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Component reuse is widely considered vital for obtain- 
ing significant improvement in development productiv- 
ity. However, as an organization adopts a reuse- 
oriented development process, the nature of the 
problems in development is likely to change. In this 
article, we use a measurement-based approach to 
better understand and evaluate an evolving reuse pro- 
cess. More specifically, we study the effects of reuse 
across seven projects in narrow domain from a single 
development organization. An analysis of the errors 
that occur in new and reused components across all 
phases of system development provides insight into 
the factors influencing the reuse process. We found 
significant differences between errors associated with 
new and various types of reused components in terms 
of the types of errors committed. In addition, we iden- 
tified differences when errors are introduced and the 
effect that the errors have on the development pro- 
cess. 0 1997 Elsevier Science Inc. 

1. INTRODUCTION 

Reuse has been advocated as a technique with great 
potential to increase software development produc- 
tivity, reduce development cycle time, and improve 
product quality (Agresti and McGarry, 1987; Brooks, 
1987; Boehm and Papaccio, 1988). However, reuse 
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will not just happen; rather, components must be 
designed for reuse, and organizational elements must 
be in place to enable projects to take advantage of 
the reusable artifacts. 

Basili and Rombach (1991) present a framework 
of comprehensive support for reuse, including orga- 
nizational and methodological properties necessary 
to maximize the benefit of reuse. For reuse to attain 
a significant role in an environment, organizational 
changes must be made to facilitate the change in 
development style. Maintaining a library of reusable 
parts may require resources, including personnel, 
hardware, and software. While increasing the amount 
of reuse in an environment may reduce certain 
development activities (e.g., code creation), it will 
also require additional effort in other activities (e.g., 
searching for components). With respect to product 
quality, it is also clear that “reused” does not imply 
“defect-free”. An investigation into the benefits of 
reuse in the NASA Goddard Space Flight Center 
(NASA/GSFO showed that even among compo- 
nents that were intended to be reused verbatim, 
while their error rate was an order of magnitude 
lower than newly created code, the error rate is still 
significant (Thomas et al., 1992). By analyzing the 
nature of the defects in the reuse process, one can 
tailor the process appropriately to best achieve the 
organization’s goals. 

There have been several studies into techniques 
to stock an initial reuSe library (Caldiera and Basili, 
1991; Dunn and Knight, 1993). One factor to be 
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considered is the structure of the candidate reusable 
component. Selby (1988) investigated various charac- 
teristics of new versus reused code in a large collec- 
tion of FORTRAN projects. Basili and Pericone 
analyzed tradeoffs between creating a component 
from scratch versus modifying an existing compo- 
nent (Basili and Perricone, 1984). In this article, we 
extend these studies by investigating the nature of 
errors occurring in a reuse-oriented development 
environment, and drawing conclusions about their 
impact in such an environment. In particular, we 
analyzed a collection of eight medium-scale Ada 
projects developed over a five-year period in the 
NASA/GSFC with respect to the defects found in 
newly developed and reused components. The goal 
of the study was to learn about the nature of prob- 
lems associated with reuse-oriented software devel- 
opment, thereby allowing for improvement of the 
reuse process. We found significant differences be- 
tween errors associated with new and with various 
types of reused components in terms of when errors 
are being introduced, the effect that they have on 
the development process, and the type of error being 
committed. We also found a number of similarities 
and differences with the findings of other investiga- 
tions into component reuse. 

This article is organized as follows. Section 2 
provides a brief overview of reuse-oriented software 
development, while Section 3 gives background about 
using error analysis for process improvement. Sec- 
tion 4 describes the goals of the study and the data 
analyzed. The findings from our analysis are pre- 
sented in Section 5, and Section 6 summarizes and 
identifies the major conclusions. 

2. REUSE-ORIENTED SOFTWARE 
DEVELOPMENT 

Reuse has been cited as a technology with the 
potential to provide a significant increase in software 
development productivity and quality. For example, 
Jones (1984) estimates that only 15% of the devel- 
oped software is unique to the applications for which 
it was developed. Reduced development cost is not 
the only benefit of reuse-in fact, the greatest bene- 
fit from reuse may be its impact on maintenance 
(Lanergan and Grassol, 1984; Rombach, 1991). The 
potential for substantial savings from reuse clearly 
exists. Unfortunately, achieving high levels of reuse 
still remains an elusive task. A number of issues 
must be addressed to effectively increased the level 
of reuse in an organization, including the forms of 
reuse, and language and organizational support to 
encourage reuse. 

2.1 Types of Reuse 

In this study, we examined three modes of reuse: 

l verbatim reuse, in which the component is un- 
changed; 

l reuse with slight modification, in which the origi- 
nal component is slightly tailored for the new 
application; 

l reuse with extensive modification, in which the 
original component is extensively altered for the 
new application. 

While there is a clear distinction between verbatim 
reuse and reuse via modification, distinguishing be- 
tween slight modification and extensive modification 
is a more subjective matter. Our intent is to distin- 
guish between cases where a component is left es- 
sentially intact, but needs a minor change for a new 
application, and cases where a component is signifi- 
cantly altered for a new use. The three types of 
reuse and their expected impact on development are 
described in the following paragraphs. 

Intuitively, verbatim reuse appears to hold the 
greatest benefit to software development. Develop 
ment effort is minimized and verification effort is 
reduced because the component has previously been 
developed, tested, and used. There may be an in- 
creased cost in integration effort, as the reused 
component may not squarely fit in the new system, 
and the developers may not be as familiar with the 
reused component as they would be with a custom 
component. 

