunmbURL = titleView. getElement("thunb"). getReference()

DVO composition schemes project the structure of undeglyoontent items to match the
expectations of the business-logic service. This resotts $service actors exclusively coupled to
such scheme-based views and not to any particular dateeimthstructural arrangements. Hence,

application-inherent compositions of data can be carrigdroa uniform coding fashion.

5. DOLAR-BASED SERVICE PROVISION IN PERGAMOS

In this section, we present the DOLAR-based MVC serviceigion in Pergamos. Figure 9 depicts
the DOLAR-based MVC architecture, showing the realizatibaur content browsing service as an
example; all other Pergamos services follow a similar patte particular, our front and back-end
users issue HTTP requests with the help of their web-bravgdrese requests are processed by
our “controller” actors which realize service provisionibitially instantiating virtual objects —our
“model” actors— and subsequently composing virtual obgebiemes in terms of OWTM_Engi ne
“page template” facilities —our “view” actors. For brevity Figure 9, we omitDOStoredrivers
which are the “data access” actors.

5.1. Setting up the DOLAR Dictionary

Building a DOLAR-based virtual information space involvesstraightforward
dictionary/domain registration steps. Highlighting themglicity of this process, the
following snippet shows the setup of the b.uoa.gr Pergamos domain of Figure 2a:

Dictionary dict = runtime. getDictionary()

Domain domain = dict. registerDomain("lib.uoa.gr")

DOStore xm = new XM.DOSt ore("http://Repositoryl P/repo")

domain registerDOStore(xm , "perganps")

DOIndex ft = new Ful | Text | ndex("/opt/perganos/| ucene")

domain registerDOIndex(ft, "fulltext")

DOIndex dbl ndx = new DCTer nsDBI ndex (") dbc: nysql : //DBServer| P/ dc")
domain registerDOIndex(dbl ndx, "dc")

DOPSource src = new Fi | eSyst enDOPSour ce("/ opt/ per ganos/ dops")
domain registerDOPSource(src, "main")

In the above, we assume that the definitions of individD@PSource, DOStorand DOIndex
elements are already in place. Lines 1 and 2 acquire the DOIdKfRonary and register
lib.uoa.gr as a new domain. Lines 3 and 4 register owm.DOSt ore driver in the above
domain using theer ganos identifier. Since the underlying XML repository of Perganuses

P OoOO~NOO_WNERL

o

Copyright@© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

17

'Browse(request, response) :

itemId = request.get (“id”)

dvo = runtime.getDO (itemId)

(a) scheme = o.getScheme (“detailView”)

, response.write (HTMLEngine.render (scheme))

?T?Y???f{ F?Tﬂq ‘ f E rc = o.getRelationContext (“structure”)
' 1 foreach(childDVO in rc.members()) :
' !, childScheme = childDVO.getScheme (“shortView”)
1 N] response.write (HTMLEngine.render (childScheme))

', _response.close ()

Req_uest

nm::> Browsmg Service | instantiates DVOs
<):||]|] (Controller)

Response

DOLAR (Model)
album DVO

book DVO

SQL Database

- ,ﬁXML Repository

Y theses DVO .
HTMLEngine - {_] pormino server
(View) composes DVO schemes
‘. /#render ($scheme) :

#foreach($element in $scheme.elements ()
$element.getLabel () :
#swith ($element. Type)
“Field”:
$element.getValue ()

“Stream”:
..

1
]
[
1
-=
1
]
1
]
]

Figure 9. DOLAR-based realization of the MVC architecturé’ergamos

not support transactions, th@LDost or e realizes theDOStoremechanism by implementing the
Readabl eDCSt or e andibdi f i abl eDOSt or e interfaces of Figure 7 as follows:

XMLDCSt or e implements ReadableDOStoreModifiableDOStore
The xMLDCst or e driver implementation wraps Pergamos XML repository asdViteb Services
residing in the provided HTTP base-URL. Lines 5 and 6 registeul | Text | ndex with thel i b.
uoa. gr domain, while lines 7 and 8 add obDcTer msDBI ndex in the dictionary. Consequently, the
DOLAR URIs for the twoDOIndeximplementations areol ar: //1i b. uoa. gr/i ndex/ful | t ext
anddol ar://1ib. uoa. gr/i ndex/ dc respectively. We discuss theB®Indexelements in the next
section. Finally, lines 9 and 10 register Gur eSyst enDOPSour ce With I i b. uoa. gr domain using
the nameri n.

The aforementioned steps may be readily included in an egiin startup procedure. For
instance, these steps can be combined with any initiabzadctions that the application might
require, including processing of configuration settingstaklishing database connections and
loading of libraries. Also, the dictionary API permits fdnet dynamic expansion of the virtual
information space at runtime.

5.2. Content Presentation

In the content browsing service implementation of Figure tha service accepts user-supplied
requests containing the item identifier, agiowse?i d=i t em d. Based on thet enl d, the browsing
“controller” instantiates the DVO that corresponds to thderlying stored item using thent i ne.

get DODOLAR API call. The controller then uses odTM_Engi ne “view” actor to render a detailed
view of the DVO using thelet ai | Vi ew scheme. As Figure 9b depicts, tHEM_Engi ne “view”
actor composes the structures provided bydidtei | Vi ew scheme to transform the data contained
in these structures in terms of HTML. In similar fashion, tltentroller” proceeds by iterating
over the “children” of the DVO. These are provided by theuct ur e-termedRel at i onCont ext .
The “controller” offers a short view of the data entailed irck “children” objects. Specifically, for
each “child"-item, the “controller” instantiates the regpive DVO and then fetches igsort Vi ew
scheme. The scheme is then composed byitiveEngi ne to display the short view of the item.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

18

Digital Library * Historical Archive » Photographic archive * Ceremanies

Pergamos front-end system |

Contents Drescription | Description & Contents

Persistent URL : http: //pergamos.lib.uoa.gr/dl/object fuoadl: 73340 | Pergamos back-end system
Digital Library » Historical Archive » Photographic archive » Ceremonies
Call number: Yn.1 J 2 5
iz [Ceremony] Avayopeuon K. @codmpakn Details
Date: 19960527 EIo0527 - " T
shortView of “album object| Edit: Bief 2] 2

Academic period: 1995-1996

Insert: Photo [&

Place of AiSouoa TeAsTiv, KevTpikd KTrpio EBvikoU kal Kanolprowse Objects: [/Ascending]
CErEmony: Change Sorting: [defauit | [Descending &
Contributors: EBvikd kai KanodioTpiakd MavemiaTruio ABnvov

1 Photo

N"',;',',’f{.,';f = detailView of “album” object

“photo” objects/children
of “album” object

albums:

Contained in AsUxwmypa ap. 483 ‘ |

Access MeploodTepeg nAnpopopisg yio Tov Kavowiopo MGk |

restrictions on www.archive.uoa.gr/collection2_gr.htm Details

album:
Delete Edit: Brief e B
Object Type: histarch.photos.ceremonies.album [Ceremony] 2 Photo
| “photo” objects/children of “album” object ‘
1. ; ‘ 2 | o'
; Details
‘ Delete Edit: Brief =2

Figure 10. Pergamos Content Browsing Services

Figure 10 depicts the Ul of our front and back-end browsingg@®os services. These services
offer a user-consumable hierarchical display of any Peggacontent items in a uniform manner.
The services can include any type of items in their HTML digpés long as the corresponding
virtual objects contain aet ai | Vi ew and ashor t Vi ew composition schemes.

5.3. Content Update Services

Our content update/curation services build upon DOLARspsut of two-way data flows between
virtual objects and stored items. In addition, with the u$eD®¥O composition schemes, we
automate the generation of ‘first-pass” and detailed cumatieb forms for all types dPergamos
content. Here, we present the implementation of edin j ect content update service which
uses DOLAR’sget DO andsaveDO calls. Ourcr eat ethj ect which is used for content insertion is
realized in a similar fashion by utilizing DOLAR et NewDO andsaveNewDO facilities.

