
An Analysis of Errors in a Reuse-Oriented
Development Environment

William M. Thomas
Depamnent of Computer Science, University of Maryiarui, College Park Maryland

Alex Delis
Department of Computer and Information Science, Polytechnic Universiry BrooWyn New York

Victor R. Basili
Department of Computer Science, Uniuersity of Maryland, College Park, Maryland

Component reuse is widely considered vital for obtain-
ing significant improvement in development productiv-
ity. However, as an organization adopts a reuse-
oriented development process, the nature of the
problems in development is likely to change. In this
article, we use a measurement-based approach to
better understand and evaluate an evolving reuse pro-
cess. More specifically, we study the effects of reuse
across seven projects in narrow domain from a single
development organization. An analysis of the errors
that occur in new and reused components across all
phases of system development provides insight into
the factors influencing the reuse process. We found
significant differences between errors associated with
new and various types of reused components in terms
of the types of errors committed. In addition, we iden-
tified differences when errors are introduced and the
effect that the errors have on the development pro-
cess. 0 1997 Elsevier Science Inc.

1. INTRODUCTION

Reuse has been advocated as a technique with great
potential to increase software development produc-
tivity, reduce development cycle time, and improve
product quality (Agresti and McGarry, 1987; Brooks,
1987; Boehm and Papaccio, 1988). However, reuse

Addtess conespondence to Ptvf Vitor R Badi, Department of
Compurer Science, U&e&y of Maryland, College Pa&, MD 20742.

will not just happen; rather, components must be
designed for reuse, and organizational elements must
be in place to enable projects to take advantage of
the reusable artifacts.

Basili and Rombach (1991) present a framework
of comprehensive support for reuse, including orga-
nizational and methodological properties necessary
to maximize the benefit of reuse. For reuse to attain
a significant role in an environment, organizational
changes must be made to facilitate the change in
development style. Maintaining a library of reusable
parts may require resources, including personnel,
hardware, and software. While increasing the amount
of reuse in an environment may reduce certain
development activities (e.g., code creation), it will
also require additional effort in other activities (e.g.,
searching for components). With respect to product
quality, it is also clear that “reused” does not imply
“defect-free”. An investigation into the benefits of
reuse in the NASA Goddard Space Flight Center
(NASA/GSFO showed that even among compo-
nents that were intended to be reused verbatim,
while their error rate was an order of magnitude
lower than newly created code, the error rate is still
significant (Thomas et al., 1992). By analyzing the
nature of the defects in the reuse process, one can
tailor the process appropriately to best achieve the
organization’s goals.

There have been several studies into techniques
to stock an initial reuSe library (Caldiera and Basili,
1991; Dunn and Knight, 1993). One factor to be

J. SYSTEMS SOFTWARE 1997; 38:211-224
0 1997 Ekvier Science Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

0164-1212/97/317.00
PII SOW-1212(%x)0152-5

212 J. SYSTEMS SOFlWARE
1997; 38:211-224

W. M. Thomas et al.

considered is the structure of the candidate reusable
component. Selby (1988) investigated various charac-
teristics of new versus reused code in a large collec-
tion of FORTRAN projects. Basili and Pericone
analyzed tradeoffs between creating a component
from scratch versus modifying an existing compo-
nent (Basili and Perricone, 1984). In this article, we
extend these studies by investigating the nature of
errors occurring in a reuse-oriented development
environment, and drawing conclusions about their
impact in such an environment. In particular, we
analyzed a collection of eight medium-scale Ada
projects developed over a five-year period in the
NASA/GSFC with respect to the defects found in
newly developed and reused components. The goal
of the study was to learn about the nature of prob-
lems associated with reuse-oriented software devel-
opment, thereby allowing for improvement of the
reuse process. We found significant differences be-
tween errors associated with new and with various
types of reused components in terms of when errors
are being introduced, the effect that they have on
the development process, and the type of error being
committed. We also found a number of similarities
and differences with the findings of other investiga-
tions into component reuse.

This article is organized as follows. Section 2
provides a brief overview of reuse-oriented software
development, while Section 3 gives background about
using error analysis for process improvement. Sec-
tion 4 describes the goals of the study and the data
analyzed. The findings from our analysis are pre-
sented in Section 5, and Section 6 summarizes and
identifies the major conclusions.

2. REUSE-ORIENTED SOFTWARE
DEVELOPMENT

Reuse has been cited as a technology with the
potential to provide a significant increase in software
development productivity and quality. For example,
Jones (1984) estimates that only 15% of the devel-
oped software is unique to the applications for which
it was developed. Reduced development cost is not
the only benefit of reuse-in fact, the greatest bene-
fit from reuse may be its impact on maintenance
(Lanergan and Grassol, 1984; Rombach, 1991). The
potential for substantial savings from reuse clearly
exists. Unfortunately, achieving high levels of reuse
still remains an elusive task. A number of issues
must be addressed to effectively increased the level
of reuse in an organization, including the forms of
reuse, and language and organizational support to
encourage reuse.

2.1 Types of Reuse

In this study, we examined three modes of reuse:

l verbatim reuse, in which the component is un-
changed;

l reuse with slight modification, in which the origi-
nal component is slightly tailored for the new
application;

l reuse with extensive modification, in which the
original component is extensively altered for the
new application.

While there is a clear distinction between verbatim
reuse and reuse via modification, distinguishing be-
tween slight modification and extensive modification
is a more subjective matter. Our intent is to distin-
guish between cases where a component is left es-
sentially intact, but needs a minor change for a new
application, and cases where a component is signifi-
cantly altered for a new use. The three types of
reuse and their expected impact on development are
described in the following paragraphs.

Intuitively, verbatim reuse appears to hold the
greatest benefit to software development. Develop
ment effort is minimized and verification effort is
reduced because the component has previously been
developed, tested, and used. There may be an in-
creased cost in integration effort, as the reused
component may not squarely fit in the new system,
and the developers may not be as familiar with the
reused component as they would be with a custom
component.

Another means of reuse is achieved by slight
modification of an existing component. Here a com-
ponent remains for the most part unchanged but is
adapted slightly for the new application. For exam-
ple, a sort routine may be modified to sort a differ-
ent type of objects. An improvement in terms of
reduced development effort and increased quality is
expected, although perhaps not of the same degree
as in the reused verbatim components. Again, the
integration of modified components may be more
difficult than that of newly created components;
however; because the modified components may be
adapted to better match the application, the integra-
tion may not be as difficult as with the verbatim
reused components. As with verbatim reuse, there
may be new errors introduced in the component
selection process. However, since the developer does
have a greater understanding of the implementation
of the modified component, one is more likely to
detect that error earlier than if the component was
reused verbatim.

