
458 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

Techniques for Update Handling
in the Enhanced Client-Server DBMS

Alex Delis, Member, IEEE, and Nick Roussopoulos

Abstract—The Client-Server computing paradigm has significantly influenced the way modern Database Management Systems are
designed and built. In such systems, clients maintain data pages in their main-memory caches, originating from the server’s
database. The Enhanced Client-Server architecture takes advantage of all the available client resources, including their long-term
memory. Clients can cache server data into their own disk units if these data are part of their operational spaces. However, when
updates occur at the server, a number of clients may need to not only be notified about these changes, but also obtain portions of
the updates as well. In this paper, we examine the problem of managing server imposed updates that affect data cached on client
disk managers. We propose a number of server update propagation techniques in the context of the Enhanced Client-Server DBMS
architecture, and examine the performance of these strategies through detailed simulation experiments. In addition, we study how
the various settings of the network affect the performance of these policies.

Index Terms—Client-server DBMSs, update propagation policies, cluster database computing, push servers, modeling of client-
server DBMSs, simulation and performance analysis.

——————————���F���——————————

1 INTRODUCTION

RGANIZATIONS and companies are deploying database
servers at an ever increasing rate in order to meet their

basic business requirements. The demand for retrieval and
manipulation of very large amounts of data is also increas-
ing rapidly [1], [51], [12]. This trend calls for high through-
put database systems and scalable architectures that dem-
onstrate excellent performance characteristics. Previous
efforts in the realization of high performance database
computing include database machines and multiprocessor
databases [18], [6], [8]. Although these efforts offered solu-
tions in the area of database performance, they demanded
excessive costs since they required specialized hardware
and software.

In recent years, the Client-Server computing paradigm
[48] has gained wide-spread acceptance and has been used
extensively in the development of contemporary comput-
ing systems. Technological advances coupled with reduced
pricing in hardware have created a new reality [46]. More
specifically, we have experienced the wide availability of
inexpensive workstations and powerful PCs, the introduc-
tion of large, fast, and reliable disk units, as well as the ap-
pearance of fast local area networks [37], [25], [4]. By taking
advantage of this infrastructure, the Client-Server paradigm
attempts to satisfy the requirements for both high perform-
ance and scalability [14]. The successful fulfillment of the
last two requirements can lead us to a new era of intense
data sharing and network-centric database computing [1].

To this end, Client-Server Database Systems (CS-DBMSs)
have been introduced in order to accommodate data shar-
ing and improve performance.

The fundamental concept in CS-DBMSs is that a dedi-
cated machine runs a DBMS and maintains a main central-
ized database (DBMS-Server) [17], [41], [15], [28]. The users
of the system access the database through either their
workstations or PCs, via a local area network. The interac-
tion between workstations/PCs and server is achieved by
the underlying operating systems and their interprocess
communication abstraction mechanisms, such as Remote
Procedure Calls or sockets [7], [48]. The workstations typi-
cally run user-interface programs and direct all database
inquiries and/or updates to the DBMS-Server. In this way,
they become the server’s clients. This clustered configura-
tion, which often runs on a Network of Workstations (NOW),
has been termed Standard Client-Server DBMS (SCS) [14].
Although the environment in SCS is distributed, the DBMS
is centralized and, therefore, transaction handling is easier
than in distributed databases [11]. The server attempts to
satisfy every incoming client request by first creating and
then executing a thread [27]. Threads execute concurrent
tasks as different streams of control in the context of a mul-
tithreaded database server process [23]. Both commercial
products [9], [26], [3], [29], [31], [49] and research proto-
types [53], [52], [19], [22], [40], [38] use some variation of
this basic Client-Server model.

The Enhanced Client-Server DBMS (ECS-DBMS) [15] off-
loads disk accesses from the server. This is achieved by
having clients run a limited DBMS in terms of concurrency
and by caching results of server queries to the client disk
managers. The rationale for this type of disk caching is to
boost clients’ performance by avoiding potentially highly-
loaded servers. In this paper, we study the performance of
update propagation techniques for the ECS type of Client-
Server DBMS architecture as the number of participating

1041-4347/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� A. Delis is with the Department of Computer and Information Science,
Polytechnic University, Brooklyn, NY 11201. E-mail: ad@naxos.poly.edu.

•� N. Roussopoulos is with the Computer Science Department and Institute
for Advanced Computer Science (UMIACS), University of Maryland,
College Park, MD 20742. E-mail: nick@cs.umd.edu.

Manuscript received 27 Feb. 1995; revised 16 Oct. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104909.

O

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 459

clients in the cluster increases. A number of update propa-
gation techniques, whose features range from pure push-
servers to self-contained pull-clients, are presented and
their performance is studied under a number of workloads
through simulation experiments. The simple broadcasting
strategy for server updates (push-server) gives better per-
formance rates over the other policies in a number of occa-
sions, while the on-demand update propagation strategy
furnishes better results under the condition that none of the
server resources reaches full utilization.

The paper is organized as follows: Section 2 gives an
overview of the ECS Client-Server DBMS. In Section 3, we
state the problem and compare this work with prior related
studies. Section 4 suggests a number of policies, and dis-
cusses policy characteristics and overheads. Section 5
briefly describes the simulation models used and discusses
the system parameters. In Section 6, we present the evalua-
tion methodology and our experimental results. Conclu-
sions can be found in the last section.

2 FEATURES OF THE ENHANCED CLIENT-SERVER
DBMS

The Standard Client-Server (SCS) model originated in engi-
neering applications where data are mostly processed in
clients with powerful CPUs [46], [26], [3]. In these applica-
tions, centralized repositories are used to maintain global
data consistency with check in and check out protocols. The
Standard Client-Server configuration uses the network as
the means to either send messages or ship query results
from the server to clients. Clients run presentation manag-
ers and application programs locally while they direct data
requests to the database servers. Extensive database opera-
tions initiated by a number of concurrent clients may gen-
erate heavy loads and significant processing delays at the
server nodes of the architecture [14].

The Enhanced Client-Server architecture (ECS) [15] of-
fers relief to database servers by utilizing both CPU cycles
and I/O capabilities of its clients. The functionality of the
clients is “enhanced” to a simplified single-user DBMS. The
single-user DBMS in discussion takes advantage of the of-
ten voluminous long-term memory spaces available at the
client level. In this setting, clients may cache data of their
interest (i.e., query results) into their local disk managers
for future re-use. Enforcement of data consistency through-
out the architecture can be undertaken by the servers that

are the primary sites of data. Hence, servers become the
caretakers for updates and their propagation to pertinent
clients. Fig. 1 shows the general organization of this archi-
tecture with two server nodes and three clients. In the re-
mainder of this paper, we will consider issues in the context
of a single cluster. A cluster consists of one server and a
varying number of clients attached to it. Such a cluster pro-
vides the basis for our discussion.

