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Realizing Memory-Optimized
Distributed Graph Processing
Panagiotis Liakos, Katia Papakonstantinopoulou, and Alex Delis

Abstract—A multitude of contemporary applications heavily involve graph data whose size appears to be ever–increasing. This trend
shows no signs of subsiding and has caused the emergence of a number of distributed graph processing systems including Pregel,
Apache Giraph and GraphX. However, the unprecedented scale now reached by real-world graphs hardens the task of graph
processing due to excessive memory demands even for distributed environments. By and large, such contemporary graph processing
systems employ ineffective in-memory representations of adjacency lists. Therefore, memory usage patterns emerge as a primary
concern in distributed graph processing. We seek to address this challenge by exploiting empirically-observed properties demonstrated
by graphs generated by human activity. In this paper, we propose 1) three compressed adjacency list representations that can be
applied to any distributed graph processing system, 2) a variable-byte encoded representation of out-edge weights for space-efficient
support of weighted graphs, and 3) a tree-based compact out-edge representation that allows for efficient mutations on the graph
elements. We experiment with publicly-available graphs whose size reaches two-billion edges and report our findings in terms of both
space-efficiency and execution time. Our suggested compact representations do reduce respective memory requirements for
accommodating the graph elements up–to 5 times if compared with state-of-the-art methods. At the same time, our memory-optimized
methods retain the efficiency of uncompressed structures and enable the execution of algorithms for large scale graphs in settings
where contemporary alternative structures fail due to memory errors.

Index Terms—Distributed graph processing, graph compression, Pregel.
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1 INTRODUCTION

THE proliferation of web applications, the explosive
growth of social networks, and the continually-

expanding WWW-space have led to systems that routinely
handle voluminous data modeled as graphs. Facebook has
over 1 billion active users [1] and Google has long reported
that it has indexed unique URLs whose number exceeds
1 trillion [2]. This ever-increasing requirement in terms of
graph-vertices has led to the realization of a number of
distributed graph-processing approaches and systems [3],
[4], [5], [6]. Their key objective is to efficiently handle large-
scale graphs using predominantly commodity hardware [7].

Most of these approaches parallelize the execution of
algorithms by dividing graphs into partitions [8], [9] and
assigning vertices to workers (i.e., machines) following the
“think like a vertex” programming paradigm introduced with
Pregel [10]. However, recent studies [7], [11] point out that
the so-far proposed frameworks [3], [4], [5], [6] fail to handle
the unprecedented scale of real-world graphs as a result of
ineffective, if not right out poor, memory usage [7]. Thereby,
the space requirements of real-world graphs have become a
major memory bottleneck.

Deploying space-efficient graph representations in a
vertex-centric distributed environment to attain memory
optimization is critical when dealing with web-scale graphs
and remains a challenge. Figure 1 illustrates a graph par-
titioned over three workers. Every vertex is assigned to
a single node and maintains a list of its out-edges. For
example, vertices 1, 4, and 6 are assigned to worker 1, and
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Fig. 1. A graph partitioned on a vertex basis in a distributed environment.
Each vertex maintains a list of its out-edges.

vertex 1 maintains out-edges towards vertices 2, 3, and 4.
This partitioning hardens the task of compression as vertices
become unaware of the physical node their neighbors ulti-
mately find themselves in. Related efforts have exclusively
focused on providing a compact representation of a graph
in a centralized machine environment [12], [13], [14], [15],
[16]. In such single-machine settings, we can exploit the fact
that vertices tend to exhibit similarities. However, this is
infeasible when graphs are partitioned on a vertex basis,
as each vertex must be processed independently of other
vertices. Furthermore, to achieve memory optimization, we
need representations that allow for mining of the graph’s
elements without decompression; this decompression would
unfortunately necessitate additional memory to accommo-
date the resulting unencoded representation.
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A noteworthy step towards memory optimization was
taken by Facebook when it adopted Apache Giraph [3] for
its graph search service; the move yielded both improved
performance and scalability [1]. However, Facebook’s im-
provements regarding memory optimization entirely fo-
cused on a more careful implementation for the representa-
tion of the out-edges of a vertex [1]; the redundancy due to
properties exhibited in real-world graphs was not exploited.

In this paper, we investigate approaches that help realize
compact representations of out-edges in (weighted) graphs
of web-scale while following the Pregel paradigm. The
vertex placement policy that Pregel-like systems follow
necessitates for storing the out-edges of each vertex inde-
pendently as Figure 1 depicts. This policy preserves the
locality of reference property, known to be exhibited in real-
world graphs [17], [18], and enables us to exploit in this
work, patterns that arise among the out-edges of a single
vertex. We cannot however utilize similarities among out-
edges of different vertices, for we are unaware of the parti-
tion each vertex is placed into.

Our first technique, termed BVEdges, applies all meth-
ods proposed in [12] that can effectively function with the
vertex placement policy of Pregel in a distributed environ-
ment. BVEdges primarily focuses on identifying intervals
of consecutive out-edges of a vertex and employs universal
codings to efficiently represent them. To facilitate access
without imposing the significant computing overheads of
BVEdges, we propose IntervalResidualEdges, which
holds the corresponding values of intervals in a non-
encoded format. We facilitate support of weighted graphs
with the use of a parallel array holding variable-byte
encoded weights, termed VariableByteArrayWeights.
Additionally, we propose IndexedBitArrayEdges, a
novel technique that considers the out-edges of each vertex
as a single row in the adjacency matrix of the graph and
indexes only the areas holding edges using byte sized bit-
arrays. Finally, we propose a fourth space-efficient tree-
based data structure termed RedBlackTreeEdges, to im-
prove the trade-off between memory overhead and perfor-
mance of algorithms requiring mutations of out-edges.

Our experimental results with diverse datasets indicate
significant improvements on space-efficiency for all our pro-
posed techniques. We reduce memory requirements up–to 5
times in comparison with currently applied methods. This
eases the task of scaling to billions of vertices per machine and
so, it allows us to load much larger graphs than what has
been feasible thus far. In settings where earlier approaches
were also capable of executing graph algorithms, we achieve
significant performance improvements in terms of time of
up–to 41%. We attribute this to our introduced memory
optimization as less time is spent for garbage collection.
These findings establish our structures as the undisputed
preferable option for web graphs, which offer compression-
friendly orderings, or any other type of graph after the
application of a reordering that favors its compressibility.
Last but not least, we attain a significantly improved trade-
off between space-efficiency and performance of algorithms
requiring mutations through a representation that uses a
tree structure and does not depend on node orderings.

In summary, our contributions in this paper are that we:
I) offer space efficient-representations of the out-edges of

vertices and their respective weights, II) allow fast mining
(in-situ) of the graph elements without the need of de-
compression, III) enable the execution of graph algorithms
in memory-constrained settings, and IV) ease the task of
memory management, thus allowing faster execution.

2 RELATED WORK

Our work lies in the intersection of distributed graph pro-
cessing systems and compressed graph representations. In
this regard, we outline here pertinent aspects of these two
areas: i) well-established graph processing systems and the
challenges they face when it comes to memory management,
and ii) state-of-the-art space-conscious representation of re-
al-world graphs.