Another means of reuse is achieved by slight 
modification of an existing component. Here a com- 
ponent remains for the most part unchanged but is 
adapted slightly for the new application. For exam- 
ple, a sort routine may be modified to sort a differ- 
ent type of objects. An improvement in terms of 
reduced development effort and increased quality is 
expected, although perhaps not of the same degree 
as in the reused verbatim components. Again, the 
integration of modified components may be more 
difficult than that of newly created components; 
however; because the modified components may be 
adapted to better match the application, the integra- 
tion may not be as difficult as with the verbatim 
reused components. As with verbatim reuse, there 
may be new errors introduced in the component 
selection process. However, since the developer does 
have a greater understanding of the implementation 
of the modified component, one is more likely to 
detect that error earlier than if the component was 
reused verbatim. 
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Our third category of reuse occurs through exten- 
sive modification of an existing component. For ex- 
ample, one may want to change the underlying rep- 
resentation of a particular type while maintaining 
the operations on the type. If the component was 
not designed with the representation isolated in the 
implementation, this may require changes through- 
out the component. Reuse in this manner is likely to 
be beneficial only if the component is of a sufficient 
size and complexity to justify modification as op- 
posed to simply creating a new component from 
scratch. Since much of the component is new, in 
many ways, this type of reuse may appear similar to 
new development. However, there are some impor- 
tant distinctions. The number of coded lines is likely 
to be reduced relative to newly developed code, so 
one might expect a decrease in error density. On the 
other hand, the extensive modification activity may 
be more error prone than standard component cre- 
ation, since the original abstraction is being signifi- 
cantly altered. This mode of component creation 
may result in more of a “hack” than a well-con- 
ceived component. New types of errors may arise, 
such as removing too much or not enough of the old 
component. 

2.2 Language Issues in Software Reuse 

The Ada programming language contains a number 
of constructs that encourage effective reuse, includ- 
ing packages and generics (Ichbiah, 1985; Wolf 
et al., 1985; Gargaro and Pappas, 1987; Ebel and 
Genillard, 1990). A package is used to group a 
collection of declarations, such as types, variables, 
procedures, and functions. The package construct 
allows for the encapsulation of related entities, en- 
couraging the creation of well-defined abstractions 
such as encapsulated data types. For example, a 
stack package of a particular type can be created, 
containing the element type and operations such as 
push and pop. Through a simple modification of the 
element type, the package can be adapted to support 
operation on a different type. This would enable one 
to move toward the second type of reuse, tailoring 
the component slightly to suit the new application. 

Ada’s generic construct provides more support for 
verbatim reuse, as it enables the creation of more 
abstract entities. A generic program unit is a tem- 
plate for a module. Instantiation of the generic 
program unit yields a module. The generic units may 
be parameterized, i.e., they may require the user to 
supply types or operations to create a module. This 
provides a great deal of flexibility in their use. For 
example, one may parameterize the stack package 

such that the user must supply the element type to 
create an instance of the stack. The generic stack 
can then be used without modification in support of 
a number of different types. 

High levels of reuse may be achieved in languages 
without such features; however, the approach taken 
to achieve such reuse will be different. Such differ- 
ences were reported in a study comparing FOR- 
TRAN and Ada reuse in the NASA/SEL (Bailey 
et al., 1993). The Ada approach was to develop a set 
of generics that can be instantiated to support a 
variety of application types. In contrast, the FOR- 
TRAN approach was to develop a collection of 
libraries specific to each application type. On pro- 
jects within a very narrow domain, both approaches 
achieved similar high levels of reuse. However, when 
there was a significant change in the domain, the 
Ada approach achieved a sizable amount of reuse 
(50% verbatim reuse), while the FORTRAN ap- 
proach showed less than 10% verbatim reuse (Bailey 
et al., 1993). Thus, it would appear that the parame- 
terized, generic approach is better suited to develop 
ment in a dynamic, evolving domain. 

While improved language features may help to 
enable reuse, they alone have not resulted in large- 
scale reuse in software development. There are other 
important factors involved-applications must be 
structured to allow and encourage reuse, and soft- 
ware organizations must be tailored to support a 
reuse-oriented development paradigm. 

2.3 Organizational Support for Reuse 

One model that integrates reuse into a development 
is the “component factory” organization, which is a 
dual-organization structure consisting of two parts: a 
factory organization and a project organization. The 
factory organization provides software components 
in response to requests from the various projects 
being developed in the project organization (Basili 
et al., 1992). Figure 1 illustrates the component 
factory concept in support of a project organization. 
In this setting, the development organization makes 
requests to the component factory to provide com- 
ponents to be integrated into the desired product. If 
the component factory is effective, the activity of 
component creation can be significantly reduced, 
and the quality of the components that are delivered 
to the integration team can be increased, reducing 
the costs of development and of rework. The key 
features of the component factory are the resposi- 
tory of the components for future reuse, and the 
focus on flexibility and continuous improvement. 
Thus, a measurement-oriented approach must be 
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Figure 1. Interaction of a project organization with the component factory. 

utilized, such as that proposed in the TAME project 
(Basili and Rombach, 19881, which provides an ex- 
perimental view of software development, allowing 
for analysis and learning about the effectiveness of 
the new technologies. 

Reuse-oriented development will require some 
effort to be expended in activities that are not a part 
of traditional software development. For example, 
although the component factory will allow the effort 
spent in component creation to be reduced, it will 
also require additional activity in searching for and 
selecting the appropriate component for the particu- 
lar application. These new activities may also be a 
potential source of errors in the system, and thus, a 
source of rework effort. Introducing an activity of 
selecting a component from a repository may intro- 
duce new types of errors, for example, selecting a 
component that does not provide the intended func- 
tion. The goal of error analysis is to learn about the 
nature of errors in the current environment so that 
improvement can be made (e.g., process tailoring) in 
subsequent projects, and feedback can be provided 
to the current project. In the following sections, we 
describe our analysis of errors in an organization 
that has placed a significant emphasis on reuse, with 
the result that it has recently achieved very high 
levels of reuse. 

3. DESCRIPTIONS OF THE ANALYSIS 

Since its origin, The NASA/GSFC SEL has col- 
lected a wealth of data from their software develop 
ment @EL, 1994). Selby performed a study on the 
characteristics of reused components on a collection 

of FORTRAN projects from this environment (Selby, 
19881, in which the level of reuse (verbatim and 
modified) averaged 32%. Because of the support for 
reuse provided by the Ada language, as discussed in 
Section 2.2, we chose to analyze the Ada projects in 
this environment. A much higher level of reuse than 
what was reported in Selby’s study of FORTRAN 
projects has been achieved in these Ada projects, 
with total reuse (verbatim or with modification) ap- 
proaching 100% and verbatim reuse reaching over 
90% (Kester, 1990). These high levels of reuse have 
been attributed in part to the Ada language con- 
structs and object-oriented methods (Kester, 1990; 
Bailey et al., 1993; Stark, 1993). More recently, how- 
ever, even the FORTRAN system have been show- 
ing such high levels of reuse, although the nature of 
the reuse is different from reuse in the Ada develop- 
ment environment. The Ada approach is centered 
on the development of a reuse library containing 
generics that can be instantiated with mission- 
specific parameters to develop new application. In 
contrast, the FORTRAN approach was to develop 
separate libraries containing subsystems for certain 
mission-specific options, and these subsystems must 
be used in an “all or nothing” manner. As such, 
when new projects were developed with a major 
change to the application domain, the Ada approach 
still resulted in a sizeable amount of verbatim reuse 
(40%), while the FORTRAN approach saw reuse 
drop to less than 10% (Bailey et al., 1993). 