By caching query results over time, a client creates a sub-
set of the server database on its own disk unit. A client es-
sentially maintains a partial replica of the server database
which is of interest to the client’s application(s). Later on, a
user can integrate into her client database individual data
not accessible and of no interest to others. There are two
major advantages for this type of disk caching: First, re-
peated requests for the same server data are eliminated and,
second, system performance is boosted as clients can access
local data copies. Nonetheless, in the presence of updates,
the system needs to ensure proper propagation of either
new objects or modified elements to the appropriate clients.

Every time a client decides to cache the results of a query
into its own disk, it creates a “new-local” relation. This
newly created entity is derived from the server tables and it
must be affiliated with these tables. Each such relationship
between client cached data and server relations is desig-
nated by a client binding. Bindings are described by tem-
plates consisting of three elements: the participating server
relation(s), the applicable condition(s) used to extract data
from the server relations (or predicates), and a timestamp.
Conditions essentially play the role of a filtering mecha-
nism and designate which server tuples are of interest to a
specific client. The timestamp of a binding indicates the last
time the data of a client has been refreshed with updates
that have taken place at the server. Since that last time,
other modifications may have taken place and they have
possibly caused client data to become inconsistent.

Updates are, in general, directed for execution to the
server which is the primary site. Pages to be modified are
read into main memory, updated, and flushed back to the
server disk unit. In ECS, every server relation is associated
with an update propagation log which consists of time-
stamped inserted tuples and timestamped qualifying con-
ditions (predicates) for deleted tuples. Only updated (com-
mitted) tuples are recorded in these logs. The number of
bytes written to the log per update is generally much smaller
than the size of the pages read into main memory [47]. Fig. 2

Fig. 1. Servers and clients in the ECS architecture.

460 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

shows a server relation and its accompanied log with three
modifications that have happened at various times. For in-
stance, the operation that took place at 10:48 p.m. was a de-
letion of records from the server relation. As such, the log
only maintains the description of this logical operation.

ECS client query processing against local data is pre-
ceded by a request for an incremental update of this data.
The server is required to look up the portion(s) of the
query-involved relation logs that maintain entries with
timestamps greater than the one seen by the submitting
client so far. The look-up process in discussion may be car-
ried out once the binding template for the requesting client
is available.

The set of all binding templates can be either stored at
the server’s catalog (in the form of a binding directory) or
collectively maintained by the individual clients. In the
former case, the server maintains all the information re-
garding the caching status of the clients (i.e., which client
has “seen” what portions of the server relation logs and up
to what time). Naturally, these statistics multiply quickly as
the number of clients attached to a server increases. The
second alternative releases the server’s DBMS from keeping
track of a large number of cached data subsets and the dif-
ferent update states. However, if the distributed option is
taken, then a client’s request should be accompanied with
the proper binding template.

The binding template enables the server to perform the
correct data filtering. Only relevant fractions (i.e., incre-
ments) of the modifications (relation update logs) are
propagated to the client’s site. A set of algorithms that carry
out such operations are based on the incremental access
methods for relational systems [39]. These algorithms look
up the update logs of the server and transmit differential
files. Shipment of short differential files proves to be valuable
in settings where the bandwidth of the network is limited.

The concurrent processing of all updates and query/log
operations is carried out by the Server DBMS, as Fig. 1 indi-
cates. In order to maintain consistency, data pages are ac-
cessed through a standard locking protocol such as the
strict-2φ locking protocol [23]. The lock tables assist the
server DBMS in carrying out this protocol. Once a lock has

been acquired, the disk manager can schedule a page trans-
fer into the server DBMS buffer area for processing. We as-
sume that the server DBMS buffer area is much smaller
than the size of the database. We also assume that the client
DBMS buffers are smaller than the size of the cached data
on the client disk.

3 PROBLEM FORMULATION AND RELATED WORK

The fundamental question addressed in this paper could be
summarized as follows: Given an ECS-DBMS configuration
and a server committed update, what are the alternatives in
propagating/pushing the results of this operation to inter-
ested clients? The cached disk-resident data of these clients
may become inconsistent after the update commits.

Although the issue in its general framework is not new, it
has been examined under different contexts in the past.
Alonso et al. [1] examine a similar problem in information
systems. They relax the consistency of the client disk cached
data and study the performance of Client-Server information
systems using quasi-copies of data. Carey et al. [10] examine
the performance of five algorithms that maintain consistency
of cached data in CS-DBMS. However, the important as-
sumption of this work is that client data are maintained in
cache memory and they are not disk resident. Similar work
was carried out by Wang and Rowe [52]. Franklin et al. ex-
amine the performance of various page-oriented caching
techniques [21]. Mohan and Narang [33] propose a recovery
algorithm for a Client-Server database environment where
server and client clocks do not need to be synchronized.
There is also a large amount of work done in the areas of
cache coherence algorithms [2] and distributed shared main
memories [36]. The major problems examined in the last two
areas could be characterized as isomorphic to our problems
with the ECS configuration. Work in cache coherence exam-
ines how it is possible to maintain memory caches up-to-date
with the contents of the main memory and increase overall
system performance. In distributed shared main memories,
the common channel (or bus) that connects the memories is a
serialization element and thus, a potential bottleneck. In the
latter, the main issue is how to attach multiple processors to a
large group of distributed shared main memories without
creating bus congestion.

When the problem is examined in the context of the En-
hanced Client-Server DBMS configuration, there are a
number of elements that impose new constraints. These
constraints stem from the fact that databases work pre-
dominantly with disk resident data and that the CPU time
to process database operations is not negligible in both
server and clients. Other questions that can be examined in
this setting are:

1)�What is the achieved relative performance of the vari-
ous propagation alternatives?

2)�How do these strategies scale up in the presence of
many clients (more than 30-40)?

3)� Is there any gain in employing an incremental and on-
demand propagation strategy?

4)� In a rare-update environment, there is no data incon-
sistency and clients work off their copies providing a
system with almost linearly scalable performance. As

Fig. 2. Server relation with its incremental log.

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 461

updates increase and their operational areas on the
database become larger, what is the overhead that
needs to be paid by both the clients and the server to
offer timely update propagation?

Some work indirectly related to this study was done in
the areas of multiprocessor DBMS architectures [6], fully
distributed DBMSs [35], [5], [44], and distributed systems
[50], [30], [42].

4 STRATEGIES FOR UPDATE HANDLING

In this section, we introduce five possible strategies for ECS
data propagation and talk about their design rationale and
supporting mechanisms.

On-Demand Strategy (ODM): This policy has been used in
the model of the Enhanced Client-Server model outlined in
Section 2. The key idea is that the server does not need to
do any bookkeeping in terms of data bindings (e.g., a dis-
tributed alternative for the management of the bindings is
used). This implies that if a client wants to materialize a
query, it has to present the server with its binding/caching
information as well as the query itself. In this way, the
server is capable of identifying the data space of interest to
every individual client request and commences the appro-
priate actions to service this request. The binding informa-
tion works as the filter that determines the portions of the
server relation logs that need to be forwarded to clients.