An Analysis of Errors J. SY!TlW!dS SOFTWARE 213
1997: B8:21 I-224

Our third category of reuse occurs through exten-
sive modification of an existing component. For ex-
ample, one may want to change the underlying rep-
resentation of a particular type while maintaining
the operations on the type. If the component was
not designed with the representation isolated in the
implementation, this may require changes through-
out the component. Reuse in this manner is likely to
be beneficial only if the component is of a sufficient
size and complexity to justify modification as op-
posed to simply creating a new component from
scratch. Since much of the component is new, in
many ways, this type of reuse may appear similar to
new development. However, there are some impor-
tant distinctions. The number of coded lines is likely
to be reduced relative to newly developed code, so
one might expect a decrease in error density. On the
other hand, the extensive modification activity may
be more error prone than standard component cre-
ation, since the original abstraction is being signifi-
cantly altered. This mode of component creation
may result in more of a “hack” than a well-con-
ceived component. New types of errors may arise,
such as removing too much or not enough of the old
component.

2.2 Language Issues in Software Reuse

The Ada programming language contains a number
of constructs that encourage effective reuse, includ-
ing packages and generics (Ichbiah, 1985; Wolf
et al., 1985; Gargaro and Pappas, 1987; Ebel and
Genillard, 1990). A package is used to group a
collection of declarations, such as types, variables,
procedures, and functions. The package construct
allows for the encapsulation of related entities, en-
couraging the creation of well-defined abstractions
such as encapsulated data types. For example, a
stack package of a particular type can be created,
containing the element type and operations such as
push and pop. Through a simple modification of the
element type, the package can be adapted to support
operation on a different type. This would enable one
to move toward the second type of reuse, tailoring
the component slightly to suit the new application.

Ada’s generic construct provides more support for
verbatim reuse, as it enables the creation of more
abstract entities. A generic program unit is a tem-
plate for a module. Instantiation of the generic
program unit yields a module. The generic units may
be parameterized, i.e., they may require the user to
supply types or operations to create a module. This
provides a great deal of flexibility in their use. For
example, one may parameterize the stack package

such that the user must supply the element type to
create an instance of the stack. The generic stack
can then be used without modification in support of
a number of different types.

High levels of reuse may be achieved in languages
without such features; however, the approach taken
to achieve such reuse will be different. Such differ-
ences were reported in a study comparing FOR-
TRAN and Ada reuse in the NASA/SEL (Bailey
et al., 1993). The Ada approach was to develop a set
of generics that can be instantiated to support a
variety of application types. In contrast, the FOR-
TRAN approach was to develop a collection of
libraries specific to each application type. On pro-
jects within a very narrow domain, both approaches
achieved similar high levels of reuse. However, when
there was a significant change in the domain, the
Ada approach achieved a sizable amount of reuse
(50% verbatim reuse), while the FORTRAN ap-
proach showed less than 10% verbatim reuse (Bailey
et al., 1993). Thus, it would appear that the parame-
terized, generic approach is better suited to develop
ment in a dynamic, evolving domain.

While improved language features may help to
enable reuse, they alone have not resulted in large-
scale reuse in software development. There are other
important factors involved-applications must be
structured to allow and encourage reuse, and soft-
ware organizations must be tailored to support a
reuse-oriented development paradigm.

2.3 Organizational Support for Reuse

One model that integrates reuse into a development
is the “component factory” organization, which is a
dual-organization structure consisting of two parts: a
factory organization and a project organization. The
factory organization provides software components
in response to requests from the various projects
being developed in the project organization (Basili
et al., 1992). Figure 1 illustrates the component
factory concept in support of a project organization.
In this setting, the development organization makes
requests to the component factory to provide com-
ponents to be integrated into the desired product. If
the component factory is effective, the activity of
component creation can be significantly reduced,
and the quality of the components that are delivered
to the integration team can be increased, reducing
the costs of development and of rework. The key
features of the component factory are the resposi-
tory of the components for future reuse, and the
focus on flexibility and continuous improvement.
Thus, a measurement-oriented approach must be

214 J. SYSTEMS SOFTWARE
1997; 38:211-224

W. M. Thomas et al.

Project Organization

II

L-I
Test Reuse

- or Create

Factory Organization

Figure 1. Interaction of a project organization with the component factory.

utilized, such as that proposed in the TAME project
(Basili and Rombach, 19881, which provides an ex-
perimental view of software development, allowing
for analysis and learning about the effectiveness of
the new technologies.

Reuse-oriented development will require some
effort to be expended in activities that are not a part
of traditional software development. For example,
although the component factory will allow the effort
spent in component creation to be reduced, it will
also require additional activity in searching for and
selecting the appropriate component for the particu-
lar application. These new activities may also be a
potential source of errors in the system, and thus, a
source of rework effort. Introducing an activity of
selecting a component from a repository may intro-
duce new types of errors, for example, selecting a
component that does not provide the intended func-
tion. The goal of error analysis is to learn about the
nature of errors in the current environment so that
improvement can be made (e.g., process tailoring) in
subsequent projects, and feedback can be provided
to the current project. In the following sections, we
describe our analysis of errors in an organization
that has placed a significant emphasis on reuse, with
the result that it has recently achieved very high
levels of reuse.

3. DESCRIPTIONS OF THE ANALYSIS

Since its origin, The NASA/GSFC SEL has col-
lected a wealth of data from their software develop
ment @EL, 1994). Selby performed a study on the
characteristics of reused components on a collection

of FORTRAN projects from this environment (Selby,
19881, in which the level of reuse (verbatim and
modified) averaged 32%. Because of the support for
reuse provided by the Ada language, as discussed in
Section 2.2, we chose to analyze the Ada projects in
this environment. A much higher level of reuse than
what was reported in Selby’s study of FORTRAN
projects has been achieved in these Ada projects,
with total reuse (verbatim or with modification) ap-
proaching 100% and verbatim reuse reaching over
90% (Kester, 1990). These high levels of reuse have
been attributed in part to the Ada language con-
structs and object-oriented methods (Kester, 1990;
Bailey et al., 1993; Stark, 1993). More recently, how-
ever, even the FORTRAN system have been show-
ing such high levels of reuse, although the nature of
the reuse is different from reuse in the Ada develop-
ment environment. The Ada approach is centered
on the development of a reuse library containing
generics that can be instantiated with mission-
specific parameters to develop new application. In
contrast, the FORTRAN approach was to develop
separate libraries containing subsystems for certain
mission-specific options, and these subsystems must
be used in an “all or nothing” manner. As such,
when new projects were developed with a major
change to the application domain, the Ada approach
still resulted in a sizeable amount of verbatim reuse
(40%), while the FORTRAN approach saw reuse
drop to less than 10% (Bailey et al., 1993).