Figure 1la depicts ougdi t Obj ect Service implementation, which uses thiort Edit and
detai | Edi t composition schemes to generate web forms for any conemsitregardless of the
user’s language, the data origin or structural detailslimeh The service updates the underlying
stored items, offering thBergamos content update/curation service of Figure 11b. As the figure
shows, theedit Obj ect provides different content curation forms for differenpég of items
in a uniform coding manner. Using the “Save” button, userst ibeir modified form(s) to the
edi t oj ect which stores enclosed data. In particular,dhiet bj ect service accepts two forms of
HTTP requests:

e edit Obj ect ?i d=i t em d&short =true| f al se&l ang=I angl d: this request generates a short/de-
tailed web form for a content item in the given language.

e edi t Obj ect ?i d=i t em d&short =true| f al se& ang=I angl d&save=t rue&fi el di=val 1...: this
request saves the form generated above. The service pesctes form’'s field/value pairs
and uses the corresponding DVO identifiedilym d to store form values to the underlying
datastores.

Figure 11a shows ouwrdi t Gbj ect processing input parameters in lines 1-4. Lines 5-9 acquire
the user’s language along with the virtual object andtits t Edi t or det ai | Edi t scheme. If the
save parameter is:

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

19

editObject(request, response

itemd = requestget("id")

isShort = requestget("short") i

save = request get("save")

lang = requestget("lang")

dvo = runtime. getDO(i t em d)

if(isShort.equals("true")): -
scheme= dvo. getScheme("shortEdit")

el se:
scheme= dvo. getScheme(" det ai | Edi t" HesDY Ol schoms
FCave. oqual St~ trae)) |) save object? 115 (0 Upazte DO Feld
foreach(field in schemeelements()): HTTP request

fieldld = field. getld() False

fieldvalue = requestget(fieldld)

field. setvValue(lang, fieldval ue)
runtime. saveDO(dvo) A4
responsewrite("Success!") Render Web Form

end- if using the DVO's scheme

responsew ite(HTMLEngine r ender For n{ schem¢)

a. Pergamos Content Update Service Implementation

Digital Library » Folklore Collection » Folklore items Digital Library » Historical Archive » Photographic archive » Ceremonies

1tem - Edit Object (uoadl:119024) Ceremony - Edit Object (uoadl:73340)
Call number: (*) [530 Call number: [yn.
Name: (*) [Eepsv E:f)remony title: |verypeuon k. O=oBupdsn
Material: List of values:
Y Date: [19960527
=] 'I
Yepaoua D Academic -
period: [1995-1996

Save | shortEdit scheme of “folklore item” object Place of
. |AfBouUa TeheTuv, Kevtpikd Ktripio E&
e, ceremony:
: Store changes ' 3 b F
ittt o S > aave shortEdit scheme of “photo-album” object

b. Pergamos back-end Content Update/Curation Web-forms

Figure 11. Pergamos Content Update Service

e not “true”, then the request refers to generating a schemset web-form for the item in
question. The service proceeds by calling BUVLEngi ne “view” actor to compose the DVO's
scheme in terms of web-form input fields in line 19. @QOM_Engi ne. r ender For m() facility
operates in a similar fashion tarM_Engi ne. render () of Figure 9b. Should we consider that
theshort Edi t scheme of our “photo-album” items contaies | Nunber, titl e, date, peri od
andpl ace Fi el ds, Figure 11b shows the composition of the&sel d structures to offer a user-
consumable as well as modifiable view of “photo-album” items

e “true”, then the request intends on saving the generatedforain. Here, the service updates the
DVO’s Fi el d structures with the user-supplied values using the DVQiese in lines 12-15. It
then stores the DVO using the DOLARNt i me. saveDO(dvo) call of line 16 and re-renders the
just-updated fields of the web-form using tHM_Engi ne in line 19.

DOLAR offers a uniform solution in terms of coding thei t Obj ect service, regardless of any
data-inherent structural and storage details. The secaneyenerate short and detailed web forms
for any items that providenhor t Edi t anddet ai | Edi t composition schemes.

6. INDEXING & SEARCHING VIRTUAL OBJECTS

In operational environments, applications use heterogehédexing/searching options to offer
users different types of search functionality. In this Eectwe focus on the ability of DOLAR
to automatically index new types of content and also disglagh new content in search results.
Specifically, as the information space expands, our appraatomates the process of: (a) indexing
new content items in existing index facilities and (b) irdihg new content items in existing

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

20

provisions of search results. OMOIndexAPI views index values, possibly composite as well,

as stored projections of DVO-entailed data. The API pravitie following two indexing methods:

e DO ndex. addOr Updat e(obj ect | d, dopl d, schere) : voi d — adds or updates an index entry,
identified byobj ect I d. The entry’s data originate from the given DVO compositiohame.

e DO ndex. addOr Updat e(obj ect I d, dopl d, DVO) : void — adds or updates an index entry,
obtaining data from the provided DVO.

The above two methods designate the “indexing” behavior@Odndex implementations may
operate atop heterogeneous indexing options such as datlfall-text search engines or RDF
triple stores. As the parameters of the methods shdDmdexbased record always includes the
object identifier ¢bj ect | D) which is required by DOLAR to instantiate virtual object¥e also
include the DOP identifiers of DVOsi¢pl! d) to help users limit search results in terms of specific
conceptualizations. In Pergamos, the use of such DOP figatallows users to search for specific
types of items, such as “photo-albums” or “books”. The filstiation of theaddor Updat e method
uses the provided composition scheme as the source of dagaitolexed, while the second offers
a full exposure of DVO data to thBOIndeximplementation. This proves useful in cases where
applications need to index entire DVO data.

OurDOIndexAPI also provides the following search-wrapping operagion
e DO ndex. search(String): String[] —returns the indexed items that match the criteria involved

in the given query, expressed as a string.

e DO ndex.search(String, start, count): String[] — returns count-numbered items that
match the given string query, starting framart .

e DO ndex. count Cbj ect s(String): | ong — returns the number of indexed items that match the
given string query. Applications can combine this methatthwie above one to offer “pagination”
of search results.

These three search methods provide search results in tétims imatching items’ identifiers only,

regardless of the information that is indexed beneath ogtlery mechanism supported. Search

services use such identifiers to instantiate respective D@ then utilize DVO composition
schemes to display search results to the end-user. The dsetiutline the “search” behavior of

a DOIndex implementations may support their own query language gragimer search syntax of

choice. For example, should@OIndeximplementation use a relational database to index data, the

implementation in question will apparently use SQL to passreh queries.

Our goal in creatingdOlndexis to offer a thin layer or &daptef mechanism between the
application logic and any underlying indexing/searchiagilfties. Applications implement the
DOIndex API methods to exploit DOLAR information expansion benefli®re, we show that
the DOIndexmechanism in combination with composition schemes, esatdeelopers to avoid
the crosscutting of content indexing/searching concerrseivice provision code. This ultimately
offers extensible implementation of service provisionoegtin terms of indexing/searching too,
allowing applications to support newly-introduced typéstems without any modifications. For
brevity, we focus our presentation on the scheme-basedtizariof theaddor Updat e method and
outline its usage iPergamos, discussing the realization of our two search services.

6.1. Achieving Indexing of Content in a Uniform Manner

When users modify data, services have to follow suit in madg application indexing facilities
accordingly. The issue here is to perform such updates wittmupling service implementations to
specific content types or indexing options Fergamos, we support two search facilities namely, a
full-text index wrapped by ourul | Text | ndex implementation and a relational database wrapped
by our DCTer nsDBI ndex. The former operates onul | Text Recor d(obj ect | d, dopl d, text),
while the latter on records of DC termstRecord(objectld, dopld, title, date, creator,
contributor, descri ption, subject, coverage). We useDCTer msDBI ndex to offer a mapping
between: (a) the diverse kinds of fields employed by our ctdritems and (b) DC-based metadata
fields. For instance, consider the case thateitie j ect service of Section 5.3 needs to index
“folklore-artifact”, “album-of-photos” and “book-of-gges” items. Here, “book” and “album” items
carry text-based data, “photo” and “page” items maintaiadgerbased digital content, and finally,