We analyzed a collection of seven medium-scale 
Ada projects from a specific domain, as all are 
stimulators which were developed at the NASA/ 
GSFC Flight Dynamics Division. An overview of the 
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Table 1. Overview of the Examined Projects 

Project Pet. Total Pet. Verbatim Effort 
ID KSTMT Reuse Reuse (SM) 

A 27.1 31 4 175 
B 14.4 31 13 85 
C 13.7 38 19 72 
D 24.8 85 27 117 
E 13.8 97 88 30 

: 
12.8 78 44 73 
13.7 loo 89 16 

projects examined is provided in Table 1. The pro- 
jects ranged in size from 61 to 184 thousand source 
lines, or 12.8 to 27.1 thousand Ada statements 
(KSTMT). They required development effort of 16 
to 175 technical staff months (SM). In these projects, 
verbatim reuse ranged from 4-89% of the total 
statements, while total reuse (i.e., verbatim and 
modification) ranged from 31-100%. 

While this environment is not organized along the 
lines of the Component Factory discussed in Section 
2, it does have some characteristics in common with 
that organization. In the SEL, generalized architec- 
tures were developed explicitly to facilitate large 
scale reuse from project to project (Stark, 19931, so 
it is clear that significant effort has been applied 
towards the goal of reuse in the organization. As 
such, new systems have been developed in accor- 
dance with the packaged experience of reusable 
architectures, designs, and code. One aspect of the 
Component Factory organizations is the separate 
organization that produces or releases all reusable 
software products (Basili et al., 1992). While this 
feature is not present in the SEL, it is apparent that 
less effort is being spent on project-specific develop- 
ment activities. The percentage of effort spent in the 
Coding/Unit Test phase has dropped from 44% on 
an early simulator, to only 18% on one of the more 
recent simulators (Stark, 1993). This suggests that 
there is a significant leveraging of the stored experi- 
ence, and as such, the observed effort on the SEL 
projects is becoming more in line with the profile 
one would expect in the Component Factory’s pro- 
ject organization, i.e., dominated by design and test- 
ing activities. 

3.1 Questions Addressed in the Analysis 

Our goal is to develop an understanding of the 
differences between traditional development meth- 
ods and reuse-oriented methods in terms of the 
characteristics of their errors. Increased knowledge 
about the types of errors in an environment can be 
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used to optimize the process for that environment. 
We developed a set of questions with which to 
compare newly created, modified, and reused verba- 
tim components: 

What is the impact of reuse on error density? 
Reuse has been noted as offering the potential 
for substantial gains in product quality; however, 
the different forms of reuse investigated in this 
study are likely to have differing impacts. While 
one would expect verbatim reuse to offer dra- 
matic reductions in error density, it is not so clear 
what should be expected from reuse via mod- 
ification. Understanding the differences in the 
impact on error density of the various reuse ap- 
proaches can allow for improved process opti- 
mization based on the expected error density 
profile. For example, it can allow for the develop 
ment of more accurate models predicting poten- 
tially faulty modules in a system. A number of 
recent studies have shown that product metrics 
can be used to determine the areas in a program 
that are at a greater risk of containing a fault 
(Selby and Porter, 1988; Agresti and Evanco, 
1992; Munson and Khoshgoftaar, 1992; Briand et 
al., 1993). Whether and how the component was 
reused are also likely to be useful in such models. 
Are errors in reused components easier to isolate 
or correct? 
Determining the difficulty of error corrections 
can allow for more accurate allocation of re- 
sources and can help to assess the overall effec- 
tiveness of reuse in terms of rework effort. Reuse 
may impact the effort expended to isolate and 
correct errors, as the level of understanding of a 
reusable component may be less than that of a 
new component. On the other hand, reusable 
components 
Are the errors typically being introduced or de- 
tected at different phases? 
Knowledge of when the errors are being intro- 
duced and detected enables one to apply verifica- 
tion techniques at the most suitable time. If er- 
rors are being introduced early but are not being 
detected until late, it may be beneficial to more 
closely examine the verification processes and 
introduce techniques that can detect the errors at 
an earlier phase. For example, if a large number 
of errors are being introduced in the design phase, 
adding design inspections to the development 
process may reduce the number of errors impact- 
ing later phases. On the other hand, if most 
errors are being introduced during coding, design 
inspections may not be as cost effective. In this 
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case, one may choose not to inspect design but 
choose to have additional verification effort in 
the coding phase. 

4. Are there different kinds of errors associated 
with reused units? 
Basili and Selby (1987) found that the effective- 
ness of error detection techniques varies with the 
type of fault encountered. For example, code 
reading was found to be the most effective tech- 
nique for isolating interface errors, while func- 
tional testing was found to be more effective at 
finding logic errors. As such, a priori knowledge 
of the distribution of the type of errors allows one 
to select verification techniques most appropriate 
for that distribution. Suppose two thirds of the 
errors are interface errors, and one third logic 
errors. In this case, we would want to be sure to 
use techniques that are effective in finding inter- 
face errors. Given a limited budget for verifica- 
tion and validation, we may choose to expand 
more resources in code reading and fewer in 
functional testing. On the other hand, if a differ- 
ent project is much more likely to have logic 
errors than interface errors, it may be more ef- 
fective to focus the verification activities on struc- 
tural testing. 