Fig. 3 presents the logical architecture of the configura-
tion based on the ODM strategy. In general, there is more
than one client attached to the LAN. Query messages,
binding information, and update requests are directed from
the clients through the network to the server. Data incre-
ments and update commit acknowledgments are forwarded
from the server to the clients.

The second group of strategies is built around the idea of
broadcasting (pushing) server data modifications to all cli-
ents in the cluster as soon as an update commits [34]. The
rationale is that if the updated tuples are already in main
memory, then we could avoid subsequent data rereading
from the disk when the need for update propagation arises.
Therefore, some time could be saved and logs become un-
necessary. Depending on how the volume of the data
broadcast is decided, two alternative policies are intro-
duced: Broadcasting with No Catalog bindings and Broad-
casting With Catalog bindings.

•� Broadcasting with No Catalog bindings (BNC): This pol-
icy pushes just committed updates to all clients in a
cluster indiscriminately. The CS configuration that
operates under this policy requires no additional
server overhead in terms of functionality. The server
avoids look-up log operations and computations
needed to determine the destination of the updates. As
soon as a write operation commits, the server estab-
lishes a communication channel with every client
(point-to-point). Through this channel, updated tu-
ples (data) are pushed to workstations. After the
transfer is finished, the server closes the communica-
tion channel indicating the completion of the broad-
cast. When a client receives the changes, it suspends
any on-going work and determines if the modifica-
tions broadcast affect its operational locale in any
way. The latter can be easily established with the cli-
ent catalog information at hand. If a client has to abort
the current job, it then flushes (commits) the newly
arrived changes into its disk and restarts the just
aborted query. Fig. 4 shows the logical structure of
this strategy. The network traffic consists of update
requests and updated records. Queries are executed
solely at the clients, without any server interaction.

•� Broadcasting With Catalog bindings (BWC): This policy
extends the previous scheme by trying to limit the
amount of data transported over the network (Fig. 5).
This is done by reducing the volume of data based on
server-maintained binding information. A directory of
binding information for each client has to be main-
tained in the server DBMS system area (Binding Direc-
tory in Fig. 5). This directory states, in terms of predi-
cates or bindings, the specific areas of the database
that each client has cached into its disk. Every time an
update job commits, the server opens a communica-
tion channel with a specific client only if its binding
calls for it. In addition, when this channel is estab-
lished, only a portion of the updated tuples needs to
travel over the network—those pertinent to the cli-
ent’s locale. Any query executing at the client site
during the broadcasting is aborted and can be re-
started after the incoming modifications have been
committed into the client disk manager. The directory
of the bindings could be maintained in main memory.
However, when the number of clients increases, such

Fig. 3. Logical diagram for the ODM policy.
Fig. 4. Logical diagram for the BNC policy.

462 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

an assumption is not realistic and the binding direc-
tory has to be maintained in the long-term memory.

Two additional propagation policies are proposed by
combining the concepts described so far and by incorpo-
rating the idea of periodic update broadcasting. In periodic
update broadcasting, logs are used as the main tool to rec-
ord the “net changes.” Here, client-originated queries are
handled in a manner similar to the one described in the
ODM configuration. The additional feature is that, at regu-
lar intervals, the server is interrupted by a daemon. The
daemon essentially collects all the changes “not seen” by
the clients yet and initiates their propagation. It is antici-
pated that this type of data “prefetching” may offer gains on
possible server idle time periods. During these periods cer-
tain useful propagation work may take place. Nevertheless,
it is expected that under stringent job submission times
(short think times) the periodic propagation will suffer.

As soon as the server daemon reads the “not yet seen”
portions of the log into the main-memory buffers, it can
push them to the various clients. This transmission of log
portions can be carried out by either a naive or a discrimi-
natory broadcasting strategy. The former strategy results in
Periodic broadcasting with No Catalog bindings (PNC) and the
latter in Periodic broadcasting With Catalog bindings (PWC).
The qualitative difference of the two strategies above is the
same as that between BNC and BWC. Periodic broadcasting
With relation Catalog bindings (PWC) attempts to limit the
volume of data transferred over the local area network using
server catalog information about the operational areas of
every client. When modifications broadcast are received, cli-
ents operate in ways similar to the ones outlined earlier (e.g.,
interrupting any on-going operation, flushing received data
into the local disk, etc.) Figs. 6 and 7 show functional dia-
grams for the PNC and PWC policies, respectively.

5 SIMULATION MODELS

We have developed software packages corresponding to the
functionality of the five update propagation policies. Fig. 8
shows the high-level models used to derive our packages;
models for a server, the communication medium, and one
client only are shown.

The server model maintains all the key processing ele-
ments of a database system [24]. The top layer of the model
termed Server Database Manager parses the incoming

messages, carries out request decomposition, and places
jobs in the queue of the database scheduler. The scheduler
in conjunction with the Concurrency Control Manager
determines when a job has to be admitted for processing
by the database engine (internals of the server). The
Concurrency Control Manager overlooks the maximum
allowed number of jobs scheduled for processing, manages
the locking mechanism, maintains the wait-for graph of the
active jobs, detects deadlocks, and, finally, releases the nec-
essary locks upon a job’s completion. An externally im-
posed multiprogramming degree is set in order to avoid job
thrashing and remains constant throughout the execution of
the client requests.

The Buffer, Disk & Log Manager controls the allo-
cation of main-memory buffer space (equal segments are
allotted to all active jobs) and manages the disk unit(s). We
assume that the buffers can hold only a portion of the
server database. This manager is also responsible for the
incremental log operations as they were discussed in Sec-
tion 4. The Resource Manager handles all the available
resources at the server site, namely, the CPU, the pool of the
main-memory buffers, the disk units, and the network in-
terface. We assume no contention in both system and mem-
ory bus. Resources are allocated to the various managers as
soon as they become available. While server requests are
being processed, they “consume” the resources of the
server such as CPU, disk I/O, buffer space etc. Time spent
on the server resources for the processing of requests is re-
corded by the simulation software for reporting purposes.
Table 1 shows settings for system features and penalties
involved in the operation of the database managers.

Fig. 5. Logical diagram for the BWC policy. Fig. 6. Logical diagram for the PNC policy.

Fig. 7. Logical diagram for the PWC policy.