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

File Help

21

Expand all Collapse all | Behavior Scheme:
- 3dartifact Behavior Scheme's ID: | deView
=] Field Sets .
By fields ' Behavior Scheme's Labels
: - @ name L]
H]]
& callumber ! i Label [mew |
5 - # dateCreated IFields
- 4 geographicalRegion En IpC Terms :‘Ed‘t
5 i~ @ donator]
L. @ usage [] Delete
i # physicalCondition :
owner L. Behavior Scheme's Descriptions
Mappings
& | Stream Handles Language Descriptions Hew
) Relation Contexts En IThE view of 30 Artifacts in terms of DC,
T Edit
=] Behavior Schemes = 4
L ' Delete
i@ fullText 1
L shortyiew 1ISchemes
et detailVien .
. shortEdit 1
Lo g detailEdit ’
- Behavior Scheme's Elements
L
1 | ElementID Referenced Attribute 1D New l
bl titl= fields.name -
. R S = Edit
DC Mapplnjs: date fields.dateCreated (i ‘
1 |coverage fields.geographicalRegion = | Delete
1 |description fields. physicalCondition .
Add Remowve Scheme %, lcontdhutar Belde donatn: =
% Back to Wizard |:SM oo
bt
—

Figure 12. Using DOPs Creator to Define Scheme-based Mapping

“folklore-artifact” items carry both text and image data.this case, we need to avoid crosscutting

of indexing concerns in ourdi t Gbj ect service. In particular, the service has to:

e index any items in ainiform manner, regardless of the items’ idiosyncrasies or thacodat
details of the underlying indexing facilities.

e avoid indexing non-appropriate items. For example, theisershould not populate the indexes
with non-text entries for our “page” and “photo” items, aglswentries are not usable by text-
based searches.

Dealing with these two issues will allowdit Gbj ect to index new types of items without

code modifications. To address these issues, we conr@Ctliadeximplementation to a specific

composition scheme. This connection is established bythedex. get | ndexSchene() method
that provides the name of the scheme supported by the BiG¢ndeximplementation. For example,

our Ful | Text I ndex “knows” how to index DVOs that offer &ul | t ext -termed scheme. Such a

scheme, when present in a DVO, provides the partickilar d structures that must be full-text

indexed. Developers decide which types of content shoulth@deded in the full-text index and
issue correspondinful | Text -termed schemes. Similarly, ooCTer nsDBI ndex “knows” how to
index DVOs that containéc Vi ew-termed composition scheme. When present in a DVQddhieew
scheme offers a mapping between the fields of a virtual objedtDC fields. Figure 12 depicts the
definition of the ‘folklore-artifact’dcvi ew scheme with the help of olOPs Creator

Right after storing a DVO, ougdi t Obj ect service calls ounpdat el ndexes facility, updating
Pergamos indexes as follows:

updatel ndexes(dvo):
I'i bDomai n = runtime. getDictionary(). getDomain("lib. uoa.gr")
foreach(index in |ibDomain. registeredindexe@)):
schenel d = index. getlndexationSchem(@
schene = dvo. getSchemeéschenel d)
if (scheme = null):
i ndex. addOrUpdaté dvo. getURI(), dvo. getDOR). getURI), scheng)

Line 2 acquires theib. uoa. gr domain of the DOLAR dictionary. As discussed in Section 3,
this domain contains our tweul | Text | ndex andDCTer nsDBI ndex DOIndexelements, supplying
services with pointers to any Pergamos-pertinent indefacdities. Line 3 iterates through any
DOIndex implementations registered in the domain using Hoexi n. r egi st er edl ndexes()

~NOoO s WNBE

Copyright© 0000 John Wiley & Sons, Ltd.

Softw. Pract. Expe(0000)
Prepared usingpeauth.cls

DOI: 10.1002/spe

22

2y Searchi oo []:[is70 [[snsl«] Search
Limit search results in the following collections: i |7 995
g o [Tite = | L. R) .
Sibatalimen’ Limit search results in the following cellections:
+ . Historical Archive Limit search results in the following collections:
+ _ Falklore Collection =1 i i
B el - 2 Digital Library E Digital Library
+ 2 K. A, Psachos Music Library Collection = At e — [Historical Archive
+ _ Mineralogy Museum Collection (+ 2O Ep R G-t T
+) Theatrical Collection .+~ Printed documents
Seam e e T - [=+@ Photographic archive

+ _ Mineralogy Museum Collection - X
¢ |=H# Ceremonies

D & Ceremany
Search rasults: 5 [1-5] - [+ Archives of the Senate Secretariat
+ Folklore Collection

Search results: 3[1-3]

Results Page: 1

Issieicnapionc; Papadike Results Page: 1

3 .
Item number: 71/221 | Theatrical Collection

e v
Conburys mid- 186k ¢ 2ot

Composer: Petros Bar J Geographical Iin;
Pavlos the Fagion: Search
Arsenios \ o i "
Sinaitas, P ‘own illage: ar
PR] ~ Search results: 79 [1 - 20]

Material: Merc
Notation: Middle Byz
Results Page: 1 2 3 4 Next

‘oazsasienszsase; Trindion - Penticostarion Ceremany

Ttem number: 83 /231 Description: Mere i1 Avaydpeuan k. BAdyou
Gengg:p}:tal Kung))) B))) o
S 19950407
Town / Village: Aanr

Material: Merc

Century: 17th centu

Composer: Nathanaz!

Notation: Middle Byz

2
{rrogramme; Oedipus Rex
justaasae; Tuhhoy i Kooy pagikoi uhicod ek AoniBion, mg snopyiag K

Authal '
= Call pumber: 1095
Director fims
I e - Accumulated 1370
Theatre ik = range:
Theatrical periot Geographical Kinpog
Region:

(a) Pergamos front-end and back-end search services

1 search(request, response): 6 ids[] = ftIndex.search (query)

2 text = request.get ("text") 7 foreach(id in ids):

3 dopIlds = request.get ("dops") 8 dvo = runtime.getDO (id)

4 query = constructQuery(text, doplds) 9 sch = dvo.getScheme ("shortView")

5 ftIndex = libDomain.getDOIndex ("fullText")10 response.write (HTMLEngine.render (sch))

(b) Full-text search service implementation

Figure 13. Various aspects of Pergamos Search Services

DOLAR API call. For eactDOIndexobtained, line 4 fetches the name of the scheme supported,
using theget | ndexSchene() DOIndexAPI call. Line 5 then uses this name to fetch the respective
composition scheme from the newly stored DVO. If the DVO edamt such a scheme, line 7 issues
theDOIndexAPI addOr Updat e call to index DVO data, supplying the DVO URI, its DOP iderifi
along with the particular scheme acquired in line 5. Thequmes of a particular composition scheme
on a particular DVO indicates whether such a virtual objaousd be included in a given index. This
way, the indexing concerns are effectively separated am#tibwledge about: (a) “what to index”

is represented by a composition scheme, (b) “where to indexpresented by ROINndexDOLAR

URI and (c) “how to index” is represented byD@Indeximplementation.

6.2. Searching with the DOIndex Mechanism

Figure 13a shows various aspects of our back- and front-erghhos search services, utilizing our
full-text and DC-based indexing facilities. Our searchvigsss allow users to limit search results
in the digital collection hierarchy as far as types of cohigms is concerned. These types are
distinguished through their respective DOP identifiersr @ee-text search service employs the
DO ndex. sear ch method ofFul | Text I ndex to fetch free-text queries; in thi®0 ndex. search
uses the underlying Lucene full-text engine’s query syaisin:

text:’ athens’ and dopld:’ al bum

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

23

Respectively, our field-based search uses#aech method of ouDCTer ms DBI ndex to fetch SQL
queries via the underlying DC records database, as in:
SELECT obj ectld FROM dcRecordWHERE dopld="3dArtifact" AND date="1970"

Figure 13b shows our full-text search service implemeaitatihe DC-oriented search is realized
in a similar fashion. As the figure shows, our search servmesess user input (lines 2,3),
constructing a corresponding query (line 4). Then, line §uares the particulaDOIndexfrom
thel i b. uoa. gr domain. For example, the full-text search service will aagjtheFul | Text | ndex,
while the field-search will obtain thecTer msDBI ndex. Line 6 then invokes thed ndex. sear ch
method to fetch the query via the underlying indexing fagi(line 6). Finally, search services
use the DOLAR URIs returned by thear ch method to instantiate DVOs and then employ the
shor t Vi ew composition scheme to render the display of search resutesins of thedTM_Engi ne
facility (lines 7-10). In this lineup, our search servicesrobt engage in couplings to any particular
types of content items fostering extensibility of the apation.