3.2 Data Collected 

Several types of data were used in our analyses. The 
first type of data has to do with the origin of a 
component-whether it was newly created or reused. 
At the time of component creation, a form was filled 
out by the developer, indicating the origin of the 
component-whether it was to be created new, 
reused from another component with extensive mod- 
ification (more than 25% changed), reused with slight 
modification (less than 25% changed), or reused 
verbatim (without change). Table 2 provides a sum- 
mary of the number of components and source 
statements in each category of component origin. A 
larger amount of source code was created in the new 
and reused verbatim categories than in either of the 
categories of reuse with modification. 

Table 2. Profile of Each Class of Component Origin 

Component No. 
Origin Camp. 

New 1095 
Extensively Modified 152 
Slightly Modtied 517 
Reused Verbatim 1495 
All Components 3259 

Pet. 
KSTMT KSTMT 

44.2 36.5 
8.8 7.2 

21.6 17.8 
46.6 38.5 

121.2 100.0 

The SEL uses “Change Report Forms” to collect 
data on changes to components for various reasons, 
such as error corrections, requirements changes, and 
planned enhancements. In this analysis, we exam- 
ined the changes made to correct errors. For each 
reported error, the form identifies the modules that 
needed to be changed, the source of error, (require- 
ments, functional specification, design, code, or pre- 
vious change), the type of error (initialization, com- 
putational, data value, logic, internal interface, or 
external interface), and whether or not the error was 
one of omission (something was not done) or com- 
mission (something was done incorrectly). 

Finally, we analyzed the systems with a source 
code static analysis tool, ASAP, which provided us 
with a static profile of each compilation unit, includ- 
ing, for example, basic complexity measures such as 
McCabe’s Cyclomatic Complexity and Halstead’s 
Software Science, as well as counts of various types 
of declarations and statement usage (Doubleday, 
1987). ASAP also identifies all with statements, so 
we were able to develop measures of the external 
declarations visible to each unit. 

4. RESULTS OF THE ANALYSIS 

This section presents the major findings from our 
analysis. We investigated the similarities and differ- 
ences among the classes of component origin in 
terms of the nature and impact of the errors in each 
class. Various statistical methods were used to de- 
termine the significance of these differences. Struc- 
tural characteristics of the components are discussed 
in 4.1, and the remaining sections describe findings 
associated with the various dimensions of errors. 

4.1 Structural Characteristics 

Table 3 shows a collection of measures that charac- 
terize the structure of compilation units by class of 
reuse. Only compilation units that are subprogram 
bodies were considered, so as not to bias the results 
with characteristics of instantiations or package 
specifications. The average number of Ada state- 

Table 3. Structural Characteristics of Subprogram Bodies 

Component 
Origin 

Ave. No. Ave. No. Ave. No 
Statements Parameters Withs 

New 45.8 2.1 3.5 
Extensively Modified 59.9 2.1 7.5 
Slightly Modified 41.6 1.9 4.0 
Reused Verbatim 24.5 2.8 1.1 
All Components 36.8 2.3 2.7 
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ments provides an indication of the typical size of a 
component. The number of parameters is a rough 
measure of the generality of a component. The 
number of context couples (i.e., the number of “with” 
statements) provides an indication of the external 
dependencies of a particular unit. 

Since the statement count, number of withs, and 
number of parameters are not normally distributed 
(rather, they are non-negative, integer valued vari- 
ables), nonparametric tests are appropriate to ex- 
amine differences across the classes of component 
origin (Gardner and Altman, 1989). As we were 
investigating differences between classes of origin, 
we performed the analysis in a pairwise manner. The 
Mann-Whitney U is a nonparametric version of the 
two-group unpaired t-test and can be used to test 
the null hypothesis of independence between the 
structural characteristic (e.g., component size) and 
the grouping variable (e.g., component origin) 
(Gardner and Altman, 1989). For each pair of ori- 
gins, we used the Mann-Whitney U statistic to test 
the null hypotheses that the parameterization, con- 
text coupling and external dependencies are inde- 
pendent of the two categories of origin. 

Table 4 provides a summary of the results of the 
statistical analysis, showing the p-value from the 
Mann-Whitney U test for each pair of component 
origins. The p-value indicates the probability that 
the observed difference between the classes is due 
to chance. In terms of size and external dependen- 
cies, there is a significant difference between the 
reused verbatim components and all other classes, as 
they are smaller in size (fewer source statements) 
and external dependencies (fewer with statements). 
The reused verbatim units average 24.5 statements 
and 1.1 withs per unit, while the new units average 
45.8 statements and 3.4 withs per unit. The exten- 
sively modified units tend to be the most complex, 
both in terms of their size and external dependen- 
cies, as they average 59.9 statements and 7.5 withs 
per unit. The p-values of less than 0.01 indicates that 
there is less than 1% probability that the differences 

Table 4. Comparison of Structural Characteristics by 
Class of Component Origin 

P-Values* from Comparison 0E 

Statements Parameters Withs 

New-Ext. Mod. < BOO1 .5533 .0250 
New-S&. Mod. .x09 < .OOOl .4073 
New-Verbatim < .OOOl < .oool < .OOOl 
Ext. Mod.-%. Mod. < .0001 .0411 .0172 
Ext. Mod-Verbatim < .OoOl .0004 < .OOOl 
Slt. Mod-Verbatim < .OOOl .0535 < .oool 

* P-Values were obtained from a Mann-Whitney U Test 

are due to chance. These results are similar to what 
was reported by Selby (1988) in his analysis of reuse 
in a collection of FORTRAN systems. He also found 
that the slightly modified and verbatim components 
tend to be simpler than newly created components 
in terms of size and interaction with other modules, 
while those with major revisions tend to be more 
complex. 

We did note one result that is in contrast to 
Selby’s study. He reported that the verbatim reused 
modules tend to have a smaller interface than newly 
created units. We observed the opposite-that the 
verbatim reused modules tend to have more param- 
eters than either the modified or new components. 
The verbatim reused components averaged 2.8 pa- 
rameters per unit, versus 1.9 to 2.1 in the new and 
modified components, and the p-values indicate that 
these differences are significant. Units that are well 
parametrized have an increased generality that may 
allow them to be more readily integrated into new 
applications. As such, we should see a greater num- 
ber of parameters in the unchanged modules. This 
result may be indicative of the approach being taken 
to reuse in the environment. As previously noted, 
the Ada approach in this environment was based on 
the use of well-parameterized generics, while the 
FORTRAN approach was based on libraries of more 
specialized functions (Bailey et al., 1993). As such, 
we might expect a lower level of parameterization in 
reused FORTRAN modules. Another reason for the 
difference from Selby’s study may be that his mea- 
sure of a module’s interface is a sum of counts of 
the parameters and global references in the module. 
In the FORTRAN modules that he examined, this 
sum is likely to be dominated by the count of global 
references; as such, the variation in the count of 
subprogram parameters among the classes of reuse 
can not be observed. 