We analyzed a collection of seven medium-scale
Ada projects from a specific domain, as all are
stimulators which were developed at the NASA/
GSFC Flight Dynamics Division. An overview of the

An Analysis of Errors

Table 1. Overview of the Examined Projects

Project Pet. Total Pet. Verbatim Effort
ID KSTMT Reuse Reuse (SM)

A 27.1 31 4 175
B 14.4 31 13 85
C 13.7 38 19 72
D 24.8 85 27 117
E 13.8 97 88 30

:
12.8 78 44 73
13.7 loo 89 16

projects examined is provided in Table 1. The pro-
jects ranged in size from 61 to 184 thousand source
lines, or 12.8 to 27.1 thousand Ada statements
(KSTMT). They required development effort of 16
to 175 technical staff months (SM). In these projects,
verbatim reuse ranged from 4-89% of the total
statements, while total reuse (i.e., verbatim and
modification) ranged from 31-100%.

While this environment is not organized along the
lines of the Component Factory discussed in Section
2, it does have some characteristics in common with
that organization. In the SEL, generalized architec-
tures were developed explicitly to facilitate large
scale reuse from project to project (Stark, 19931, so
it is clear that significant effort has been applied
towards the goal of reuse in the organization. As
such, new systems have been developed in accor-
dance with the packaged experience of reusable
architectures, designs, and code. One aspect of the
Component Factory organizations is the separate
organization that produces or releases all reusable
software products (Basili et al., 1992). While this
feature is not present in the SEL, it is apparent that
less effort is being spent on project-specific develop-
ment activities. The percentage of effort spent in the
Coding/Unit Test phase has dropped from 44% on
an early simulator, to only 18% on one of the more
recent simulators (Stark, 1993). This suggests that
there is a significant leveraging of the stored experi-
ence, and as such, the observed effort on the SEL
projects is becoming more in line with the profile
one would expect in the Component Factory’s pro-
ject organization, i.e., dominated by design and test-
ing activities.

3.1 Questions Addressed in the Analysis

Our goal is to develop an understanding of the
differences between traditional development meth-
ods and reuse-oriented methods in terms of the
characteristics of their errors. Increased knowledge
about the types of errors in an environment can be

J. SYSTEMS SOFTWARE 215
1997; 38:211-224

used to optimize the process for that environment.
We developed a set of questions with which to
compare newly created, modified, and reused verba-
tim components:

What is the impact of reuse on error density?
Reuse has been noted as offering the potential
for substantial gains in product quality; however,
the different forms of reuse investigated in this
study are likely to have differing impacts. While
one would expect verbatim reuse to offer dra-
matic reductions in error density, it is not so clear
what should be expected from reuse via mod-
ification. Understanding the differences in the
impact on error density of the various reuse ap-
proaches can allow for improved process opti-
mization based on the expected error density
profile. For example, it can allow for the develop
ment of more accurate models predicting poten-
tially faulty modules in a system. A number of
recent studies have shown that product metrics
can be used to determine the areas in a program
that are at a greater risk of containing a fault
(Selby and Porter, 1988; Agresti and Evanco,
1992; Munson and Khoshgoftaar, 1992; Briand et
al., 1993). Whether and how the component was
reused are also likely to be useful in such models.
Are errors in reused components easier to isolate
or correct?
Determining the difficulty of error corrections
can allow for more accurate allocation of re-
sources and can help to assess the overall effec-
tiveness of reuse in terms of rework effort. Reuse
may impact the effort expended to isolate and
correct errors, as the level of understanding of a
reusable component may be less than that of a
new component. On the other hand, reusable
components
Are the errors typically being introduced or de-
tected at different phases?
Knowledge of when the errors are being intro-
duced and detected enables one to apply verifica-
tion techniques at the most suitable time. If er-
rors are being introduced early but are not being
detected until late, it may be beneficial to more
closely examine the verification processes and
introduce techniques that can detect the errors at
an earlier phase. For example, if a large number
of errors are being introduced in the design phase,
adding design inspections to the development
process may reduce the number of errors impact-
ing later phases. On the other hand, if most
errors are being introduced during coding, design
inspections may not be as cost effective. In this

216 J. SYSTEMS SOFIWARE W. M. Thomas et al.
1997; 38:211-224

case, one may choose not to inspect design but
choose to have additional verification effort in
the coding phase.

4. Are there different kinds of errors associated
with reused units?
Basili and Selby (1987) found that the effective-
ness of error detection techniques varies with the
type of fault encountered. For example, code
reading was found to be the most effective tech-
nique for isolating interface errors, while func-
tional testing was found to be more effective at
finding logic errors. As such, a priori knowledge
of the distribution of the type of errors allows one
to select verification techniques most appropriate
for that distribution. Suppose two thirds of the
errors are interface errors, and one third logic
errors. In this case, we would want to be sure to
use techniques that are effective in finding inter-
face errors. Given a limited budget for verifica-
tion and validation, we may choose to expand
more resources in code reading and fewer in
functional testing. On the other hand, if a differ-
ent project is much more likely to have logic
errors than interface errors, it may be more ef-
fective to focus the verification activities on struc-
tural testing.

3.2 Data Collected

Several types of data were used in our analyses. The
first type of data has to do with the origin of a
component-whether it was newly created or reused.
At the time of component creation, a form was filled
out by the developer, indicating the origin of the
component-whether it was to be created new,
reused from another component with extensive mod-
ification (more than 25% changed), reused with slight
modification (less than 25% changed), or reused
verbatim (without change). Table 2 provides a sum-
mary of the number of components and source
statements in each category of component origin. A
larger amount of source code was created in the new
and reused verbatim categories than in either of the
categories of reuse with modification.

Table 2. Profile of Each Class of Component Origin

Component No.
Origin Camp.

New 1095
Extensively Modified 152
Slightly Modtied 517
Reused Verbatim 1495
All Components 3259

Pet.
KSTMT KSTMT

44.2 36.5
8.8 7.2

21.6 17.8
46.6 38.5

121.2 100.0

The SEL uses “Change Report Forms” to collect
data on changes to components for various reasons,
such as error corrections, requirements changes, and
planned enhancements. In this analysis, we exam-
ined the changes made to correct errors. For each
reported error, the form identifies the modules that
needed to be changed, the source of error, (require-
ments, functional specification, design, code, or pre-
vious change), the type of error (initialization, com-
putational, data value, logic, internal interface, or
external interface), and whether or not the error was
one of omission (something was not done) or com-
mission (something was done incorrectly).

Finally, we analyzed the systems with a source
code static analysis tool, ASAP, which provided us
with a static profile of each compilation unit, includ-
ing, for example, basic complexity measures such as
McCabe’s Cyclomatic Complexity and Halstead’s
Software Science, as well as counts of various types
of declarations and statement usage (Doubleday,
1987). ASAP also identifies all with statements, so
we were able to develop measures of the external
declarations visible to each unit.