As we have shown, search services usBP@Indexbased search to fetch DOLAR URIs of
search results. Moreover, browsing servicesrisat i onCont ext -based relationships to fetch the
DOLAR URIs of content items. Both our services synthesiz&®¢hemes to feed the user-display
in a uniform manner regardless of any idiosyncrasies ofrdmrithg content items.

7. EVALUATION

In this section, we evaluate the effectiveness and perfocemaf our approach, showing:

e how DOLAR meets the challenging requirement to graduallyaexi the information space with
new types of content, without modifying any service prasisactors. InPergamos, we show
how the use of DOLAR exploits MVC benefits, yet, without retng to issue a different MVC
realization for each different type of content.

o that DOLAR-imposed overheads are not significant in termseoformance and DOLAR-based
service implementations scale as well as directly-codeglémentations atop both SQL and
XML data-sources.

7.1. Effective Information Space Expansion

As mentioned in Section 1, when new items join the inforntatépace, applications need to
effectively deal with the following cases:

(1) support newly-encountered types of data sources: Sincaeppkcation has to firstly access
the items for them to partake in the service provision, thergsion of the “data access” actors
supported by the application at hand cannot be avoideelgamos, for example, we need
to include items that originate from remote collectionshsas the Domino-based theses or
database books. In order to support a novel data sourcegxpafiding” application may have
to revise its “data access” actors or even introduce new.dres critical issue here is how
expensive is to perform such “data access” extensions.

(2) support novel types of collections: Irergamos, for example, new digitization projects
emerge, introducing new types of items that need to be awéth the help of the>ergamos
documentation services and then be inserted in exif®grgamos datastore(s). Here, the
fundamental issue is how flexible is the underlying datagg)rto support such novel
collections of content.

(3) include new items in existing services: in both of the aboages, the key issue is to enable
existing business-logic to deal with new content items auittibreaking” its implementation.

To deal with case (1) and (2), our approach use®B@&toremechanism. To support a novel type of
datastore, developers have to define a B&&toredriver, while to support a novel collection, they
may need to revise an existing driver. The main value adddafdOLAR is in dealing with case (3),
as developers use the DOPs Creator tool to issue virtuatiodpecifications and subsequently, they
use composition schemes to supply virtual objects withisereompatible interfaces. This way,

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

24

on one hand, developers avoid the manual coding of new kassiogic objects. On the other, the
use of composition schemes helps them avoid the revisiorrgices. To this effect, applications
can deal with the expansion of the information space withiequiring any business-logic code
modifications.

To show the effectiveness of our approach, we use the fatlp®ergamos examples, where the
information space expands with (a) the addition of Amthemiordatabase collection of books and
(b) the digitization of théByzantine Music Manuscriptin what follows, we succinctly outline our
findings and/or experience when our approach deals withfthieraentioned cas€$), (2) and(3).

(1) Supporting new types of datastores: To support the Anthemion database, developers have
to define a newDOStore driver by realizing thebostore API interfaces of Figure 7. In
particular, developers realize ttreadabl eDOSt or e interface so that DOLAR may gain read-
only access to a datastore. In addition, to support data fioatidon, developers realize either
the Modi fi abl eDOSt ore Or the Transacti onal DOStore interface, depending on whether the
underlying datastore supports transactions. Providedttiearelational database underlying the
Anthemion collection of books supports transactions, g DOStoredriver is defined as:
Ant henSt or e implements DOStore TransactionalDOStore

The realization of theDOStore API interfaces is straightforward; our experience indisat
that it invariably takes a short period of time to define a n&@Store driver. For
example, to allow DOLAR to fetch the data of the Anthemion athatse, it practically
requires the implementation of three methods, namelyR¢lagabl eDOSt or e. | oadFi el dSet (),
Readabl eDOSt or e. | oadRel ati onMenbers() and Readabl eDOSt ore. | oadStream nfo(). It is
worth pointing out that the realization of the remainiRgadabl eDOSt or e interface methods is
trivial. Furthermore, to enable the support of data modiiica the developer has to essentially
realize five methods of the ansact i onal DOSt or e or theModi f i abl eDCSt or e interfaces, namely,
the saveFi el dSet (), saveRel ati onMenber s(), saveStream nfo(), del et eCbj ect () and the
two addNewbj ect () variants. Table | shows a high-level description of the didin of the
Ant henst or e driver, reflecting the simplicity of thBOStoredriver definition process.

After defining the newDOStoredriver, developers register it with the DOLAR dictionarying
the following:

Dictionary dict=runtime. getDictionary()

Domain domain2=dict. registerDomain("hi story. uoa.gr")

DOStore ant hemrnew Ant henfst ore("j dbc: oracl e:thin@/ | P/ ant heni')

domain2 registerDOStore(ant hem "anthemnion")

The extension of the virtual information space is performiedsimple registration steps, advancing
automation. In the first two lines of the above snippet, wéstegthehi st ory. uoa. gr domain in
the DOLAR dictionary. In the next two, we register oAt henst or e driver using theant heni on
identifier; this yields the fully qualifiedol ar: // hi st ory. uoa. gr/ ant heni on URI for the new
DOStore driver which wraps thenthemiorOracle database using the JDBC library.

The addition of new “data access” actors is performed witHbreaking” the application, due
to the effective separation of information contexts oftef®y the virtual information space. For
instance, the addition of the st ory. uoa. gr domain and its respectiieOStoredriver does not
interfere with the i b. uoa. gr domain and vice versa.

(2) Supporting novel types of content: The introduction of a new type of content in a datastore
already registered with DOLAR predominantly depends onféla¢ures and the flexibility of this
datastore. For example, to introduce a new type of itemsearctistom-madénthemion‘book”
database necessitates the modification of the underlyitadpdse schema. Provided that an existing
datastore has to change to support a novel type of itemsettident that the corresponding “data
access” actor will have to be changed too. Clearly, this tsanDOLAR limitation. For example,

in less-rigid datastores such as XML repositories, theddhiction of new types of items may not
impose any modifications to underlying XML arrangements @, such repositories can better
cope with the introduction of new collections. Rergamos, the internal Fedora XML repository
can hold varying types of items in a unified XML datastreanmagje model [21]. This XML storage
model or others such as METS [22], for instance, can encodeugcontent conceptualizations

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

25

Readabl eDOSt or e Interface

i sReadOnl y():

Returns al se.

supportsTransactions():

Returng r ue.

objectldentifiers():

Fetches SQL query to provide the record identifiers.

obj ect Count () :

Fetches SQL query to provide the number of records.

| oadFi el dSet () :

Fetches SQL query to load the fields of the given “book”.

| oadRel ati onMenbers():

Fetches SQL query to load the “pages” of the given “book”.

| oadStream nfo():

Fetches SQL query to load the information of the given “page”

Transact i onal DOSt or e Interface

begi nTransaction():

Provides a long value for uniquely identifying a new trarigac A data
structure is created to hold the SQL statements of the newsdciion.

commt():

Commits the transaction identified by the given long valudgbghing
the SQL statements attached to the internal data struderéorms a
rollback in case of error, indicating the error condition.

addNewObj ect () :

Constructs the SQL statement(s) for inserting a new “bookpage”
and adds them in the transaction data structure.

del etej ect ():

Constructs the SQL statements(s) for deleting the giveroKbar
“page” and adds them in the transaction data structure.

saveFi el dSet () :

Constructs the SQL statement(s) for inserting/updating diiven
“book” and adds them in the transaction data structure.

saveRel ati onMenbers():

Constructs the SQL statement(s) for inserting/updating giiven
“pages” and adds them in the transaction data structure.

saveSt ream nfo():

Constructs the SQL statement(s) for inserting/updatiagrtformation
of the given “page” and adds them in the transaction datatstrel

Table I. The definition of the AnthemStore driver

in a uniform manner, enabling applications to support noyeés of items without changing the
underlying data storage “schema”. Pergamos, the use of a flexible XML storage model helped
us avoid revising theer ganos “data access” actor each time a new collection developnrejggt
emerged. To this effect, the development of Byzantine Music Manuscripte any other digitized
collection imposes no modifications to quar ganos DOStoredriver.