Google’s proprietary Pregel [10] is a graph processing
system that enables scalable batch execution of iterative
graph algorithms. As the source code of Pregel is not pub-
licly available, a number of graph processing systems that
follow the same data flow paradigm have emerged. Apache
Giraph [3] is such an open-source Java implementation
with contributions from Yahoo! and Facebook, that operates
on top of HDFS. Our work focuses on Pregel-like systems
and extends Giraph’s implementation. Therefore, we pro-
vide a short discussion on both Pregel and Giraph in Sec-
tion 3.1. GPS [4] is a similar Java open-source system that
introduces an optimization for high-degree vertices: as the
degrees of graphs created by human activity are heavy-tail
distributed, certain vertices have an “extreme number” of
neighbors and stall the synchronization at every iteration. To
overcome this deficiency, GPS proposes the large adjacency
list partitioning (LALP) technique. Pregel+ [6] is imple-
mented in C++ and uses MPI processes as workers to achieve
high efficiency. Moreover, Pregel+ features two additional
optimizations. The first is the mirroring of vertices, an idea
similar to that of LALP. The second is a request-respond API
which simplifies the process of a vertex requesting attributes
from other vertices and merges all requests from a machine
to the same vertex into a single request. Unlike the afore-
mentioned distributed graph processing systems that follow
Pregel’s BSP execution model, some approaches employ
asynchronous execution [5], [19], [20], [21]. GraphLab [5]
is such an example that also adopts a shared memory
abstraction. PowerGraph [19] is included in GraphLab and
mitigates the problem of high-degree vertices by following
an edge-centric model bundle. Han and Daudjee [20] extend
Giraph with their Barrierless Asynchronous Parallel (BAP)
computational model to reduce the frequency of global syn-
chronization barriers and message staleness. GraphX [22] is
an embedded graph processing system build on top of the
very successful Apache Spark [23] distributed dataflow
system. GraphX has received notable attention, partly due
to the widespread adoption of the Spark framework. How-
ever, a recent comparison [24] against Giraph shows that
the latter is able to handle 50x larger graphs than GraphX
and is more efficient even on smaller graphs. Our work
is orthogonal to these approaches as we introduce com-
pressed adjacency list representations that can be readily
applied to all above systems. Several Facebook optimiza-
tions contributed to Giraph are reported in [1]. Significant
improvements are realized through a new representation of
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out-edges which serializes the edges of every vertex into a
byte-array. However, this representation does not entail any
memory optimization through compression. MOCGraph [25]
is a Giraph extension focused on improving scalability by
reducing the memory footprint. This is achieved through
the message online computing model according to which mes-
sages are digested on-the-fly. The MOCGraph approach is
also orthogonal to our work, as MOCGraph focuses solely
on the memory footprint of messages exchanged, whereas
our focus is on representation of the graph. Deca [26] trans-
parently decomposes and groups objects into byte-arrays to
significantly reduce memory consumption and achieves im-
pressive execution time speed ups. Our techniques achieve
compression over Giraph’s graph representation that al-
ready uses byte-arrays and resides in memory for the entire
execution of algorithms. However, Deca can offer additional
benefits through the optimization of memory consumption
with regard to objects other than the graph representation,
such as the messages exchanged.

As the size of graphs continues to grow numerous efforts
focus on shared-memory or secondary storage architectures.
Shun et al. [27] consider compression techniques that can be
applied on a shared-memory graph processing system and
manage to halve space usage at the cost of slower execution
when memory is not a bottleneck. Gemini [28] achieves
surprising efficiency by using MPI and performing updates
directly on shared-memory graph data, instead of passing
messages between cores on the same socket. Our focus is
on shared-nothing distributed computing architectures, in
which certain techniques of [27] and [28] are inapplica-
ble. GraphChi [29], FlashGraph [30], and Graphene [31]
maintain graph data on disks and achieve reasonable per-
formance, having very modest requirements. However, no
effort is spent on compressing the graph data. Moreover, our
approach does not impose any limitations on the execution
time of in-memory distributed graph processing systems, or
sacrifice the ease of programming and fault tolerance that
go along with the Pregel paradigm.

The increasing number of proposed graph processing
systems initiated research concerning their performance.
Lu et al. [32] experiment with the number of vertices in
a graph and report that GPS and GraphLab run out of
memory in settings where Giraph and Pregel+ manage to
complete execution. In [11], Cai et al. find that both Giraph
and GraphLab face significant memory-related issues. Han
et al. [7] carry out a comparative performance study that
includes among others, Giraph, GraphLab and GPS. The
asynchronous mode of GraphLab is reported to have poor
scalability and performance due to the overhead imposed
by excessive locking. Moreover, the optimization of GPS
for high degree vertices offers little performance benefit.
These findings motivated us to use the implementation of
Giraph as a basis for this work. [7] notes that Giraph is
much improved compared with its initial release, yet, it still
demonstrates noteworthy space deficiencies. We note that
this is also the case in Giraph’s only subsequent release
since, i.e., 1.2, as it does not introduce any additional out-
edge representations providing improved space- or time-
efficiency. Therefore, in this paper we investigate compact
representations to further reduce Giraph’s space require-
ments. Lastly, [7] additionally reports that Giraph’s new

adjacency list representation is not suitable for algorithms
featuring mutations (i.e., additions and/or deletions). To
this effect, we have opted to investigate structures that do
not necessarily favor mutations.

The field of graph compression has yielded significant
research results after the work presented in [17]. Randall
et al. exploit the locality of reference as well as the similarity
property that is unveiled in web graphs when their links are
sorted lexicographically. The seminal work on web graph
compression is that of Boldi and Vigna [12], who introduce a
number of sophisticated techniques as well as a new coding
to further reduce the bits per link ratio. Several following
efforts [13], [14], [15] managed to present improved results
with regard to space but not access time of the graph’s
elements. Brisaboa et al. [15] introduce a graph compression
approach that uses the adjacency matrix representation of
the graph, instead of adjacency lists. A tree structure is used
to hold the areas of the adjacency matrix that do actually
represent edges. As real-world graphs are sparse, these areas
are a very small part of the original matrix. However, there
is also a cost in maintaining the in-memory tree structure.
In [16], [33], this cost is amortized by representing a specific
area around the diagonal of the adjacency matrix without
the use of an index and the remaining elements of the graph
through an adjacency list representation. All the above
approaches focus on providing a compact representation
of a graph that can be loaded in the memory of a single
machine. Hence, the techniques used exploit the presence
of all edges in a centralized computing node, which is not
suitable for distributed graph processing systems. To the
best of our knowledge, our approach is the first to consider
compressed graph representations for Pregel-like systems
offering distributed execution.

GBASE [34] is the only approach we are aware of that
considers compressed graph representations in a distributed
environment in general. GBASE uses block compression to
efficiently store graphs by splitting the respective adjacency
matrices into regions. The latter are compressed using sev-
eral methods including Gzip and Gap Elias’-γ encoding.
We should note, however, that GBASE does not follow the
established by now “think like a vertex” model we have
adopted in this work. In addition, GBASE aims at mini-
mizing the storage and I/O cost and its techniques require
full decompression of multiple blocks for the extraction of
the out-edges of a single vertex. In contrast, we seek to
minimize the overall memory requirements and, thus, we
cannot apply the techniques used in GBASE; doing so would
require at least equivalent amount of memory with non-
compressed structures.

A preliminary version of our work appeared in [35].
Here, we propose new representations for weights of out-
edges and algorithms requiring mutations. Further, we eval-
uate our techniques through the execution of additional
Pregel algorithms and carry out the entire range of our
experimentation using settings that suppress the overhead
generated from system logging activity.

3 BACKGROUND

Key Pregel concepts and structures used for representing
adjacency lists by the Apache Giraph make up the foun-
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Fig. 2. The Pregel programming model: workers compute in parallel
the vertices’ actions at every superstep and messages between iter-
ations are synchronized using a barrier before every superstep com-
mences.

dation upon which we develop our proposed techniques. In
this section, we outline both Pregel and Giraph, present
empirically-observed properties of real-world graphs, and
offer definitions for the encodings to be used by our sug-
gested compression techniques.

3.1 Pregel

Pregel [10] is a computational model suitable for large
scale graph processing, inspired by the Bulk Synchronous
Parallel (BSP) programming model. Pregel encourages pro-
grammers to “think like a vertex” by following a vertex-
centric approach. The input to a Pregel algorithm is a
directed graph whose vertices, along with their respective
out-edges, are distributed among the machines of a comput-
ing cluster. Pregel algorithms are executed as a sequence
of iterations, termed supersteps. During a superstep, every
vertex independently computes a user-defined list of actions
and sends messages to other vertices, to be used in the fol-
lowing superstep. Therefore, edges serve as communication
channels for the transmission of results. A synchronization
barrier between supersteps ensures that all messages are
delivered at the beginning of the next superstep. A vertex
may vote to halt at any superstep and will be reactivated
upon receiving a message. The algorithm terminates when
all vertices are halted and there are no messages in transit.
This programming model is illustrated in Figure 2.