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 463

The Communication Network Managers at both clients
and server are responsible for the processing of the critical
path of the remote process calls (RPCs) [7], [43]. The critical
path is the set of instructions that has to be executed for
every remote procedure call before the database manager
traps to the operating system kernel. During this processing,
data are segmented to packets, converted to the appropriate
format (marshaling), and augmented with header fields such
as destination addresses. Packets placed at the network inter-
face are ready for transmission. At the receiving end, the cor-
responding Communication Network Manager follows the
reverse process: Packets are stripped off their header ad-
dresses, unmarshalled, and used to assemble the received

message and/or data. Schroeder and Burrows [43] have
shown that only a quarter of the total time needed to trans-
fer a packet between two sites is spent on the Ethernet
transmission. This result suggests that a serious amount of
time is spent by both the dispatching and receiving nodes
before a packet is attached to the network interface. In [13],
a linear model is proposed to estimate such overheads; it
consists of a fixed overhead per message plus penalties due
to the size of the data passed through the network. Both
msg_const and msg_variable (Table 2) account for these extra
CPU penalties, which take place at the dispatching and re-
ceiving network interfaces. In general, these overheads in-
crease linearly with the size of transferred data [32].

Fig. 8. Simulation models for server, communication network, and client(s).

464 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

The structure of the network model consists of a queue
and the network resource (Net). Messages, transaction re-
quests, and data transfers between clients and the server
are routed through the network. Delays due to high con-
tention of the communication medium may occur when the
number of attached clients is increased. Requests appearing
on the network interfaces of all sites receive top scheduling
priority and preempt the CPU from any ongoing work.

Client models essentially reflect the need for the long-term
caching of server-originated data. These data become part of
the local disk space before any local query materialization
commences. The client sites are responsible for the creation of
the transactions that the architecture will have to complete.
This task is delegated to the Workload Generator Module.
Client sites consist of a simplified database manager that helps
implement the designated update propagation policy and car-
ries out normal transaction processing with the use of main-
memory buffers and disk space. The Client Catalog, Up-
date Policy, and Buffer & Disk Space Managers coor-
dinated by the Client Database Manager control the way
all locally available resources are used. The resources in dis-
cussion are the CPU, the existing buffer space, the communi-
cation interface, and the local disk unit; they are all integrated

in the Resource Manager. The local disk unit is predomi-
nantly used for intertransactional long-term caching. Due to
restricted buffer space available, join operations may require a
number of repetitive disk accesses to the same pages [45]. We
also assume that there is one user per client node.

Table 3 shows the parameters related to data used in the
experimentation. Only portions of the server relations are
initially cached in the client site. In particular, the α Reli

 pa-

rameter indicates this fraction. As Section 2 indicates, only a
fraction of the server updated pages have to be recorded at
the incremental logs; this fraction is represented by the
wr_log_fract parameter [47]. The number and size of used rela-
tions, as well as the size of pages, are also shown in Table 3.

In the BNC policy, queries are processed exclusively on
the clients while updates are directed to the server. After
the server updates commit, the newly modified records are
forwarded to all clients that participate in the cluster. If a
client receives records while processing a query, then it has
to interrupt its ongoing work in order to service the in-
coming updates. These updates have to be filtered against
the locally available binding information. The purpose of
this step is twofold: first, the relevance of the incoming data
against the client bindings is determined and second, if
pages already in the client query buffer are affected by the
new arrivals, the current query has to be aborted and re-
started. The above processing is represented by the client
CPU overhead inst_br_up. The Workload Generator

Module resubmits a request if necessary.
The Update Propagation Manager of the BWC server

needs to retrieve binding information from the system
catalog. The portion of the catalog that maintains bindings
cannot be generally maintained in main memory. Therefore,
a number of appropriate disk pages have to be carried out
in order to access the appropriate bindings. This informa-
tion is used in conjunction with the newly in-memory up-
dated tuples so that the server determines the tuple por-
tions suitable to each client. In the BWC policy, this penalty
is expressed in terms of CPU processing with a cpu_dir_page
overhead. CPU Penalties due to client processing for
pushed data is designated by the inst_br_up factor.

In the PNC/PWC policies, the server Update Policy
Manager initiates reading of the unread incremental log
portions. The server charges CPU log processing (inst_log)
time required for the retrieved log data. In PWC, we need
to retrieve not only the unread portions of the logs, but also
the binding information from the server catalog in order to
decide the appropriate log portions for each client. Simi-
larly to BWC, every page derived from the binding direc-
tory is charged with cpu_dir_page time for CPU processing.

TABLE 1
PARAMETERS FOR THE DATABASE MANAGERS

TABLE 2
NETWORK RELATED PARAMETERS

TABLE 3
DATA RELATED PARAMETERS

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 465

The five simulation packages were written in C and their
sizes vary between 5.3k and 6.1k lines of source code. They
support concurrent job operations, automatic deadlock de-
tection at the server, and interruption of processing at the
clients, as discussed above. The run-time for each of our
experiments requires approximately 26 hours of CPU time
on a Sun-SPARCstation 20.

6 EXPERIMENTAL RESULTS

This section briefly discusses our evaluation methodology
and presents the main results of our experimentation. Two
elementary workloads are used in the process; they consti-
tute the basis for our comparison. We also discuss the role
of key parameters in our analysis.

6.1 Workloads and Measurement Methodology
The means to create the client data patterns of access is that
of job streams. A job is either a query or an update. A job
stream is a sequence of jobs made up by mixing queries and
updates in a predefined proportion. In the two extreme
cases, we can have either query or update-only streams.
Every client is assigned to execute such a stream. Utilizing
the varying query/update ratios feature that our simulators
demonstrate, we conduct two families of experiments:

1)�Those with Constant number of Update jobs (CU),
where a constant number of four clients submit up-
date-only streams, and the remaining clients submit
query-only streams. This setting simulates stock
market environments or generally environments with
few writers and many readers.

2)�Those with Variable Update jobs (VU) where each
stream is a combination of both queries and updates.
Updates constitute 10 percent of all the jobs and are
uniformly distributed over the queries of each stream,
simulating traditional database environments.

Queries consist of relational operations that manipulate up
to 10 percent of the pages of the server relation(s). Thus,
two families of experiments were carried out using job
streams that were of CU and VU stream types. The same
streams were submitted for all update propagation strate-
gies. The workload definition has been enhanced to reflect
the incorporation of CPU network processing and accessing
catalog pages. The objectives of the experiments are to:

•� Examine how the various update propagation tech-
niques behave under these workloads.

•� Identify important parameters and study their impact
on the different strategies.

Naturally, the values of the system parameters are highly
implementation-dependent, but our objective is to come up
with relative estimates. In the simulations, we vary two
parameters: the number of participating clients from five to
100 (x axis of the graphs) and the update page selectivity
from 2 percent to 8 percent. The simulators create streams
by randomly selecting jobs from sets of query and update
templates. The page update selectivity remains the same
throughout all the modifications of the same job stream.

The main performance criterion for our evaluation is the
overall average job throughput. The average throughput is
measured in jobs per minute (JPM); this metric is projected

on the y axis of our graphs. The number of participating
jobs per stream was selected to be long enough—135 jobs
per stream—to guarantee satisfactory standard deviation
for our experiments. The utilized stream length resulted in
standard deviation ranging between 0.1 percent and 2.6
percent, which is considered satisfactory [20].