In general, content stores and respective conceptualimashare a “many-to-many” relationship.
Indeed, a given datastore may hold items that abide to nieiltipnceptualizations, while a given

conceptualization may be stored effectively by heterogaaeéatastores. To show how our approach
can effectively separate the information access from tfarimation conceptualization dimension,
Figure 14 presents the SQL schema of our default DOLAR databuch a database can hold
any DOLAR-based conceptualization without changes aneérites as a valuable tool for rapid
prototyping of DOLAR-based services and for testing pugsofnPergamos, we use this database
in the testing installation of the system as follows. We t@eacopy of the DOLAR dictionary we
have in place in the production system, including the thremains discussed in Section 3. Each
DOStoredriver of the production DOLAR space is realized as a difiéiastance of th&®OStore
driver of the default DOLAR database. For instancediear: //1i b. uoa. gr/ per ganos driver of
the production DOLAR space is realized as a driver operadiog the default DOLAR database
in the testingPergamos installation. This configuration helps us test and verify aBw services
before deploying them in the production system. It also el verify the addition of new types
of items, in terms of testing new virtual object specificaiaand their composition schemes. At
the end of the day, the virtual object specifications defimettié testingPergamos installation are
deployed to the production system and automatically opexiatp the production data-sources.
Our approach dissociates business-logic conceptualimtfrom any storage-specific details.
When the underlying datastore has to change to cope with @ bge of items, the modifications

Copyright© 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Softw. Pract. Expe(0000)
DOI: 10.1002/spe

26

objects(id, dopid, cDate, nDate)

fields(objectsid, fieldsetid, field_-id, lang.id, val ue)
relationcontexts(objectsid, relctx_id)
relationmembers(objld, relctx.id, memberObjectld
streamhandles(objectsid, strhandleid, mine, length, uri)

Figure 14. The SQL schema of the default DOLAR database

involved in bringing the respectivBOStoredriver up to date do not interfere with any other
component of the application.

(3) Effective inclusion of new items in existing services: Once the “data access” actors are in place,
our approach simplifies the inclusion of their items in seg\provisions. In particular, our approach:

1. provides freedom from directly coding the businessdatpjects. Using our DOPs Creator
tool, developers issue virtual object specifications and.BR processes such definitions to
offer business-logic objects automatically. For example,use DOPs Creator to issue the
new “book-of-pages” and “byzantine manuscript” concefitasions and then store them in
terms of an XML DOP definition in Oufi | eSyst enDOPSour ce.

2. allows developers to make newly introduced businesis-lalgjects compatible with existing
services with the help of composition schemes. Schemegrdsi the runtime interface of
virtual objects and services rely on the presence of cortipnsichemes to realize application
logic. Consequently, to include any newly added types ofigén existing service provisions,
the only requirement is to provide proper definitions for twresponding composition
schemes. This is performed during the construction of thieiali object specification with
the help of the DOPs Creator, offering effectiveness andraation.

In Pergamos, six composition schemes are used by serviaasglyy the short Vi ew,

detai | Vi ew, short Edi t, detail Edit, full text anddcVvi ewschemes. Each such scheme reflects
a particular composition issued Pgrgamos services:

e short Vi ewanddet ai | Vi ew. provide the “short” and “detail” view of an item respectiyerhese
schemes are used by content browsing, presentation aruhseawices.

e shortEdit anddet ai | Edit: provide the “first-pass” and “full-record” view for editinan item
respectively. These schemes are synthesized by contentinxlate services.

e fulltext anddcVi ew. the first provides the fields of an item to be full-text indéxahile the
latter provides the fields of an item that map to DC terms. &sehemes are used by content
indexing services.

For example, right after registering the newt henst ore driver and adding the new “book-of-
pages” DOP definitionPergamos services deal with “book” and “page” virtual objects withiou
modifications in their code. The “book” virtual object sd@mtion provides definitions for all
aforementioned schemes, while the “page” specificationiges onlyshort Vi ew, det ai | Vi ew,
shortEdit anddetail Edit schemes, as “page” objects are not included in text-basiekés.
When theant henst or e joins the information space, we reuse apdat el ndexes facility discussed
in Section 6 to index the items that originate from the newestio our full-text and DC-based search
facilities:

String[] ids = store.objectldentifiers()

foreach(id in ids):

String fullld = store.getURI() + "/" + id

DVO o = runtime. getDO(fullld)
updat el ndi ces(dvo)

Line 1 uses thecst or e API to obtain the identifiers of the items entailed in a giveme. Then, line

2 iterates through these identifiers to add correspondamgstin ourPergamos-pertinent indexes.
In particular, it creates the DOLAR fully-qualified URI foaeh content item and then instantiates
the corresponding DVO. Finally, in the last line it calls aat el ndexes facility, indexing the
DVO in our Ful | Text | ndex andDCTer msDBI ndex of Section 6. This wayPergamos can index
the “book” items in the full-text and DC indexes, while igivag non-textual “page” items. The
use of composition schemes offers a uniform way to includelyhedded content in existing
Pergamos indexes, contributing to the automation of the expansiocgss. When a new datastore

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

27

joins the information space, composition schemes autothaté&liscovery” of new items, allowing
Pergamos to automatically index their items. Similar effectivenessl automation is provided to
the otherPergamos services too. Specifically, the browsing service of Figueaf automatically
browse “book” of “pages”, while the content update servitEigure 11 can automatically generate
proper web forms for the new “book” and “page” items. Finathe search services of Figure 13
can automatically include the newly added “books” in thergh results.

As services exclusively rely on composition schemes toizeapplication logic, they avoid
engaging any couplings to any particular content origimragje or structural arrangements.
Consequently, new types of content can join the serviceigimvwithout modifying any service
actor implementations.

7.2. Experimental Evaluation

Here, we present our experiments for measuring the perfuwenaf DOLAR in terms of the first
“logical” MVC task, which is the staging of data in busindsgic “model” objects. The second
“logical” MVC task, which is the transformation/presendaitof the data, is not being measured, as
it would be identical in all cases (it would refer to same &asis of data performed on behalf of
the Pergamos “view” MVC components). It is clear that directly-coded “hel” objects which
are tailored to the specific datastore offer the best pedag®. Thus, in our experiments, we
compare the throughput —number of items fetched per secaclieved by using virtual objects
as business-logic “model” actors against the throughpathed by directly-coded business-logic
objects. We use a variety of SQL-based and XML-based dateceswand also use a common
conceptualization, where the data items consist of thedar@nDC fields [19]. These data items
originate fromPergamos dcRecor d items, discussed in Section 6.

¢DOLAR operating atop SQL-based data sources: our dataset includes 100,000 DC items
stored as tuples in a MySQL database. We issue three differgsiementations of “DCltem”
business-logic objects and respective “data access"sactor

1. Directly coded Java/SQIWe issue a plain “DCltem” Java object, realizing a simplegatly
coded Java-based “model” actor. Such a Java object abitles dJavaBeans specification [23]
and offers a pair of getter/setter methods for each indalid@C field, such agetTitle
andset Ti t1 e. This JavaBean component accesses our SQL-based DC itelgsausmple
sql Fet ch “data access” actor implementation that builds upon the ®ySDBC machinery.

2. DOLAR operating atop SQLWe issue a “DCltem” virtual object specification entailing
the standard DC fields in a singleldSetdefinition. We also define a simple read-only
sql Test DOStoredriver implementing thereadabl eDOSt or e interface of Figure 7. The
| oadFi el dSet () method of thesql Test and the aboveql Fet ch facility share an identical
SQL fetching code.

3. Hibernate/SQL We also use Hibernate Object-Relational Mapping libravyntap the
“DCltem” JavaBean to the underlying DC-item database talbléhis case, SQL fetching
is managed by Hibernate and we only provide a Hibernate mapjefinition [24].