Pregel loads the input graph and performs all as-
sociated computations in-memory. Thereby, Pregel only
supports graphs whose edges entirely fit in main-memory.
Regarding the management of out-edges, the basic oper-
ations provided by Pregel API are the initialization of
adjacency lists, the retrieval of the out-edges, and mutations
of out-edges, i.e., additions and removals. For example in
Figure 1, vertex 1 maintains a list of its neighbors: 2, 3, and
4; Pregel algorithms need to be able to initialize such a list,
retrieve its elements, and possibly add or remove elements.

3.2 Apache Giraph

The Apache Software Foundation has spear-headed the imple-
mentation of Giraph [3], an open-source implementation
of Pregel that operates atop HDFS and uses map-only
Hadoop jobs for its computations. The project has been in
rapid development since Facebook released its own graph

vertex id1

size 1 size 2 size 1 size 2

weight1 vertex id2 weight2
...

(a)

vertex id2 weight2

vertex id1 weight1

000
001
002
003
004
005
006

...

Hash

Function

vertex id2

vertex id1

(b)

Fig. 3. Giraph’s adjacency-list representations: ByteArrayEdges (a)
and HashMapEdges (b).

search service based on an earlier Giraph release. A key
Facebook contribution is related to the system’s memory
optimization. Giraph used separate Java objects for all
data types that needed to be maintained, including the
out-edge representation (HashMapEdges). A new repre-
sentation, namely ByteArrayEdges, significantly reduced
the memory usage as well as the number of objects being
maintained by serializing edges as byte arrays instead of
instantiating native Java objects. Below, we outline these
two widely used Giraph data structures to highlight their
difference when it comes to memory usage. We note that
Giraph’s configuration allows for specifying the represen-
tation of out-edges to be used and maintains an object of
the respective class for each vertex of the graph. Extending
Giraph with a new out-edge representation is as simple
as writing your own class that implements the OutEdges
interface.
• ByteArrayEdges: The default Giraph structure for
holding the out-neighbors of a vertex is that of
ByteArrayEdges [1]. This representation is realized as a
byte array, in which target vertex ids and their respective
weights are held consecutively, as Figure 3(a) illustrates. The
bytes required per out-neighbor are determined by the data
type used for its id and weight; for integer numbers 4+4=8
bytes are required. ByteArrayEdges are impractical for
algorithms involving mutations as they deserialize all out-
edges to perform a removal.
• HashMapEdges: An earlier and more “memory-hungry”
representation for holding the out-neighbors of a vertex is
HashMapEdges. This representation is backed by a hash-
table that maps target vertex ids to their respective weights
as Figure 3(b) illustrates. HashMapEdges offer constant
time mutations to the adjacency list of a vertex but are
very inefficient space-wise. In particular, the memory cost
of maintaining out-edges is up to 10 times larger with
HashMapEdges than it is with ByteArrayEdges [1].

3.3 Properties of Real-World Graphs
Over the last two decades, studies of real-world graphs
have led to the identification of common properties that the
graphs in question exhibit [12], [17], [36]. In this context,
we list here four empirically-observed properties of real-
world graphs that are frequently encountered and allow for
effective compression. We begin with two such properties of
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web graphs that occur when their vertices are ordered lex-
icographically by URL [12], [17]. We note that even though
there is no equivalent way of ordering vertices of other
types of graphs, the same properties arise when we apply
appropriate reordering algorithms [18], [37], [38]. Then, we
list two additional properties observed in realistic graphs
from various domains, related to the distribution of node
degrees and edge weights. More specifically, the following
properties of real-world graphs may be exploited:

– Locality of reference: this property states that the majority
of the edges of a graph link vertices that are close to
each other in the order.

– Similarity (or copy property): vertices that are close to
each other in the order tend to have many common
out-neighbors.

– Heavy-tailed distributed degrees: a constrained number of
vertices demonstrate high-degree, whereas the majority
of vertices exhibit low-degree. Consequently, graphs
created by human activity are generally sparse.

– Right-skewed weight distributions: Statistical analysis of
weighted graphs shows that the weights of edges are
right-skewed distributed [39].

3.4 Codings for Graph Compression
In order to compress the data in our structure, we can use
various encoding approaches; below, we provide the perti-
nent definitions of codings we employ in Section 4.1.1: Elias’
γ and ζ codings. We also furnish the definitions of baseline
unary and minimal binary coding that help define the first
two codings. Let x denote a positive integer, b its binary
representation and l the length of b. The aforementioned
codings are defined as follows:

1) Unary coding: the unary coding of x consists of x − 1
zeros followed by a 1, e.g., the unary coding of 2 is 01.

2) Minimal binary coding over an interval [40]: consider the
interval [0, z − 1] and let s = dlog ze. If x < 2s − z
then x is coded using the x-th binary word of length
s − 1 (in lexicographical order), otherwise, x is coded
using the (x− z+2s)-th binary word of length s. As an
example, the minimal binary coding of 8 in [0, 56−1] is
010000, as 8 = 2dlog 56e − 56 and therefore we need the
8− 56 + 26 = 16-th binary word of length 6.

3) Elias’ γ coding: the γ coding of x consists of l in unary,
followed by the last l − 1 digits of b, e.g., b of 2 is 10,
thus l in unary is 01 and the γ coding of 2 is 010.

4) ζ coding with parameter k [40]: given a fixed positive
integer k, if x ∈ [2hk, 2(h+1)k−1], its ζk-coding consists
of h+ 1 in unary, followed by a minimal binary coding
of x − 2hk in the interval [0, 2(h+1)k − 2hk − 1]. As an
example, 16 is z3-coded to 01010000, as 16 ∈ [23, 26−1],
thus h = 1 and the unary of h + 1 = 2 is 01, and
the minimal binary coding of 16 − 23 over the interval
[0, 26 − 23 − 1] is 010000, as shown above.

In the context of graph compression, Elias’ γ coding is
preferred for the representation of rather small values of x,
whereas ζ coding is more proper for potentially large values.
Handling zero is achieved by adding 1 before coding and
subtracting 1 after decoding. In the following representa-
tions, when no coding is mentioned, the unencoded binary
representation is being used.

4 OVERVIEW OF OUR APPROACH

In this section we describe in detail the space-efficient data
structures we suggest for the representation of a vertex’s
neighbors in a graph. We first propose three compressed
out-edge representations that enable the efficient execu-
tion of graph algorithms in modest settings. Then, we ex-
tend these representations to additionally support weighted
graphs, by providing a structure to hold the weights of out-
edges. Finally, we propose a compact tree-based out-edge
representation that provides significant space and efficiency
earnings, favors mutations and offers type-flexibility.

Some centralized graph compression methods, as [12],
focus on the compression of the adjacency lists, while others,
for example [15], are based on the compact representation of
the adjacency matrices. In this work, as we follow a vertex-
centric approach, we consider both of these approaches at a
vertex level. In particular, we are unable to exploit certain
properties that centralized graph compression methods use,
such as the similarity property, as each vertex in Pregel
is unaware of the information present in other vertices.
However, we are able to take into account all the other
properties described in Section 3.3.

4.1 Representations based on consecutive out-edges
A common property of graphs created by human activity
is locality of reference: Vertices, adhering to the orderings
mentioned in Section 3.3, tend to neighbor with vertices of
similar ids. This property is evident through the adjacency
lists of the graphs of our dataset, all of which tend to have a
lot of neighbors with consecutive ids.