4. RESULTS OF THE ANALYSIS

This section presents the major findings from our
analysis. We investigated the similarities and differ-
ences among the classes of component origin in
terms of the nature and impact of the errors in each
class. Various statistical methods were used to de-
termine the significance of these differences. Struc-
tural characteristics of the components are discussed
in 4.1, and the remaining sections describe findings
associated with the various dimensions of errors.

4.1 Structural Characteristics

Table 3 shows a collection of measures that charac-
terize the structure of compilation units by class of
reuse. Only compilation units that are subprogram
bodies were considered, so as not to bias the results
with characteristics of instantiations or package
specifications. The average number of Ada state-

Table 3. Structural Characteristics of Subprogram Bodies

Component
Origin

Ave. No. Ave. No. Ave. No
Statements Parameters Withs

New 45.8 2.1 3.5
Extensively Modified 59.9 2.1 7.5
Slightly Modified 41.6 1.9 4.0
Reused Verbatim 24.5 2.8 1.1
All Components 36.8 2.3 2.7

An Analysis of Errors J. SYSTEMS SOFTWARE 217
1997; 38:X1-224

ments provides an indication of the typical size of a
component. The number of parameters is a rough
measure of the generality of a component. The
number of context couples (i.e., the number of “with”
statements) provides an indication of the external
dependencies of a particular unit.

Since the statement count, number of withs, and
number of parameters are not normally distributed
(rather, they are non-negative, integer valued vari-
ables), nonparametric tests are appropriate to ex-
amine differences across the classes of component
origin (Gardner and Altman, 1989). As we were
investigating differences between classes of origin,
we performed the analysis in a pairwise manner. The
Mann-Whitney U is a nonparametric version of the
two-group unpaired t-test and can be used to test
the null hypothesis of independence between the
structural characteristic (e.g., component size) and
the grouping variable (e.g., component origin)
(Gardner and Altman, 1989). For each pair of ori-
gins, we used the Mann-Whitney U statistic to test
the null hypotheses that the parameterization, con-
text coupling and external dependencies are inde-
pendent of the two categories of origin.

Table 4 provides a summary of the results of the
statistical analysis, showing the p-value from the
Mann-Whitney U test for each pair of component
origins. The p-value indicates the probability that
the observed difference between the classes is due
to chance. In terms of size and external dependen-
cies, there is a significant difference between the
reused verbatim components and all other classes, as
they are smaller in size (fewer source statements)
and external dependencies (fewer with statements).
The reused verbatim units average 24.5 statements
and 1.1 withs per unit, while the new units average
45.8 statements and 3.4 withs per unit. The exten-
sively modified units tend to be the most complex,
both in terms of their size and external dependen-
cies, as they average 59.9 statements and 7.5 withs
per unit. The p-values of less than 0.01 indicates that
there is less than 1% probability that the differences

Table 4. Comparison of Structural Characteristics by
Class of Component Origin

P-Values* from Comparison 0E

Statements Parameters Withs

New-Ext. Mod. < BOO1 .5533 .0250
New-S&. Mod. .x09 < .OOOl .4073
New-Verbatim < .OOOl < .oool < .OOOl
Ext. Mod.-%. Mod. < .0001 .0411 .0172
Ext. Mod-Verbatim < .OoOl .0004 < .OOOl
Slt. Mod-Verbatim < .OOOl .0535 < .oool

* P-Values were obtained from a Mann-Whitney U Test

are due to chance. These results are similar to what
was reported by Selby (1988) in his analysis of reuse
in a collection of FORTRAN systems. He also found
that the slightly modified and verbatim components
tend to be simpler than newly created components
in terms of size and interaction with other modules,
while those with major revisions tend to be more
complex.

We did note one result that is in contrast to
Selby’s study. He reported that the verbatim reused
modules tend to have a smaller interface than newly
created units. We observed the opposite-that the
verbatim reused modules tend to have more param-
eters than either the modified or new components.
The verbatim reused components averaged 2.8 pa-
rameters per unit, versus 1.9 to 2.1 in the new and
modified components, and the p-values indicate that
these differences are significant. Units that are well
parametrized have an increased generality that may
allow them to be more readily integrated into new
applications. As such, we should see a greater num-
ber of parameters in the unchanged modules. This
result may be indicative of the approach being taken
to reuse in the environment. As previously noted,
the Ada approach in this environment was based on
the use of well-parameterized generics, while the
FORTRAN approach was based on libraries of more
specialized functions (Bailey et al., 1993). As such,
we might expect a lower level of parameterization in
reused FORTRAN modules. Another reason for the
difference from Selby’s study may be that his mea-
sure of a module’s interface is a sum of counts of
the parameters and global references in the module.
In the FORTRAN modules that he examined, this
sum is likely to be dominated by the count of global
references; as such, the variation in the count of
subprogram parameters among the classes of reuse
can not be observed.

Table 5 shows the profile of the reused compo-
nents over time, as the projects are listed in chrono-
logical order of their development start date. We see
an increasing complexity (expressed both in terms of

Table 5. Structural Characteristics in Verbatim Reused
Components as Reuse Increases

Project
Ave. No.

Statements
Ave. No.

Withs
Ave. No.
Params.

A 15 0.3 1.9
B 14 0.2 1.8
C 14 0.2 1.8
D 18 0.9 2.7
E 31 1.1 3.0
F 26 1.2 2.1
G 26 1.5 3.1

218 J. SYSTEMS SOFIWARE
1997; 38~211-224

module size and external dependencies) in the reused
components. Also, we see a rise in the number of
parameters per subprogram in the verbatim units,
suggesting an increasing generality among them. Low
level utility functions were the first to be reused, but
as the organization gained reuse experience, more
and more complex units were reused as well. Thus,
while utility functions may be among the best com-
ponents to initially stock a repository, a reuse pro-
cess is not limited to them. As this organization
gained experience, more and more complex units at
higher levels of the application hierarchy were
reused.

4.2 Error Density

Table 6 shows the error and defect densities (er-
rors/defects per thousand source statements) ob-
served in each of the four classes of component
origin. We use error to refer to a change report in
which the reason for the change was attributed to an
error correction. A change report can list several
components as requiring correction due to a single
error. We refer each instance of a component re-
quiring modification due to an error as a defect. As
such, there can be several defects associated with a
single error. Two measures of error and defect den-
sity are shown-the first (labeled “Error Density”
and “Defect Density”) includes all errors or defects
from unit test through acceptance test, while the
second (labeled “S/A Err. Density” and “S/A Def.
Density”) only includes those detected in system and
acceptance (S/A) test. The first measure can pro-
vide an indication of the total density of defects and
errors, while the second shows the density that is
occurring late in the development life cycle.