Figure 15 shows the results of our SQL-based experimenispanng the amount of time —
in milliseconds— required to fetch various amounts of ugi@@C items in a range of [10,000 -
100,000] items. To capture the worst case scenario, we aseldm distributions of item identifiers,
employing no data caching facility. All executions werefpaned in the same machine, using
the same hardware and software choices. Finally, for edtdrefit amount of items, we repeated
the experiment ten times and used the average executionofitnese ten iterations to generate
Figure 15. As the figure shows, in terms of throughput, DOLARmating atop SQL scales almost
as well as directly coded Java/SQL. In particular, direcithgled Java/SQL reached an average
throughput of 3,688 items/sec, while the use of DOLAR impbae20% performance overhead,
offering an average throughput of 2,944 items/sec. DOLABedorms Hibernate, as the latter

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

28

Il Java/SQL B DOLAR/SQL [Hibernate/SQL
45000

40000
35000
30000
25000

= 20000

of milliseconds

15000

10000

il

Figure 15. Performance Evaluation of: directly-coded (B4, DOLAR operating atop SQL and
Hibernate-based Java/SQL

of items

decreases directly coded Java/SQL performance by 36%ingffan average throughput of 2,364
items/sec.

eDOLAR operating atop XML-based data sources: we compare DOLAR virtual objects
operating atop XML-based DC items against directly code@/JaVL approaches. We store our
DC items in terms of XML, in a fashion which abides to the “slegc” XML schema [25]. In
particular, the configurations compared are the following:

1. Directly coded Java/XMLWe use the “DCltem” JavaBean mentioned in the SQL experisen
to offer a Java-based DC item “model” actor. The directlgetd JavaBean component
accesses XML-encoded DC items using a simpleret ch “data access” actor which builds
upon default Java XML libraries.

2. DOLAR operating atop XMLWe reuse the “DCltem” virtual object specification to offer
DVO-based “model” actor. At the same time, we realize a sempl Test DOStoredriver
as a “data access” actor. TheadFi el dSet () method ofxn Test and the aforementioned
xn Fet ch facility share identical XML handling code.

Figure 16a provides the results of our XML-based experisiea@mparing (a) the time required
to fetch various amounts of unique DC items usingFet ch and stage such items using “DCltem”
JavaBeans, against (b) the time required to instantiateigi amounts of “DCltem” virtual objects,
fetching theirDC Fi el dSet via thexnl Test DOStore. As the figure shows, the use of DOLAR
imposed no discernible performance overhead: in a rang#,000 - 10,000] items, the directly
coded Java/XML approach offered an average throughput @e&8s/sec, while DOLAR reached
an average throughput of 90 items/sec (overhead: 3,06%).

Finally, we illustrate that DOLAR can be used atop any datarem directly reflecting the
particular datastore capabilities as well as limitatiofigure 16b presents the results of using
DOLAR in an OAI-PMH context. OAI-PMH is an XML-based intererability protocol, offering a
Web-service for metadata harvesting [26]. Here, we fetch XM records over the web, directly
using our “live” Pergamos OAI-PMH Web-service. This is reflected in the figure whereattéd
rates do not follow a predictably consistent pattern; therBgompares the throughput of:

1. Directly coded Java/OAl-PMHwe reuse the “DCltem” JavaBean as a “model” actor, while
we realize a simpleai Fet ch “data access” actor. The latter fetches XML-based DC rexord

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

29

B DOLAR/XML B Java/XML
H DOLAR/OAI W Java/OAl

120000 200000

180000

100000 160000

140000

80000
120000
0000 100000
E 80000
40000 60000
40000

20000
. 20000

O
O
N

of milliseconds
of milliseconds

N N N N N N N > §
S S S S S S S N
P I S S P

of items # of items

(2) DOLAR operating atop XML compared to directly (P) DOLAR operating atop OAI-PMH compared to
coded Java/XML directly coded Java/OAI-PMH

Figure 16. Performance Evaluation of DOLAR operating atdplXbased data sources

over the web, using our Pergamos OAI-PMH web service. XMLcpssing is once again
performed using default Java XML libraries.

2. DOLAR operating atop OAI-PMHwve reuse the “DCltem” virtual object specification, while
we realize a simpléestOAIDOStore driver. The latter shares an identical XML/OAI-PMH
processing code with theai Fet ch facility.

As Figure 16b shows, the use of DOLAR imposes no obvious pedoce overhead, as both
directly-coded Java/OAI-PMH and DOLAR-based OAI-PMH implentations reach an average
throughput of 5,5 items/sec. Once again, DOLAR scales asaswé¢he underlying store does.

8. RELATED WORK

There have been a number of approaches for extending pragrgrianguage mechanisms to
accommodate separation of concerns [10]. Such effortsidieclaspect-oriented programming
(AOP) [18, 27], composition filters [28] and hyperslices [38]. Our DOLAR approach separates
the four concerns of Figure 1 and this is the extent of thetioglahip to the aforementioned
approaches, as DOLAR neither alters the underlying progriaug language nor provides Java
extensions, as is the case in [31].

DOLAR essentially offers an infrastructure and does notigi® a full-fledged independent
application. In this context, our proposal does not modify tcomponentization of an application as
the MVC architecture use-case demonstrates. Viewingalilifiraries as its primary applications,
DOLAR can be used in conjunction with any DL-architecturetsas [32, 33, 34, 35]. Our approach
is also aligned with the well-documented long-term objextio offer a unified foundation for
digital libraries; this objective has been articulated imuanber of efforts including the definition of
digital object repositories [36], the 5S formal model ofithglibraries [37], the formal model for
annotating digital content [38] and the OAIS [39] and DEL@$8][reference models.

XML-based approaches can separate data from presentaticignificant requirement for
expanding information spaces. For example, XML approaniesuse RDF [41] to issue business-
logic conceptualizations and may simultaneously employ XBl2] to transform XML data for
presentation. Should we employ XML-based conceptuatinatin Pergamos, they apparently add
value to our front-end “store-to-user” services. Howeirethe reverse “user-to-store” flow, where
the information originates from the user to be stored in atletlying datastore, the use of XML

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

30

adds value only if: (a) the users supply data in XML-basednts, or (b) the data is stored in
XML-based formats. In operational settings that do not cigmath either of the two conditions,
the use of XML fails to add value in the realization of “userstore” information flow. For
example, having the Pergamos back-end subsystem procssssupplied web-form to yield XML
representations of data adds no value in the case of “boekist since “book” information is to
be stored in the relational database that handleghemionbook items. Hence, to support such
“user-to-store” flows, applications have to employ an ddddl set of operations to manage storing
data in underlying non-XML stores. This different treatrheh“store-to-user” and “user-to-store”
information flows fragments service provision into two sgpa “content presentation” and “content
update” infrastructures. Maintaining two disparate ssyprovision implementations that have to
evolve in parallel significantly increases the costs foraaing the information space.

Ontologies are widely used to define content conceptuaizatin various contexts [43, 44].
Although our approach offers application-specific conaefizations in a spirit similar to that
followed by ontologies, DOLAR: (a) provides a GUI tool forfaeng conceptualizations in terms
of virtual object specifications, (b) generates runtiméaats that conform to such specifications
automatically and (c) enables these artifacts to suppartviiay data flows atop heterogeneous
datastores in a uniform manner. The main difference hereaisdntologies use inference as the
primary compositional mechanism, while in DOLAR we use DM@Gtantiation. DVOs allow
semantically-diverse and heterogeneous storage astifachct as “native objects” of the virtual
information space, hiding any underlying physical/steragpdels. This feature also distinguishes
DOLAR from object-oriented databases [45, 46] and varioddl . X0bject packaging approaches,
such as METS [22], MPEG-21 DID [47] and Digital Content Coments [48].

Object-Relational Mapping approaches and tools autontategeneration of business-logic
objects and support bidirectional data flows between sugbctshand underlying stores [49,
50]. However, such approaches are apparently exclusivel&ional databases, while DOLAR
can operate atop any heterogeneous datastores that pa\id@Store driver. Depending on
the operational environment, a particula©OStoredriver may serve a similar purpose with a
mediator [51] or a wrapper [52].

DVO composition schemes offer views/projections of cohieems and generate such views
relying exclusively on runtime objects and not on storagdaats. We use these schemes as an
abstraction tool for separating information utilizatioptions from information access, discovery
and conceptualization options, defining the virtual ol§eeintime messages/interfaces. To enable
application-neutrality and storage-independence, sekeneither get stored in any underlying
datastore nor contain any executable code. These chasticeedistinguish our scheme-based
conception of views from various database or XML view med$ras that simplify the integration
of heterogeneous data [53, 54, 55, 56, 4, 57, 58]. In additiam scheme-based distinction
of application-pertinent and DVO-pertinent compositialtaws a significant difference between
our composition schemes and disseminator-based appofade60, 21]. In the latter, storage
artifacts are directly associated with repository-pentirexecutable code and consequently, there is
explicit coupling. The principle of “smart objects and duarbhives” realized through buckets [61]
designates a similarity between buckets and DVOs. How®@Lt,AR storage-independence and
scheme-based views are not available in buckets.