We can exploit this property by applying a technique
similar to the one introduced in [12]. In particular, [12]
distinguishes between the neighbors whose ids form some
interval of consecutive ids, and the rest. To reconstruct all
the edges of the intervals, only the leftmost neighbor id and
the length of the interval need to be kept. This information is
further compressed using gap Elias’ γ coding. The remaining
out-edges, termed residuals, are compressed using ζ coding.

We build on these ideas and introduce two compressed
representations that exploit locality of reference in a similar
fashion but are applicable to Pregel-like systems. We con-
sider that neighbors are sorted according to their id, as the
case is in [12]. We also note that both of our structures based
on consecutive out-edges do not favor mutations, as any
addition or removal of an edge would require a complete
reconstruction of the compact representation to discover the
new set of intervals and residuals.

4.1.1 BVEdges
Our first representation, namely BVEdges, focuses solely on
compressing the neighbors of a vertex, at the cost of comput-
ing overheads. Therefore, we simply adjust the method of
Boldi and Vigna [12] to the restrictions imposed by Pregel.
In particular, we use the ideas of distinguishing intervals and
residuals, as well as applying appropriate codings on them.
The compressed data structure discussed in [12] considers
the whole graph and exploits the current vertex’s id during
compression. However, the vertex id is not available in the
level where adjacency lists are kept in the Pregel model. To
overcome this issue, we use the first neighbor id we store in
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Fig. 4. The storage of neighbors in BVEdges, detailed in Example 1.
γ(x) and ζ(x) denote the γ and ζ encodings of x respectively.

our structure as a reference to proceed with gap encoding.
As the case is with [12], we use Elias’ γ coding for intervals,
and ζ coding for residuals. Elias’ γ coding is most preferable
for intervals of at least 4 elements [12]; shorter intervals are
more compactly stored as residuals. We note here that [12]
uses copy lists to exploit the similarity property. However,
using copy lists in a vertex-centric distributed environment
is infeasible.
Definition 1 (BVEdges). Given a list l of a node’s neighbors,

BVEdges is a sequence of bits holding consecutively: the
γ-coded number of intervals in l of length at least 4;
for the first such interval, the smallest neighbor id in it
and the γ-coded difference of the interval length minus
4; for each of the rest of the intervals, the difference of
the smallest neighbor id in it minus the largest neighbor
id of the previous interval decreased by one; a ζ coding
for each of the remaining neighbors, its argument being
either the difference x between the current node’s id and
the previous node id which was encoded to be stored
in the sequence minus 1, or, in case x < 0, the quantity
2|x| − 1.

Example 1. Consider the following sequence of neighbors
to be represented: (2, 9, 10, 11, 12, 14, 17, 18, 20, 127).
We employ BVEdges as illustrated in Figure 4. Here,
there is only one interval of length at least equal to 4:
[9 .. 12]. We first store the number of intervals using γ
coding. Then, we store the leftmost id of the interval,
i.e., 9, using its unencoded binary representation. We
proceed with storing a representation of the length of the
interval to enable the recovery of the remaining elements.
In particular, we store the γ coding of the difference of the
interval length minus the minimum interval length, which
is 4−4 = 0 in our case. Then, we append a representation
for the residual neighbors. For each residual, we store the
ζ coding of the difference of its id with the id of the last
node stored, minus 1 (as each id appears at most once in
the neighbors’ list). The residual id 2 is smaller than the
smallest id of the first interval, so we store the residual
neighbor 2 as ζ(13), since 2|2 − 9| − 1 = 13, and the
residual 14 as ζ(11), since 14− 2− 1 = 11. Similarly, we
store 17, 18, 20 and 127 as ζ(2), ζ(0), ζ(1) and ζ(106),
respectively.

The respective values computed in each step are written
using a bit stream. This, combined with the fact that values
have to be encoded, renders the operation costly. We also
investigated the idea of treating all neighbors as residuals to
examine if the re-construction of intervals was more expen-
sive. However, we experimentally found that the resulting
larger bit stream offered worse access time.

Accessing the out-edges of a vertex requires the follow-
ing procedure: first, we read the number of intervals. For the

(2)2

4 bytes
number of
intervals

(9)2 (4)2 (17)2 (2)2

4 +1 bytes

1st interval

4 +1 bytes

2nd interval

(2)2 (14)2 (20)2 (127)2

4 bytes 4 bytes 4 bytes 4 bytes

residuals

{

Fig. 5. The storage of neighbors in IntervalResidualEdges, detailed in
Example 2. (x)2 is the binary representation of x.

first interval, we read the id of the smallest neighbor in it
and decode its length. For each of the rest of the intervals,
we construct the smallest neighbor id by adding to the next
γ-coded value the largest neighbor id of the previous interval
incremented by one, and decode its length. After we process
the specified number of intervals, we decode the residuals one
by one.

4.1.2 IntervalResidualEdges
Our second compressed out-edge representation, namely
IntervalResidualEdges, also incorporates the idea of
using intervals and residuals. However, we propose a dif-
ferent structure to avoid costly bit stream I/O operations.
In particular, we keep the value of the leftmost id of an
interval unencoded, along with a byte that is able to index
up to 256 consecutive neighbors. Residuals are then also kept
unencoded. Clearly, any consecutive neighbors of length at
least equal to 2 are represented more efficiently using an in-
terval rather than two or more residuals. Therefore, we set the
minimum interval length with IntervalResidualEdges
equal to 2. Due to the locality of reference property, this
dedicated byte of each interval allows us to compress the
adjacency list significantly, while also avoiding the use of
expensive encodings and bit streams.
Definition 2 (IntervalResidualEdges). Given a list l of a

node’s neighbors, IntervalResidualEdges is a se-
quence of bytes holding consecutively: the number of
intervals in l; the smallest neighbor id and the length
of each such interval; the id of each of the remaining
neighbors.

Example 2. The representation of the aforementioned se-
quence of neighbors (2, 9, 10, 11, 12, 14, 17, 18, 20,
127) using IntervalResidualEdges is illustrated in
Figure 5. In this case there are two intervals of at least 2
consecutive neighbors, namely [9 .. 12] and [17, 18]. We
first store the number of intervals, and then use one
5-byte element for each interval, consisting of a 4-byte
representation of the smallest neighbor id in it (i.e., 9
and 17), plus a byte holding the number of neighbors in
this interval (4 and 2 respectively). Finally we append a
4-byte representation for each residual neighbor.

This representation delivers its elements through the
following procedure: we first read the number of intervals;
while there are still unread intervals, we read 5-bytes, i.e., the
leftmost element of the interval and its length, and recover
one by one the elements of the interval. When all out-edges
that are grouped into intervals are retrieved, we read in the
residuals directly as integers.
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Fig. 6. A bit-array representation of an adjacency list and the storage of
these neighbors in IndexedBitArrayEdges, detailed in Example 3. (x)2
denotes the binary representation of x.

4.2 IndexedBitArrayEdges

Our first two representations are based on the presence of
consecutivity among the neighbors of a vertex. Here we pro-
pose a representation termed IndexedBitArrayEdges,
that takes advantage of the concentration of edges in specific
areas of the adjacency matrix, regardless of whether these
edges are in fact consecutive. With IndexedBitArray-
Edges we use a single byte to depict eight possible out-
neighbors. Using a byte array, we construct a data structure
of 5-byte elements, one for each interval of neighbor ids
having the same quotient by 8. The first 4 bytes of each
element represent the quotient, while the last one serves as
a set of 8 flags indicating whether each possible edge in this
interval really exists. As the neighbor ids of each node tend
to concentrate within a few areas, the number of intervals
we need to represent is small and the compression achieved
is exceptional.
Definition 3 (IndexedBitArrayEdges). Given a bit-array r

representing a list of a node’s neighbors, IndexedBit-
ArrayEdges is a sequence of 5-byte elements, each one
holding an octet of r that contains at least one 1: the first
4 bytes hold the distance in r of the first bit of the octet
from the beginning of r; the last one holds the octet.