There is a clear benefit from reuse in terms of
reduced error density when the reuse is verbatim or
via slight modification. However, reuse through slight
modification only shows about a 59% reduction in
total error density, while verbatim reuse results in
more than a 90% reduction compared to newly
developed code. When we only look at the errors

W. M. Thomas et al.

that are encountered during the system and accep-
tance test phases, we still see a greater than 90%
reduction in defect density in the reused verbatim
class (0.7 errors per KSLOC, compared to 8.4 errors
per KSLOC, in the new components). The slightly
modified components, with 2.5 errors per KSLOC,
show a reduction of nearly 70% compared to the
new components, with 8.4 errors per KSLOC. In
terms of error density, reuse via extensive modifica-
tion appears to yield no advantage over new code
development. Verbatim reuse clearly provides the
most significant benefit to the development process
in terms of reducing error density, but reuse via
slight modification also provides a substantial im-
provement, one which is even more noticeable later
in the development process.

We used the Mann-Whitney U test to obtain a
statistical comparison of component defect density
by class of component origin. We tested, for each
pair of component origin classes, the null hypothesis
that there was no significant difference in error
density between the classes. A summary of the re-
sults is shown in Table 7. This comparison shows a
significantly lower error and defect density among
the reused verbatim components compared to each
of the other classes. The slightly modified compo-
nents also show significantly lower defect density
than the new and extensively modified components.
No significant difference was observed between new
and extensively modified components.

One question that may arise is whether the dif-
ferences in component sixes in the different classes
of component origins has an effect on the error
density. A number of studies have reported higher
defect/error densities in smaller components than
in larger components (Basili and Perricone, 1984;
Shen et al., 1985; Lind and Vairavan, 1989; Miiller
and Paulish, 1993). One explanation for the higher
error density in the small components is that a
system composed of small components will have
more interfaces than a system composed of large
components; and interfaces are often noted as a
major source of error in development. We observed

Table 6. Error and Defect Densities in Each Class of Component Origin

Component No.
Origin Comp.

New 1095
Extensively Modified 152
Slightly Modified 517
Reused Verbatim 1495
All Components 3259

KSTMT

44.2
8.8

21.6
46.6

121.2

Defect Error
Density Density

24.8 13.0
19.5 14.0
10.5 7.4
2.1 1.2

13.1 7.6

S/A Err.
Density

8.4
8.9
Fz

4:4

S/ADef.
Density

18.5
13.4
5.7
1.5
9.3

An Analysis of Errors J. SYSTEMS SOFTWARE 219
1997; 38:211-224

Table 7. Comparison of Defect Density by Class of Component Origin

Component Origins

New vs Ext. Mod
New vs Sk. Mod.
New vs Verbatim
Ext. Mod. vs Slt. Mod.
Ext. Mod. vs Verbatim
Slt. Mod. vs Verbatim

Defect
Density

.5573
< .ooo1
< .c001
< .ooo1
< .oool
< .oool

P-Values* from Comparison 0E

Error S/A Def.
Density Density

.0982 .8168
< .oool < .oool
< .oool < .uool
< .oool < .ooo1
< .ooo1 < .ooo1
< .oool < .ooo1

S/A Err.
Density

.1839
< .ooo1
< .oool
< .Oool
< .ooo1
< .ooo1

* P-Values were obtained from a Mann-Whitney U Test

a similar effect of higher defect densities in the
smaller components of these projects. Table 8 shows
the defect densities found in small components (25
or fewer statements) and large components (more
than 25 statements), and the p-values from Mann-
Whitney U tests for the comparison of defect den-
sity by component size (i.e., small vs large). We see
that smaller components tend to have higher defect
densities, and the p-values indicate that the result is
significant. The exception is the class of the verbatim
components, where the defect densities are quite
low for both small and large components.

Since the verbatim and slightly modified compo
nents are smaller than the new and extensively mod-
ified components, we would expect that their smaller
size would lead to an increased error density, as
opposed to the smaller densities that we observed.
As such, we concluded that the lower rates of defect
density in the verbatim and slightly modified classes
do not result from their smaller sizes.

4.3 Error Isolation/Completion Difficulty

Basili and Perricone (1984) in their study of a FOR-
TRAN development project, reported that modified
components typically required more correction ef-
fort than new components. We see a similar result in
the two classes of modified components, and also see

the same pattern occurring in the reused verbatim
components. The SEL’s change report forms provide
categorical data on the effort to isolate and com-
plete each error correction, with the categories de-
fined as less than 1 hour, 1 hour to 1 day, 1 to 3
days, and more than 3 days. Table 9 shows the
percentage of errors in each class of reuse that were
categorized in the top two classes, i.e., requiring
more than one day to isolate (labeled “Pet. Diff.
Isol.“) and more than one day complete (labeled
“Pet. Diff. Camp.“). The last column of this table
shows the relative rework effort, a computed approx-
imation of relative effort (staff-hours per KSTMT)
in isolating and correcting errors.

We do not see much variation in the effort to
isolate an error, as the percentage of difficult-to-
isolate errors ranges from 12.4% for new compo-
nents to 14.5% for the extensively modified compo-
nents. However, we do see a greater difference in
the difficult-to-complete errors. The reused verbatim
components had the highest percentage of errors
requiring more than one day to complete an error
correction, and the new components had the lowest
percentage, while the modified components fell in
between. One explanation for this effect is that the
developers have a greater familiarity with the newly
created components, so less time is needed to un-

derstand the components that must be changed.
Another explanation is that the majority of the

Table 8. Relationship of Defect Density and Component Size

Component Small Large
P-Value*

Origin No. Comp. Def. Dens. No. Comp. Def. Dens. Small vs Large

New 638 49.8 457 19.8 .ooo3
Extensively Modified 67 35.7 85 17.7
Slightly Modified 283 26.5 234 7.4 :ZZ
Reused Verbatim 952 2.3 543 2.0 .1982
All Components 1940 22.6 1319 10.9 < .oool

* P-Values were obtained from a Mann-Whitney U Test

220 J. SYSTEMS SOFTWARE
1997; 38:211-224

W. M. Thomas et al.

Table 9. Difficulty in Error Isolation/Correction

Component
Origin

Rel.
No. Pet. Diff. Pet. Diff. Rework

Errors. Isolation Completion Effort

New 574 12.4 10.1 118.3
Extensively 124 14.5 17.7 157.4

Modified
Slightly Modified 160 13.8 13.1 76.8
Reused Verbatim 58 14.3 22.4 14.7
All Components 916 13.2 12.6 73.9

“easy” errors had previously been removed from the
reused component, leaving only the more difficult
ones.

To test whether the differences in the effort distri-
butions were significant, we used a chi-square test,
since both measures (component origin and effort)
are categorical (Gardner and Altman, 1989). As with
the previous analyses, we used the test in a pair-wise
manner, to test (for each pair of origins) the null
hypothesis of independence between component ori-
gin and error isolation/correction effort. The results
of this analysis are summarized in the second and
third columns of Table 10, which shows the p-values
from the chi-square test, indicating the probability
that the differences between classes of component
origin in the distribution of isolation and completion
effort are due to chance.