Initially, client think time is set to zero in order to test the
various update propagation strategies under stringent con-
ditions. In our experiments, the clients have cached the data
of their interest in their respective disk units before experi-
mentation commences. The size of the cached data in every
client is much smaller than that of the server database (e.g.,
about a third).

6.2 CU Experiment
Fig. 9 shows the performance results of the five policies for
2% update jobs in the CU workload as we increase the
number of clients attached to a server. The number of up-
date streams remains at four (4) throughout the experiment.
The key observations are:

•� BNC surprisingly performs better than ODM. One
would expect that the on-demand strategy should
give the best rates. In the ODM strategy, there are in-
cremental log pages that have to be first written into
the disk and subsequently read on behalf of the vari-
ous clients. In the context of the BNC policy, no such
reading/writing takes place. Updated tuples from the
main memory buffers (just before or after the transac-
tion commit) are put forward to the network interface.
The BNC does not only require server CPU time but
also increases the network utilization as it employs
point-to-point communication. The ODM policy
poses CPU processing requirements for incremental
log but, as the sizes of data increments are generally
small, they yield to low network utilization rates.
However, the combined effect of BNC CPU process-
ing and network is less than its ODM counterpart,
since BNC avoids expensive disk operations.

•� PNC throughput values fall below ODM perform-
ance, while BWC and PWC configurations present the
worst performance rates. PNC is a hybrid between
ODM and BNC. In PNC, server logs are maintained
and client originated queries retrieve log portions on-
demand (similarly to ODM). In addition, at regular
time intervals (every 5 secs.), a daemon for update
broadcasting is invoked and propagates without dis-
crimination the updated tuples “not sought” until
that time. Since there is no think time, the disk utili-
zation for this policy ranges between 0.91 and 0.94 for
more than 30 clients. This forces the throughput curve
to be considerably lower than that of ODM. The rea-
son for the low throughput rates achieved by both
BWC and PWC is the high CPU server utilization,
which ranges between 0.73 and 0.78 for the BWC, and
0.53 and 0.62 for PWC for more than 25 clients. A
great deal of the CPU time in BWC/PWC policies
goes to processing of catalog pages. In particular,
BWC spends 73.00 percent of its busy CPU time proc-
essing catalog pages and PWC 61.90 percent.

466 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

•� For more than 80 clients, PWC offers slightly im-
proved throughput rates over BWC. In this client
space, both configurations achieve similar server CPU
and network utilizations. However, PWC retrieves
portions of the logs at regular intervals and this re-
sults in high disk utilization levels (between 0.95 and
0.97), while the BWC’s disk utilization remains lim-
ited (between 0.49 and 0.51). Higher disk utilization
indicates that, while the CPU is processing, either up-

dates or network related requests, the disk manager
forwards the appropriate logs portions to be trans-
mitted into the buffer area. This concurrent activity is
the reason why PWC offers better throughput rates.

Fig. 10 shows the results of the CU experiment with
writers updating 6 percent of the server relation pages.
BNC and ODM curves come very close, since the benefits
and penalties of each one under the current size of updates

Fig. 9. CU experiment with 2 percent update jobs.

Fig. 10. CU Experiment with 6 percent update jobs.

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 467

provide almost equivalent throughput rates (note that the
total number of update jobs remains the same as before).
Essentially, the higher network utilization along with the
higher CPU server utilization offset the high disk utilization
of the ODM (the latter still maintains significantly lower
CPU and network utilization). PNC and PWC drop below
the BWC curve as the sizes of the logs increase (due to
larger updates) and create more disk accesses for both types
of periodic propagation.

Fig. 11 depicts the results for the CU experiment with 8
percent update page selectivity jobs. The ODM curve gives
better results than that of BNC. Due to the significantly
larger number of updated tuples, BNC creates a congested
network. The ODM configuration maintains low network
utilization by selectively forwarding only portions of the
logs. The gap between BNC and BWC becomes smaller
compared to the corresponding gaps of the two previous
graphs. The same is the case with PNC and PWC. This

Fig. 11. CU experiment with 8 percent update jobs.

Fig. 12. VU experiment with 2 percent update jobs.

468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

indicates that heavy updates are handled better with di-
rectory-based techniques (BWC, PWC). Obviously, there is
a trade-off between catalog page reading and update
propagation over the network.

6.3 VU Experiment
Fig. 12 shows the results of the VU experiment for 2 percent
updates in all five propagation configurations. The major
points are:

•� ODM dominates up to 30 clients, but then drops be-
low the throughput rates achieved by BNC. Table 4
explains why this happens. ODM disk and CPU utili-
zation values are overall higher than their counter-
parts of BNC, resulting in faster completion of the cli-
ent jobs.

•� ODM decline starts at 40 clients; beyond this point,
the server disk utilization ranges between 0.87 and
0.97 (Table 4). This indicates that the disk becomes
the main bottleneck point as the number of updates
increases with the number of participating clients.

•� BNC decline starts at 50 clients when the network
utilization reaches 0.83. Beyond this point, the net-
work utilization ranges between 0.91 and 0.98 and it
becomes the major bottleneck element for the strategy.

•� PNC achieves lower rates than ODM mainly due to
stringent time conditions at the server, and the extra
disk and CPU required processing for periodic update
propagation.

•� Policies based on catalog page reviewing have the
worst performance. BWC requires heavy use of the
server CPU for clusters that have more than 25 clients
attached (CPU utilization is between 0.47 and 0.83),
while PWC demonstrates a highly utilized disk man-
ager (utilization is between 0.79 and 0.97 for more than
25 clients). The heavy PWC disk utilization in this area
results in performance worse than that of BWC.

Fig. 13 shows the results of the experiment with updates
of 6 percent. BNC offers the best performance throughout
the range of the clients, while BWC has emerged as the sec-
ond best configuration. These two configurations demon-
strate high server disk and CPU utilizations while the ODM
suffers from very high disk utilization for more than 30 cli-
ents (higher than 0.91). Periodic type of propagation poli-
cies suffer also from very high disk utilization rates for
more than 15 clients. Similar trends are shown in Fig. 14 in
which the various curves become more distinguished.

It is worth mentioning that, in the VU workload, where
the total number of update jobs increases with the number of
clients increases, the coupling of a fast server with a fast net-

work1 makes broadcasting a more effective way of pushing
changes than the lazy and on-demand strategy. ODM has to
spend a considerable amount of time in the disk resident log.

6.4 Experiments with Think Time
To examine the behavior of the various propagation policies
in the presence of nonzero think time we reran the experi-
ments with an average client think time of 15 secs. For
brevity, we present only four resulting graphs, namely
those corresponding to the experiments CU and VU for
update jobs with page selectivity of 2 percent and 6 percent.