Example 3. The representation of the aforementioned se-
quence of neighbors (2, 9, 10, 11, 12, 14, 17, 18, 20,
127) using IndexedBitArrayEdges is illustrated in
Figure 6. In the top part we see the bit-array r represen-
tation of this adjacency list. The quotient and remainder
of each node id divided by 8 give us the approximate
position (octet) and the exact position of the node in r,
respectively; hence, as depicted in the bottom part of
Figure 6, the neighbors are grouped in four sets: {2},
{9, 10, 11, 12, 14}, {17, 18, 20}, {127}. All ids in each set
share the same quotient when divided by 8, which will
be referred as index number henceforth. For instance, the
index number of the third set is 2, and is stored in the
first part of the third element, denoted by (2)2. Moreover,
the remainders of the ids 17, 18 and 20 divided by 8 are
1, 2, and 4 respectively, and so the 2nd, 3rd and 5th flags
from the right side of the same element are set to 1 to
depict these neighbors.

Accessing the out-edges of a vertex is performed as
follows: First, we read a 5-byte element. Then, we recover

out-edges from the flags of its last byte and reconstruct the
neighbor ids using the first 4 bytes. After we examine all
flags of the last byte, we proceed by reading the next 5-byte
element and repeat until we retrieve all out-edges.

We note that IndexedBitArrayEdges is able to repre-
sent graphs that are up to 8 times larger than the maximum
size achieved with ByteArrayEdges and 32-bit integers.
Hence, we expect its space-efficiency against ByteArray-
Edgeswill be even more evident when dealing with a graph
of this size. In addition, this representation is clearly more
suitable for supporting mutations as opposed to our other
two suggested techniques. The addition of an edge in the
graph requires us to search linearly the 5-byte elements to
ascertain whether we have already indexed the correspond-
ing byte. If that is the case, we merely have to change a
single flag in that byte. Otherwise, we have to append a 5-
byte element at the end of the structure with the new index
number (4-bytes) plus one byte with one –specific– flag set
to 1. Obviously, IndexedBitArrayEdges does not require
that the out-edges are sorted by their id, an assumption
that our two other compressed representations make. To
remove an edge from the structure, we again have to search
for the element with the corresponding index, and set a
specific flag to 0. In the case of ending up with a completely
empty byte, removing the 5-byte element would be costly.
However, this cost is imposed only when elements are left
completely empty. Hence, removals are more efficient than
with ByteArrayEdges, in which the cost is imposed for
every out-edge removal. Moreover, there is no inconsistency
in keeping the element in our representation, only some
memory loss which can be addressed via marking elements
when they empty so that they be used in a subsequent
neighbor addition.

4.3 VariableByteArrayWeights

Our proposed BVEdges and IntervalResidualEdges
consider ordered lists of neighbors. Thus, they can be easily
modified to support weighted graphs through the use of
an additional array, holding the respective weights of the
neighbors. This array could simply adapt the format of
ByteArrayEdges and maintain only the weight of each
neighbor in its uncompressed binary format. However, sta-
tistical analysis of weighted graphs has shown that the
weights of edges exhibit right-skewed distributions [39],
[41]. Therefore, there is strong potential for memory opti-
mization in using a compressed weight representation.

Variable-byte coding [42] uses a sequence of bytes to
provide a compressed representation of integers. In par-
ticular, when compressing an integer n, the seven least
significant bits of each byte are used to code n, whereas
the most significant bit of each byte is set to 0 in the last
byte of the sequence and to 1 if further bytes follow. Hence,
variable-byte coding uses blog128(n)c+ 1 bytes to represent
an integer n. The advantage of this approach over the more
compact bitwise compression schemes, such as Golomb-
Rice, is the significantly faster decompression time it offers
due to byte-alignment. In particular, Scholer et al. [43] show
that when using the variable-byte coding scheme, queries
are executed twice as fast as with bitwise codes, at a small
loss of compression efficiency.
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Fig. 7. The storage of edge weights using VariableByteArray-
Weights. Weights of neighbors are held in variable-byte encoding. Two
weights (32 and 378) are represented using only one and two bytes,
respectively. VariableByteArrayWeights can extend BVEdges and
IntervalResidualEdges to support weighted graphs.

Definition 4 (VariableByteArrayWeights). Given a list l of a
node’s edge weights sorted according to the id of their
respective neighbor, VariableByteArrayWeights is
a sequence of bytes holding consecutively the weights in
variable-byte coding.

Example 4. Consider the following sequence of edge weights
to be represented: (32, 378). Figure 7 provides an illustra-
tion of the parallel array using variable-byte coding that
we extend BVEdges and IntervalResidualEdges
with, to support weighted graphs. The weight of the
first neighbor is represented using only one byte, and
thus the most significant bit of the latter is set to 0. In
contrast, the second weight requires two bytes, the first
of which has its most significant bit set to 1, to signify
that the following byte is also part of the same weight.

Extracting the weight of a neighbor is as simple as
reading a sequence of bytes until reaching one with the most
significant bit set to 0, and using the 7 least significant bits
of each byte in the sequence to decode the weight.

4.4 RedBlackTreeEdges

Compressed representations essentially limit the effi-
ciency of performing mutations. Even the non-compressed
ByteArrayEdges representation is impractical when exe-
cuting algorithms involving mutations of edges [7]. This is
due to the excessive time required to perform a removal,
as all out-edges need to be deserialized. However, we
can achieve mutation efficiency without the overwhelming
memory overhead induced when using HashMapEdges.
Java’s HashMap objects use a configurable number of
buckets in their hash-table, which doubles once their entries
exceed a percentage of their current capacity. Giraph sets
the initial capacity of each HashMap to be equal to the
number of out-edges of the corresponding adjacency list,
thus ending up with significantly more buckets than what
is needed at initialization. Furthermore, the iterator of out-
edges for this representation requires additionalO(n) space.

The space wasted when using a HashMap due to empty
hash-table buckets and additional memory requirements for
iterating elements motivated us to implement a red-black
tree-based representation1 offering the same type flexibility
provided by HashMapEdges. Even though the individual
entries of the tree require more space, we noticed that
the total memory used is reduced by more than 15% for
graphs of our dataset, as our tree does not waste space for
empty buckets. These savings can be significantly enhanced

1. Java’s TreeMap uses an unnecessary parent reference.
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key: 8 bytes (long)
le�: 4 bytes (compressed oop)
right: 4 bytes (compressed oop)

color: 1 byte (boolean)
depth: 2 bytes (short)

Fig. 8. The storage of neighbors in RedBlackTreeEdges. Neighbors’
ids are inserted as keys to a red-black tree. For weighted graphs each
node would additionally maintain a variable to hold the weight.

through the use of primitive data types. Moreover, using
Morris’ tree traversal algorithm [44], we can iterate through
the out-edges without additional cost in space. Based on
these observations, we developed RedBlackTreeEdges,
a space-efficient representation that favors mutations and
offers type-flexibility.
Definition 5 (RedBlackTreeEdges). Given a list l of a node’s

neighbors, each one potentially associated with an edge
weight, RedBlackTreeEdges is a red-black tree which
uses the id of a neighbor as a key. The nodes of the tree
comprise two references to their left and right child, a
boolean for the color of the node, a short for its depth,
and two variables using primitive data types for the id
and the weight. The memory requirements of the key
and the weight depend on the id’s respective primitive
data type. The references on the left and right children
require 4 bytes each—when the maximum heap size
for each worker is less than 32GB and thus compressed
ordinary object pointers (oops) can be used—or 8 bytes each
otherwise.

Example 5. The representation of the aforementioned se-
quence of neighbors (2, 9, 10, 11, 12, 14, 17, 18, 20, 127)
using RedBlackTreeEdges is illustrated in Figure 8.
We observe that the neighbors’ ids are inserted as keys
to a red-black tree. For each id, a tree node is created and
holds the id as a key, references to the left and right
child of the node, the color of the node, and the depth
of the node. In case of a weighted graph, each node
additionally maintains a variable to hold the weight. In
this example, we consider that keys are long integers,
and thus require 8 bytes. In addition compressed oops
can be used, so the references to the left and right child
need 4 bytes each. The graph is unweighted so no bytes
are required for the weights, and finally, for the color
and the depth of the node, 1 and 2 bytes are needed,
respectively, as is always the case.