Table 5 shows the profile of the reused compo- 
nents over time, as the projects are listed in chrono- 
logical order of their development start date. We see 
an increasing complexity (expressed both in terms of 

Table 5. Structural Characteristics in Verbatim Reused 
Components as Reuse Increases 

Project 
Ave. No. 

Statements 
Ave. No. 

Withs 
Ave. No. 
Params. 

A 15 0.3 1.9 
B 14 0.2 1.8 
C 14 0.2 1.8 
D 18 0.9 2.7 
E 31 1.1 3.0 
F 26 1.2 2.1 
G 26 1.5 3.1 
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module size and external dependencies) in the reused 
components. Also, we see a rise in the number of 
parameters per subprogram in the verbatim units, 
suggesting an increasing generality among them. Low 
level utility functions were the first to be reused, but 
as the organization gained reuse experience, more 
and more complex units were reused as well. Thus, 
while utility functions may be among the best com- 
ponents to initially stock a repository, a reuse pro- 
cess is not limited to them. As this organization 
gained experience, more and more complex units at 
higher levels of the application hierarchy were 
reused. 

4.2 Error Density 

Table 6 shows the error and defect densities (er- 
rors/defects per thousand source statements) ob- 
served in each of the four classes of component 
origin. We use error to refer to a change report in 
which the reason for the change was attributed to an 
error correction. A change report can list several 
components as requiring correction due to a single 
error. We refer each instance of a component re- 
quiring modification due to an error as a defect. As 
such, there can be several defects associated with a 
single error. Two measures of error and defect den- 
sity are shown-the first (labeled “Error Density” 
and “Defect Density”) includes all errors or defects 
from unit test through acceptance test, while the 
second (labeled “S/A Err. Density” and “S/A Def. 
Density”) only includes those detected in system and 
acceptance (S/A) test. The first measure can pro- 
vide an indication of the total density of defects and 
errors, while the second shows the density that is 
occurring late in the development life cycle. 

There is a clear benefit from reuse in terms of 
reduced error density when the reuse is verbatim or 
via slight modification. However, reuse through slight 
modification only shows about a 59% reduction in 
total error density, while verbatim reuse results in 
more than a 90% reduction compared to newly 
developed code. When we only look at the errors 
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that are encountered during the system and accep- 
tance test phases, we still see a greater than 90% 
reduction in defect density in the reused verbatim 
class (0.7 errors per KSLOC, compared to 8.4 errors 
per KSLOC, in the new components). The slightly 
modified components, with 2.5 errors per KSLOC, 
show a reduction of nearly 70% compared to the 
new components, with 8.4 errors per KSLOC. In 
terms of error density, reuse via extensive modifica- 
tion appears to yield no advantage over new code 
development. Verbatim reuse clearly provides the 
most significant benefit to the development process 
in terms of reducing error density, but reuse via 
slight modification also provides a substantial im- 
provement, one which is even more noticeable later 
in the development process. 

We used the Mann-Whitney U test to obtain a 
statistical comparison of component defect density 
by class of component origin. We tested, for each 
pair of component origin classes, the null hypothesis 
that there was no significant difference in error 
density between the classes. A summary of the re- 
sults is shown in Table 7. This comparison shows a 
significantly lower error and defect density among 
the reused verbatim components compared to each 
of the other classes. The slightly modified compo- 
nents also show significantly lower defect density 
than the new and extensively modified components. 
No significant difference was observed between new 
and extensively modified components. 

One question that may arise is whether the dif- 
ferences in component sixes in the different classes 
of component origins has an effect on the error 
density. A number of studies have reported higher 
defect/error densities in smaller components than 
in larger components (Basili and Perricone, 1984; 
Shen et al., 1985; Lind and Vairavan, 1989; Miiller 
and Paulish, 1993). One explanation for the higher 
error density in the small components is that a 
system composed of small components will have 
more interfaces than a system composed of large 
components; and interfaces are often noted as a 
major source of error in development. We observed 

Table 6. Error and Defect Densities in Each Class of Component Origin 

Component No. 
Origin Comp. 

New 1095 
Extensively Modified 152 
Slightly Modified 517 
Reused Verbatim 1495 
All Components 3259 

KSTMT 

44.2 
8.8 

21.6 
46.6 

121.2 

Defect Error 
Density Density 

24.8 13.0 
19.5 14.0 
10.5 7.4 
2.1 1.2 

13.1 7.6 

S/A Err. 
Density 

8.4 
8.9 
Fz 

4:4 

S/ADef. 
Density 

18.5 
13.4 
5.7 
1.5 
9.3 
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Table 7. Comparison of Defect Density by Class of Component Origin 

Component Origins 

New vs Ext. Mod 
New vs Sk. Mod. 
New vs Verbatim 
Ext. Mod. vs Slt. Mod. 
Ext. Mod. vs Verbatim 
Slt. Mod. vs Verbatim 

Defect 
Density 

.5573 
< .ooo1 
< .c001 
< .ooo1 
< .oool 
< .oool 

P-Values* from Comparison 0E 

Error S/A Def. 
Density Density 

.0982 .8168 
< .oool < .oool 
< .oool < .uool 
< .oool < .ooo1 
< .ooo1 < .ooo1 
< .oool < .ooo1 

S/A Err. 
Density 

.1839 
< .ooo1 
< .oool 
< .Oool 
< .ooo1 
< .ooo1 

* P-Values were obtained from a Mann-Whitney U Test 

a similar effect of higher defect densities in the 
smaller components of these projects. Table 8 shows 
the defect densities found in small components (25 
or fewer statements) and large components (more 
than 25 statements), and the p-values from Mann- 
Whitney U tests for the comparison of defect den- 
sity by component size (i.e., small vs large). We see 
that smaller components tend to have higher defect 
densities, and the p-values indicate that the result is 
significant. The exception is the class of the verbatim 
components, where the defect densities are quite 
low for both small and large components. 