We do see significant differences in the effort
distributions between classes of component origins.
In terms of isolation effort, all pairs showed a signif-
icant difference, except for the pair of new and
slightly modified components. For the effort to com-
plete an error correction, all pairs showed a signifi-
cant difference, except for the pair of new and
extensively modified components.

To determine whether the increased error correc-
tion cost in the reused components outweighs bene-
fit of their having fewer errors, we computed a rough
measure of the amount of error rework expended in

Table 10. Comparison of Error
Isolation/Correction Effort

P-Values from Comparison 0E

Isolation* Completion* Rel. Rework**
Effort Effort Effort

New-Ext. Mod. < .oool .5533 .9421
New-Sit. Mod. .5609 < .ooo1 < .oool
New-Verbatim < .oool < .oool < .oool
Ext. Mod.-Sit. Mod. < .CKlOl .0411 < .oool
Ext.-Mod. Verbatim < .OOOl .ooo4 < .oool
Slt. Mod.-Verbatim < .oool .0535 < .ooo1

* P-Values were obtained from a Chi Square Test
** P-Values were obtained from a Mann-Whitney U Test

each class. Unfortunately, our data for effort spent
in error correction and isolation is categorical, so we
approximated the true effort simply by the midpoint
of the category (CL). Rework effort was then com-
puted as the sum of this approximation over all
errors. Our relative rework effort measure (RR) was
computed by dividing rework effort by the number
of statements (S), i.e.,

s .

Again, we used the Mann-Whitney U test to de-
termine whether there is a significant difference in
the relative rework effort among the four classes of
component origin. As shown in the last column of
Table 10, the tests found significant differences be-
tween the classes with one exception-there is not a
significant difference in relative rework effort be-
tween new and extensively modified components.
For all other pairs, the result was significant at the
0.01 level. As shown in Table 9, reuse via slight
modification shows a 35% reduction in rework cost
over newly created components, while verbatim reuse
provides an 88% reduction. For these modes of
reuse, the benefit of fewer errors clearly outweighs
the cost of more difficult error correction. This
measure of benefit is somewhat conservative, as it
does not account for the expected reduction in com-
ponent creation cost, or for the impact of errors as
“obstacles” in the development process (e.g., the
cost of delays due to effort spent correcting errors).
As such, we expect these modes of reuse to yield an
even greater improvement over new development.
This shows that there is a shift in costs of reuse
compared to traditional development, with the
reuse-oriented development showing less develop
ment effort and fewer, but more costly, errors.

4.4 Source of Errors

Understanding the activity in which the error is
introduced allows for corrective action to be applied
at the appropriate time. The SEL change report
forms indicate the “source” of the error, which can
be requirements, functional specification, design,
code, or a previous change. Table 11 shows, for each
class of component origin, the percentage of errors
from each error source (where the error was intro-
duced). Across all classes, “code” is the most com-
mon error source; however, there do appear to be
some differences.

One result that appears interesting is that errors
associated with requirements and functional speci-
fication occur at a slightly higher rate in new compo-

An Analysis of Errors J. SYSTEMS SOFTWARE 221
1997; 38:211-224

Table 11. Percentage of Errors in Each Class of
Error Source

Component Rqmts. or Previous Any
Origin Fun. Spec. Design Code Change Error

New
Extensively

Modified
Slightly Modified
Reused Verbatim
All Components

7.3 16.8 68.1 7.8 100
5.6 20.2 59.7 14.5 100

4.4 26.9 60.1 10.6 100
3.4 3.4 74.1 19.0 100
5.7 18.2 66.1 10.0 100

nents than in reused components. The Basili-Per-
ricone (1984) study reported the opposite effect of
reuse on the specification errors. They found that
modified modules had a higher proportion of speci-
fication errors than did the new modules and ex-
plained the result by suggesting that the specifica-
tion was not well enough or appropriately defined to
be used in different contexts. A similar result was
reported by Endres (1975). A difference from the
environments examined in those studies is that reuse
has been well planned for in the SEL environment.
The organization is not structured as a pure “com-
ponent factory” as described in Section 3, but it is
moving in this direction. As such, the architecture,
design, and specifications have improved in this envi-
ronment to better allow and encourage reuse. This
result suggests that the reused functionality is more
likely to be well specified. This is not surprising,
since the reused components have been specified
previously, with the expectation that they would be
reused. As such, any specification errors are more
likely to affect new rather than reused components.
The result also indicates that reuse, whether formal
or informal, is occurring in this environment at a
higher level than simply code.

The verbatim components have the highest per-
centage of errors associated with a “previous
change” (nearly 20%, which is an increase over the 8
to 14% observed in the other classes.) This may be
due to the fact that the previous uses of these
components have already found most of their errors,
and thus, the increased rate of error “reintroduc-
tion” may be explained more as a decrease in the
other types of errors.

Another item of interest is the increased percent-
age of design errors in the modified components.
We see a different effect in the verbatim compo-
nents, where almost all errors have their source as
being “code” or a “previous change.” These results

suggest that there is increased difficulty in designing
an adaptation of an existing component to a new
role. This is more difficult because the reuser must
be concerned with two pieces of information: the

intended function and the existing function. In creat-
ing a new component, one only needs to be con-
cerned with the intended function, and for a verba-
tim component, with the existing function. For the
modified components, a misunderstanding of the
existing function can result in an error in the com-
ponent modification, and that error is likely to be
attributed to the design of the modification.

The statistical comparison between classes of
component origins of the distribution of errors across
error sources is shown in Table 12. Again, a chi-
square test was used to test the null hypothesis that
there was no significant difference in the distribu-
tion of error sources across component origins. We
see no significant differences between new and ex-
tensively modified components, or between exten-
sively and slightly modified components. The dif-
ferences between all other pairs are statistically
significant. These results support the observations of
increased design errors in modified components, in-
creased requirements and specification errors in new
components, and increased errors due to a previous
change in the unchanged components.

4.5 Time of Error Detection

Errors detected late in the development life cycle
can have a much greater cost than those detected
early. Table 13 shows, by class of component origin,
the percentage of errors that “escape” unit test, and
are detected in the system or acceptance test phases.
Clearly, low rates of error slippage are desired.
Three columns of error slippage rates are shown,
with the first showing the rate for all development
errors (“Pet. All Errors”), and the second and third
columns showing the rates for the errors that were
more difficult to isolate and complete (“Pet Diff.
Isolation” and “Pet Diff. Completion”, resp.) The
difficult errors escape at an increased rate, support-
ing the notion of a tendency towards higher costs
associated with errors late in the life cycle.