The use of a red-black tree instead of a hash-table allows
us to access the neighbors without inducing further costs
space-wise, and to avoid resizing as neighbors are added
or removed. This leads to significantly less memory re-
quirements than with HashMapEdges, without forgoing the
efficiency of performing mutations. The use of primitive
data types instead of generic types necessitates defining
suitable Java classes for the input graph; however, this
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graph vertices edges type
uk-2007-05@100000 100,000 3,050,615 web
uk-2007-05@1000000 1,000,000 41,247,159 web
ljournal-2008 5,363,260 79,023,142 social
indochina-2004 7,414,866 194,109,311 web
hollywood-2011 2,180,759 228,985,632 social
uk-2002 18,520,486 298,113,762 web
arabic-2005 22,744,080 639,999,458 web
uk-2005 39,459,925 936,364,282 web
twitter-2010 41,652,230 1,468,365,182 social
sk-2005 50,636,154 1,949,412,601 web

TABLE 1
Dataset of our experimental setting with a total of ten publicly available

web and social network graphs [12], [18].

is insignificant when compared to our space earnings. In-
stead of reducing the total memory requirements 15 per-
centage points we are able to achieve significantly higher
savings, as we will show in our experimental evaluation.
Besides, the majority of publicly available graphs use integer
ids, and Facebook uses long integers, which are represented
at the same cost with RedBlackTreeEdges, due to JVM
alignment. We also note that the ordering of the vertices’ la-
bels does not impact the performance of this representation
which is applicable to graphs with in-situ node labelings.

5 EXPERIMENTAL EVALUATION

We implemented our techniques using Java and compared
their performance against Giraph’s out-edge representa-
tions using a number of publicly available and well-studied
web and social network graphs [12], [18], reaching up to 2
billion edges. Our implementation is available online.2 We
first present the dataset and detail the specifications of the
machines used in our experiments. Then, we proceed with
the evaluation of our out-edge representations by answering
the following questions:
• How much more space-efficient is each of our three

compressed out-edge representations compared to
Giraph’s default representation?

• Are our techniques competitive speed-wise when mem-
ory is not a concern?

• How much more efficient are our compressed represen-
tations when the available memory is constrained?

• Can we execute algorithms for large graphs in settings
where it was not possible before?

• Is our compressed weight representation able to induce
additional gains?

• What are the benefits of using our tree-based out-edge
representation instead of Giraph’s fastest representa-
tion for algorithms involving mutations?

5.1 Experimental Setting
Our dataset consists of 10 web and social network graphs of
different sizes. The properties of these graphs are detailed
in Table 1. We ran our experiments on a Dell PowerEdge
R630 server with an Intel R©Xeon R© E5-2630 v3, 2.40 GHz
with 8 cores, 16 hardware threads and a total of 128GB of
RAM. Our cluster comprises eight virtual machines running

2. https://goo.gl/hJlG8H

Function: computePageRank(vertex, messages)
1 begin
2 if superstep ≥ 1 then
3 sum← 0;
4 foreach message ∈ messages do
5 sum← sum + message;
6 vvertex ← 1−α

|V | +α×sum;
7 if superstep < MAX_SUPERSTEPS then
8 dvertex ← degree(vertex);
9 sendMessageToAllOutEdges( vvertex

dvertex
);

10 else
11 voteToHalt();

Xubuntu 14.04.02 with Linux kernel 3.16.0-30-generic and
13GB of virtual RAM. On this cluster we set up Apache
Hadoop 1.0.2 with 1 master and 8 slave nodes and a
maximum per machine JVM heap size of 10GB. Lastly, we
used Giraph 1.1.0 release.

5.2 Space Efficiency Comparison

We present here our results regarding space efficiency for
the web and social network graphs of our dataset. We
compare our methods involving compression with the one
discussed in [1], viz. ByteArrayEdges, which is currently
the default Giraph representation for out-edges. To mea-
sure the memory usage we loaded each graph using a
fixed capacity Java array list to hold the adjacency lists,
dumped the heap of the JVM and used the Eclipse Memory
Analyzer3 to retrieve the total occupied memory.

Table 2 lists the memory required by the four represen-
tations examined here and the representation of [12] in MB.
We observe that all our proposed compression techniques
have significantly reduced memory requirements compared
to ByteArrayEdges. As was expected, BVEdges, which
essentially also serves as a yardstick to measure the perfor-
mance of our structures that focus on access-efficiency, out-
performs all representations as far as space-efficiency is con-
cerned. In particular, depending on the graph, its memory
requirements are always less than 40% of the requirements
of ByteArrayEdges, and reach much smaller figures in
certain cases, e.g., 20.08% for hollywood-2011. However, we
observe that our novel IntervalResidualEdges as well
as the less restrictive IndexedBitArrayEdges, both of
which do not impose any computing overheads, also man-
age to achieve impressive space-efficiency.

5.3 Execution Time Comparison

In this section, we present results regarding the execution
times of Pregel algorithms using our compressed out-
edge representations. Reported timings for all our results
are averages of multiple executions.

5.3.1 PageRank Computation

PageRank is a popular algorithm employed by many appli-
cations that run on top of real world-networks, with (web
page/social network users) ranking and fake account detection
being typical examples.

3. https://eclipse.org/mat/
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graph ByteArrayEdges BVEdges (BV) IntervalResidualEdges IndexedBitArrayEdges
uk-2007-05@100000 22.61 MB 6.41 MB (0.96 MB) 7.92 MB 8.91 MB
uk-2007-05@1000000 279.16 MB 67.36 MB (10.54 MB) 82.7 MB 97.79 MB
ljournal-2008 866.36 MB 386.73 MB (117.68 MB) 497.52 MB 648.52 MB
indochina-2004 1,511.67 MB 442.34 MB (48.03 MB) 646.03 MB 554.23 MB
hollywood-2011 1,381.91 MB 287.53 MB (145.85 MB) 613.52 MB 676.88 MB
uk-2002 2,733.6 MB 1,092.82 MB (116.39 MB) 1,224.07 MB 1,255.67 MB
arabic-2005 4,820.09 MB 1,428.97 MB (187.58 MB) 1,674.75 MB 1,849.83 MB
uk-2005 7,401.88 MB 2,383.54 MB (279.45 MB) 2,728.74 MB 2,928.81 MB
twitter-2010 11,189.88 MB 4,628.48 MB (2,600.07 MB) 7,127.76 MB 8,888.50 MB
sk-2005 14,829.64 MB 4,889.85 MB (607.92 MB) 5,657.79 MB 6,354.17 MB

TABLE 2
Memory requirements of Giraph’s ByteArrayEdges and our three out-edge representations for the small and large-scale graphs of our dataset.

Requirements of BV [12] in a centralized setting are also listed to provide an indication of the compressibility potential of each graph.

A Pregel implementation of PageRank is shown in
Function computePageRank. In our experimental setting
MAX_SUPERSTEPS is set to 30 and α is set to 0.85. Every
vertex executes the function computePageRank at each su-
perstep. The graph is initialized so that in superstep 0 all
vertices have value equal to 1

|V | . In each of the first 30 (i.e.,
0 to 29) supersteps, each vertex sends along each out-edge its
current PageRank value divided by the number of out-edges
(line 9). From superstep 1 and on, each vertex computes its
PageRank value vvertex as shown in line 6. When superstep 30
is reached, no further messages are sent, each vertex votes
to halt, and the algorithm terminates.

We expect that any Pregel algorithm not involving mu-
tations would exhibit similar behavior for the different
representations with the one reported here for PageRank,
as it would also feature the same set of actions regarding
out-edges, i.e., initialization and retrieval.

5.3.2 Shortest Paths Computation
Single-source Shortest Paths algorithms [45] focus on find-
ing a shortest path between a single source vertex and every
other vertex in the graph, a problem arising in numerous
applications.