Since the verbatim and slightly modified compo 
nents are smaller than the new and extensively mod- 
ified components, we would expect that their smaller 
size would lead to an increased error density, as 
opposed to the smaller densities that we observed. 
As such, we concluded that the lower rates of defect 
density in the verbatim and slightly modified classes 
do not result from their smaller sizes. 

4.3 Error Isolation/Completion Difficulty 

Basili and Perricone (1984) in their study of a FOR- 
TRAN development project, reported that modified 
components typically required more correction ef- 
fort than new components. We see a similar result in 
the two classes of modified components, and also see 

the same pattern occurring in the reused verbatim 
components. The SEL’s change report forms provide 
categorical data on the effort to isolate and com- 
plete each error correction, with the categories de- 
fined as less than 1 hour, 1 hour to 1 day, 1 to 3 
days, and more than 3 days. Table 9 shows the 
percentage of errors in each class of reuse that were 
categorized in the top two classes, i.e., requiring 
more than one day to isolate (labeled “Pet. Diff. 
Isol.“) and more than one day complete (labeled 
“Pet. Diff. Camp.“). The last column of this table 
shows the relative rework effort, a computed approx- 
imation of relative effort (staff-hours per KSTMT) 
in isolating and correcting errors. 

We do not see much variation in the effort to 
isolate an error, as the percentage of difficult-to- 
isolate errors ranges from 12.4% for new compo- 
nents to 14.5% for the extensively modified compo- 
nents. However, we do see a greater difference in 
the difficult-to-complete errors. The reused verbatim 
components had the highest percentage of errors 
requiring more than one day to complete an error 
correction, and the new components had the lowest 
percentage, while the modified components fell in 
between. One explanation for this effect is that the 
developers have a greater familiarity with the newly 
created components, so less time is needed to un- 

derstand the components that must be changed. 
Another explanation is that the majority of the 

Table 8. Relationship of Defect Density and Component Size 

Component Small Large 
P-Value* 

Origin No. Comp. Def. Dens. No. Comp. Def. Dens. Small vs Large 

New 638 49.8 457 19.8 .ooo3 
Extensively Modified 67 35.7 85 17.7 
Slightly Modified 283 26.5 234 7.4 :ZZ 
Reused Verbatim 952 2.3 543 2.0 .1982 
All Components 1940 22.6 1319 10.9 < .oool 

* P-Values were obtained from a Mann-Whitney U Test 
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Table 9. Difficulty in Error Isolation/Correction 

Component 
Origin 

Rel. 
No. Pet. Diff. Pet. Diff. Rework 

Errors. Isolation Completion Effort 

New 574 12.4 10.1 118.3 
Extensively 124 14.5 17.7 157.4 

Modified 
Slightly Modified 160 13.8 13.1 76.8 
Reused Verbatim 58 14.3 22.4 14.7 
All Components 916 13.2 12.6 73.9 

“easy” errors had previously been removed from the 
reused component, leaving only the more difficult 
ones. 

To test whether the differences in the effort distri- 
butions were significant, we used a chi-square test, 
since both measures (component origin and effort) 
are categorical (Gardner and Altman, 1989). As with 
the previous analyses, we used the test in a pair-wise 
manner, to test (for each pair of origins) the null 
hypothesis of independence between component ori- 
gin and error isolation/correction effort. The results 
of this analysis are summarized in the second and 
third columns of Table 10, which shows the p-values 
from the chi-square test, indicating the probability 
that the differences between classes of component 
origin in the distribution of isolation and completion 
effort are due to chance. 

We do see significant differences in the effort 
distributions between classes of component origins. 
In terms of isolation effort, all pairs showed a signif- 
icant difference, except for the pair of new and 
slightly modified components. For the effort to com- 
plete an error correction, all pairs showed a signifi- 
cant difference, except for the pair of new and 
extensively modified components. 

To determine whether the increased error correc- 
tion cost in the reused components outweighs bene- 
fit of their having fewer errors, we computed a rough 
measure of the amount of error rework expended in 

Table 10. Comparison of Error 
Isolation/Correction Effort 

P-Values from Comparison 0E 

Isolation* Completion* Rel. Rework** 
Effort Effort Effort 

New-Ext. Mod. < .oool .5533 .9421 
New-Sit. Mod. .5609 < .ooo1 < .oool 
New-Verbatim < .oool < .oool < .oool 
Ext. Mod.-Sit. Mod. < .CKlOl .0411 < .oool 
Ext.-Mod. Verbatim < .OOOl .ooo4 < .oool 
Slt. Mod.-Verbatim < .oool .0535 < .ooo1 

* P-Values were obtained from a Chi Square Test 
** P-Values were obtained from a Mann-Whitney U Test 

each class. Unfortunately, our data for effort spent 
in error correction and isolation is categorical, so we 
approximated the true effort simply by the midpoint 
of the category (CL). Rework effort was then com- 
puted as the sum of this approximation over all 
errors. Our relative rework effort measure (RR) was 
computed by dividing rework effort by the number 
of statements (S), i.e., 

s . 

Again, we used the Mann-Whitney U test to de- 
termine whether there is a significant difference in 
the relative rework effort among the four classes of 
component origin. As shown in the last column of 
Table 10, the tests found significant differences be- 
tween the classes with one exception-there is not a 
significant difference in relative rework effort be- 
tween new and extensively modified components. 
For all other pairs, the result was significant at the 
0.01 level. As shown in Table 9, reuse via slight 
modification shows a 35% reduction in rework cost 
over newly created components, while verbatim reuse 
provides an 88% reduction. For these modes of 
reuse, the benefit of fewer errors clearly outweighs 
the cost of more difficult error correction. This 
measure of benefit is somewhat conservative, as it 
does not account for the expected reduction in com- 
ponent creation cost, or for the impact of errors as 
“obstacles” in the development process (e.g., the 
cost of delays due to effort spent correcting errors). 
As such, we expect these modes of reuse to yield an 
even greater improvement over new development. 
This shows that there is a shift in costs of reuse 
compared to traditional development, with the 
reuse-oriented development showing less develop 
ment effort and fewer, but more costly, errors. 