Table 12. Comparison of Error Source by Class of Reuse

P-Values* from
Component comparison of

origins error sources

New---E?& Mod. .2126
New-Slt. Mod. .0036
New-Verbatim .0073
Ext. Mod.-Sk. Mod. .1476
Ext. Mod.-Verbatim .0223
Sk. Mod.-Verbatim .0013

*P-Values were obtained from a Chi-Square Test

222 J. SYSTEMS SOFTWARE
1997; 38:211-224

W. M. Thomas et al.

Table 13. Percentage of Errors That Escape Unit Test

Component Pet. All Pet. Diff. Pet. Diff.
Origin Errors. Isolation Completion

New 69 86 80
Extensively Modified 66 81 87
Slightly Modified 43 74 58
Reused Verbatim 62 100 100
All Components 64 84 78

Across all errors, we see little difference between
the classes of new, extensively modified, and reused
verbatim components, as nearly two thirds of the
errors in these classes escaped unit test. This is
significantly higher than what we observe in the
slightly modified components, where only 43% es-
caped unit test. It appears that the nature of the
changes being made to these components lend
themselves well to detection by unit-level verifica-
tion processes.

Of the errors which required the greatest isolation
effort (those taking more than one day to isolate),
there is not much difference among the classes-a
relative high percentage of these errors escape in all
classes, and we saw no significant differences across
the origins. There is a significant reduction in the
slightly modified class compared to the other modes
of reuse, in the percentage of difficult-to-complete
errors that escape unit test, as only 58% of these
errors escape unit test, compared to 87% and 100%
in the extensively modified and verbatim classes.
This suggests that the verification process is more
effective in the early elimination of difficult errors
for the slightly modified components than for other
modes of reuse.

A summary of the chi-square test comparing the
error slippage across component origins is shown in
Table 14, with the columns showing a breakout of all
errors, the difficult isolation errors (more than 1 day
of isolation effort), and the difficult completion er-
rors (more than 1 day of completion effort). The
results that are significant with p-values of less than

Table 14. Comparison of Defect Slippage

P-Value* for Comparison of:

All Difficult Difficult
Component Origins Errors Isolation Completion

New-Ext. Mod. .8303 .472a
New-Sit. Mod. < 0001 A756
New-Verbatim .4561 .3166
Ext. Mod.-Sit. Mod. .0003 .1302
Ext. Mod.-Verbatim .6149 .4966
Sit. Mod.-Verbatim .0199 .13%

l P-Values were obtained from a Chi Square Test

.3620

.1243

.1063

.0508

.2629
,019s

.lO involve the slightly modified components, sup-
porting the observation of a significantly lower error
slippage rate in the slightly modified components.

4.6 Type of Errors

The SEL also categorizes errors by their type, with
the categories being logic, computational, internal
interface, external interface, data/value, and initial-
ization. We grouped these into three classes as fol-
lows: procedural errors are those that were classified
as either a computational or a logic error; interface
errors are those that were classified as either an
internal or external interface error; and data errors
are those that were classified as either an initializa-
tion or a data value error. Table 15 shows the
percentage of errors that were classified in each of
the three classes: procedural, interface, and data.
Again, a chi-square test was used to test whether the
differences in the distribution of error types were
significant across classes of component origins. The
results of this test are summarized in Table 16.

We see a significant difference in the distribution
of error types in the slightly modified components,
as they have a much higher frequency of interface
errors than any other class. This suggests that the
nature of the modifications is likely to be associated
with the interface. We also see that the new compo-
nents are more likely to have data errors than the
reused components. However, the p-values from the
comparison of the new vs verbatim and new vs
extensively modified classes indicate that the differ-
ences may not be significant. Basili and Perricone
(1984) found the opposite effect, namely, that the
modified components had a greater percentage of
data errors than did the new components. Our re-
sults suggest that a different approach has been
taken toward reuse. In the FORTRAN project stud-
ied by Basili and Perricone, the approach may have
been to tailor data values and initialization to adapt
the component to the new application. The ap-
proach taken in the Ada environment is to create

Table 15. Percent of Errors of Each Type by Class of
Component Origin

Component
Origin Procedural Interface Data All

New 41.2 14.1 44.6 100
Extensively Modified 47.6 17.7 34.7 ioo
Slightly Modified 31.8 31.2 36.9 100
Reused Verbatim 48.2 12.1 39.7 100
All Components 40.9 17.5 41.6 100

An Analysis of Errors J. SYSTEMS SOFI’WARJX 223
1997; 38:211-224

Table 16. Comparison of Error Type by Class of Reuse remains an issue for further study.

Component Origins

New--E?& Mod.
New-Slt. Mod.
New-Verbatim

P-Value* for
comparison of error type

A221
< .ooo1

~5878
Ext. Mod.-Sk. Mod.
Ext. Mod.-Verbatim
Slt. Mod.-Verbatim

.0084
S850
.0099

’ P-Values were obtained from a Chi-Square Test

generalized modules that can be parameterized to
create instances suitable for the new application. As
such, one might expect fewer data errors in reused
components in the Ada environment.

5. CONCLUSIONS

In this analysis, we observed clear benefits from
reuse-for example, reduced error density. We
found that verbatim reuse provides a substantial
improvement in error density (more than a 90%
reduction) compared to new development. The other
modes of reuse did not approach this level of im-
provement. Reuse via slight modification offered a
50% reduction in error density compared to new
development, but the improvement with this mode
of reuse was greater in errors detected late in devel-
opment (a 70% reduction).

We observed a shift in costs of reuse-oriented
development, with the reuse offering fewer, but more
difficult errors. The effect of increased difficulty in
error correction was apparent across the three modes
of reuse, although it was less evident in the slightly
modified components. In both the verbatim and
slightly modified classes of reuse, the relative amount
of rework was less than in new code. This suggests
that while there is a cost of increased correction
effort per error associated with such reuse, the cost
is outweighed by the benefit of the reduced number
of errors. Coupled with the reduction in develop
ment effort, these modes of reuse appear to offer a
substantial benefit to development.

Reuse via extensive modification does not provide
the reduction in error density that the other modes
of reuse yield, and it also results in errors that
typically were more difficult to isolate and correct
than the errors in newly developed code. In terms of
the rework due to the errors in these components, it
appears that this mode of development is more
costly than new development. However, extensive
modification may offer savings in development effort
that outweigh the increased cost of rework. This

A different profile of errors was observed for
different modes of reuse. For example, a greater
percentage of design errors was observed in the
modified components. The observed increase in de-
sign errors may be due to errors in the additional
activities of understanding the function and imple-
mentation of the component to be modified, as well
as due to the fact that less code was being written.
Such information can be used to help in selecting
appropriate verification methods for projects where
there is significant reuse via modification. One may
want to increase the effort in design reviews on such
projects, while on projects dominated by new devel-
opment, code reviews may receive more emphasis.
This finding also suggests that one might want to
investigate techniques to better describe the compo-
nents stored in the experience base so that the
likelihood of a misunderstanding of the function and
implementation is lessened.