Finally, we should also point out that we do not propose the afsDOLAR URIs as global
identifiers. In general, supplying content items with glddantifiers is considered a best practice,
advancing interoperability, especially in domains sucle-giblishing. Approaches to offer such
identifiers include DOIs [62], Handles [63] and PURLs [64ur@OLAR URIs offer a DOLAR-
specific means to identify content items, acting as “menpmiyters” in the virtual information
space. The use of any particular global identification meisma is an application-dependent
decision that falls outside the scope of DOLAR. In Pergarfmrsexample, we supply our content
items with global HTTP identifiers of the form oft t p: / / per ganos. | i b. uoa. gr/ dl / obj ect/
uoadl : NUMURIs and do not publish any internally employed DOLAR URISs.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

31

9. CONCLUSIONS AND FUTURE WORK

In protected application environments, information exganis performed in a controllable fashion,
carried out in terms of rigid development procedures. Tocthetrary, in modern cooperative and
public environments such as the Web, information expand® mapidly, constantly “demanding”
from applications to catch up with novel types of informatidn this article, we presented our
DOLAR approach to support information expansion by propgsa virtual information space
environment. This environment is based on key automatiahadstraction features offered by
virtual objects to curtail the costs of introducing new typd items in an existing application. In
brief, DOLAR supports uniform two-way data-flows atop anygnegeneous datastores, supporting
both accessing and modifying heterogeneous data in artieffazay. DOLAR also masks-out the
structural diversity of content items using compositionesoes, allowing business-logic to operate
in isolation of the structural diversity of underlying cent. Ultimately, DOLAR achieves separating
the information discovery, access, conceptualization @ildation dimensions that compose an
information space. This separation enables the indepéra@ension of individual information
management options, catering for the inexpensive exterdfithe information space as a whole.
Curtailing the costs of information expansion is valualide &ny information-rich application
and the operation of DOLAR as the core-mechanisnPérgamos digital library has over time
demonstrated its versatility in expanding the informatipace effectively. As we have shown in
this article, thePergamos business-logic implementation can cope with the additionesv types

of content without modifications. In addition, our experitte demonstrated that DOLAR does

not impose significant operational overheads even when ategda variety of heterogeneous data

sources.
We plan to extend our DOLAR framework by pursuing work in a femof areas. More
specifically, we plan to:

e experiment with our DVO Introspection API. In terms of dagfidition, this API allowed us to
develop an effective GUI tool for issuing virtual object spieations. This tool proved extremely
valuable in letting us augmerergamos with new digital collections in a timely manner.
Our plan is to transform virtual object Introspection APtara full-fledged, data-definition
DSL [65, 66, 67]. Such a DSL could be embedded in applicationsffer a self-contained
data-definition facility. This will allow more versatile ages of DOLAR, should we consider the
provision of GUI tools tailored to non-technical users sasttatalogers and curators. In addition,
we plan to implement the embeddable DSL using “just-in-tic@mpilation of DVO prototypes
into Java classes on-the-fly. This will allow for the crenatad statically type-safe virtual objects
and also offer additional increase in DOLAR performance.

e realize virtual object inheritance. This will empower apations to create new virtual object
specifications by building upon existing ones. Supportimeritance will make virtual objects
offer a full object-oriented solution [68].

e continue our work withDOStoredrivers and introduce a decorator mechanism [13] to allow
applications to share/reuse their information acces®pgpiin diverse operating environments.

e examine data migration capabilities offered by virtualealt$. The need of migrating content
items to new storage areas is tightly connected to infownagkpansion and occurs in practice
frequently. We plan to enrich DOLAR to attain automated miigm among heterogeneous stores.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their canta that helped us improve the presentation
of our work. We also wish to thank G. Pyrounakis, V. Karaksidad E. Lourdi for their contributions in
Pergamos and A. Damianou, V. Nikakis and K. Drakoulakis feirt contributions in DOLAR testing and
implementation. Finally, we thank A. Avramidis for readiegrly drafts of this article.

Yannis Smaragdakis was supported by the National Scienaadation under grants CCF-0917774 and
CCF-0934631.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

32

10.
11.
12.
13.

14.
15.

16.
17.

18.
19.
20.
21.
22.
23.

24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

REFERENCES

Lesk M. How much information is there in the world? 1997cf@cal Report, 1997, Retrieved froht t p:
/I ww. | esk. com ml esk/ ksg97/ ksg. ht M on Jan 2010.

. Lyman P, Varian HR. How much information, 2000 and 2003 (RO(Retrieved from htt p:

/I ww. si ns. ber kel ey. edu/ how nuch-i nfo and http://ww. si ns. ber kel ey. edu/
how rmuch- i nf 0o- 2003 on Jan. 2010.

. Bohn R, Short J. How much information? 2009 report on araerconsumers 2009. Global Information Industry

Center, University of California, San Diego, December 92®etrieved fronht t p: / / hm . ucsd. edu/ pdf /
HM _2009_Consuner Report _Dec9_2009. pdf on Jan. 2010.

. Lenzerini M. Data integration: a theoretical perspecfRODS '02: Proceedings of the twenty-first ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database syst€bhé: New York, NY, USA, 2002; 233-246.

. Chen K, Chen H, Conway N, Dolan H, Hellerstein JM, Parikh Tproving data quality with dynamic forms.

ICTD’09: Proceedings of the 3rd international conferenae laformation and communication technologies and
developmentEEE Press: Piscataway, NJ, USA, 2009; 487-487.

. Lukovic I, Mogin P, Pavicevic J, Ristic S. An approach teeleping complex database schemas using form types.

Softw., Pract. ExpeR007;37(15):1621-1656.

. Parsons D, Rashid A, Telea A, Speck A. An architecturalepatfor designing component-based application

frameworks.Softw. Pract. ExpeR006;36(2):157—190, doi:http://dx.doi.org/10.1002/spe.v36:2

. Parnas D. On the criteria to be used in decomposing systemsodules.Communications of the ACNI972;

15(12):1053-1058.

. Dijkstra EW. Ewd 447: On the role of scientific thougBelected Writings on Computing: A Personal Perspective

1982; :60-66.

Tarr P, Ossher H, Harrison W, Sutton S. N degrees of sipard/ulti-dimensional separation of concerf&oc.
of the 22t Int. Conf. on Software Engineering (ICSEP99; 107-1109.

Saidis K, Delis A. Type-consistent Digital Objectd-Lib Magazine May/June 2007; 13(5/6).
[doi:10.1045/may2007-saidis].

Krasner G, Pope S. A Description of the Model-View-Coltér User Interface Paradigm in the Smalltalk-80
system.Journal of Object Oriented Programmiri88;1(3):26—49.

Gamma E, RHelm, RJohnson, JVlissidegsign Patterns Elements of Reusable Object-Orientedvat
Addison-Wesley, 1997.

Fowler M.Patterns of Enterprise Application Architectukddison-Wesley, 2003.

Saidis K, Pyrounakis G, Nikolaidou M, Delis A. Digitaljelt prototypes: An effective realization of digital objec
types.Proceedings of the 20 European Conference on Digital Librarigalicante, Spain, 2006.

UofA. Pergamos Digital Library, University of Atherfst t p: / / per ganos. | i b. uoa. gr/.

Saidis K, Delis A. Integrating multi-dimensional infieation spaces2™¢ Workshop on Very Large Digital
Libraries, In conjunction with the 8 European Conference on Digital LibrarietBELOS Association, 2009.
Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, ¢i@gén JM, Irwin J. Aspect oriented programming.
Proceedings of the 1t European Conference on Object-Oriented Programming (E@D®997; 220-242.
DCMI. DCMI Metadata Terms, Dublin Core Metadata Initiat htt p://wwv. dubl i ncore. org/
docunent s/ dcm -terns/.

Lieberman H. The continuing quest for abstractiBroceedings of the 20th European Conference on Object
Oriented Programming (ECOOP2006; 192—-197. Doi: 10.1007/11785412.

Lagoze C, Payette S, Shin E, Wilper C. Fedora: an ar¢hreedor complex objects and their relationships.
International Journal on Digital Librarie006;6(2):124-138.

McDonough JP. METS: standardized encoding for digttahty objectsinternational Journal on Digital Libraries
2006;6(2):148-158. D0i:10.1007/s00799-005-0132-1.