4.4 Source of Errors 

Understanding the activity in which the error is 
introduced allows for corrective action to be applied 
at the appropriate time. The SEL change report 
forms indicate the “source” of the error, which can 
be requirements, functional specification, design, 
code, or a previous change. Table 11 shows, for each 
class of component origin, the percentage of errors 
from each error source (where the error was intro- 
duced). Across all classes, “code” is the most com- 
mon error source; however, there do appear to be 
some differences. 

One result that appears interesting is that errors 
associated with requirements and functional speci- 
fication occur at a slightly higher rate in new compo- 
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Table 11. Percentage of Errors in Each Class of 
Error Source 

Component Rqmts. or Previous Any 
Origin Fun. Spec. Design Code Change Error 

New 
Extensively 

Modified 
Slightly Modified 
Reused Verbatim 
All Components 

7.3 16.8 68.1 7.8 100 
5.6 20.2 59.7 14.5 100 

4.4 26.9 60.1 10.6 100 
3.4 3.4 74.1 19.0 100 
5.7 18.2 66.1 10.0 100 

nents than in reused components. The Basili-Per- 
ricone (1984) study reported the opposite effect of 
reuse on the specification errors. They found that 
modified modules had a higher proportion of speci- 
fication errors than did the new modules and ex- 
plained the result by suggesting that the specifica- 
tion was not well enough or appropriately defined to 
be used in different contexts. A similar result was 
reported by Endres (1975). A difference from the 
environments examined in those studies is that reuse 
has been well planned for in the SEL environment. 
The organization is not structured as a pure “com- 
ponent factory” as described in Section 3, but it is 
moving in this direction. As such, the architecture, 
design, and specifications have improved in this envi- 
ronment to better allow and encourage reuse. This 
result suggests that the reused functionality is more 
likely to be well specified. This is not surprising, 
since the reused components have been specified 
previously, with the expectation that they would be 
reused. As such, any specification errors are more 
likely to affect new rather than reused components. 
The result also indicates that reuse, whether formal 
or informal, is occurring in this environment at a 
higher level than simply code. 

The verbatim components have the highest per- 
centage of errors associated with a “previous 
change” (nearly 20%, which is an increase over the 8 
to 14% observed in the other classes.) This may be 
due to the fact that the previous uses of these 
components have already found most of their errors, 
and thus, the increased rate of error “reintroduc- 
tion” may be explained more as a decrease in the 
other types of errors. 

Another item of interest is the increased percent- 
age of design errors in the modified components. 
We see a different effect in the verbatim compo- 
nents, where almost all errors have their source as 
being “code” or a “previous change.” These results 

suggest that there is increased difficulty in designing 
an adaptation of an existing component to a new 
role. This is more difficult because the reuser must 
be concerned with two pieces of information: the 

intended function and the existing function. In creat- 
ing a new component, one only needs to be con- 
cerned with the intended function, and for a verba- 
tim component, with the existing function. For the 
modified components, a misunderstanding of the 
existing function can result in an error in the com- 
ponent modification, and that error is likely to be 
attributed to the design of the modification. 

The statistical comparison between classes of 
component origins of the distribution of errors across 
error sources is shown in Table 12. Again, a chi- 
square test was used to test the null hypothesis that 
there was no significant difference in the distribu- 
tion of error sources across component origins. We 
see no significant differences between new and ex- 
tensively modified components, or between exten- 
sively and slightly modified components. The dif- 
ferences between all other pairs are statistically 
significant. These results support the observations of 
increased design errors in modified components, in- 
creased requirements and specification errors in new 
components, and increased errors due to a previous 
change in the unchanged components. 

4.5 Time of Error Detection 

Errors detected late in the development life cycle 
can have a much greater cost than those detected 
early. Table 13 shows, by class of component origin, 
the percentage of errors that “escape” unit test, and 
are detected in the system or acceptance test phases. 
Clearly, low rates of error slippage are desired. 
Three columns of error slippage rates are shown, 
with the first showing the rate for all development 
errors (“Pet. All Errors”), and the second and third 
columns showing the rates for the errors that were 
more difficult to isolate and complete (“Pet Diff. 
Isolation” and “Pet Diff. Completion”, resp.) The 
difficult errors escape at an increased rate, support- 
ing the notion of a tendency towards higher costs 
associated with errors late in the life cycle. 

Table 12. Comparison of Error Source by Class of Reuse 

P-Values* from 
Component comparison of 

origins error sources 

New---E?& Mod. .2126 
New-Slt. Mod. .0036 
New-Verbatim .0073 
Ext. Mod.-Sk. Mod. .1476 
Ext. Mod.-Verbatim .0223 
Sk. Mod.-Verbatim .0013 

*P-Values were obtained from a Chi-Square Test 
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Table 13. Percentage of Errors That Escape Unit Test 

Component Pet. All Pet. Diff. Pet. Diff. 
Origin Errors. Isolation Completion 

New 69 86 80 
Extensively Modified 66 81 87 
Slightly Modified 43 74 58 
Reused Verbatim 62 100 100 
All Components 64 84 78 

Across all errors, we see little difference between 
the classes of new, extensively modified, and reused 
verbatim components, as nearly two thirds of the 
errors in these classes escaped unit test. This is 
significantly higher than what we observe in the 
slightly modified components, where only 43% es- 
caped unit test. It appears that the nature of the 
changes being made to these components lend 
themselves well to detection by unit-level verifica- 
tion processes. 

Of the errors which required the greatest isolation 
effort (those taking more than one day to isolate), 
there is not much difference among the classes-a 
relative high percentage of these errors escape in all 
classes, and we saw no significant differences across 
the origins. There is a significant reduction in the 
slightly modified class compared to the other modes 
of reuse, in the percentage of difficult-to-complete 
errors that escape unit test, as only 58% of these 
errors escape unit test, compared to 87% and 100% 
in the extensively modified and verbatim classes. 
This suggests that the verification process is more 
effective in the early elimination of difficult errors 
for the slightly modified components than for other 
modes of reuse. 