Figs. 15 and 16 depict the results of the CU experiment.
ODM is does better than any other configuration since the
think time provides lighter server resource contention. In
Fig. 16, ODM offers inferior throughput rates than BNC in
the 80-100 client range due to high disk utilization (which
varies between 0.88 and 0.90). In this same high client
space, the BNC strategy capitalizes on the fast network in-
terface and provides better throughput rates. ODM main-
tains lower throughput rates only when the server disk be-
comes the bottleneck (Fig. 16—between 80 and 100 clients).
The configurations based on the periodic type of update
propagation perform well and their performance ap-
proaches that of ODM in Fig. 15. PNC and PWC use the
server’s idle periods (implicitly provided by the client think
time) to push updates. However, under larger updates (i.e.
Fig. 16), the gap between PNC/PWC and ODM becomes
larger since these idle server periods become shorter. Note
also that in Fig. 16, PNC/PWC give better results than
BNC/BWC due to light server resource utilization in the 5-
25 client range.

Figs. 17 and 18 show the results of the VU with 2 percent
and 6 percent update jobs and an average client think time
of 15 secs. In the graph with 2 percent update jobs, the
ODM offers the best performance between five and 80 cli-
ents. Beyond 80 clients, its throughput rates are inferior to
those of BNC due to heavy server resource utilization. Sim-
ple updated tuple broadcasting does relatively well at the
beginning of the client space, and offers the best rates for
more than 80 clients (the network for BNC is still fairly un-
congested, i.e., at 100 clients the utilization is 0.34). In
Fig. 17, the BWC configuration gives the poorest rates. The
number of binding information pages that have to be re-
trieved in order to process updates increases linearly with
the number of submitting streams (VU experiment). This
retrieval activity contributes significantly to the deteriora-
tion of the throughput rates.

1. 10MBits/sec are allotted effectively to transfer modified tuples/data
between server and clients.

TABLE 4
DISK, CPU, AND NETWORK UTILIZATION RATES FOR ODM AND BNC

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 469

When the updates become larger (Fig. 18), the decline of
ODM over BNC comes much earlier—at around 50 cli-
ents—since the server log manager must cope with larger
pieces of updated data. The server disk utilization varies
between 0.69 and 0.89. In the range between 60 and 90 cli-
ents, the BWC behaves better than ODM because its server
resources remain moderately loaded (i.e., disk utilization
varies between 0.49 and 0.56 and CPU between 0.59 and
0.76). Beyond that point, the BWC becomes CPU-bound
and the ODM disk-bound. Both BWC and ODM provide

similar throughput rates. PNC/PWC present the poorest
performance as they not only use the log manager heavily
but also utilize the server’s CPU a great deal.

6.5 Sensitivity Analysis
In this last section, we examine the behavior of the five up-
date propagation strategies under diverse network and
catalog paging parameter settings. Fig. 19 depicts the results
of the CU experiment, with job updates of 8 percent in a
highly loaded network. We simulate this congested net-

Fig. 13. VU experiment with 6 percent update jobs.

Fig. 14. VU experiment with 8 percent update jobs.

470 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

work by setting the msg_const overhead to 50,000 instruc-
tions and bringing the effective transfer rate over the net-
work at 0.5 Mbits/Sec. In this graph, the ODM configura-
tion offers the best throughput rates, while the configura-
tions based on filtering results after consulting catalog
pages (BWC and PWC) come second. Overall, ODM main-
tains 1.8 times better average performance than PWC and
4.14 times better than BNC due to effective use of the in-
cremental log operations. The network utilization in

PNC/BNC for more than 10 clients is more than 0.97, and
around the same levels in PWC/BWC for more than 40 cli-
ents. In contrast, the ODM configuration maintains network
utilization between 0.13 (at 10 clients) and 0.70 (at 100 cli-
ents). For the other update curves (2 percent, 4 percent, and
6 percent), we observe similar trends with those depicted in
Fig. 19.

Fig. 20 shows the results for the respective VU experi-
ment with 8 percent update jobs in a highly loaded net-

Fig. 15. CU experiment with 2 percent update jobs and think time.

Fig. 16. CU experiment with 6 percent update jobs and think time.

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 471

work. BWC offers better rates than ODM in the range be-
tween 10 and 40 clients. In this range, the high disk utiliza-
tion observed for ODM creates significant overheads. Nev-
ertheless, for more that 40 clients, BWC experiences high
network utilization (greater than 0.97). High network utili-
zation works negatively for the BWC policy in the high cli-
ent space since the total number of updates increases line-
arly to the number of participating clients (VU type of ex-

periment). The ODM network utilization ranges between
0.26 and 0.64 in the whole client space of the experiment.

Figs. 21 and 22 show the results of CU and VU experi-
ments for updates of 2 percent in a long haul or mobile
network. Clients and server communicate through dedicated
communication lines at 19,600 bits per second (BPS). ODM in
both experiments offers the best service since it uses its in-
cremental log processing. In both experiments, the network

Fig. 17. VU experiment with 2 percent update jobs and think time.

Fig. 18. VU experiment with 6 percent update jobs and think time.

472 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

bandwidth is almost fully utilized in all configurations. Thus,
the best strategy is the one that puts the least amount of traf-
fic on the network (i.e., ODM). Although both PWC and
BWC discriminate in terms of the volume of data they put
forward to the network, they fail to service clients individu-
ally. This creates longer completion times for the submitted
streams than those achieved in ODM.

Finally, Figs. 23 and 24 present the results of the CU and
VU experiments under light penalties for catalog-based
operations for broadcasting policies. More specifically, the

server makes one disk access to retrieve the binding condi-
tions for a group of five clients on average, and each such
page is processed with 0.125 msec cpu_dir_page overhead
once in the buffer area. Although the curves in Figs. 23 and
24 indicate trends similar to those of Figs. 19 and 20, the
BWC and PWC have come very close to the ODM which
maintains the best overall performance. This observation
indicates that catalog-based propagation techniques are
worth exploiting as long as the catalog bookkeeping is in-
expensive. In CU and for clients in the range of 10-20, BWC

Fig. 19. CU experiment with highly loaded network (8 percent update jobs).

Fig. 20. VU experiment with highly loaded network (8 percent update jobs).

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 473

gives higher throughput values than its ODM counterpart
because of the available network bandwidth. High network
utilization is a serious obstacle for achieving higher perform-
ance rates in both BWC and PWC for more than 40 clients.

7 CONCLUSIONS

Contemporary Client-Server DBMS architectures do not
only exploit ephemeral data caching but they also make use
of the available client disk space. The Enhanced Client-

Server DBMS is such a configuration where clients cache
data from the server(s) in their long-term memory. How-
ever, data consistency needs to be maintained at all times.
In this paper, we have discussed update propagation tech-
niques for the Enhanced Client-Server DBMS architecture
and evaluated them under multiple job streams of different
composition and varying update rates.

Five strategies for propagating updates from the server to
the clients were proposed, namely, ODM (On Demand),

Fig. 21. CU experiment with network rate 19,600 BPS.

Fig. 22. VU experiment with network rate 19,600 BPS.