Hamilton, G (Editor). Javabeans specification 1.01.ri®etd from http://java. sun. conl j avase/

t echnol ogi es/ deskt op/ j avabeans/ docs/ spec. ht m on Jan 2010.

Red Hat Middleware LLC. Hibernate. Availabletstt p: / / www. hi ber nat e. or g.

DCMI. Simple DC XML schema, version 2002-12-12, Dublior€Metadata Initiativent t p: / / dubl i ncor e.
or g/ schemas/ xm s/ si npl edc20021212. xsd.

Lagoze C, de Sompel HV. The open archives initiativelddug a low-barrier interoperability framewordDCL
'01: Proceedings of the“t Joint Conference on Digital Librarie2001.

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, @old W. Getting started with aspecGommunications
of the ACM2001;44(10):59-65.

Bergmans L, Aksit M. Composing crosscutting concerrisgusomposition filtersCommunications of the ACM
2001;44(10):51-57.

Ossher H, Tarr P. Hyper/J: multi-dimensional sepanatibconcerns for javaProceedings of the International
Conference on Software Engineering (ICSE)00; 734—737.

Ossher H, Tarr P. Using multidimensional separatioroaterns to (re) shape evolving softwa@mmunications
of the ACM2001;44(10):43-50.

Sehring HW, Schmidt JW. Beyond Databases: An Asset Laggytor Conceptual Content Managemédvances
in Databases and Information Systems (ADBIS), 8th Eastfean ConferengeSpringer, 2004; 99-112.

Arms WY, Blanchi C, Overly EA. An architecture for infoation in digital libraries D-Lib MagazineFebruary
1997;3(2).

Suleman H, Fox EA. Designing Protocols in Support of @idiibrary ComponentizatioreCDL '02: Proceedings
of the 8" European Conference on Digital Librariesondon, UK, 2002; 568-582.

Kumar A, Saigal R, Chavez R, Schwertner N. Architectingeensible digital repositoryCDL '04: Proceedings
of the 4th Joint Conference on Digital Librarie2004; 2—10.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

35.
36.
37.
38.
39.
40.

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

52.

53.
54.
55.

56.
57.

58.
59.
60.
61.
62.
63.
64.

65.
66.

67.
68.

33

Bainbridge D, Don KJ, Buchanan GR, Witten IH, Jones Segdn, Barr MI. Dynamic digital library construction
and configurationECDL '04: Proceedings of the 8th European Conference ontBligibraries, 2004; 1-13.

Kahn R, Wilensky R. A Framework for Distributed Digitabfect Servicesinternational Journal on Digital
Libraries 2006;6(2):115-123. Also available &t t p: / / www. cnri . reston. va. us/ k-w. htmi .

Gongalves M, Fox E, Watson L, Kipp N. Streams, StrustuBpaces, Scenarios, Societies (5s): A Formal Model
for Digital Libraries.ACM Transactions on Information Systems (TQ18)4;22(2):270-312.

Agosti M, Ferro N. A formal model of annotations of digitantent. ACM Trans. Inf. SystNovember 200726(1).
CCSDS. Reference Model for an Open Archival InformatBystem (OAIS), Consultative Committee for
Space Data Systems 2002. Blue Book, Issu& 1,p: // publ i c. ccsds. org/ publ i cati ons/ archi ve/
650x0b1. pdf.

Candela L, Castelli D, Pagano P, Thanos C, loannidis Yti@ G, Ross S, Schek HJ, Schuldt H. Setting
the Foundations of Digital Libraries: The DELOS Manifesf-Lib Magazine March/April 2007; 13(3/4).
[doi:10.1045/march2007-castelli].

Manola F, Miller E, McBride B. Resource Description Feamork (RDF) Primer. W3C Recommendation 10
February 2004ht t p: / / wwww. w3. or g/ TR/ rdf - priner/.

Clark J. XSL Transformations (XSLT), Version 1.0, W3CcBemendation 16 Nov. 2009. Retrieved from
http://ww. w3. org/ TR/ xsl t on Jan 2010.

Chandrasekaran B, Josephson JR, Benjamins VR. Whattategies, and why do we need thetEEE Intelligent
Systemd999;14(1):20-26.

Shadbolt N, Berners-Lee T, Hall W. The semantic web itedslEEE Intelligent Systen2006;21(3):96-101.

Won K.Introduction to Object-oriented DatabaseédIT Press, 1990. ISBN: 0-262-11124-1.

Otis A. A reference model for object data managem@amputer Standards & Interfacd991;13(1-3):19-32.
Bekaert J, Kooning ED, Walle RVD. Packaging models fergtorage and distribution of complex digital objects
in archival information systems: A review of MPEG-21 DID meiples.Multimedia System2005;10(4):286—301.
Santanche A, Medeiros CB. A component model and imfrestre for a fluid weblEEE Trans. Knowl. Data Eng.
2007;19(2):324-341.

Agarwal S. Architecting object applications for highfipemance with relational databasés OOPSLA Workshop
on Object Database Behavior, Benchmarks, and Performatf2e5.

Novera JO, Orenstein J, Inc NS. Supporting retrievatsugtlates in an object/relational mapping systdeEE
Data Engineering Bulletii999;22:22-1.

Garcia-Molina H, Papakonstantinou Y, Quass D, RajanafaSagiv Y, Ullman J, Vassalos V, Widom J. The
tsimmis approach to mediation: Data models and languagégell. Inf. Syst1997;8(2):117-132.

Roth MT, Schwarz PM. Don't scrap it, wrap it! a wrapperhatecture for legacy data sourceglLDB '97:
Proceedings of the 23rd International Conference on Vengédata BasesMorgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 1997; 266-275.

Gupta A, Jagadish HV, Mumick IS. Data integration usimlf-saintainable viewsAdvances in Database
Technology - EDBT '961996; 140-144.

Hull R, Zhou G. A framework for supporting data integratiusing the materialized and virtual approaches.
SIGMOD '96: Proceedings of the 1996 ACM SIGMOD internatioranference on Management of dasCM,
1996; 481-492.

Ullman J. Information integration using logical view$eoretical Computer Scien@900;239(2):189-210.

Halevy AY. Answering queries using views: A survéfe VLDB JournalR001;10(4):270-294.

Vodislav D, Cluet S, Corona G, Sebei |. Views for Simplify Access to Heterogeneous XML Da@n the Move
to Meaningful Internet Systems 2006: CooplS, DOA, GADA,@GDBASE. Proceedings, Part Springer, 2006;
72-90.

Shao F, Guo L, Botev C, Bhaskar A, Chettiar M, Yang F, Shagasundaram J. Efficient keyword search over
virtual xml views.VLDB '07: Proceedings of the 33rd international conferemmceVery large data base¥LDB
Endowment, 2007; 1057—-1068.

Blanchi C, Petrone J. Distributed Interoperable Met&agistry D-Lib MagazineDecember 20017(12).

de Sompel HV, Bekaert J, Liu X, Balakireva L, SchwandeaODORe: A Modular, Standards-Based Digital Object
Repository.The Computer Journ&005;48(5):514-535.

Nelson ML, Maly K, Zubair M, Shen SNT. SODA: Smart Obje@simb ArchivesECDL '99: Proceedings of the
37d European Conference on Digital Librarig999; 453—464.

IDF. The DOI Handbook, The International DOI Foundati&dition 4.4.1, October 2006, [d0i:10.1000/182].
CNRI. The Handle System, Corporation of National Redednitiatives.ht t p: / / waww. handl e. net /.

OCLC. Persistent Uniform Resource Locator (PURL), @niComputer Library Centeht t p: / / www. pur | .
org/.

Hudak P. Building domain-specific embedded languayé® Computing SurveyE996;28(4es).

Wile DS. Supporting the DSL Spectrudnurnal of Computing and Information Technold801;CIT 9(4):263—
287.

Mernik M, Heering J, Sloane A. When and how to develop dofapecific languagesACM Computing Surveys
2005;37(4):316-344.

Cardelli L, Wegner P. On understanding types, dataatigin, and polymorphismtACM Computing Surveyl985;
17(4):471-522.

Copyright© 0000 John Wiley & Sons, Ltd. Softw. Pract. Expe(0000)
Prepared usingpeauth.cls DOI: 10.1002/spe