A summary of the chi-square test comparing the 
error slippage across component origins is shown in 
Table 14, with the columns showing a breakout of all 
errors, the difficult isolation errors (more than 1 day 
of isolation effort), and the difficult completion er- 
rors (more than 1 day of completion effort). The 
results that are significant with p-values of less than 

Table 14. Comparison of Defect Slippage 

P-Value* for Comparison of: 

All Difficult Difficult 
Component Origins Errors Isolation Completion 

New-Ext. Mod. .8303 .472a 
New-Sit. Mod. < 0001 A756 
New-Verbatim .4561 .3166 
Ext. Mod.-Sit. Mod. .0003 .1302 
Ext. Mod.-Verbatim .6149 .4966 
Sit. Mod.-Verbatim .0199 .13% 

l P-Values were obtained from a Chi Square Test 

.3620 

.1243 

.1063 

.0508 

.2629 
,019s 

.lO involve the slightly modified components, sup- 
porting the observation of a significantly lower error 
slippage rate in the slightly modified components. 

4.6 Type of Errors 

The SEL also categorizes errors by their type, with 
the categories being logic, computational, internal 
interface, external interface, data/value, and initial- 
ization. We grouped these into three classes as fol- 
lows: procedural errors are those that were classified 
as either a computational or a logic error; interface 
errors are those that were classified as either an 
internal or external interface error; and data errors 
are those that were classified as either an initializa- 
tion or a data value error. Table 15 shows the 
percentage of errors that were classified in each of 
the three classes: procedural, interface, and data. 
Again, a chi-square test was used to test whether the 
differences in the distribution of error types were 
significant across classes of component origins. The 
results of this test are summarized in Table 16. 

We see a significant difference in the distribution 
of error types in the slightly modified components, 
as they have a much higher frequency of interface 
errors than any other class. This suggests that the 
nature of the modifications is likely to be associated 
with the interface. We also see that the new compo- 
nents are more likely to have data errors than the 
reused components. However, the p-values from the 
comparison of the new vs verbatim and new vs 
extensively modified classes indicate that the differ- 
ences may not be significant. Basili and Perricone 
(1984) found the opposite effect, namely, that the 
modified components had a greater percentage of 
data errors than did the new components. Our re- 
sults suggest that a different approach has been 
taken toward reuse. In the FORTRAN project stud- 
ied by Basili and Perricone, the approach may have 
been to tailor data values and initialization to adapt 
the component to the new application. The ap- 
proach taken in the Ada environment is to create 

Table 15. Percent of Errors of Each Type by Class of 
Component Origin 

Component 
Origin Procedural Interface Data All 

New 41.2 14.1 44.6 100 
Extensively Modified 47.6 17.7 34.7 ioo 
Slightly Modified 31.8 31.2 36.9 100 
Reused Verbatim 48.2 12.1 39.7 100 
All Components 40.9 17.5 41.6 100 
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Table 16. Comparison of Error Type by Class of Reuse remains an issue for further study. 

Component Origins 

New--E?& Mod. 
New-Slt. Mod. 
New-Verbatim 

P-Value* for 
comparison of error type 

A221 
< .ooo1 

~5878 
Ext. Mod.-Sk. Mod. 
Ext. Mod.-Verbatim 
Slt. Mod.-Verbatim 

.0084 
S850 
.0099 

’ P-Values were obtained from a Chi-Square Test 

generalized modules that can be parameterized to 
create instances suitable for the new application. As 
such, one might expect fewer data errors in reused 
components in the Ada environment. 

5. CONCLUSIONS 

In this analysis, we observed clear benefits from 
reuse-for example, reduced error density. We 
found that verbatim reuse provides a substantial 
improvement in error density (more than a 90% 
reduction) compared to new development. The other 
modes of reuse did not approach this level of im- 
provement. Reuse via slight modification offered a 
50% reduction in error density compared to new 
development, but the improvement with this mode 
of reuse was greater in errors detected late in devel- 
opment (a 70% reduction). 

We observed a shift in costs of reuse-oriented 
development, with the reuse offering fewer, but more 
difficult errors. The effect of increased difficulty in 
error correction was apparent across the three modes 
of reuse, although it was less evident in the slightly 
modified components. In both the verbatim and 
slightly modified classes of reuse, the relative amount 
of rework was less than in new code. This suggests 
that while there is a cost of increased correction 
effort per error associated with such reuse, the cost 
is outweighed by the benefit of the reduced number 
of errors. Coupled with the reduction in develop 
ment effort, these modes of reuse appear to offer a 
substantial benefit to development. 

Reuse via extensive modification does not provide 
the reduction in error density that the other modes 
of reuse yield, and it also results in errors that 
typically were more difficult to isolate and correct 
than the errors in newly developed code. In terms of 
the rework due to the errors in these components, it 
appears that this mode of development is more 
costly than new development. However, extensive 
modification may offer savings in development effort 
that outweigh the increased cost of rework. This 

A different profile of errors was observed for 
different modes of reuse. For example, a greater 
percentage of design errors was observed in the 
modified components. The observed increase in de- 
sign errors may be due to errors in the additional 
activities of understanding the function and imple- 
mentation of the component to be modified, as well 
as due to the fact that less code was being written. 
Such information can be used to help in selecting 
appropriate verification methods for projects where 
there is significant reuse via modification. One may 
want to increase the effort in design reviews on such 
projects, while on projects dominated by new devel- 
opment, code reviews may receive more emphasis. 
This finding also suggests that one might want to 
investigate techniques to better describe the compo- 
nents stored in the experience base so that the 
likelihood of a misunderstanding of the function and 
implementation is lessened. 

The experience with reuse in an organization and 
the approach taken toward reuse are likely to influ- 
ence the nature of errors. In this study of an organi- 
zation well experienced with reuse, we observe a 
number of effects that differed with findings from 
other studies of environments where reuse was more 
ad hoc. The reused components appear to be sim- 
pler, have fewer dependencies, and be more parame- 
terized than new components. However, as this or- 
ganization gained reuse experience, the distinction 
became less apparent-more and more complex com- 
ponents, at higher levels in the application hierarchy 
were reused. As an organization moves toward a 
reuse-oriented development approach, it must evolve 
its practices to accommodate the new effects of 
reuse. Error analysis is a useful mechanism to pro- 
vide insight into the benefits and difficulties of reuse 
in software development. 
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