The experience with reuse in an organization and
the approach taken toward reuse are likely to influ-
ence the nature of errors. In this study of an organi-
zation well experienced with reuse, we observe a
number of effects that differed with findings from
other studies of environments where reuse was more
ad hoc. The reused components appear to be sim-
pler, have fewer dependencies, and be more parame-
terized than new components. However, as this or-
ganization gained reuse experience, the distinction
became less apparent-more and more complex com-
ponents, at higher levels in the application hierarchy
were reused. As an organization moves toward a
reuse-oriented development approach, it must evolve
its practices to accommodate the new effects of
reuse. Error analysis is a useful mechanism to pro-
vide insight into the benefits and difficulties of reuse
in software development.

ACKNOWLEDGMENT

This work was supported in part by the National Aeronautics
and Space Administration grant NSG-5123 and the Center
for Advanced Technology in Telecommunication (CATT),
Brooklyn, NY.

REFERENCES

Agresti, W. W., and Evanco, W. M., Projecting Software
Defects from Analyzing Ada Designs. IEEE Trunsac-
lions on Software Engineering, 1801) (November 1992).

Agresti, W., and McGarry, F., The Minnowbrook work-
shop on software reuse: A summary report. In: (W.
Tracz, ed.), Softwure Reuse: Emerging Technology. IEEE
Computer Society Press, 1987.

Bailey, J., Waligora, S., and Stark, M., Impact of Ada in

224 J. SYSTEMS SOFTWARE
1997; 38~211-224

W. M. Thomas et al.

the flight dynamics divisions: Excitement and frustra-
tion. In: Proceedings of the 18th Annual Software Engi-
neering Workshop. NASA/GSFC, December 1993.

Basili, V. R., and Perricone, B. T., Software Errors and
Complexity: An Empirical Investigation. Communica-
tions of the ACM, 27(l) (January 1984).

Basili, V., and Rombach, D., The TAME Project: Towards
Improvement-Oriented Software Environments. IEEE
Transactions on Software Engineering, 14(6) (June 1988).

Basili, V. R., and Rombach, H. D., Support for Compre-
hensive Reuse. Software Engineering Journal, ti5) (Sep-
tember 1991).

Basili, V. R., and Selby, R. W., Comparing the effective-
ness of software testing strategies. IEEE Transactions on
Software Engineering, 13(12) (December 1987).

Basili, V. R., CaIdiera, G., and Cantone, G., A Reference
Architecture for the Component Factory. ACM Trans-
acttons on Software Engineering and Methdoiogy, l(1)
(January 1992).

Boehm, B. W., and Papaccio, P. N., Understanding and
Controlling Software Costs. IEEE Transactions on Sofi-
ware Engineering, 1410) (October 1988).

Briand, L. C., Thomas, W. M., and Hetmanski, C. J.,
Modeling and managing risk early in software develop
ment. In: Proceedings of the Fifteenth International Con-
ference on Sojtware Engineering, May 1993.

Brooks, F. P., No Silver Bullet: Essence and Accidents of
Software Engineering. IEEE Computer, 20(4) (April
1987).

Caldiera, G., and Basili, V. R., Identifying and Qualifying
Reusable Software Components. IEEE Computer, 242)
(February 1991).

Doubleday., D., ASAP: An Ada Static Source Code Ana-
lyzer Program. Technical Report CS-TR-1897, Univer-
sity of Maryland, May 1987.

Dunn, M., and Knight, J., Automating the detection of
reusable parts in existing software. In: Proceedings of the
15th International Conference on Sojiware Engineering,
Baltimore, Maryland, May 1993.

Ebel, N., and GeniIlard, C., The reusability of Ada soft-
ware components. In: (R. Gautier and P. Wallis, eds.),
Sojtware Reuse with Ada. Peter Peregrinus Ltd., 1990.

Endres, A., An analysis of errors and their causes in
system programs. In: Proceedings of the International
Conference on Software Engineering, April 1975.

Gardner, M., and Ahman, D., Statistics with Confidence:
Confidence Intervals and Statistical Guidelines, British
Medical Journal, London, 1989.

Gargaro, A., and Pappas, T., Reusability Issues and Ada.
IEEE Software (July 1987).

Ichbiah, J., The Rationale for the Ada Programming Lan-
guage, Cambridge University Press, 1985.

Jones, T. C., Reusability in Programming: A Survey of the
State of the Art. IEEE Transactions on Sofrware Engi-
neering, SE-lOf5) (September 1984).

Kester, R., SEL Ada Reuse Analysis and Representations.
In: Proceedings of the 15th Annual GSFC Sojtware Engi-
neering Workshop. NASA/GSFC, November 1990.

Lanergan, R., and Grasso, C. Software Engineering with
Reusable Designs and Code. IEEE Transactions on Soft-
ware Engineering, SE-lfk5) (September 1984).

Lind, R., and Vairavan, K., An Experimental Investigation
of Software Metrics and their Relationship to Software
Development Effort. IEEE Transactions on Software
Engineering, 15(5) (May 1989).

Moller, K., and Paulish, D., An Empirical investigation of
software fault distribution. In: Proceedings of the First
International Sojtware Metrics Symposium, Baltimore,
Maryland, May 1993.

Munson, J., and Khoshgoftaar, T., The Detection of
Fault-Prone Programs. IEEE Transactions on Sofrware
Engineering, 18(5) (May 1992).

Rombach, H. D., Software Reuse: A Key to the Mainte-
nance Problem. Information and Sojtware Technology,
33(l) (January/February 1991).

An Overview of the Software Engineering Laboratory.
Technical Report SEL-94-005, Software Engineering
Laboratory, NASA Goddard Space Flight Center, De-
cember 1994.

Selby, R. W., and Porter, A. A., Learning from Examples:
Generation and Evaluation of Decision Trees for Soft-
ware Resource Analysis. IEEE Transactions on Sojiware
Engineering, 14(11) (November 1988).

Selby, R., Empirically analyzing software reuse in a pro-
duction environment. In: (W. Tracz, ed.), Software Reuse:
Emerging Technology. IEEE Computer Society Press,
1988.

Shen, V., Yu, T., Thebaut, S., and Paulsen, L., Identifying
Error-Prone Software-An Empirical Study. IEEE
Transactions on Software Engineering, SE-ll(4) (April
1985).

Stark, M., Impacts of object-oriented technologies: Seven
years of SEL studies. In: Pnxeedings of Eighth Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, October 1993.

Thomas, W. M., Delis, A., and Basili, V. R., An Evaluation
of Ada source code reuse. In: (J. van Kahvijk, ed.), Ada:
Moving Towards 2000 (Proceedings of the Ada-Europe
International Conference), Zandvoort, The Netherlands,
June 1992. Springer-Verlag.

Wolf, A., Clarke, L., and Wileden, J., Ada-Based Support
for Programming in the Large. IEEE Software (March
1985).