A Pregel implementation of Shortest Paths is shown in
Function computeShortestPaths. Initially, the value associ-
ated with each vertex is initialized to infinity, or a constant
larger than any feasible distance in the graph from the
source vertex. Then, using the temporary variable minDist
the function examines cases that may update this value.
There are two such cases: i) if the vertex is the source vertex
the distance is set to zero, and ii) if the vertex receives a
message with a smaller value than the one it currently holds,
the distance is updated accordingly. When a vertex updates
its value it must also send a message to all its out-neighbors
to notify them about the newly found path. Each message is
set to the updated distance of the vertex plus the weight
of the edge that connects the vertex with the respective
neighbor. Finally, the vertex votes to halt and remains halted
until a message reaches it. The algorithm terminates when
all vertices are halted, at which time each vertex holds the
value of the shortest path to the source vertex.

The Shortest Paths algorithm involves the same opera-
tions as the PageRank algorithm, but additionally serves the
purpose of evaluating our techniques on weighted graphs.

5.3.3 Comparison using small-scale graphs
We begin our access time comparison by investigating the
performance of our three compressed out-edge represen-

Function: computeShortestPaths(vertex, messages)
1 begin
2 if superstep == 0 then
3 vertex.setValue(∞);
4 minDist← isSource(vertex) ? 0 :∞;
5 for message in messages do
6 minDist← min(minDist, message);
7 if minDist < vertex.getValue() then
8 vertex.setValue(minDist);
9 for edge in vertex.getEdges() do

10 sendMessage(edge, minDist + edge.getValue());
11 voteToHalt();
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Fig. 9. Execution time (in minutes) of PageRank algorithm for the graph
indochina-2004 using a setup of 2, 4, and 8 workers.

tations, as well as that of Giraph’s ByteArrayEdges.
Figure 9 depicts the results of all four techniques when
executing the PageRank algorithm for the graph indochina-
2004. We run experiments on setups of 2, 4, and 8 workers
and present the results of the total time needed for each
representation.

We observe that IndexedBitArrayEdges and Inter-
valResidualEdges do not impose any latency in the pro-
cess. In fact, using either of our two novel representations
we achieve execution times for all three setups that are
better than those of ByteArrayEdges. The performance
gain becomes more notable as we limit the number of
available workers. BVEdges is inferior speed-wise due to
the computationally expensive access of the out-edges of-
fered through this structure which requires decoding Elias-
γ and ζ-coding values. This indicates that the computing
overheads imposed by the state-of-the-art techniques of [12]
are not negligible and simply adopting them proves to be
inefficient. We note that this graph is fairly small for all our
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Fig. 10. Execution time (in minutes) for each superstep of the PageRank
algorithm for the graph uk-2005 using 5 workers. ByteArrayEdges
performance fluctuates due to extensive garbage collection.

setups and its memory requirements are not a bottleneck
for any of the representations we examine. However, the
messages that are exchanged during the execution of the
algorithm need in total more than 65GB of memory. Thus,
garbage collection needs to take place in the setups of 2 and
4 workers.

For graphs which are equivalent to or smaller than
indochina-2004 the performance is similar. In particu-
lar, for all three setups IndexedBitArrayEdges and
IntervalResidualEdges managed to execute the PageR-
ank algorithm faster than ByteArrayEdges was able to.
On the contrary, BVEdges required more time for each
superstep.

5.3.4 Comparison using large-scale graphs
We further examine the performance of our representations
using setups where memory does not suffice for the needs of
the execution of PageRank. This forces the JVM to work too
hard and results in wasting a significant proportion of the
total processing time performing garbage collection. Hence,
the overall performance degrades extremely. In particular,
we examine the behavior of all four representations for the
graph uk-2005, using a setup of 5 workers, i.e., the smallest
possible setup that can handle the execution of PageRank
using ByteArrayEdges.

The merits of memory optimization in the execution
of Pregel algorithms for large scale graphs are evident
in Figure 10. In particular, Figure 10 depicts the time
needed for each superstep of the execution of PageRank
for the uk-2005 graph with each one of the four space-
efficient out-edge representations. We observe that BVEdges
requires significantly more time than our other two rep-
resentations for every superstep, as was the case with
small-scale graphs. In particular, using BVEdges most su-
persteps require more than 3 minutes each, whereas us-
ing our other two representations most supersteps need
about 2.5 minutes each. We also see, however, that in
this setup the execution with ByteArrayEdges tends
to fluctuate in performance, and consequently performs
worse than our slowest structure, i.e., BVEdges. The in-
creased memory requirements of Giraph’s default imple-
mentation, result in an unstable pace during the execu-
tion of PageRank, as it needs to perform garbage col-
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Fig. 11. Execution time (in minutes) of the PageRank algorithm for the
graph uk-2005 using 5 and 4 workers. IntervalResidualEdges and
IndexedBitArrayEdges outperform ByteArrayEdges which fails to
complete execution with 4 workers.

lection very frequently to accommodate the memory ob-
jects required in every superstep. IndexedBitArrayEdges
and IntervalResidualEdges were able to handle ev-
ery superstep at a steady pace and greatly outper-
formed ByteArrayEdges, requiring 2.45 and 2.46 min-
utes of execution per superstep, respectively, when in fact
ByteArrayEdges needed 4.03. Our most compact struc-
ture, i.e., BVEdges required 3.13 minutes per superstep to
run the PageRank algorithm, which is also significantly
faster than Giraph’s default representation.

The performance difference of the four representa-
tions with regard to the total execution time of PageR-
ank for the graph uk-2005 is even more evident in Fig-
ure 11. The executions using IndexedBitArrayEdges
and IntervalResidualEdges are faster by 40.63% and
40.01% than the one with ByteArrayEdges, respectively.

We further evaluate the performance of the four rep-
resentations by executing PageRank for the same graph
using only 4 workers. As already mentioned, the exe-
cution with ByteArrayEdges on this setup fails as the
garbage collection overhead limit is exceeded, i.e., more
than 98% of the total time is spent doing garbage col-
lection. Our proposed implementations, however, are able
to execute PageRank for the uk-2005 graph despite the
limited resources. The total time needed by our three
representations is also illustrated in Figure 11. We ob-
serve that under these settings IndexedBitArrayEdges,
IntervalResidualEdges, and BVEdges need 212.65,
221.27, and 230.47 minutes, respectively. As we can see
in Table 2, IndexedBitArrayEdges requires more mem-
ory than IntervalResidualEdges to represent the out-
edges of uk-2005. However, the retrieval of out-edges using
IndexedBitArrayEdges is more memory-efficient than
using IntervalResidualEdges, which results in it being
4% faster under these settings.

We note that for the uk-2005 graph, PageRank execution
requires the exchange of messages that surpass 313GB of
memory in total.

5.3.5 Initialization time comparison

Having measured the execution time of the PageR-
ank algorithm using small- and large-scale graphs we
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Fig. 12. Initialization time (in seconds) for graphs indochina-2004 (using
2 workers) and uk-2005 (using 5 workers). There is notable perfor-
mance gain on large-scale graphs over ByteArrayEdges when using
IndexedBitArrayEdges or IntervalResidualEdges. BVEdges
is the slowest of the representations examined.

now report the initialization time the different repre-
sentations need. Figure 12 illustrates a comparison be-
tween our three space-efficient out-edge structures and
ByteArrayEdges in two different setups. In particu-
lar, we first examine the loading time for the rela-
tively small graph indochina-2004 when using two work-
ers. We observe that there are negligible differences
between ByteArrayEdges, IntervalResidualEdges,
and IndexedBitArrayEdges, with the former being
the slowest and the latter being the fastest. In contrast,
BVEdges is significantly slower than all other represen-
tations. Furthermore, we see in Figure 12 that when
loading a larger graph, i.e., uk-2005, the performance
of the different structures varies considerably. Again,
IndexedBitArrayEdges is the fastest approach, followed
by IntervalResidualEdges, ByteArrayEdges, and
BVEdges, but in this setting there is obvious disparity in
the initialization performance.