474 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

BNC/BWC (Broadcasting with NO/With Catalog bindings),
and PNC/PWC (Periodic broadcasting with NO/With
Catalog bindings). The core architectural configuration for
our experiments consisted of a server connected to a vary-
ing number of clients. We were interested in the way that
the various update propagation strategies scale up their
performance as the number of clients per server increases.
Our main experimental results are:

1)�ODM offers the best performance if none of the server
resources reaches full utilization.

2)�Under high utilization of server resources, the BNC
configuration surprisingly offers the best performance
when:

•� The updates have small update page selectivities.
•� The number of clients is large (more than 60-70) in

the CU family of experiments.

Fig. 23. CU experiment with inexpensive catalog access operations.

Fig. 24. VU experiment with inexpensive catalog access operations.

DELIS AND ROUSSOPOULOS: TECHNIQUES FOR UPDATE HANDLING IN THE ENHANCED CLIENT-SERVER DBMS 475

•� The number of updates increases linearly with the
number of clients attached to the server.

A fast local area network paired with fast processing
CPUs at both ends of a critical path offers a combined
job completion time for the broadcasting policies that
is shorter than that achieved by the ODM strategy.

3)� If ECS operates under a heavily loaded network, then
ODM policy provides the best performance inde-
pendent of workload. The gains become more obvi-
ous for the more heavily updating curves. The same is
the case if ECS functions in long haul networks.

4)�When server bookkeeping is inexpensive in terms of
disk accesses and CPU processing time, propagation
techniques based on catalog pages and updated tuple
filtering may considerably cut down on network traffic.

5)�Periodic type of update propagation demonstrates
significant gains when there is nonzero think time.
The highest gains were attained for the light update
curves.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their comments
that helped us significantly improve the presentation of the
paper and Steve Milliner for many discussions. A prelimi-
nary version of this paper was presented in [16]. This work
was supported in part by the Center for Advanced Tech-
nology in Telecommunications (CATT) in Brooklyn, New
York, and grants from NASA NAGW-2777, U.S. National
Science Foundation EEC 94-02384, IIS-9733642, and ARPA
F30602-93-C-0177.

REFERENCES

[1]� R. Alonso, D. Barbara, and H. Garcia-Molina, “Data Caching Is-
sues in an Information Retrieval System,” ACM Trans. Database
Systems, vol. 15, no. 3, pp. 359-384, Sept. 1990.

[2]� J. Archibald and J.L. Baer, “Cache Coherence Protocols: Evalua-
tion Using a Multiprocessor Simulation Model,” ACM Trans.
Computer Systems, vol. 4, no. 4, Nov. 1986.

[3]� Building An Object-Oriented Database System: The Story of O2, F. Bancil-
hon, C. Delobel, and P. Kanelakis, eds. San Mateo, Calif.: Morgan
Kaufmann, 1992.

[4]� S. Banerjee and P.K. Chrysanthis, “Data Sharing and Recovery in
Gigabit-Networked Databases,” Proc. Fourth Int’l Conf. Computer
Comm. and Networks, Las Vegas, Nev., Sept. 1995.

[5]� M. Bellew, M. Hsu, and V. Tam, “Update Propagation in Distrib-
uted Memory Hierarchy,” Proc. Sixth Int’l Conf. Data Eng., pp. 521-
528, Los Angeles, 1990.

[6]� A. Bhide and M. Stonebraker, “An Analysis of Three Transactions
Processing Architectures,” Proc. 14th Very Large Data Base Conf.,
pp. 339-350, Los Angeles, 1988.

[7]� J. Bloomer, Power Programming with RPC. Sebastopol, Calif.:
O’Reilly and Associates, 1992.

[8]� Database Machines, H. Boral and P. Faudemay, eds. Springer-
Verlag, June 1989.

[9]� P. Butterworth, A. Otis, and J. Stein, “The Gemstone Object Data-
base Mangement System,” Comm. ACM, vol. 34, no. 10, Oct. 1991.

[10]� M. Carey, M. Franklin, M. Livny, and E. Shekita, “Data Caching
Tradeoffs in Client-Server DBMS Architecture,” Proc. ACM-
SIGMOD Conf. Management of Data, Denver, Colo., May 1991.

[11]� S. Ceri and G. Pelagatti, Distributed Databases: Principles and Sys-
tems. New York: McGraw-Hill, 1984.

[12]� P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, “RAID:
High-Performance, Reliable Secondary Storage,” ACM Computing
Surveys, vol. 26, no. 2, pp. 145-186, June 1994.

[13]� D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis
of TCP Processing Overhead,” IEEE Comm., June 1989.

[14]� A. Delis and N. Roussopoulos, “Performance and Scalability of
Client-Server Database Architectures,” Proc. 19th Int’l Conf. Very
Large Databases, Vancouver, B.C., Canada, Aug. 1992.

[15]� A. Delis and N. Roussopoulos, “Performance Comparison of
Three Modern DBMS Architectures,” IEEE Trans. Software Eng.,
vol. 19, no. 2, pp. 120-138, Feb. 1993.

[16]� A. Delis and N. Roussopoulos, “Management of Updates in the
Enhanced Client-Server DBMS,” Proc. 14th IEEE Int’l Conf. Dis-
tributed Computing Systems, Poznan, Poland, June 1994.

[17]� U. Deppisch and V. Obermeit, “Tight Database Cooperation in a
Server-Workstation Environment,” Proc. Seventh IEEE Int’l Conf.
Distributed Computing Systems, pp. 416-423, June 1987.

[18]� D. DeWitt et al., “GAMMA—A High Performance Backend Data-
base Machine,” Proc. 12th Conf. Very Large Data Bases, Kyoto, Ja-
pan, Aug. 1986.

[19]� D. DeWitt, D. Maier, P. Futtersack, and F. Velez, “A Study of Three
Alternative Workstation-Server Architectures for Object-Oriented
Database Systems,” Proc. 16th Very Large Data Bases Conf., pp. 107-
121, Brisbane, Australia, 1990.

[20]� D. Ferrari, Computer Systems Performance Evaluation. Englewood
Cliffs, N.J.: Prentice Hall, 1978.

[21]� M. Franklin, M. Carey, and M. Livny, “Local Disk Caching in
Client-Server Database Systems,” Proc. 19th Int’l Conf. Very Large
Data Bases, Dublin, Ireland, Aug. 1993.

[22]� M. Franklin, M. Zwilling, C. Tan, M. Carey, and D. DeWitt, “Crash
Recovery in Client-Server EXODUS,” Proc. ACM -SIGMOD Conf.,
San Diego, Calif., June 1992.

[23]� J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. San Mateo, Calif.: Morgan-Kaufman, 1992.

[24]� R. Hagman and D. Ferrari, “Performance Analysis of Several
Back-End Database Architectures,” ACM Trans. Database Systems,
vol. 11, no. 1, pp. 1-26, Mar. 1986.