We note that the graph loading time is negligible com-
pared to the execution time of the PageRank algorithm.
For instance, for graph uk-2005 using 5 worker nodes,
IndexedBitArrayEdges requires 121.64 seconds to ini-
tialize the graph, whereas the execution time for this
setting is over 70 minutes using any of the representa-
tions examined here. However, the significant performance
gain induced when using IntervalResidualEdges and
IndexedBitArrayEdges can have a notable impact in
algorithms requiring less execution time.

5.3.6 Comparison when using weighted graphs
We continue our experimental evaluation by measuring
the time needed for the execution of a Pregel algorithm
that operates on weighted graphs. In particular, we present
performance results for the different compact out-edge rep-
resentations when executing the Shortest Paths algorithm,
as described through Function computeShortestPaths. Being
that all the graphs of our dataset are unweighted, we assign
random weights exhibiting a Zipf distribution4 on the edges
of graph uk-2005. Then, we proceed with the execution

4. We used the numpy.random.zipf function from NumPy’s ran-
dom sampling library to generate weights for the graph using α = 2.
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Fig. 13. Execution time (in minutes) of the ShortestPaths algorithm for a
single vertex, on the graph uk-2005, using a setup of 5 and 4 workers.

of the algorithm using ByteArrayEdges, BVEdges and
IntervalResidualEdges in setups of 5 and 4 workers.
For BVEdges and IntervalResidualEdges we addition-
ally use the VariableByteArrayWeights representation
to hold the weights of edges.

Figure 13 illustrates a comparison of the
results we obtain with our representations against
Giraph’s ByteArrayEdges. We observe that using
IntervalResidualEdges we are able to execute the
Shortest Paths algorithm more than 1.5 minutes faster
than using ByteArrayEdges in the setup of 5 workers.
The significant savings in execution time are due to the
limited memory usage of IntervalResidualEdges
and VariableByteArrayWeights. Our BVEdges
behaves similarly to ByteArrayEdges as the computation
overhead involved in accessing the edges counterbalances
the merits of space-efficiency this representation offers.
Furthermore, Figure 13 shows the respective results for
the setup of 4 workers. We see that as we limit the
available memory resources, the performance gains of
our representations become more evident. In particular,
BVEdges is clearly also preferable than ByteArrayEdges
in this setting being more than 1.5 minute faster. Moreover,
IntervalResidualEdges is able to terminate 2.26
minutes faster than ByteArrayEdges.

We note that VariableByteArrayWeights re-
quires additional 1, 957.25MB of memory to hold the
weights of out-edges, whereas ByteArrayEdges needs
5, 074.36MB. Moreover, IndexedBitArrayEdges does
not presume that the ids of out-edges are sorted,
and thus, cannot support weighted graphs through
VariableByteArrayWeights. For this reason we do not
include IndexedBitArrayEdges in this experiment.

5.3.7 Comparison when performing mutations
All the aforementioned experiments focus on space-efficient
structures that are applicable on algorithms that do not
involve additions or removals of out-edges. However, often-
times graph algorithms need to perform mutations on the
vertices’ neighbors. To this end, we examine here the perfor-
mance of our novel RedBlackTreeEdges representation,
against Giraph’s HashMapEdges. Both structures provide
type flexibility, support weighted graphs, and can operate
on graphs with in-situ node labelings.
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We consider here an input graph which uses long in-
tegers for the ids of its nodes5 and the execution of a
simple algorithm that performs additions and removals of
out-edges on this graph. In particular, we executed over
hollywood-2011—the largest graph we were able to load
using HashMapEdges—an algorithm of two supersteps. The
first one performs a random number of insertions of out-
edges, and the second one removes them.

The initialization phase, in which the graph is loaded
in memory, is faster using our novel tree-based struc-
ture. RedBlackTreeEdges needs 33.64 seconds to do so,
whereas HashMapEdges requires 38.73 seconds. Moreover,
Figure 14 depicts the execution time needed by the two
representations when varying the number of maximum
insertions/deletions allowed in our algorithm. We observe
that when the number of mutations is low, the time spent
using the two representations is equivalent. However, as
the number of mutations grows and more memory is
needed for the representation of the graph, the perfor-
mance of HashMapEdges deteriorates significantly, and
RedBlackTreeEdges proves to be clearly superior.

We note that RedBlackTreeEdges requires less
than half of the space that HashMapEdges needs to
load the graph hollywood-2011 in memory. In particular,
RedBlackTreeEdges uses 7,079.6MB of memory, whereas
HashMapEdges uses 19,323.8MB.

6 CONCLUSION

In this paper, we propose and implement three com-
pressed out-edge representations for distributed graph
processing, termed BVEdges, IntervalResidualEdges,
and IndexedBitArrayEdges, a variable-byte encoded
representation of out-edge weights, termed Variable-
ByteArrayWeights, for compact support of weighted
graphs, and a compact tree-based representation that favors
mutations, termed RedBlackTreeEdges. We focus on the
vertex-centric model that all Pregel-like graph processing
systems follow and examine the efficiency of our structures

5. We examine the case of long integer ids as this is the data type
used by Facebook, Giraph’s most significant contributor.

by extending one such system, namely Apache Giraph.
Our techniques build on empirically-observed properties
of real-world graphs that are exploitable in settings where
graphs are partitioned on a vertex basis. In particular, we
capitalize on the sparseness of such graphs, as well as the
locality of reference property they exhibit. We cannot, how-
ever, exploit the similarity property as vertices are unaware
of any information regarding other vertices.

All our representations offer significant memory
optimizations that are applicable to any distributed
graph compressing system that follows the Pregel
paradigm. BVEdges, which is based on state-of-the-
art graph compression techniques, achieves the best
compression but offers relatively slow access time to
the graph’s elements. Our IntervalResidualEdges
and IndexedBitArrayEdges representations outper-
form Giraph’s most efficient representation, namely
ByteArrayEdges, and are able to execute algorithms
over large-scale graphs under very modest settings. Fur-
thermore, our representations are clearly superior than
ByteArrayEdges when memory is an issue, and are capa-
ble of successfully performing executions in settings where
Giraph fails due to memory requirements. Our compressed
out-edge representations are also shown to allow for ef-
ficient execution of weighted graph algorithms, through
VariableByteArrayWeights, a variable-byte encoding
based representation of out-edge weights. Finally, through
our evaluation regarding algorithms involving mutations
we show that the performance of RedBlackTreeEdges
is equivalent to that of HashMapEdges when memory is
sufficient, and shows significant improvements otherwise.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their in-
sightful remarks, as well as Prof. Yannis Smaragdakis and
Michael Sioutis for fruitful discussions and valuable feed-
back. A preliminary version of this work appeared in [35].

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukr-
ishnan, “One Trillion Edges: Graph Processing at Facebook-Scale,”
Proc. of the VLDB Endowment, vol. 8, no. 12, pp. 1804–1815, 2015.

[2] “We knew the web was big. . . ,” http://googleblog.blogspot.ca/
2008/07/we-knew-web-was-big.html.

[3] “Apache Giraph,” http://giraph.apache.org/.
[4] S. Salihoglu and J. Widom, “GPS: a graph processing system,”

in Proc. of the 25th Int. Conf. on Scientific and Statistical Database
Management, Baltimore, MD, USA, July 29 - 31, 2013, 2013, pp. 22:1–
22:12.

[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab: A Framework for Machine
Learning in the Cloud,” Proc. of the VLDB Endowment, vol. 5, no. 8,
pp. 716–727, 2012.

[6] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective Techniques for
Message Reduction and Load Balancing in Distributed Graph
Computation,” in Proc. of the 24th Int. Conf. on World Wide Web,
Florence, Italy, May 18-22, 2015, 2015, pp. 1307–1317.

[7] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin,
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