[25]� B. Kim and P. Wang, “ATM Networks: Goals and Challenges,”
Comm. ACM, vol. 38, no. 2, Feb. 1995.

[26]� W. Kim, J. Garza, N. Ballou, and D. Woelk, “Architecture of the
Orion Next-Generation Database System,” IEEE Trans. Knowledge
and Data Eng., vol. 2, no. 1, pp. 109-124, Mar. 1990.

[27]� S. Kleiman, D. Shah, and B. Smaalders, Programing with Threads.
Mountain View, Calif.: SunSoft Press/Prentice Hall PTR, 1995.

[28]� K. Küspert, P. Dadam, and J. Gunauer, “Cooperative Object Buffer
Management in the Advanced Information Management Proto-
type,” Proc. 13th Very Large Data Bases Conf., Brighton, U.K., 1987.

[29]� C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The Ob-
jectStore Database System,” Comm. ACM, vol. 34, no. 10, Oct.
1991.

[30]� D. Marakoff and D. Eager, “Disk Cache Performance for Distrib-
uted Systems,” Proc. 10th IEEE Int’l Conf. Distributed Computing
Systems, pp. 212-219, Paris, May 1990.

[31]� D. McGovern and C.J. Date, A Guide to SYBASE and SQL Server.
Reading, Mass.: Addison-Wesley, 1992.

[32]� S. Milliner and A. Delis, “Networking Abstractions and Protocols
Under Variable Length Messages,” Proc. 1995 IEEE Int’l Conf.
Network Protocols (ICNP-95), Tokyo, Nov. 1995.

[33]� C. Mohan and I. Narang, “ARIES/CSA: A Method for Database
Recovery in Client-Server Architecture,” Proc. Conf. Management of
Data SIGMOD, Minneapolis, Minn., June 1994.

[34]� A. Nakamura and M. Takizawa, “Reliable Broadcast Protocol for
Selectively Ordering PDUs,” Proc. 11th IEEE Int’l Conf. Distributed
Computing Systems, Arlington, Tex., June 1991.

[35]� T. Ng, “Propagating Updates in a Highly Replicated Database,”
Proc. Sixth Int’l Conf. Data Eng., pp. 529-536, Los Angeles, 1990.

[36]� B. Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of
Issues and Algorithms,” Computer, vol. 24, no. 8, pp. 522-60, Aug.
1991.

[37]� S. Ough and R. Sonnier, “Spotlight on FDDI,” Unix Review, vol. 10,
no. 10, pp. 40-49, Oct. 1992.

[38]� E. Panagos, A. Biliris, H.V. Jagadish, and R. Rastogi, “Client-Based
Logging for High Performance Distributed Architectures,” Proc.
12th Int’l Conf. Data Eng., pp. 344-351, New Orleans, Feb.-Mar.
1996.

[39]� N. Roussopoulos, “The Incremental Access Method of View
Cache: Concept, Algorithms, and Cost Analysis,” ACM Trans. Da-
tabase Systems, vol. 16, no. 3, pp. 535-563, Sept. 1991.

476 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

[40]� N. Roussopoulos, C. Chen, S. Kelley, A. Delis, and Y. Papakon-
stantinou, “The ADMS Project: Views R Us,” IEEE-Bulletin Data
Eng., vol. 18, no. 2, pp. 19-28, June 1995.

[41]� N. Roussopoulos and H. Kang, “Principles and Techniques in the
Design of ADMS±,” Computer, vol. 19, no. 12, pp. 19-25, Dec. 1986.

[42]� M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: A Highly Available File System for a Distributed
Workstation Environment,” IEEE Trans. Computers, vol. 39, no. 4,
Apr. 1990.

[43]� M. Schroeder and M. Burrows, “Performance of Firefly RPC,”
ACM Trans. Computer Systems, vol. 8, no. 1, pp. 1-17, Feb. 1990.

[44]� A. Segev and J. Park, “Maintaining Materialized Views in Distrib-
uted Databases,” Proc. Fifth Int’l Conf. Data Eng., pp. 262-270, Los
Angeles, 1989.

[45]� L. Shapiro, “Join Processing in Database Systems with Large Main
Memories,” ACM Trans. Database Systems, vol. 11, no. 3, Sept. 1986.

[46]� A. Sinha, “Client-Server Computing,” Comm. ACM, vol. 35, no. 7,
July 1992.

[47]� A. Stamenas, “High Performance Incremental Relational Data-
bases,” master’s thesis, Dept. of Computer Science, Univ. of
Maryland, College Park, 1989.

[48]� R. Stevens, Unix Networking Programming. Englewood Cliffs, N.J.:
Prentice Hall, 1990.

[49]� M. Stonebraker, “Object-Relational DBMS—The Next Wave,”
technical report, Menlo Park, Calif., 1996.
http://www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.htm.

[50]� L. Svobodova, “File Servers for Network-Based Distributed Sys-
tems,” Computing Surveys, vol. 16, no. 4, pp. 353-398, Dec. 1984.

[51]� R. Velter, C. Spell, and C. Ward, “Mosaic and the World-Wide
Web,” Computer, vol. 27, no. 10, Oct. 1994.

[52]� Y. Wang and L. Rowe, “Cache Consistency and Concurrency Con-
trol in a Client/Server DBMS Architecture,” Proc. 1991 ACM
SIGMOD Int’l Conf., Denver, Colo., May 1991.

[53]� K. Wilkinson and M.A. Neimat, “Maintaining Consistency of
Client-Cached Data,” Proc. Int’l Conf. Very Large Data Bases, Bris-
bane, Australia, Aug. 1990.

Alex Delis received his PhD and his MSc in
computer science from the University of Maryland
at College Park and his BS in computer engineering
from the University of Patras, Greece. Dr. Delis is
currently an assistant professor in the Department of
Computer and Information Science at Polytech-
nic University in Brooklyn, New York. His research
interests are in databases, computer systems, and
software engineering. He is a member of the IEEE,
the ACM, Sigma Xi, the New York Academy of Sci-
ences, and has received the U.S. National Science
Foundation’s Career Award.

Nick Roussopoulos is a professor in the Com-
puter Science Department and at the Institute for
Advanced Computer Studies at the University of
Maryland, College Park. He served on the Space
Science Board Committee on Data Management
and Computation (CODMAC) from 1985 until
1988. He was the general chair of the ACM In-
ternational Conference on Data Management in
1986. He was an elected trustee of the VLDB
Endowment from 1990-1996. He is a member of
the editorial board of the International Journals

on Information Systems, Decision Support Systems, and Intelligent
Cooperative Information Systems (IJICIS). Dr. Roussopoulos is the
principal investigator of the ADMS+- project at the University of Mary-
land and has published more than 80 refereed papers in journals and
conference proceedings. His research area is in database systems,
data warehousing, client-server database architectures, heterogeneous
databases and interoperability, mobile databases, data broadcast,
network management systems, and geographic information systems.

